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Abstract

Large Language Models (LLMs) rely on sub-
word vocabularies to process and generate text.
However, because subwords are marked as
initial- or intra-word, we find that LLMs per-
form poorly at handling some types of affixa-
tions, which hinders their ability to generate
novel (unobserved) word forms. The largest
models trained on enough data can mitigate this
tendency because their initial- and intra-word
embeddings are aligned; in-context learning
also helps when all examples are selected in
a consistent way; but only morphological seg-
mentation can achieve a near-perfect accuracy.

1 Introduction

Large Language Models (LLMs) constitute a
workhorse of modern Natural Language Process-
ing applications, owing to their unprecedented abil-
ity to generate syntactically correct, semantically
coherent, and pragmatically relevant utterances,
responses to a wide array of queries, in a grow-
ing number of languages. As recent studies have
shown, during their training process, LLMs also
acquire some sort of morphological abilities, e.g.,
to generate inflected forms for known and unknown
lemmas (Weissweiler et al., 2023) – at least when
they follow regular morphological patterns (see
also Hofmann et al., 2020; Mortensen et al., 2024).
These abilities extend even to previously unknown
languages, given that some examples of the tar-
geted patterns are provided in the prompt (Tanzer
et al., 2024; Zhang et al., 2024). Such morphologi-
cal knowledge is essential to achieve good perfor-
mance in constrained (e.g., Machine Translation)
as well as unconstrained text generation applica-
tions. The ability to manipulate and recombine
substrings and to handle unknown word forms can
be attributed to the use of subword vocabularies,
e.g., relying on Byte Pair Encoding (BPE; Gage,
1994; Sennrich et al., 2016).

_a _use r _of _tiktok
"a user of tiktok"

_tiktok er

"tiktoker"
LLM

_un follow _on _tiktok
"unfollow on tiktok"

_un tiktok

"untiktok"
LLM Prefixation

Suffixation

Figure 1: In BPE tokenization, marking word-initial
tokens with “_” hinders the generation of prefixed forms
(e.g., “_un tiktok”), as they do not share any token
with their base (e.g., “_tiktok”). Identical tokens are
highlighted in the same color.

In this contribution, we show that if BPE-based
tokenizers enable morphological generalization,
they do not handle all morphological processes
equally well. The reason, we claim, is that BPE
marks word-initial substrings with a special char-
acter “_”, to make tokenization reversible (Kudo
and Richardson, 2018).1 Therefore, suffixed and
prefixed forms are handled differently: once to-
kenized, suffixed forms such as “tiktoker” may
share a subword with their base “tiktok”, imply-
ing also some semantic similarity. Crucially, this
cannot happen with prefixed forms like “untiktok”,
which, even assuming a morphologically plausible
tokenization “_un tiktok”, are represented using
a distinct token “tiktok”, unrelated to the base
“_tiktok” (see Figure 1; Hofmann et al., 2020).2

We present here experiments that highlight this
problem in a very controlled setting. For this, we

1Equivalently, Sennrich et al. (2016) marked intra-words
with “@@”, e.g., “tiktok @@er”. Marking the end of words
instead of their start would hinder suffixations. The issue is
identical for all subword tokenizers that we are aware of: BPE,
Unigram (Kudo, 2018), and WordPiece (Wu et al., 2016), as
they all mark word-initial substrings to make tokenization
reversible. A similar case is made by Hofmann et al. (2021)
about WordPiece, as discussed in Section 5. We simply focus
on BPE as it has now been widely adopted by all modern
LLMs (e.g., GPT-4, (OpenAI, 2023); Llama-3, (Llama Team,
2024); and Gemma, (Gemma Team, 2024)).

