
HAL Id: hal-04831168
https://hal.science/hal-04831168v1

Preprint submitted on 11 Dec 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Copyright

MUSET: Set of utilities for the construction of
abundance unitig matrices from sequencing data

Riccardo Vicedomini, Francesco Andreace, Yoann Dufresne, Rayan Chikhi,
Camila Duitama González

To cite this version:
Riccardo Vicedomini, Francesco Andreace, Yoann Dufresne, Rayan Chikhi, Camila Duitama González.
MUSET: Set of utilities for the construction of abundance unitig matrices from sequencing data. 2024.
�hal-04831168�

https://hal.science/hal-04831168v1
https://hal.archives-ouvertes.fr


Bioinformatics, 2024, pp. 1–4

doi: DOI HERE

Advance Access Publication Date: Day Month Year

Paper

PAPER

MUSET: Set of utilities for the construction of
abundance unitig matrices from sequencing data.

Riccardo Vicedomini ,1,∗ Francesco Andreace ,2,3 Yoann Dufresne ,2,3

Rayan Chikhi 2 and Camila Duitama González 2,∗

1 GenScale, Univ. Rennes, Inria RBA, CNRS UMR 6074, F-35000, Rennes, France, 2 Institut Pasteur, Université Paris Cité, Sequence

Bioinformatics unit, F-75015, Paris, France and 3Sorbonne Université, Collège doctoral, F-75005, Paris, France
∗Corresponding authors. E-mails: camila.duitama-gonzalez@pasteur.fr; riccardo.vicedomini@irisa.fr

FOR PUBLISHER ONLY Received on Date Month Year; revised on Date Month Year; accepted on Date Month Year

Abstract

Summary: MUSET is a novel set of utilities designed to efficiently construct abundance unitig matrices from sequencing
data. Unitig matrices extend the concept of k-mer matrices, which are gaining popularity for sequence-phenotype
association studies, by merging overlapping k-mers that unambiguously belong to the same sequence. MUSET addresses
the limitations of current software by integrating k-mer counting and unitig extraction to generate unitig matrices
containing abundance values, as opposed to only presence-absence in previous tools. These matrices preserve variations
between samples while reducing disk space and reducing the number of rows in comparison to k-mer matrices. We
evaluated MUSET’s performance using datasets derived from a 618-GB collection of ancient oral sequencing samples,
producing a filtered unitig matrix that records abundances in less than 10 hours and 20 GB memory. As a comprehensive
pipeline for generating these matrices, MUSET will facilitate the extraction of biologically significant sequences, making it
a valuable contribution to downstream sequencing data analyses such as genome-wide (or metagenome-wide) association
studies.
Availability and implementation: MUSET is open source and publicly available under the MIT licence in GitHub at
https://github.com/CamilaDuitama/muset.

Key words: unitigs, matrix, abundance, k-mers, de Bruijn graph

Introduction

Unitigs are biological sequences that compactly and exhaustively

represent sequencing data or assembled genomes. They are

constructed from k-mers, but unlike k-mers, they avoid the

redundancy problem of multiple overlapping sequences covering

the same genomic locus. They have proven useful for analyzing

genomic diversity across several sequencing datasets [6, 11, 12].

A more formal definition characterizes unitigs as maximal non-

branching paths in a de Bruijn graph (dBG). The de Bruijn

graph is a fundamental data structure in bioinformatics and

is widely used in many genomics applications [1, 5, 16]. It

represents a set of distinct k-mers (substrings of size k) and

their k − 1 prefix-suffix overlaps as a graph [3]. The process of

generating maximal unitigs from k-mers, known as compaction,

consists of consolidating all maximal non-branching paths of k-

mers into single strings [3, 17]. The resulting graph is called

compacted dBG. In this work, the term “unitigs” will always

refer to the deterministically unique set of maximal unitigs.

A unitig matrix is a data structure that represents sequence

content across multiple experiments by recording a numerical

value for each unitig across all samples. In a scenario involving a

collection S of samples, a binary unitig matrix M has elements

M(i, j) that indicate the presence (1) or absence (0) of unitig i

in sample j. In other words, rows are unitigs and columns are

samples.

Related work
Numerous cutting-edge tools that rely on the construction

of a de Bruijn graph for unitig computation have been

developed over the years, including BCALM [4], Cuttlefish [13],

Bifrost [10], and GGCAT [6]. By computing the unitigs of a

union of multiple samples, one can construct a binary unitig

matrix. However, current software overlooks the concept of

abundance, which estimates the frequency with which a unitig

appears in a sample.

