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Noninvasive Multicancer Detection Using DNA 
Hypomethylation of LINE-1 Retrotransposons 
Marc Michel1,2,3,4, Maryam Heidary4, Anissa Mechri1,5, Kévin Da Silva5, Marine Gorse5, Victoria Dixon5, 
Klaus von Grafenstein5, Charline Bianchi5, Caroline Hego4, Aurore Rampanou4, Constance Lamy6, 
Maud Kamal6, Christophe Le Tourneau6, Mathieu Séné7, Ivan Bièche7, Cécile Reyes8, David Gentien8, 
Marc-Henri Stern9, Olivier Lantz10,11, Luc Cabel12,13, Jean-Yves Pierga4,12,14, 
François-Clément Bidard4,12,15, Chloé-Agathe Azencott2,3, and Charlotte Proudhon1,4,5 

�
 ABSTRACT 

Purpose: The detection of ctDNA, which allows noninvasive 
tumor molecular profiling and disease follow-up, promises opti-
mal and individualized management of patients with cancer. 
However, detecting small fractions of tumor DNA released when 
the tumor burden is reduced remains a challenge. 

Experimental Design: We implemented a new, highly sensi-
tive strategy to detect bp resolution methylation patterns from 
plasma DNA and assessed the potential of hypomethylation of 
long interspersed nuclear element-1 retrotransposons as a non-
invasive multicancer detection biomarker. The Detection of Long 
Interspersed Nuclear Element Altered Methylation ON plasma 
DNA method targets 30 to 40,000 young long interspersed nu-
clear element-1 retrotransposons scattered throughout the 

genome, covering about 100,000 CpG sites and is based on a 
reference-free analysis pipeline. 

Results: Resulting machine learning–based classifiers showed 
powerful correct classification rates discriminating healthy and tu-
mor plasmas from six types of cancers (colorectal, breast, lung, 
ovarian, and gastric cancers and uveal melanoma, including localized 
stages) in two independent cohorts (AUC ¼ 88%–100%, N ¼ 747). 
The Detection of Long Interspersed Nuclear Element Altered 
Methylation ON plasma DNA method can also be used to perform 
copy number alteration analysis that improves cancer detection. 

Conclusions: This should lead to the development of more 
efficient noninvasive diagnostic tests adapted to all patients with 
cancer, based on the universality of these factors. 

Introduction 
Extensive research has shown that tumor genetic alterations can 

be detected from plasma DNA of patients with cancer (1–3). This 

paved the way for the use of molecular analyses performed from 
liquid biopsies to genotype tumors noninvasively (4, 5) and dem-
onstrated the potential of ctDNA as a marker of cancer progression 
(6, 7). It is also a powerful prognostic factor (8) enabling detection 
of tumor masses not perceptible clinically, after surgery or during 
treatment. These approaches promise optimal management of pa-
tients with cancer and are currently playing an important role in 
oncology (9, 10). However, several technological obstacles still limit 
their widespread application. Samples collected at early stages of 
tumor progression, or during and after treatment, may contain less 
than one mutant copy per milliliter of plasma (1, 11). This is below 
the detection limit of most used technologies, even when testing 
multiple genetic alterations simultaneously. Moreover, most 
methods are biased toward preselected recurrent mutations, which 
do not cover all tumors. We observed in our previous studies 
(12–15) that approximately 25% of patients affected with breast 
cancer do not display common mutations trackable in plasma DNA, 
even at advanced stages. Therefore, it is necessary to develop more 
sensitive and more informative detection tools. 

Multiple studies have demonstrated the central role of epigenetic 
processes in the onset, progression, and treatment of cancer. Epi-
genetic alterations (i.e., changes in the pattern of chromatin modi-
fications such as DNA methylation and histone modifications) are 
promising candidates for cancer detection, diagnosis, and prognosis 
(16, 17). These extended markers provide an additional level of 
information, overlooked by methods that only question genetic al-
terations (18). Aberrant DNA methylation is a hallmark of neo-
plastic cells (16), which combine hypermethylation of a wide range 
of tumor suppressor genes along with a global hypomethylation of 
the genome (19). DNA methylation is a stable modification, which 
affects a large number of CpG sites per region and per genome and 
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will be key to achieve increased detection sensitivity (20). Moreover, 
the concordance of the methylation status between multiple CpGs 
of the same region can help detect low frequency anomalies among 
a heterogeneous population of molecules (21, 22). Finally, com-
bining several genomic regions allows to capture a wide range of 
tumor alleles and cover the heterogeneous profiles of patients with 
cancer (23). 

Previous studies have shown that cellular DNA methylation 
patterns are conserved in cell-free DNA (cfDNA) and that detection 
of cancer-specific profiles at the genome-wide scale is feasible 
(24–27). Until now, most studies investigating plasma DNA meth-
ylation patterns have targeted a limited number of regions at high 
depth, using PCR-based methods (28–30), or explored genome-wide 
at low depth with high-throughput sequencing (24–26, 31). Both 
approaches have limited sensitivity, as focusing on a few regions 
does not cover cancer-type and patient variability and low depth 
cannot detect small fractions of ctDNA. More recent studies, relying 
on the capture of regions of interest coupled with deep sequencing, 
have investigated the performance of larger numbers of regions at 
high depth (21, 32–40). These methods enabled sensitive detection 
and classification of cancer from plasma DNA. However, because 
they largely focus on cancer hypermethylation and unique se-
quences, it involves targeting specific regions for each cancer type. 
As a result, developing a cost-effective universal pan-cancer test 
remains a challenge. 

Remarkably, cancer-related hypomethylation has been reported 
in almost all classes of repeated sequences (41), from dispersed 
retrotransposons to clustered satellite repeated DNA, and within 
multiple forms of cancers (42). In particular, this leads to the 
reactivation of retrotransposons, resulting in the acquisition of ge-
nomic instability, chromosomal rearrangements, and the produc-
tion of chimeric transcripts between the transposable element and 
its adjacent locus. Hypomethylation of the internal promoter of 
long-interspersed element-1 (LINE-1) retrotransposons (L1) has 
been described as a hallmark of many human cancers (42, 43), 
which can result in the reactivation of intact L1 elements (44) and 
the abnormal production of their transcripts and proteins. 

Transposition of these competent elements induces DNA double- 
strand breaks and damages the genome. A recent study identified 
four types of cancer (esophagus, head and neck, lung, and colo-
rectal) with a large amount of damage linked to retrotranspositions 
involving mostly L1s (45). Another study identified the transposi-
tion event responsible for initiating colorectal cancer by mutating 
the APC gene (46). To obtain a global representation of the hypo-
methylation occurring during carcinogenesis and to increase sen-
sitivity, we chose to target primate-specific copies of 
L1 retrotransposons (L1PA). These elements have tens of 1,000 of 
copies per cell and are hypomethylated in multiple cancers (42). 
Two studies have explored L1 global methylation profiles from 
plasma (47, 48) of lung and colorectal cancers, using qPCR-based 
methods, but reported a low detection sensitivity, below 70%. In-
deed, repeats being inherently difficult to map, detecting their 
methylation profiles at the single bp resolution requires sophisti-
cated downstream analysis. 