2Word-internal tokens only make their way to the tok-
enizer’s vocabulary if supported by enough prefixed forms
in the training corpus; otherwise, such derivatives are over-
segmented, e.g., “_un tik t ok” (Lerner and Yvon, 2025).



consider two regular affixation processes in English
and French: negative prefixations (e.g., EN “un-”,
FR “in-”) and adverbial suffixations (e.g., EN “-ly”,
FR “-ment”). As both processes apply to adjectives,
we can compare on a fair basis the capacities of
LLMs to generate prefixations and suffixations of
the same set of lexemes. Our experiments include
both attested adjectival bases and nonce words.
We find, across several LLM families and sizes,
that (i) LLMs often fail to derive new words via
prefixation compared to suffixation; (ii) the cases
where prefixation is successful may be explained
by the alignment between word-initial and word-
internal embeddings of the same string (e.g., when
“_tiktok” ≈ “tiktok” in the embedding space),
which is dependent on the model size and amount
of pretraining data; (iii) this tendency can be mit-
igated with in-context learning (ICL), especially
with a consistent selection of ICL examples; (iv)
the issue disappears when using a morphological
segmentation, which leads to near-perfect accuracy,
for both prefixations and suffixations.

2 Derivational Morphology

Derivational Morphology is central to the struc-
ture of the lexicon, so as to move away from
the arbitrariness of the sign (De Saussure, 1916;
Lieber, 2010; Corbin, 2012). Affixation is cross-
linguistically the most common process that human
languages use to derive new lexemes (Štekauer,
2012; Goethem, 2020). For example, Turkish’s
-li attaches to nouns to make personal nouns (e.g.,
şehir ‘city’ → şehirli ‘city dweller’); Chinese’s
-xué attaches to nouns to make nouns meaning ‘the
study of X’ (e.g., dòngwù ‘animal’ → dòngwùxué
‘zoology’); Samoan’s fa’a- attaches to nouns to
make verbs meaning ‘make X’ (e.g., goto ‘sink’ →
fa’agoto ‘make sink’, Lieber, 2010). In this paper,
we study English and French as mere examples to
motivate our finding about BPE, which formally ap-
plies to any text in any language. Regular affixation
processes are routinely used to form neologisms,
new lexemes or terms, either in everyday conversa-
tions or in specific domains (Daille, 2017; Cartier
et al., 2018; Lerner and Yvon, 2025).

Formally, prefixation operates at the beginning
of a lexeme (e.g., “untiktok”), whereas suffixation
applies at lexeme’ ends (e.g., “tiktoker”). This
implies, as discussed above, that the two types
of derivative will be handled differently by sub-
word tokenizers. Affixation may additionally cause

Lang. Affix Definition

EN un- Not <base>
FR in- Qui n’est pas <base>

EN -ly In a <base> manner
FR -ment D’une manière <base>

Table 1: Affixations and associated definition templates

phonological or graphemic change(s), resulting in
variation (allomorphy) in the surface realization of
some lexemes (Lieber, 2010). This is another cause
of possible divergence between the tokenization of
a base and a derived lexeme. In our experiments,
we make sure to only consider cases of purely con-
catenative affixations,3 as in the above examples,
to isolate the tokenization challenge from other
segmentation issues. In English and French, other
differences, not developed here, between prefixa-
tion and suffixation are that the latter tends to play
a more syntactic role (e.g., converting adjectives to
adverbs with “-ly”) while the former holds a more
semantic role (e.g., negating adjectives with “un-”).

3 Methods

3.1 Definition to Word Generation

To measure differences in the way suffixations and
prefixations are handled by LLMs, we consider the
simple morphological task of generating a lexeme
from its definition, framed here as a text-to-text
problem (Brown et al., 2020; Raffel et al., 2020),
following Lerner and Yvon (2025). Given the def-
inition of a lexeme (e.g., “a user of tiktok”), an
LLM is prompted to generate the derivative (e.g.,
“tiktoker”), cf. Figure 1. Models are prompted in
the same language as the definition (<def>) and the
target lexeme, i.e. (i) EN: “<def> defines the
term :”; (ii) FR: “<def> définit le terme :”.
The expected continuation is the derived form. Def-
initions always include the base lexeme and un-
ambiguously correspond to either a prefixed or a
suffixed derivative (Table 1).

3.2 In-Context Learning

LLMs can further generalize to such tasks by lever-
aging In-Context Learning. Our early results sug-
gested that LLMs were not too sensitive to the exact

3This means that valid morphological segmentations will
always be either “<prefix> <base>” for prefixations or
“<base> <suffix>” for suffixations.



prompt formulation, but mostly leveraged ICL ex-
amples, consistently with prior work (e.g., Zebaze
et al., 2024). We thus use five ICL examples in each
prompt, formatted as above, separated by the three
characters ###, which serve as end-of-sequence sig-
nal. Here is an example from the ADJ-EN dataset,
using a single ICL example: “Not pluvial defines
the term : unpluvial ### Not lightfast defines the
term :” (the model should generate “unlightfast”).