BCALM and Cuttlefish simply produce a set of unitigs,

i.e. a compacted dBG, without recording the sample of origin.

GGCAT and Bifrost, on the other hand, can build colored

compacted dBGs, a variant of dBGs that additionally keeps

track of the source of each k-mer [11]. Such graphs are implicitly

binary unitig matrices. Notably, GGCAT has demonstrated

superior performance to its counterparts [6].

Unitig matrices are data structures analogous to k-

mer matrices, which are commonly used to represent

© The Author 2024. Published by Oxford University Press. All rights reserved. For permissions, please e-mail:
journals.permissions@oup.com

1

https://orcid.org/0000-0002-7706-0998
https://orcid.org/0009-0008-0566-200X
https://orcid.org/0009-0008-0566-200X
https://orcid.org/0000-0003-1099-8735
https://orcid.org/0000-0001-6805-2331
email:camila.duitama-gonzalez@pasteur.fr
email:riccardo.vicedomini@irisa.fr
https://github.com/CamilaDuitama/muset


2 Vicedomini et al.

sequence content across multiple experiments, e.g. for

indexing environmental metagenomes [14], source attribution of

pathogenic bacteria via supervised learning [2], transcriptomic

analyses [20], contamination removal and contamination

assessment of ancient metagenomic data [7, 9]. While k-

mer matrices can be constructed efficiently (e.g. using

kmtricks [15]), storing and processing large k-mer matrices

remains challenging, especially when integrating them

with existing libraries for machine learning, dimensionality

reduction, or visualization. As an alternative, unitig

matrices offer a more compact and manageable representation,

preserving the variations between samples while optimizing

disk-space usage and processing time. Individual k-mer counts

can be naturally averaged along a unitig to produce a single

abundance value per unitig, robustly approximating the counts

of all k-mers from that unitig [18].

Using unitigs instead of k-mers can reduce multiple testing

burden, a common challenge in the study of genomic variation

across datasets [12]. Presence-absence unitig matrices have

proven to be useful for statistical analyses in human genomic

studies, where the frequency of sequences that characterize

certain species can effectively distinguish between phenotypes

more accurately than their mere presence or absence [8]. Unitig

matrices also have the potential to be useful for RNA-Seq

differential expression analyses in transcriptomics, where low-

coverage unitigs can help identify sequencing errors. However,

to our knowledge, there is no software that effectively addresses

the gap that exists in the construction of abundance unitig

matrices, as opposed to presence-absence unitig matrices. For

this reason, we introduce MUSET, a pipeline designed for the

practical construction of abundance unitig matrices. Along with

it, we additionally provide kmat tools, a comprehensive suite

of tools (internally exploited by MUSET) for manipulating k-

mer matrices, and muset pa, a pipeline that uses GGCAT and

kmat tools to rapidly build a presence-absence unitig matrix

with no k-mer filtering.

Tool description and evaluation

MUSET overview
MUSET leverages kmtricks [15] for efficient k-mer counting

over large collections of genomic sequences provided as

FASTA/FASTQ files. It then uses GGCAT [6] for unitig

construction and SSHash [19] to assign k-mer counts to unitigs.

Intermediate filtering steps are performed at both k-mer and

unitig levels. The final output is a unitig matrix where rows

correspond to unitigs, columns correspond to samples, and

each element encodes the average abundance and fraction of

the unitig’s k-mers that are present in a sample. The pipeline

is depicted in Fig. 1 and consists of the following main steps

explained below: (i) k-mer matrix construction, (ii) k-mer

matrix filtering, (iii) unitig construction, and (iv) unitig matrix

construction.

k-mer matrix construction

kmtrick’s pipeline is run to build a k-mer matrix from the

input FASTA/Q files. The matrix is stored in partitions using

a custom lz4-compressed binary format.

k-mer matrix filtering

kmtricks’s matrix partitions are filtered concurrently and

merged into a single k-mer matrix in text format. The filtering

aims to retain k-mers that potentially reflect differences

FASTA/FASTQ files

k-mer matrix

filtered k-mer matrix

k-mers in FASTA format

unitigs

long unitigs

k-mer matrix

construction

k-mer

filtering

unitig

construction

unitigs

matrix

creation

abundance unitig matrix

Fig. 1. MUSET pipeline. It consists of four main steps: k-mer matrix

construction, k-mer matrix filtering, unitig creation, and unitig matrix

creation.

between samples. More precisely, by default, we keep k-mers

that are present in at least 10% of the samples and absent in at

least 10% of the samples. Users can set custom values to both

of these thresholds by providing either a fraction or an absolute

number.

