Differential of the Stretch Tensor for Any Dimension with Applications to Quotient Geodesics - Archive ouverte HAL
Article Dans Une Revue Comptes Rendus. Mathématique Année : 2024

Differential of the Stretch Tensor for Any Dimension with Applications to Quotient Geodesics

Résumé

The polar decomposition X = W R, with X ∈ GL(n, R), W ∈ S+(n), and R ∈ O(n) , suggests a right action of the orthogonal group O(n) on the general linear group GL(n, R). Equipped with the Frobenius metric, the O(n)-principal bundle π : X ∈ GL(n, R) → X O(n) ∈ GL(n, R)/O(n) becomes a Riemannian submersion. In this note, we derive an expression for the derivative of its unique symmetric section s • π in any dimension, in terms of a solution to a Sylvester equation. We discuss how to solve this type of equation and verify that our formula coincides with those derived in the literature for low dimensions. We apply our result to the characterization of geodesics of the Frobenius metric in the quotient space GL(n, R)/O(n).
Fichier principal
Vignette du fichier
CRMATH_2024__362_G12_1847_0.pdf (414.38 Ko) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte

Dates et versions

hal-04831093 , version 1 (11-12-2024)

Licence

Identifiants

Citer

Olivier Bisson, Xavier Pennec. Differential of the Stretch Tensor for Any Dimension with Applications to Quotient Geodesics. Comptes Rendus. Mathématique, 2024, 362 (G12), pp.1847-1856. ⟨10.5802/crmath.692⟩. ⟨hal-04831093⟩
0 Consultations
0 Téléchargements

Altmetric

Partager

More