We limit the number of ICL examples to five to
keep a reasonable input length.4 We compare two
ICL selection methods: (i) Random sampling, ex-
amples can be either a prefixation or a suffixation;
(ii) Morphological: sampling only prefix (resp. suf-
fix) for prefix (resp. suffix) generation tasks.

3.3 Large Multilingual Models
We conduct experiments with three model families:
BLOOM (BigScience et al., 2023), CroissantLLM-
1.3B (Faysse et al., 2024), and Llama-2-7B (Tou-
vron et al., 2023), including various sizes for
BLOOM, ranging from 560M to 7.1B parameters.
All models are multilingual and cover EN and FR to
different degrees: BLOOM is highly multilingual,
trained on 46 natural languages; CroissantLLM is
bilingual, trained on an equal share of EN and FR;
Llama-2 is mostly trained on EN (89.70%) but does
include some FR (0.16%).

3.4 Segmentation
We compare two segmentation strategies:

(i) BPE, used by all studied LLMs. Keep-
ing the same example as above, the base and
derived word are tokenized as follow by BPE
(for BLOOM but beginning of words are al-
ways marked by BPE, regardless of the LLM):

pluvial _pluv ial
unpluvial _un pl uv ial
Notice how the derived word does not include

the tokens of its base.
(ii) Morphological segmentation, where we en-

force that derived words in the ICL samples share
tokens with their base by adding an extra space to
the affix. In that case, the output is expected to be
also space separated. For example:

un pluvial _un _pluv ial

3.5 Controlled Datasets
We perform controlled experiments, where each
base has one derived prefixation and suffixation.

4Early experiments suggest that the difference between
prefixes and suffixes is only stronger with fewer examples.

Dataset Base Prefixation Suffixation

ADJ-FR démontable indémontable démontablement
ADJ-EN lightfast unlightfast lightfastly
PSEUDO-FR géniable ingéniable géniablement
PSEUDO-EN orionful unorionful orionfully

Table 2: Examples of a base and its derivatives for each
dataset

We study two regular affixations that apply to ad-
jectival bases: (i) negative prefixations (EN: “un-”,
FR: “in-”); (ii) adverbial suffixations (EN: “-ly”,
FR: “-ment”), paired with the definitions listed in
Table 1, e.g.: (i) “Not lightfast” → “unlightfast”;
(ii) “In a lightfast manner” → “lightfastly”.

We experiment with two sets of bases, in each
language: (i) ADJ, attested adjectives from Mor-
phyNet (Batsuren et al., 2021), which is built upon
Wiktionary; (ii) PSEUDO, pseudo-words generated
with UniPseudo (New et al., 2024) (see examples
for each dataset in Table 2). As explained above,
we restrict ourselves to purely concatenative af-
fixation and avoid allomorphy phenomena using
“morphotactic” rules described in Appendix A. Mor-
phyNet has fewer samples in FR than EN, and FR

morphotactics are more strict, so ADJ-FR contains
2,313 adjectival bases, i.e. 4,626 derived words
(one prefixation and suffixation per base), while
ADJ-EN contains 14,455 bases. Pseudo-adjectives
are generated with UniPseudo, using a character
n-gram model trained with attested adjectives. In
each language, we first generate 5,000 nonce words
of L letters, for L ∈ J6, 12K. After filtering these
with morphotactic rules, we obtain PSEUDO-FR

(comprising 8,507 bases) and PSEUDO-EN (29,177
bases). The datasets are equally and randomly split
in ICL-test splits, without overlap between bases.5

4 Results

4.1 Prefixations vs. Suffixations

Figure 2 displays our main results on the four
datasets with three different model families:
BLOOM, CroissantLLM-1.3B, and Llama-2-7B
(detailed scores are in Table 4 in Appendix B).
We use Exact Match (EM), also known as accu-
racy to evaluate generation (Cotterell et al., 2016).
Clearly, with standard BPE segmentation, suffix
generation is overall far superior to prefix gen-
eration (e.g., 26.2 EM for prefixes vs. 56.0 for