To overcome this, we have developed a method to detect meth-
ylation patterns of primate-specific L1 elements (L1PA) from 
cfDNA, which we named Detection of Long Interspersed Nuclear 
Element Altered Methylation ON plasma DNA (DIAMOND). We 
implemented computational tools to accurately align sequencing 
data without a reference genome and applied prediction models, 
trained by machine learning algorithms, integrating patterns of 
methylation, overall and at the single molecule level. The aim of this 
study was to assess the potential of circulating DNA methylation 
changes at L1s as a universal tumor biomarker, and to develop new 
highly sensitive strategies to detect cancer-specific signatures in 
blood. 

Materials and Methods 
Cell lines 

Cell lines tested in the study are the following: CRC 
(HCT116 RRID: CVCL_0291); OVC (SKOV RRID: CVCL_0532, 
Caov3 RRID: CVCL_0201, ES-2 RRID: CVCL_3509); BRC (MDA- 
MB453 RRID: CVCL_0418, SKBR3 RRID: CVCL_0033, MDA- 
MB361 RRID: CVCL_0620, HCC202, ZR75.1 RRID: CVCL_0588, 
HCC70 RRID: CVCL_1270, BT474 RRID: CVCL_0179, MDA- 
MB231 RRID: CVCL_0062, Cal51 RRID: CVCL_1110, MDA- 
MB157 RRID: CVCL_0618, BT20 RRID: CVCL_0178, MCF7 RRID: 
CVCL_0031, HCC1954 RRID: CVCL_1259, HCC1569 RRID: 
CVCL_1255, HCC38 RRID: CVCL_1267); and UVM (MP38 RRID: 
CVCL_4D11, MP41 RRID: CVCL_4D12, MP46 RRID: 
CVCL_4D13, MP65 RRID: CVCL_4D14, MM28 RRID: 
CVCL_4D15, Mel285 RRID: CVCL_C303, Mel270 RRID: 
CVCL_C302, 92.1 RRID: CVCL_8607, Mel202 RRID: CVCL_C301, 
omm2.5 RRID: CVCL_C307, Mel290 RRID: CVCL_C304, 
mm66 RRID: CVCL_4D17, omm1 RRID: CVCL_6939). 

Tissue and plasma samples 
Archived tissue samples (ovarian adjacent tumor tissues, ovarian 

primary and metastatic tumors, breast tumors, and uveal melanoma 
tissues) were retrieved from the Pathology Department of Institut 
Curie. Healthy white blood cells and healthy plasma were collected 
from blood of healthy donors through the French blood establish-
ment (agreement #16/EFS/031) under French and European ethical 
practices. Blood samples from patients treated at the Institut Curie 
were collected, after written informed consent, as part of the fol-
lowing studies: resectable metastatic colorectal cancers from the 
Prodige14 trial (approved by a French Personal Protection 

Translational Relevance 
The Detection of Long Interspersed Nuclear Element Altered 

Methylation ON plasma DNA assay is a new, highly sensitive 
strategy to detect bp resolution methylation patterns of long 
interspersed nuclear element-1 retrotransposons from plasma 
DNA. It targets 30 to 40,000 young long interspersed nuclear 
element-1 retrotransposons scattered throughout the genome, 
covering about 100,000 CpG sites, and is based on a reference- 
free analysis pipeline. This provided high coverage data using 
affordable sequencing depth, which is instrumental to achieve 
high sensitivity and work with minute amounts of cell-free 
DNA. Resulting machine learning–based classifiers showed 
powerful discrimination between healthy and tumor plasmas 
from six types of cancers (colorectal, breast, lung, ovarian, and 
gastric cancers and uveal melanoma, including localized stages) 
in two independent cohorts (AUC ¼ 88%–100%, N ¼ 747). The 
Detection of Long Interspersed Nuclear Element Altered 
Methylation ON plasma DNA data can also be used to perform 
copy number alteration analysis that improves cancer detection. 
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Committee – “CPP—Comité de Protection des Personnes Sud 
Méditerranée IV” and registered in ClinicalTrials.gov under 
NCT01442935); non–small cell lung cancer and metastatic HR+ 

HER2� breast cancer from the ALCINA study (approved by a 
French Personal Protection Committee and registered in Clinical-
Trials.gov under NCT02866149); treatment-näıve patients with 
ovarian cancer or triple-negative breast cancer (TNBC) eligible for 
surgery or neoadjuvant chemotherapy from the SCANDARE study 
(approved by the French National Agency for the Safety of Medi-
cines and Health Products “ANSM—Agence National de Sécurité 
du Médicament,” a French Personal Protection Committee and 
registered in ClinicalTrials.gov under NCT03017573); multiple 
types of metastatic cancers from the SHIVA02 study (approved by 
the French National Agency for the Safety of Medicines and Health 
Products “ANSM—Agence National de Sécurité du Médicament,” a 
French Personal Protection Committee and registered in Clinical-
Trials.gov under NCT03084757); and nonmetastatic operable gas-
tric cancers and advanced uveal melanoma from CTC-CEC-ADN 
study (approved by a French Personal Protection Committee and 
registered in ClinicalTrials.gov under NCT02220556). Additional 
archived samples were also retrieved from the biobank of the 
Institut Curie, patients having provided informed consent for re-
search use. All samples were obtained in accordance with the ethical 
guidelines, with the principles of Good Clinical Practice and the 
Declaration of Helsinki. This study was approved by the Internal 
Review Board and Clinical Research Committee of the Institut 
Curie. Blood samples were collected at the time of inclusion, before 
the start of the treatment, in EDTA tubes. Plasma was isolated 
within 4 hours, to ensure a good quality of cfDNA, by centrifugation 
at 820 g for 10 minutes, followed by a second centrifugation of the 
supernatant at 16,000 g for 10 minutes and stored at �80°C 
until use. 

Preparation of DNA from cell lines and tissues and cfDNA 
Isolation of DNA from cell lines and healthy white blood cells 

(buffy coats) was performed using the QIAamp DNA Mini Kit or 
QIAamp DNA Blood Mini Kit (Qiagen) according to the manu-
facturer’s instructions. DNA from cryopreserved and formalin-fixed 
paraffin embedded tumor tissues was extracted using a classical 
phenol chloroform protocol and the NucleoSpin FFPE DNA kit 
(Macherey Nagel), respectively. 

cfDNA was extracted from 2 mL of plasma using the automated 
QIAsymphony Circulating DNA Kit (Qiagen), the Maxwell RSC 
ccfDNA LV Plasma Kit (Promega), or manual QIAamp Circulating 
Nucleic Acid Kit (Qiagen), according to the manufacturer’s in-
structions, and eluted in 60, 75, or 36 μL, respectively. We verified 
that the extraction method did not impact our results (Supple-
mentary Fig. S1A and S1B). Isolated DNA was quantified by Qubit 
2.0 Fluorometer using dsDNA HS Assay Kit (Thermo Fisher Sci-
entific) according to the manufacturer’s instructions and stored 
at �20°C until use. 