Unitig construction

The k-mers of the filtered matrix are outputted in FASTA

format (command kmat tools fasta) to build a set of unitigs

with GGCAT. Unitigs shorter than a certain threshold (2k − 1

base pairs by default) are then discarded using the command

kmat tools fafmt.

Unitig matrix construction

This step involves the execution of the command kmat tools

unitig to create an abundance unitig matrix. First, an SSHash-

based dictionary is built from the (filtered) unitigs in order to

assign each k-mer to the unitig it belongs to. The filtered k-

mer matrix is then processed to extract abundance values and

k-mer presence, while simultaneously aggregating k-mer data

at the unitig level. The aggregation is done for each unitig, by

computing the fraction of the unitig’s k-mers belonging to a

given sample and their average abundance.

More precisely, the fraction of k-mers in a unitig u that are

present in a sample S is defined as:

f(u, S) =

∑N
i=1 xi

N
(1)

where N is the number of k-mers in u, and xi is a binary

variable that is 1 when the i-th k-mer is present in sample

S and 0 otherwise.



Short Article Title 3

Table 1. Running time, peak memory and disk usage of MUSET on the small and large datasets. The two datasets are derived

from the same collection of FASTQ files of ancient DNA reads. The small dataset corresponds to a subset of the k-mer matrix of the large

dataset. Wall-clock time and memory usage were computed using 20 threads.

Small dataset (11 GB) Large dataset (618 GB)

MUSET step Wall-clock time Peak memory Disk usage Wall-clock time Peak memory Disk usage

k-mer matrix construction 3h 6m 46s 2.4GB 11GB 7h 47m 59s 19GB 1437GB

k-mer filtering 0h 2m 04s <0.1GB 0.1GB 1h 37m 25s <0.1GB 80GB

Unitig creation (GGCAT) 0h 0m 28s 0.7GB <0.1GB 0h 2m 28s 1.2GB 0.9GB

Unitig matrix creation 0h 0m 01s <0.1GB <0.1GB 0h 15m 20s 2.3GB 2.7GB

Total 3h 8m 10s 2.4GB 11.2GB 9h 43m 12s 19GB 1525GB

Table 2. Comparison of running time, peak memory, and

disk usage between MUSET (filtered unitig matrix) and

GGCAT (unfiltered unitigs) on the large dataset. The large

dataset consists of a 618-GB collection of 360 samples (compressed

FASTQ files) from an ancient metagenomic dataset. Tools were run

using 20 threads.

Method Wall-clock time Peak memory Disk usage

MUSET 9h 43m 12s 19GB 1.5TB

GGCAT 24h 20m 40s 167GB 641GB

The average abundance of a unitig u with respect to a

sample S is defined as:

A(u, S) =

∑N
i=1 ci

N
(2)

where N is the number of k-mers in u, and ci is the abundance

of the i-th k-mer of u in sample S.

Evaluation
We evaluated the performance of MUSET (Table 1) on two

datasets composed of a collection of 360 ancient oral samples

and their potential contaminants [7]. This collection is made

of compressed FASTQ files which add up to 618GB. The first

dataset, referred to as the small dataset, consists of a subset of

rows of the full k-mer matrix obtained from the aforementioned

collection. The small-dataset matrix contains ≈ 14.3 million k-

mers and has a size of 11GB. The second dataset, denoted as

the large dataset, encompasses the entire matrix. The large-

dataset matrix contains ≈ 64.6 billion k-mers and has a size of

1.4TB. The instructions to reproduce our results are available

at the following link: https://github.com/CamilaDuitama/muset/

tree/main/reproducibility.

To the best of our knowledge, no other tool can directly

create an abundance unitig matrix from sequencing data.

The most similar state-of-the-art tool to produce analogous

presence-absence matrices is GGCAT (which we happen to use

inside MUSET). For this reason, we compared MUSET to a

stand-alone execution of GGCAT by running both tools on the

large test dataset.

In Table 2, MUSET demonstrates superior performance

over GGCAT in processing the large metagenomic dataset,

creating a filtered abundance unitig matrix more than twice

faster (9.7 h vs. 24.3 h), using 88% less memory (19GB vs.

167GB), yet at the expense of a higher disk usage (1.5TB vs.