5See Appendix C for implementation details and
github.com/PaulLerner/neott for code and data.

https://github.com/PaulLerner/neott
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Figure 2: Exact match scores for prefixes vs. suffixes for four datasets (attested adjectival bases and pseudo-words,
EN and FR; plotted with different shapes), three model families and four BLOOM model sizes ranging from 560M
to 7.1B parameters (plotted with different sizes), according to ICL examples and segmentation method (different
colors). Most points are above the line y = x, because suffixes are better generated than prefixes.

suffixes, with BLOOM-7.1B on FR attested ad-
jectives; above the y = x line). Errors in pre-
fixations also include cases of morphotactically
incorrect forms, with the generated prefixes con-
taining extraneous letters, dashes, or spaces (e.g.,
“incgrandiose”, “in-onirique”, or “in cognitive”,
with BLOOM-7.1B on FR attested adjectives). We
also find that prefixes are sensitive to the choice of
ICL examples: selecting only prefixes (resp. suf-
fixes) for prefix (resp. suffix) prediction helps to
reduce the gap (green vs. orange dots). This finding
is consistent with Hofmann et al. (2024) who find
that LLMs generalize through analogies rather than
rules. We finally observe that Llama outperforms
BLOOM and CroissantLLM for this task.

Morphological segmentation, on the other hand,
solves the initial- vs. intra-word tokenization is-
sue and yields near-perfect accuracy, for both pre-
fixes and suffixes and all models (blue vs. green
dots).6 Figure 2 shows that even small versions of
BLOOM, with 560M or 1.1B parameters (small
dots), achieve near-perfect accuracy for prefixes
with a morphological segmentation, when the cor-
responding Exact Match score was close to zero
with BPE segmentation. BLOOM-7.1B is still able

6Note that, while suffixations can always be tokenized by
BPE as “<base> <suffix>” (e.g., “_lightfast ly”), the
optimal tokenization (according to BPE) may not necessarily
preserve the base (e.g., “_light fastly”). This explains why
morphological segmentation also improves suffixation results.

to correctly generate some prefixed form, proba-
bly due to its larger number of parameters. These
results are consistent on the four datasets, i.e., for
both attested adjectival bases and pseudo-words, in
EN and FR.

4.2 Initial- vs. Intra-word Alignment

In this section we ask: how is it possible at all for
BPE-based models to generate prefixations? We
argue that, like for suffixations where the model
simply needs to copy the base (e.g., “_tiktok”)
and append a suffix (e.g., “er”),7 for prefixations
the model first needs to generate the prefix (e.g.,
“_un”) then an intra-word token whose representa-
tion is close to that of the base (e.g., “tiktok”),
therefore to model the similarity between the two
tokens (e.g., “_tiktok” ≈ “tiktok”).

We find that, when a string has dedicated embed-
dings respectively covering word-initial and word-
internal occurrences (e.g. “_like” and “like” or
“_vraisemblable” and “vraisemblable”), both
are often aligned, i.e., close in the embedding space.
To evaluate this, for each pair pairs of vocabulary
units of the form (_x, x) made of a word-initial
and a matched word-internal vocabulary entry, we
compute the cosine similarity of _x with all exist-

7Empirically, we find across all models and datasets that
BPE-based models tend to copy the base tokens at a 63% rate
in average when generating suffixations.



Model # Pairs # Intra P@1

CroissantLLM-1.3B 3,771 14,296 71.9
BLOOM-7.1B 13,365* 111,326 76.3
Llama-2-7B 5,272 15,590 83.0

Table 3: Alignment between embeddings of word-initial
types and the corresponding word-internal variant, for
three models. *BLOOM’s vocabulary contains a lot of
noise so we evaluate only on fully Latin strings (match-
ing [A-Za-z]), otherwise P@1 would drop to 65.4.

ing word-internal entries and measure the ability
to retrieve the matched entry x with Precision@1
(P@1). Depending on the model, we find P@1
values ranging from 71.9 to 83.0, reported in Ta-
ble 3. These values are well correlated with the
EM scores for prefixes reported above (for the
four BPE-based BLOOM models, we find Pear-
son r = 0.639, p < 0.01, across the four datasets).