Bisulfite conversion 
We used sodium bisulfite–based chemical conversion to achieve 

bp resolution analysis, which is crucial to address methylation levels 
at single CpG dinucleotides and the co-methylation of multiple CpG 
sites to determine methylation haplotypes (methylation state of 
successive CpG sites). Bisulfite treatment of the isolated genomic 
DNA (up to 200 ng) from the cancer tissues, cancer cell lines, and 
buffy coats was performed using an EZ DNA Methylation-Gold Kit 
(Zymo Research), following the manufacturer’s instructions. 

Bisulfite treatment of cfDNA (isolated from 2 mL of plasma) was 
performed using the Zymo EZ DNA Methylation-Lightning Kit 
(Zymo Research), according to the manufacturer’s instructions. 
Bisulfite-treated DNA was stored at �80°C and further used to build 
a sequencing library. We have compared the methylation profiles 
obtained with bisulfite conversion or enzymatic conversion [NEB-
Next Enzymatic Methyl-seq Conversion Module, (49)] followed by 
amplification with the DIAMOND targets and deep sequencing. We 
observed similar methylation profiles (Supplementary Fig. S2). We 
have tested various starting quantities of DNA (100, 10, and 5 ng) of 
white blood cells extracted from healthy donors (buffy coats). We 
have also compared cfDNA (10 ng) and DNA from MCF7 breast 
cancer cell lines (100 ng), known to display hypomethylation at 
L1PA elements. We observed that the methylation profiles along the 
30 CpG targets are similar when starting with 100 ng (Supple-
mentary Fig. S2A) but, in our hands, the bisulfite conversion seems 
more robust with decreasing stating DNA quantities (Supplemen-
tary Fig. S2B and S2C). We thus observe some differences with the 
cfDNA samples at 10 ng (Supplementary Fig. S2D). We could still 
detect very similar hypomethylation profiles in MCF7 breast cancer 
cell lines (Supplementary Fig. S2E). This shows that EM-seq could 
be used to profile L1PA methylation changes but the same con-
version should be used throughout the study. 

Primer design 
Eight primer pairs were designed using the LINE-1 human- 

specific (L1HS) consensus sequence from Repbase (RRID: 
SCR_021169; Fig. 1A). Although 50 untranslated region (promoter 
region) is CpG-rich and common target for methylation quantita-
tion, L1PA copies are frequently 50-truncated. Therefore, primers 
were also designed for ORFI and ORFII to target more L1PA ele-
ments and improve the sensitivity of our assay. All primers were 
designed for plus strand of bisulfite-converted DNA, using the 
MethPrimer (RRID: SCR_010269) or PyroMark software (RRID: 
SCR_018617). Targeted regions contained 2 to 7 CpG targets and 
ranged from 101 bp to 150 bp, to better capture cfDNA fragments, 
which have a mean size of 167 bp (50), (Supplementary Table S1). 
Primers were methylation-independent, encompassing 0 to 2 CpGs 
(none toward the 50 end), and were degenerated to target both the 
methylated and unmethylated states. They contained Fluidigm 
universal common sequence (CS) tags at their 50 ends. We incor-
porated a 16 N (random nucleotides) as unique molecular identifiers 
(UMI) between the target-specific sequence and the CS2 in the re-
verse primers for signal deconvolution to detect true low frequency 
alterations and for reducing errors. As LINE-1 hold 1,000 of copies 
per genome, a high number of distinct UMIs are essential for unique 
barcoding of each target molecule. The 16 N stretch between the 
target-specific sequence and the CS1 in forward primers was used to 
increase the diversity of sequencing libraries and improve se-
quencing quality. All primers were obtained from Eurogentec (RP- 
cartridge purification method). 

Preparation of targeted bisulfite sequencing libraries 
To limit batch effects, sequencing and library preparation batches 

contained both cancer samples and healthy donors. We also spe-
cifically processed the validation cohort C2 with equilibrated 
number of healthy and cancer samples distributed in five experi-
mental batches. Sequencing libraries were prepared using three PCR 
steps (Supplementary Fig. S3A): (i) target-specific linear amplification 
for UMI assignment, (ii) target-specific exponential amplification, and 
(iii) barcoding PCR for sample identification. Each library was prepared 
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Figure 1. 
Targeting primate-specific LINE-1 elements reveals genome-wide plasma DNA methylation patterns. A, CpG density along the structure of an L1HS element, 
which contains 95 CpG. The DIAMOND assay targets 30 CpG. Each target amplicon is highlighted by a black bar below the structure. The number of CpG sites 
detected per amplicon is displayed in blue. B, L1PA copy number hit by uniquely and/or randomly mapped reads, obtained from a healthy plasma vs. ovarian 
(OVC, top track) or uveal melanoma (UVM, middle track) tumor tissue samples “deep sequenced” (54M, 44M, or 46M reads, respectively) over the distribution of 
L1PA elements annotated in the genome (RepeatMasker on hg38, gray bottom track). C, Histogram summarizing the most represented subfamilies of L1 targeted 
by the DIAMOND assay in the three “deep-sequenced” samples, in descending order (sum of copies across the three samples). The colors highlight the relative 
contribution of L1PA copies hit by reads uniquely mapped, randomly mapped, or both. D, Methylation pattern observed across the eight regions targeted along 
the L1 element in the healthy plasma sample “deep-sequenced.” Metaplot showing the average methylation levels at each CpG position. Amplicon limits are 
delineated with gray dotted lines. The dark line marks the end of the 50UTR. Average levels per amplicon are indicated. UTR, untranslated region. 
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in two individual reactions (due to the overlap of amplicon 2 with other 
primers), including (i) multiplex PCR amplification of seven probes 
(amplicons 1, 3, 4, 5, 6, 7, and 8), and (ii) single PCR amplification of 
amplicon 2. 

UMI assignment for multiplex reaction was performed using 
Platinum Multiplex PCR Kit Master Mix (Thermo Fisher Scientific, 
Life Technologies SAS) in a 25 μL reaction containing 1� Platinum 
Multiplex PCR Master Mix, 0.01 to 0.06 µmol/L mix of reverse 
primers and up to 5 ng bisulfite-converted DNA at the following 
thermocycling conditions: 95°C for 5 minutes followed by one cycle 
at 95°C for 30 seconds, 58°C for 90 seconds, and 72°C for 40 seconds. 
UMI assignment for single reaction was performed using Hot Star 
Taq Plus DNA Polymerase (Qiagen) in a 25 μL reaction containing 
1� Taq PCR Buffer, 0.65 U Hot Star Taq (5 U/μL), 0.2 µmol/L 
dNTPs, 1.5 mmol/L MgCl2, 0.1 µmol/L amplicon 2 reverse primer, 
and up to 4 ng of bisulfite-converted DNA at the following ther-
mocycling conditions: 95°C for 10 minutes followed by one cycle at 
94°C for 60 seconds, 58°C for 30 seconds, and 72°C for 40 seconds. 
To ensure complete removal of the reverse primers and dNTPs, 
each 25 μL reaction was treated with 50 U of Exonuclease I and 10 U 
of FastAP Thermosensitive Alkaline Phosphatase (Thermo Fisher 
Scientific) at 37°C for 1 hour and heat-inactivated at 80°C for 
15 minutes. 