641GB). Notably, MUSET is able to reduce the size of the k-

mer matrix by 2 (small dataset) to 3 (large dataset) orders of

magnitude when converting it to a unitig matrix. MUSET not

only achieves shorter running times and lower peak memory

usage than GGCAT due to its upstream k-mer filter, but it is

also more convenient and informative as it directly produces an

abundance unitig matrix. GGCAT instead produces a colored

compacted dBG in text format with colors in binary format,

and the user would have to generate a presence-absence unitig

matrix on their own: this is now directly achievable using the

muset pa tool we provide.

Discussion and conclusions

Abundance unitig matrices provide a compact, manageable,

and more informative representation of sequencing data across

multiple samples, offering a valuable resource for downstream

analyses in large-scale (meta/pan)genomic studies. Besides,

the representation of sequencing data as abundance unitig

matrices offers a versatile option with potential applications in

various contexts: from sequencing error filtering and indexing,

to reference-free comparison of sequencing samples. It also

provides a useful input for supervised and unsupervised

learning models built on large-scale sequencing datasets.

The most time-consuming and memory-intensive step in

MUSET is the k-mer matrix construction, which can be

optionally skipped if users have already created their own k-mer

matrix in text format. This is followed by the k-mer filtering

step (see Table 1). While k-mer filtering can theoretically

be bypassed by setting appropriate parameters, doing so will

increase disk space and peak memory usage in subsequent

pipeline steps. We recommend to apply this k-mer filtering

to discard “uninformative” k-mers and reduce computational

burden. However, stringent filtering may interfere with the

biological interpretation of unitigs, by possibly yielding

chimeric sequences, which is worth investigating and mitigating

in future work.

To conclude, MUSET addresses the technical gap associated

with generating abundance unitig matrices to represent

extensive collections of sequencing datasets. The tool utilizes

kmtricks for efficient indexing and k-mer counting, GGCAT

for constructing unitigs, and SSHash to efficiently map k-

mers to unitigs. Ultimately, MUSET reports the abundance

of each unitig in the collection of samples by estimating the

fraction of observed k-mers relative to the total number of

k-mers that constitute each unitig, in addition to calculating

the average abundance per sample (see Equation 2). We

anticipate that MUSET will be a valuable replacement to k-

mer matrices of sequencing data. By providing a tool that offers

a smaller representation with equivalent information content,

MUSET has the potential to accelerate and facilitate the

provision of biologically significant and reference-free insights

into sequencing data.

https://github.com/CamilaDuitama/muset/tree/main/reproducibility
https://github.com/CamilaDuitama/muset/tree/main/reproducibility


4 Vicedomini et al.

Competing interests

The authors declare no competing interests.

Author contributions statement

R.C., R.V. and C.D. conceived the experiments, C.D. and

R.V conducted the experiments, R.V., C.D., F.A. and R.C.

wrote the manuscript. R.V., C.D., F.A. and Y.D. developed

and tested the software. All authors read and approved the

manuscript.

Acknowledgments

We would like to thank Hugues Richard for his contribution in

reading and suggesting improvements. R.C was supported by

ANR (ANR-22-CE45-0007, ANR-19-CE45-0008, PIA/ANR16-

CONV-0005, ANR-19-P3IA-0001, ANR-21-CE46-0012-03) and

Horizon Europe grants No. 872539, 956229, 101047160 and

101088572.

Software availability

MUSET is open source, implemented in bash and C++, and

provided with kmat tools, a collection of tools for processing

k-mer matrices. The instructions on how to install and run it

are available at https://github.com/CamilaDuitama/muset.

References

1. Francesco Andreace, Pierre Lechat, Yoann Dufresne, and

Rayan Chikhi. Comparing methods for constructing and

representing human pangenome graphs. Genome Biology,

24(1):274, Nov 2023.

2. Pierluigi Castelli, Andrea De Ruvo, Andrea Bucciacchio,

Nicola D’Alterio, Cesare Cammà, Adriano Di Pasquale, and

Nicolas Radomski. Harmonization of supervised machine

learning practices for efficient source attribution of Listeria

monocytogenes based on genomic data. BMC genomics,

24(1):560, 2023.

3. Rayan Chikhi, Jan Holub, and Paul Medvedev. Data

structures to represent a set of k-long DNA sequences. ACM

Computing Surveys (CSUR), 54(1):1–22, 2021.

4. Rayan Chikhi, Antoine Limasset, and Paul Medvedev.

Compacting de Bruijn graphs from sequencing data quickly

and in low memory. Bioinformatics, 32(12):i201–i208,

2016.

5. Phillip E. C. Compeau, Pavel A. Pevzner, and Glenn Tesler.

How to apply de Bruijn graphs to genome assembly. Nature

Biotechnology, 29(11):987–991, Nov 2011.