This finding is consistent with Itzhak and Levy
(2022), who find that word embeddings encode the
string of characters that compose it; and Tytgat
et al. (2024) who find that word embeddings are
sensitive to surface similarities (e.g. edit distance).

Figure 3 shows that alignment increases with
the number of tokens seen in training: for Crois-
santLLM, P@1 increases from 55.2 (after 300B to-
kens) up to 71.9 after 3T (again correlated with EM
scores of prefixes of BPE-based models with Pear-
son r = 0.338, p < 0.05, across the four datasets).
Therefore, gigantic amounts of data are used to
implicitly learn an alignment that could be made
explicit using morphological segmentation.

5 Related Work

Our framing of Word Derivation somewhat resem-
bles the Reverse Dictionary task (Hill et al., 2016;
Pilehvar, 2019). However, Reverse Dictionary is
an Information Retrieval task that consists of map-
ping the representation of a definition to an existing
word embedding. On the contrary, we design here
a fully generative task. Our work is more related to
Lerner and Yvon (2025) who leverage definitions
to translate neologisms more accurately.

Hofmann et al. (2021) and Truong et al. (2024)
are also interested in derivational morphology and
LLMs but consider binary classification tasks that
assess whether the LLM “understands” words,
while we are interested in the actual generation of
new forms. Our results are consistent with theirs:
notably, Hofmann et al. (2021) also find that LLMs

0.5 1.0 1.5 2.0 2.5
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Figure 3: Alignment between embeddings of word-
initial types and the corresponding word-internal variant
for various checkpoints of CroissantLLM, according to
the number of tokens used in training (in trillions).

are unable to process prefixations, compared to suf-
fixations, for the same reason. They also find that
enforcing morphological segmentation improves
performance. Hofmann et al. (2020) is similar to
our work but always relies on morphological seg-
mentation, except in their preliminary experiment.

Oh and Schuler (2024) and Pimentel and Meister
(2024) discuss another effect of BPE marking the
beginning of words: the miscomputation of word
probabilities, an indicator of word surprise used in
psycholinguistic studies. Both propose a simple
rescaling method to recover the correct values.

6 Discussion

BPE is ubiquitous in NLP as virtually all LLMs
depend on it. However, marking strings in the
beginning of words leads to caveats that are over-
looked. We show that this faulty tokenization limits
the ability of LLMs to generate prefixations, a mor-
phological process that is however productive in
many languages. Such defects in morphological
abilities may partly explain the recurrent difficulties
of LLMs to generate a sufficiently large number
of new lexemes, as attested by low Type-to-Token
Ratio scores in generated texts (Muñoz-Ortiz et al.,
2024). We also show that an accessible solution is
morphological segmentation, which enables even
“small” models (of a few hundred million parame-
ters) to reach near-perfect generation accuracy.

Limitations

We study only two languages: English and French.
However, we focus on a formal issue of the BPE
method, which would be identical for any text and



therefore any language. We assume that this caveat
would affect only more strongly less-resourced lan-
guages.

We are limited to one prefixation and one suffix-
ation per language. This restriction was inevitable
to allow stratified data generation (Section 3.5): the
chosen negative prefixations and adverbial suffixa-
tions are very regular in English and French, both
can be applied to any adjective. However, formally,
the affixation process is identical regardless of the
actual affix, be it -ly, -ation, or -ical.

Hofmann et al. (2021) had already pointed out
the issue of marking beginning of words with Word-
Piece (instead of BPE), and also proposed to fix it
by leveraging morphological segmentation. How-
ever, we propose a new framework (generation
instead of classification) and provide additional
analysis to understand the phenomenon through
in-context learning (Figure 2), alignment of initial-
and intra-word embeddings (Table 3), and amount
of pretraining data (Figure 3). Additionally, we
conduct extensive experiments on three different
LLM families, while Hofmann et al. (2020, 2021)
only use BERT (Devlin et al., 2019).