Target-specific exponential amplification for multiple reaction 
was performed using Platinum Multiplex PCR Kit Master Mix in a 
50 μL reaction containing 1� Platinum Multiplex PCR Master Mix, 
0.01 to 0.06 µmol/L mix of forward primers, 0.2 µmol/L CS2 reverse 
primer, and 20 μL of purified PCR product at the following ther-
mocycling conditions: 95°C for 5 minutes followed by 28 cycles at 
95°C for 30 seconds, 58°C for 90 seconds, and 72°C for 30 seconds 
followed by a 10-minute incubation at 72°C. Target-specific expo-
nential amplification for single reaction was performed using Hot 
Star Taq Plus DNA Polymerase in a 25 μL reaction containing 1�
Taq PCR Buffer, 0.65 U Hot Star Taq (5 U/μL), 0.2 µmol/L dNTPs, 
1.5 mmol/L MgCl2, 0.2 µmol/L amplicon 2 forward primer, 
0.2 µmol/L CS2 reverse primer, and 8 μL of purified PCR product at 
the following thermocycling conditions: 95°C for 10 minutes, 
25 cycles at 94°C for 60 seconds, 58°C for 30 seconds, 72°C for 
30 seconds, and 10 minutes at 72°C. 

PCR products of multiplex and single reaction were pooled to-
gether after quantification by qPCR and purified using Agencourt 
AMPure XP (Beckman Coulter) at 1.2� ratio according to the 
manufacturer’s protocol. Purified DNA was eluted in 30 μL of water. 
Barcoding PCR was performed using universal Fluidigm primers. 
Purified pooled PCR product (25 μL), 1� Phusion HF Buffer, 1 U 
Phusion Hot Start II DNA Polymerase (Thermo Fisher Scientific), 
0.2 µmol/L Fluidigm primer, and 0.2 mmol/L dNTPs were mixed in 
the final volume of 50 μL and amplified with the following condi-
tions: 98°C for 2 minutes, followed by 20 to 25 cycles of 98°C for 
10 seconds, 62°C for 30 seconds, and 72°C for 30 seconds followed 
by a 5-minute incubation at 72°C. The amplified product was pu-
rified by two consecutive AMPure XP steps using (i) a low con-
centration of AMPure XP beads (0.6� to 0.7� ratio) in which the 
beads containing the larger fragments are discarded and supernatant 
collected (reverse purification) and (ii) higher beads concentration 
(1.1� to 1.2� ratio) in which the beads containing fragments of 
interest were collected and purified according to the manufacturer’s 
protocol. Size-selected libraries were eluted in 15 μL of low-EDTA 
TE buffer. The libraries were quantified with Qubit HS DNA kit 
(Thermo Fisher Scientific), qualified with nano-electrophoresis 
(TapeStation, Agilent RRID: SCR_014994), and pooled 

equimolarly for sequencing. Sequencing was performed on Illumina 
HiSeq rapid run mode or NovaSeq (PE 30 bp, 170 bp). 

Preprocessing of the reads 
For each sample, FASTQ files containing raw sequences, com-

posed by the following parts: CS1, forward UMI, forward primer, 
insert, reverse primer, reverse UMI, and CS2 (Supplementary Fig. 
S3A) were first filtered for reads quality (average >Q20 per read) 
and then demultiplexed (i.e., cut using atropos v1.1.31 RRID: 
SCR_023962) using forward and reverse primer sequences. FASTA 
files were created per primer-set, containing inserts and reverse 
UMIs for deduplication, as they are unique for each input DNA 
molecule. Inserts and reverse UMI were then filtered on expected 
sizes (with a tolerance of ± 5 bases for the inserts). Filtered inserts 
and UMIs sequences were concatenated and deduplicated using 
vsearch v2.15.2 (RRID: SCR_024494). Reverse UMIs were then 
trimmed and resulting inserts from all samples were aggregated into 
a single FASTA file per primer-set. 

Clustering, extraction of representative sequences, and global 
alignment 

Using vsearch (with the following parameters: –cluster_fast <inputFasta> 
–notrunclabels –fasta_width 0 –iddef 4 –id 0 –qmask none 
–clusterout_sort –consout <referenceFasta>), a clustering based on 
sequence identity was applied to each FASTA file, or a subset of 
20 million reads randomly chosen if a given file comprised more. 
The 10 largest clusters’ representative sequences were isolated in 
separate files. Using MAFFT v7.508 (RRID: SCR_011811; with the 
following parameters: –globalpair –maxiterate 1000), the 10 repre-
sentative sequences were aligned pairwise resulting in a reference 
database for each primer-set. Lastly, using mothur v1.48.0 (RRID: 
SCR_011947, with the following parameters: #align.seqs(candida-
te¼<inputFasta>, template¼<referenceFasta>, align¼needleman, 
match¼1, mismatch¼�1, gapopen¼�1, gapextend¼0)) on each 
primer-set FASTA file, all sequences from all samples were aligned 
to the corresponding reference. 

CG calling, methylation levels, and haplotype extraction 
To call CpG dinucleotides of interest, a sliding window of 2 bp 

was used on all aligned sequences to determine the distribution of 
dinucleotides along each amplicon target. A first threshold of ≥20% 
of CG/TG dinucleotides was used to select potential CpG sites. A 
second threshold was applied to eliminate dinucleotide with ≥95% 
TG and select position with at least 5% methylation rate. From the 
aligned sequences, the patterns of methylation were extracted and 
compiled into either average levels of methylation at each previously 
identified CpG sites, or proportions of methylation haplotypes for 
each sample. 

Machine learning–based classification models 
The resulting data (represented as average levels of methylation per 

CpG site or proportions of methylation haplotypes or both) were used 
to do supervised learning of statistical models using the random forest 
classifier algorithm (51) from Python package scikit-learn (RRID: 
SCR_002577), with the following hyperparameters: n_estimators¼300, 
criterion¼“gini,” max_depth¼None, min_samples_split¼2, min_-
samples_leaf¼1, minutes_weight_fraction_leaf¼0.0, max_featur-
es¼“sqrt,” max_leaf_nodes¼None, min_impurity_decrease¼0.0, 
bootstrap¼True, oob_score¼False, warm_start¼False, class_-
weight¼None, ccp_alpha¼0.0, max_samples¼None. 
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The rational for choosing random forest over other learning 
methods was driven by three main factors: (i) it is less prone to 
overfitting (51); (ii) it shows excellent performance even when the 
quantitative relationship between features and observations is biased 
in favor of the former, such as when using methylation haplotype 
data representation (52); and (iii) random forests also inherently 
return measures of variable importance (51), such as mean decrease 
in impurity, which greatly facilitate the interpretability of model 
decisions. The features used to train the models were the average 
levels of methylation per CG site (n ¼ 30) and the proportions of 
methylation haplotypes (i.e., the combinatorial of all the possible 
methylation status of CG sites within a given amplicon, n ¼ 372) or 
both. No additional transformation nor feature selection was per-
formed on the data. 