6. Andrea Cracco and Alexandru I Tomescu. Extremely

fast construction and querying of compacted and colored

de Bruijn graphs with GGCAT. Genome Research,

33(7):1198–1207, 2023.

7. Camila Duitama González, Riccardo Vicedomini, Téo

Lemane, Nicolas Rascovan, Hugues Richard, and Rayan

Chikhi. decOM: similarity-based microbial source tracking

of ancient oral samples using k-mer-based methods.

Microbiome, 11(1):243, 2023.

8. Arthur Frouin, Fabien Laporte, Lukas Hafner, Mylene

Maury, Zachary R. McCaw, Hanna Julienne, Léo Henches,

Rayan Chikhi, Marc Lecuit, and Hugues Aschard.

ChoruMM: a versatile multi-components mixed model for

bacterial-GWAS. bioRxiv, March 2023.

9. Camila Duitama González, Samarth Rangavittal,

Riccardo Vicedomini, Rayan Chikhi, and Hugues Richard.

aKmerBroom: Ancient oral DNA decontamination using

Bloom filters on k-mer sets. Iscience, 26(11), 2023.

10. Guillaume Holley and Páll Melsted. Bifrost: highly parallel

construction and indexing of colored and compacted de

Bruijn graphs. Genome biology, 21:1–20, 2020.

11. Zamin Iqbal, Mario Caccamo, Isaac Turner, Paul Flicek,

and Gil McVean. De novo assembly and genotyping of

variants using colored de Bruijn graphs. Nature genetics,

44(2):226–232, 2012.

12. Magali Jaillard, Leandro Lima, Maud Tournoud, Pierre

Mahé, Alex Van Belkum, Vincent Lacroix, and Laurent

Jacob. A fast and agnostic method for bacterial genome-

wide association studies: Bridging the gap between k-mers

and genetic events. PLoS genetics, 14(11):e1007758, 2018.

13. Jamshed Khan, Marek Kokot, Sebastian Deorowicz,

and Rob Patro. Scalable, ultra-fast, and low-memory

construction of compacted de Bruijn graphs with Cuttlefish

2. Genome biology, 23(1):190, 2022.

14. Téo Lemane, Nolan Lezzoche, Julien Lecubin, Eric

Pelletier, Magali Lescot, Rayan Chikhi, and Pierre

Peterlongo. Indexing and real-time user-friendly queries in

terabyte-sized complex genomic datasets with kmindex and

ORA. Nature Computational Science, 4(2):104–109, 2024.

15. Téo Lemane, Paul Medvedev, Rayan Chikhi, and Pierre

Peterlongo. Kmtricks: efficient and flexible construction

of Bloom filters for large sequencing data collections.

Bioinformatics Advances, 2(1):vbac029, 2022.

16. Hélène Lopez-Maestre, Lilia Brinza, Camille Marchet,

Janice Kielbassa, Sylvère Bastien, Mathilde Boutigny,

David Monnin, Adil El Filali, Claudia Marcia Carareto,

Cristina Vieira, Franck Picard, Natacha Kremer, Fabrice

Vavre, Marie-France Sagot, and Vincent Lacroix. SNP

calling from RNA-seq data without a reference genome:

identification, quantification, differential analysis and

impact on the protein sequence. Nucleic Acids Research,

44(19):e148–e148, 07 2016.

17. Camille Marchet. Sneak peek at the-tig sequences: useful

sequences built from nucleic acid data. 2022.

18. Camille Marchet, Zamin Iqbal, Daniel Gautheret, Mikaël

Salson, and Rayan Chikhi. REINDEER: efficient indexing

of k-mer presence and abundance in sequencing datasets.

Bioinformatics, 36(Supplement 1):i177–i185, July 2020.

19. Giulio Ermanno Pibiri. Sparse and skew hashing of k-mers.

Bioinformatics, 38(Supplement 1):i185–i194, 2022.

20. Ráıssa Silva, Cédric Riedel, Benoit Guibert, Florence

Ruffle, Anthony Boureux, and Thérèse Commes. A k-mer

based transcriptomics analysis for NPM1-mutated AML.

medRxiv, pages 2023–01, 2023.

https://github.com/CamilaDuitama/muset

	Introduction
	Related work

	Tool description and evaluation
	MUSET overview
	k-mer matrix construction
	k-mer matrix filtering
	Unitig construction
	Unitig matrix construction

	Evaluation

	Discussion and conclusions
	Competing interests
	Author contributions statement
	Acknowledgments
	Software availability