We propose to use morphological segmentation
to solve the issue with the BPE tokenizer. This,
however, is easier said than done: BPE has the
advantage of being language-agnostic and there-
fore allows transfer learning between languages
within a multilingual language model. In contrast,
we are not aware of a morphological segmentation
method that could be applied to all languages. It
would most likely require a language identification
pipeline followed by language-specific segmenta-
tion.
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A Rules of Morphotactics

The following rules were used to create controlled
datasets pairing a base (e.g., “lightfast”) with a pre-
fixed derivative (e.g., “unlightfast”) and a suffixed
derivative (e.g., “lightfastly”; see Section 3.5).

For English (i) The base should not start with
“un” to avoid a double negation. (ii) The base should
not end with:

• “y” because it would then have to be substi-
tuted by “i” (as in “easy” → “easily”);

• “le” because it would be deleted (as in “noble”
→ “nobly”);

• “ll” because the suffix would then be “-y” in-
stead of “-ly” (as in “full” → “fully”) ;

• “ic” to avoid allomorphy with the suffix“-ally”
(as in “allergic” → “allergically”).

For French (i) The base should not start with:

• “i” to avoid a double negation;

• “b”, “l”, “m”, “n”, “p”, or “r” to avoid allomor-
phy with the “i-” prefix (also respectively writ-
ten “il-”, “im-”, or “ir-”), as in “irréaliste”.

(ii) The base should end with an “e” so that the
“-ment” suffixation is morphotactic (e.g., avoid
impossible words like “*absentment”) and ortho-
graphic (e.g., adverbs are often formed on the
feminine adjectival form that ends with an “e”:
“amicalement” and not “*amicalment”).

B Complete Results

Table 4 reports the scores that are plotted in Fig-
ure 2.

C Implementation Details

LLMs are implemented in the transformers li-
brary (Wolf et al., 2020) itself based on pytorch
(Paszke et al., 2019). LLMs are quantized in 8 bits
for effective inference on a single V100 GPU with
32GB of RAM. We use greedy decoding.
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Model Dataset Random ICL + BPE Seg. Morph. ICL + BPE Seg. Morph. (ICL + Seg.)

Prefix Suffix Prefix Suffix Prefix Suffix

CroissantLLM-1.3B

ADJ-EN 0.196 0.581 0.836 0.842 0.988 0.988
ADJ-FR 0.047 0.356 0.371 0.754 0.991 0.947
PSEUDO-EN 0.265 0.651 0.811 0.866 0.987 0.980
PSEUDO-FR 0.045 0.285 0.367 0.586 0.978 0.961

Llama-2-7B

ADJ-EN 0.715 0.812 0.949 0.879 0.990 0.999
ADJ-FR 0.549 0.565 0.889 0.717 0.994 0.990
PSEUDO-EN 0.792 0.802 0.943 0.900 0.997 0.997
PSEUDO-FR 0.597 0.390 0.868 0.523 0.988 0.988

BLOOM-560M

ADJ-EN 0.105 0.477 0.561 0.771 0.998 0.996
ADJ-FR 0.005 0.230 0.055 0.457 0.970 0.993
PSEUDO-EN 0.077 0.556 0.535 0.772 0.996 0.992
PSEUDO-FR 0.002 0.141 0.028 0.275 0.969 0.981

BLOOM-1.1B

ADJ-EN 0.154 0.412 0.595 0.696 0.995 0.996
ADJ-FR 0.063 0.166 0.280 0.285 0.978 0.985
PSEUDO-EN 0.175 0.632 0.578 0.783 0.962 0.951
PSEUDO-FR 0.037 0.087 0.254 0.217 0.981 0.981

BLOOM-3B

ADJ-EN 0.251 0.663 0.796 0.860 0.998 0.995
ADJ-FR 0.132 0.448 0.556 0.635 0.994 0.987
PSEUDO-EN 0.298 0.663 0.759 0.785 0.997 0.995
PSEUDO-FR 0.106 0.292 0.516 0.470 0.988 0.981

BLOOM-7.1B

ADJ-EN 0.488 0.724 0.893 0.879 0.999 0.998
ADJ-FR 0.262 0.560 0.655 0.746 0.995 0.996
PSEUDO-EN 0.625 0.799 0.873 0.868 0.999 0.998
PSEUDO-FR 0.278 0.435 0.670 0.585 0.998 0.994

Table 4: Numbers in Figure 2
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