Expert and all cancer models 
Model classifications were run 5,000 times in order to estimate 

variance and confidence intervals. For the discovery step, in each 
run, as many samples from each class were randomly drawn to 
construct a balanced subset of the data (53). The samples from these 
draws were stratified by class and split into 60% for training, 40% 
for evaluation. For the validation step, we trained the model on the 
entire cohort 1 and evaluated it on cohort 2. The true and false 
positive rates for all possible classification threshold were evaluated 
at each run, with interpolation to generate an average ROC curve 
with 95% confidence interval (CI) for the 5,000 runs. Ninety-five 
percent CI has been calculated with the following formula: Μ ± z �
s/
ffiffiffi
n
p

with M the average of the variable, z the confidence level 
(z∼1.96 for 95% CI), s the SD, and n the number of samples in the 
variable. 

Blind models 
We trained a random forest on haplotypes features, removing one 

cancer type or subgroup from the training set. The specific cancer 
type or subgroup is then assessed in the test set. We pooled together 
the discovery and validation cohorts, training on 2/3 of all the 
samples–excluding the cancer type or subgroup to test for–and 
testing on the remaining one-third of the samples. The only ex-
ception was metastatic gastric cancer: as they are made up of only 
three samples, they were systematically moved to the test set, con-
sequently blinding the model toward GAC M+ samples. We also 
trained a stacked version with this setup (see below). 

Stacked machine learning model 
We developed a model referred to in the article as “stack.” This 

model uses one random forest model for each combination of 
cancer type and metastatic status, known as the “expert submodel.” 
Each expert submodel was trained on one-third of the healthy 
plasma samples and one-third of the samples matching the cancer 
subgroup of interest (cancer type and dissemination status). These 
expert submodels were then combined into a random forest stack 
model, which uses both the haplotype features and the probabilities 
output by each expert submodel. The final random forest stack 
model was trained on an additional one-third of the healthy and 
cancer plasma samples and tested on the remaining samples (which 
represent one-third of the healthy samples and one third of each 
subgroup). 

Mutation screening for ovarian cancer samples 
Ovarian tumor genotyping was performed using the TIGER panel 

previously developed by Institut Curie (54), which targets 78 genes 

or using “custom next-generation sequencing” with amplicons tar-
geting Tp53 and TSC2, which are the two most frequently mutated 
genes in this group of patients, with TruSeq library constructions for 
low input material (dual strand technology). After mutation iden-
tification, ovarian cancer plasmas were genotyped using custom 
next-generation sequencing or Droplet Digital PCR as previously 
done (14). Sequencing was performed on a MiSeq V3-150 (25M) 
with paired-end 75bd protocol. 

Whole-genome bisulfite sequencing analysis 
To see if we could retrieve cancer-associated L1PA hypo-

methylation in other plasma studies, we analyzed data sets from two 
recent studies profiling cfDNA methylation with whole-genome 
bisulfite sequencing (WGBS) in healthy individuals and patients 
with cancer [Liu and colleagues (55); Gao and colleagues (56)]. Liu 
and colleagues (55) analyzed methylation at 75,617 CpGs in the 
whole genome [estimated with Bis-SNP (RRID: SCR_005439) after 
mapping with Bismark (RRID: SCR_005604)] of 17 healthy donors 
and 31 patients with cancer. We extracted the methylation levels at 
CpG residing within L1PA families hit by DIAMOND. To do so, we 
identified CpG dinucleotides covered by L1HS–L1PA10 elements, 
and their position within L1 based on the L1HS consensus sequence, 
and we selected the DIAMOND copies using BEDTools (RRID: 
SCR_006646). Gao and colleagues (56), provided FASTQ files data 
for 123 patients with breast cancer and 40 healthy patients. In order 
to avoid breast cancer subtype effect and age effect, we subsampled 
the data to generate an age-matched cohort with 16 healthy and 
15 HR+ HER2� M+ patients. We first merged the paired-end reads 
using Fastp (RRID: SCR_016962) and mapped them on the 
hg38 reference genome using Bismark. At this step, we followed two 
different approaches to obtain the methylation level at the 30 L1PA 
CpGs that we studied with DIAMOND. (i) Using Bismark extractor, 
we retrieved the methylation levels of all CpGs covered and inter-
sected it with the dinucleotides covered by DIAMOND using 
BEDTools. Results produced with this approach are subsequently 
called “Gao and colleagues (56) Bismark.” (ii) Using mothur (RRID: 
SCR_011947), we aligned the reads that mapped on L1HS-L1PA10 
elements on an aggregate of native and converted (CG converted to 
TG) reference sequences of L1HS. All reads that mapped with a 
score lower than 51% of similarity (score computed by mothur) 
were rejected (this threshold was established from the percentile at 
99% of similarity score distribution from 1,000 random sequences 
167 bp long). Results generated by this approach are subsequently 
called “Gao and colleagues (56) mothur.” Finally, for “Gao and 
colleagues (56) Bismark” and “Gao and colleagues (56) mothur,” we 
refined the results to only take in account the copy of L1HS– 
L1PA10 targeted by DIAMOND. Further refinements were done to 
only consider L1HS–L1PA3 copies with the second approach, re-
ferred to as “L1HS–L1PA3.” 

Survival analysis 
Survival analysis has been performed with survival (RRID: 

SCR_021137) and survminer (RRID: SCR_021094) R (RRID: 
SCR_001905) packages - r. 

Copy number alteration analysis 
CytoScan HD microarrays: 250 ng of gDNA from 15 breast cell 

lines (1 normal-like: HTERT-HME1 and 14 cancer cell lines: MDA- 
MB231, MDA-MB453, HCC1569, BT20, HCC1954, HCC38, MDA- 
MB361, ZR 75.1, MDA-MB157, MCF7, SKBR3, HCC202, HCC70, 
and BT474) were characterized using Affimetrix/Thermo CytoScan 
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HD microarrays at the Genomics facility of Institut Curie to profile 
aneuploidy. To compare with the z-score by chromosome arm, we 
calculated the mean of weighted log2 combining probes by 
chromosome arms. 

DIAMOND copy number alteration (CNA): (i) Z-score calcula-
tion: prepossessed reads were uniquely mapped on hg38 genome 
using Bismark (version 0.23.1). As in Belic and colleagues (57), only 
the reads with an alignment score >15 were kept. Resulting reads 
from all amplicons (excluding #2 and #3) were merged, and the 
normalized number of reads per chromosome arm (excluding sex-
ual chromosomes X and Y) per sample was calculated with R. Next, 
the amplification/deletion score was computed using the following 
formula: 

z � scorei;n ¼
ReadsNorm i;n � Mean

�
ReadsNorm i;controls

�

Sd
�
ReadsNorm i;controls

�

with i ¼ a given chromosome arm, n ¼ a given sample, and 
controls ¼ a set of reference samples (white blood cells from 
10 healthy reference samples for the cell lines; 63 healthy plasmas 
from C1 as a reference for cancer and healthy plasma samples). 
Genome-wide z-scores were computed by summing the squared 
z-scores of all chromosome arms. (ii) Z-score threshold identifica-
tion: to identify altered versus normal z-scores, we performed 5-fold 
cross validation of simple cutoff classification model on the dis-
covery cohort (NHealthy ¼ 60, NCancer ¼ 350) using the genome-wide 
z-score and calculated the threshold that maximize the sensitivity at 
100% specificity. 

Two-step classification for sample labeling 
First, we selected the threshold for the probability of the cancer 

prediction (ProbaCancer) on the discovery cohort maximizing the 
sensitivity for a 99% specificity, per “cancer-type” model. We ap-
plied this threshold on the ProbaCancer computed with the validation 
models and reclassified samples which presented a z-score > 121, as 
cancer (ProbaCancer ≤ Threshold C1 AND GZ-score ≤ 121: 
prediction ¼ Healthy; ProbaCancer > Threshold C1 OR GZ- 
score > 121: prediction ¼ Cancer). 

Data availability 
Data have been deposited as methylation matrices (CG % or 

haplotypes %) on the Zenodo database (RRID: SCR_004129) with 
the following accession code: https://zenodo.org/uploads/12206227 
and as compressed FASTQ files at the European Genome-phenome 
Archive at https://ega-archive.org/ under the accession code 
EGAD50000000646. WGBS sequencing data were downloaded from 
publicly available database at https://zenodo.org/records/7779198 
and from the National Center for Biotechnology Information 
(https://www.ncbi. nlm.nih.gov) under the accession number 
PRJNA494975. The code used to analyze the data is available on 
github: https://github.com/ProudhonLab. Source data used to gen-
erate figures are available upon request to the corresponding author. 

Results 
Targeting primate-specific LINE-1 elements reveals 
genome-wide plasma DNA methylation patterns 

We developed a PCR-based targeted bisulfite method coupled to 
deep sequencing to detect methylation patterns of L1PA elements. 
We used sodium bisulfite chemical conversion to achieve bp reso-
lution analysis and designed a multiplexed PCR based on eight 
amplicons covering L1PAs (Fig. 1A; Supplementary Fig. S3A; 

Supplementary Table S1). We detected 1,000 of L1PA elements 
scattered throughout the genome as shown by the genomic hits 
obtained from healthy plasma, an ovarian tumor, and a uveal 
melanoma tumor sequenced at high depth (Fig. 1B; Supplementary 
Table S2). We observed similar profiles for the three samples, as well 
as for healthy and cancer plasmas with standard coverage (Sup-
plementary Fig. S1B–S1E). This demonstrated the robustness of the 
approach. Overall, the estimated number of L1PA targets is about 
30 to 40,000 elements per genome including half of the human- 
specific copies (L1HS) and many copies of the other L1PA sub-
families (Fig. 1C; Supplementary Table S2). This represents an es-
timate of 87 to 120,000 CpG sites. 

Following deep sequencing, reads are traditionally mapped back 
to the genome. However, the majority of sequencing reads from 
repetitive sequences are assigned randomly during mapping steps 
and are subsequently lost for classical differentially methylated re-
gion calling (58). We, thus, developed a new computational pipeline 
to accurately align repetitive sequencing data without using a ref-
erence genome (Supplementary Fig. S3F). To perform this, we 
clustered all good quality reads based on their similarity, extracted 
representative sequences from the largest clusters, and used them 
for multiple sequence alignment. We then aligned all the reads back 
onto this custom database. Using such reference-free method, we 
preserved the majority of our data and could extract the informative 
CpG sites agnostically. We selected sites with a CG/TG 
content ≥20% including at least 5% of CG to ensure that the posi-
tion of interest carries some DNA methylation marks. This selection 
was done on healthy samples to avoid biases related to cancer 
hypomethylation. We retrieved 35 CpG positions covered by our 
panel including two additional CpGs with respect to the L1HS 
consensus annotations, located within amplicon 2 (Supplementary 
Fig. S4A and S4B). 

As expected, the 50 end of the L1 copies targeted is heavily 
methylated (42, 59), particularly within the second amplicon. We 
also observed quite high levels in both the fifth amplicon (69% in 
average; Fig. 1D), which covers part of the ORFI, and the last two 
CpGs of amplicon 8, which is located immediately upstream of the 
30 untranslated region . Amplicon 3, which has the lowest methyl-
ation levels within the 50 end, displayed sequencing data with 
atypical distributions and showed less robust performances (not 
shown). Hence, we further eliminated it from the rest of the study, 
resulting in a total of 30 CpG positions analyzed. Overall, this 
reference-free method retrieved methylated sites contained by the 
youngest LINE-1 elements present in the human genome allowing 
us to study their DNA methylation levels and motifs from minute 
amount of DNA such as plasma cfDNA. 

L1PA hypomethylation is detectable from plasma DNA in 
multiple forms of cancer 

We first tested the DIAMOND approach on methylation con-
trols, cancer cell lines, and tissue samples. The overall methylation 
levels demonstrated an extensive L1PA hypomethylation specifically 
in cancer samples, including colorectal (CRC), ovarian (OVC), 
breast (BRC), and uveal melanoma (UVM) cancer cell lines as well 
as ovarian cancer, breast cancer, and uveal melanoma tumors 
compared with healthy white blood cells and healthy tissues col-
lected adjacent to ovarian tumors (Fig. 2A; Supplementary Table 
S3). Next, we tested a cohort of 473 plasma samples including 
123 healthy plasma controls and plasma samples from patients with 
six different types of cancer, covering metastatic (M+) and localized 
(M0) stages (Supplementary Table S4). This includes colorectal and 
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ovarian cancers in which a substantial rate of L1 hypomethylation 
has previously been reported (60, 61). We detected a statistically 
significant L1PA hypomethylation in cfDNA of metastatic colorectal 
cancer (CRC M+), breast cancer (BRC M+), and uveal melanoma 
(UVM M+) samples as well as in locally advanced ovarian cancers 
(OVC M0, stages III) and localized gastric cancers (GAC M0; 
Fig. 2B; Supplementary Table S3). The global methylation was not 
significantly different in metastatic non–small cell lung cancers (LC 
M+) nor in localized stages of breast cancer (BRC M0). However, 
focusing strictly on global methylation levels provides only part of 
the information. 

We further computed the levels of methylation at each CpG 
target (n ¼ 30) for these plasma samples and observed specific 
patterns of methylation along the L1 structure, which are robustly 
conserved among the 123 healthy donors (Fig. 2C). When consid-
ering all cancer samples together, we observed a clear difference 
with the methylation of healthy samples. We detected a steady 
hypomethylation through all CpG targets except for the two sites 
within amplicon 8 (Fig. 2D). This is also true for metastatic colo-
rectal cancers (CRC M+), breast cancers (BRC M+), and uveal 
melanoma (UVM M+). Clear hypomethylation is also observable 
for localized gastric (GAC M0) and ovarian (OVC M0) cancers, in 
particular at amplicon #1, #4 and #6, while the differences are less 
striking for localized breast cancers (BRC M0) and metastatic non– 
small cell lung cancers (LC M+). The distinction between most 
cancers and healthy samples were dependent on multiple CpG 
positions belonging to different amplicons along L1s, as shown by 
principal component analysis (Supplementary Fig. S4C). The least 
discriminating positions were located within amplicon 8, which is 
consistent with the metaplots shown in Fig. 2D. 

Next, we analyzed the motifs of methylation at the molecule level, 
which provide a more detailed signal. These haplotypes correspond 
to true patterns of methylation of adjacent CpGs, detected for each 
amplified DNA molecule. This was achieved by the incorporation of 
UMIs into the library (Supplementary Fig. S3A). Based on the 
combination of the 30 CpG targets divided into their seven ampli-
cons, we extracted a total of 372 unique features (Supplementary 
Fig. S4D). We observed highly robust representation profiles of 
haplotypes among the 123 healthy samples (Fig. 2E). For most 
amplicons, the fully methylated molecules were the most repre-
sented, as expected for healthy controls. However, we observed a 
high proportion of totally unmethylated haplotypes in amplicon 
#6 and #7. This can be explained by the fact that older L1 copies are 
often truncated in 50 and less regulated by DNA methylation, 
leading to the capture of molecules with lower DNA methylation in 
30. Nevertheless, several intermediate patterns were also among the 
most important features and were found to be differentially repre-
sented in healthy and cancer samples (Supplementary Table S5). 
Fully methylated haplotypes were significantly under-represented in 
most cancer subgroups and in most amplicons (Fig. 2F). On the 
contrary, fully unmethylated haplotypes were over-represented in 
most cancer subgroups and in most amplicons. This is also well 
illustrated by the principal component analysis shown in Supple-
mentary Fig. S4E, underlining the contribution of highly methylated 
haplotypes toward the healthy group versus the lowly methylated 
haplotypes separating cancer samples (middle). This separation 
involves haplotypes from all amplicons (right). 

Next, we compared the methylation profiles of tumor and plasma 
paired samples (OVC ¼ 10, Supplementary Fig. S5A–S5F; 
BRC ¼ 16, Supplementary Fig. S5G–S5K) by calculating the cor-
relation between their methylation differences relative to the mean 

methylation of healthy donor plasmas. We observed a better cor-
relation with methylation haplotype portions than with single CG 
methylation features (Supplementary Fig. S5B, S5C, S5H, and S5I; 
Supplementary Table S6). These results demonstrate that 
L1 hypomethylation can robustly be observed from cancer plasma 
DNA at the level of single CpG sites and more importantly at the 
level of methylation haplotypes. 

L1PA hypomethylation–based classifiers recognize samples 
from multiple forms of cancer 

We then trained classification models using random forests, with 
the 30 features corresponding to the levels of methylation at each 
CpG target or the 372 features corresponding to the proportions of 
haplotypes, or both, and assessed their performances to automati-
cally separate healthy from tumor plasmas. By testing all cancer 
samples without cancer-type specification, the methylation of L1PA 
elements showed an extremely good ability to discriminate between 
healthy and tumor plasmas, with an overall AUC of 94% to 95% for 
the three types of features (Fig. 3A and C; Supplementary Fig. S6A 
and S6B). Next, we trained distinct models to estimate the perfor-
mances for each cancer type and/or dissemination stage (M0 vs. 
M+). These models were extremely performant in metastatic colo-
rectal and breast cancers but also stage III ovarian cancers and 
localized gastric cancers, with nearly perfect classifications and 
AUCs between 98% and 100% (Fig. 3B and C; Supplementary Fig. 
S6A and S6B). Additionally, we observed excellent performances for 
metastatic lung cancers and uveal melanoma and more importantly 
for localized stages of breast cancer (AUCBRC_M0 ¼ 92%–95%). 
These models provide very good sensitivities at 99% specificity 
(Fig. 3D), in particular for CRC M+, BRC M+, OVC M0, GAC M0, 
and BRC M0. The latter is one of the most difficult cancers to detect 
noninvasively, as reported in previous liquid biopsy multicancer 
tests (11, 39, 40). 

Overall, we observed similar results using single CpG methylation 
levels, haplotype proportions, or both features. This can be 
explained by the high correlation observed between the two types of 
features (Supplementary Fig. S6C). We compared these perfor-
mances for each subgroup with the classification rates extracted 
from the model “all,” testing all cancer samples together. We ob-
served similar AUCs for most cancers, but overall, they were better 
classified with their “expert” cancer-specific models (Supplementary 
Fig. S6D and S6E). This shows that certain specificities of cancer 
type may confuse the current “all” model and affect the sensitivities 
at 99% specificities. 

Subsequently, we evaluated the importance of the features used 
by our classifiers (Fig. 3E and F). CpG positions displayed different 
patterns in the various cancer subgroups that can be informative for 
distinct cancer types or stages (Fig. 3E). Nonetheless, we identified 
features which are common to many types of cancer such as most 
CpGs of amplicon 1 and the first CpG of amplicon 6. Other features 
seemed to be characteristic of specific subgroups, such as CG7-14 
which are the most important features for sorting localized stages of 
breast cancer (BRC M0) or CG15-18, in particular CG17, which are 
part of the top features for metastatic breast cancers (BRC M+). 
Besides their dissemination status, the different important features 
detected in the BRC M0 and M+ subgroups may result from the fact 
that they were composed of different breast cancer subtypes, with 
100% of hormone dependent (HR+ HER2�) cancers in the BRC M+ 
subgroup and a mixture of subtypes, including also TNBC and 
HER2+ cancers, in the BRC M0 subgroup (Supplementary Table 
S7). Indeed, we observed that slightly different hypomethylation 
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Figure 2. 
L1PA hypomethylation is detectable from plasma DNA in multiple forms of cancer. A, Global DNA methylation of fully methylated (healthy WBC DNA treated with 
SssI) and unmethylated (whole-genome amplified healthy WBC DNA) controls, cancer cell lines, or tissues. Ovarian healthy tissues were collected next to ovarian 
tumors. The global methylation levels for each sample correspond to the percentage of CG dinucleotides at each CpG site averaged by the number of CpG sites. 
Statistical differences between controls, cell lines, or tissues and healthy WBCs were computed using the Mann–Whitney U test (PFully_meth. ¼ 9.97e�07, PUnmeth. 

¼ 1.86e�06, PCRC_Cells ¼ 0.266, POVC_Cells ¼ 1.20e�02, PBRC_Cells ¼ 2.47e�06, PUVM_Cells ¼ 6.77e�05, PHealthy_OVC_Tissues ¼ 0.063, POVC_Tissues ¼ 8e�03, PBRC_Tissues ¼ 4.10e�04, 
and PUVM_Tissues ¼ 0.88; Supplementary Table S3). B, Global DNA methylation in cancer plasma including metastatic stages (M+) and nonmetastatic stages (M0) as 
well as HD plasmas. Statistical differences between each cancer subgroup and healthy samples were computed using the Mann–Whitney U test (PCRC_M+ ¼ 1.27e�29, 
PBRC_M+ ¼ 3.79e�19, PUVM_M+ ¼ 8.29e�06, PLC_M+ ¼ 0.655, POVC_M0 ¼ 1.94e�05, PGAC_M0 ¼ 4.28e�08, and PBRC_M0 ¼ 9.10e�01; Supplementary Table S3). Black 
dotted lines represent the median. C, Methylation level at each targeted CpG site (x-axis), for each healthy sample (y-axis), depicted as a heatmap. CpG numbers are 
indicated. The metaplot represents the average methylation levels of the population. Amplicon numbers are indicated. D, Differential methylation levels between 
healthy samples and patients for each type of cancer, represented as metaplots. E, Proportion of methylation motifs, called haplotypes, for each amplicon (mean 
centered per amplicon). Only the most important features are represented (see Fig. 3F; “Materials and Methods”). Blue arrows highlight the most abundant 
haplotype in each amplicon. F, Mean centered abundance of the most important haplotypes with the highest co-methylation patterns (mostly fully methylated or 
fully unmethylated molecules) in cancer subgroups compared with HDs. Statistical significances were computed using the Mann–Whitney U test on raw haplotype 
proportions (Supplementary Table S5). HD, healthy donor; WBC, white blood cell. 
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Figure 3. 
L1PA hypomethylation–based classifiers recognize samples from multiple forms of cancer. A and B, ROC curves obtained for plasma sample classification using 
single CpG methylation levels (n ¼ 30) or haplotype proportions (n ¼ 372) with the “all cancers” model (A) or the “cancer-types” models (B). All classifications 
include 5,000 stratified random repetitions of learning on 60% of the samples and testing on the 40% left, with undersampling for classes equilibrium (results 
with and without undersampling are presented in Supplementary Fig. S3A and S3B). NCRC_M+ ¼ 75, NBRC_M+ ¼ 97, NLC_M+ ¼ 50, NUVM_M+ ¼ 55, NOVC_M+ ¼ 4 
(included only in “all cancers” testing), NOVC_M0 ¼ 18, NGAC_M0 ¼ 27, and NBRC_M0 ¼ 23 tested vs. 123 HDs. ROC curves shown are obtained by averaging the 
sensitivity and specificity of each repetition of learning. C and D, Performances for classifiers using single CpG methylation levels (gray), haplotype proportions 
(black), or both (white) presented as AUCs (C) or sensitivities at 99% specificity (D). Average AUCs are computed from the 5,000 AUCs generated by each 
repetition of learning. Bars indicate 95% CI. E and F, Importance (mean decrease in impurity) of the features used by the classifiers depicted as clustered 
heatmaps. The features correspond to the CpG targets (E) or the haplotypes (F). Only the most important haplotypes (feature importance level >1%) are shown. 
G, ROC curves obtained for plasma sample classification with the three-stage model, using haplotype features. H and I, Performances for the three-stage 
classifiers using single CpG methylation levels (gray) or haplotype proportions (black) presented as AUCs (H) or sensitivities at 99% specificity (I). Early stages 
(I/II, N ¼ 31), locally advanced stages (III, N ¼ 30), and metastatic stages (IV, N ¼ 281). J, Cancer detection rates with the methylation-based DIAMOND assay 
(haplotypes and CG methylation) vs. common recurrent mutations for samples assessed in previous studies [(13, 14, 62, 63)] or with NGS (Supplementary Table 
S6). HD, healthy donor. NGS, next-generation sequencing. 
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patterns in HR+ HER2� BRC versus TNBC (Supplementary Fig. 
S6F–S6H). We observed that haplotype features showed consistent 
patterns with important CG features (Fig. 3F). However, haplotypes 
provide a more detailed view of the methylation patterns with a 
strong importance of the most methylated or nonmethylated mol-
ecules. We still observed that some methylation intermediates are 
important for cancer detection (ex: in amplicon #1 in CRC M+ and 
GAC M0, #2 in BRC M0, #4 in BRC M+ and other subgroups, #5 in 
LC M+ and UVM M+, #7 in OVC, and #8 in BRC M0 and LC M+). 
BRC M+ and M0 subgroups cluster together, showing that even if 
they are not highly similar, they are closer to each other than to 
other cancer types. These breast cancer specificities are worth ex-
ploring further in the future. Overall, this suggests that L1PA 
methylation alterations detected from cfDNA vary in different types 
and stages of cancer. 

To estimate the ability of DIAMOND to detect cancer at early 
stages of the disease, we build classifiers for three stage classes 
gathering all cancer types: early stages (I/II, N ¼ 31), locally ad-
vanced stages (III, N ¼ 30), and metastatic stages (IV, N ¼ 281). 
Classifications were highly performant for all three stage categories 
(AUCEarly ¼ 95%, AUCAdv. ¼ 97%, and AUCMeta ¼ 95%; Fig. 3G– 
H; Supplementary Fig. S6I and S6D) with a mean sensitivity of 70% 
for early stages, (SenEarly ¼ 70%, SenAdv. ¼ 90%, and SenMeta ¼ 69%; 
Fig. 3I; Supplementary Fig. S6E). 

Next, we analyzed WGBS from healthy and cancer plasma from 
two recently published studies (55, 56) to evaluate if we can retrieve 
L1PA hypomethylation signal with non-targeted methods (see 
“Materials and Methods”; Supplementary Fig. S7A). Consistent with 
our findings, we observed statistically significant hypomethylation 
in cancer samples (Supplementary Fig. S7B–S7H). These whole 
genome approaches were nevertheless not as efficient as the 
DIAMOND-targeted approach to automatically detect cancer from 
L1PA hypomethylation as they cover less well the regions of interest 
(Supplementary Fig. S7A, S7F, and S7I). Indeed, they involve 
mapping on a reference genome leading to loss of data. Moreover, 
L1PA methylation measured with DIAMOND largely outperforms 
methods based on the detection of mutations. In comparison, the 
identification of the same tumor samples via the detection of fre-
quent recurrent mutations, which is commonly used in the clinic, 
does not exceed 57% for ovarian cancer (Supplementary Table S8), 
38% for colon cancer (62), and 52% for metastatic breast cancer 
(Fig. 3J; refs. 13, 14). We particularly achieved remarkable perfor-
mance on the cohort of 27 localized gastric cancers with a detection 
rate of 95% of true positive as compared with 12% for mutation 
screening (63). This is mostly due to the fact that methylation 
changes occur in virtually all patients with cancer, unlike recurrent 
mutations. 

Multicancer classification performances are reproducible on 
an independent cohort 

To validate the DIAMOND approach, we tested a second inde-
pendent cohort consisting of 214 patients affected with the same 
types of cancers as in the first cohort, excluding uveal melanoma 
and nonmetastatic gastric cancers, along with 60 healthy donors 
(Fig. 4A). First, we confirmed that the methylation patterns along 
the L1 structure were highly reproducible between healthy donors 
from cohorts 1 and 2, at the level of single CpG targets (Fig. 4B) but 
also for haplotype proportions (Fig. 4C; Supplementary Table S9). 
Although methylation at single CpG within cancer subgroups 
showed slightly more variability (Supplementary Fig. S8A), global 
methylation levels were quite reproducible between the two cohorts, 

showing similar distributions and no statistical differences (Fig. 4D; 
Supplementary Table S10), except for nonmetastatic ovarian can-
cers. There was an important heterogeneity among the OVC 
M0 samples of cohort 2, which clustered into two distinct groups, 
whereas cohort 1 was more homogeneous (Supplementary Fig. 
S8B). Notably, no correlation was found with available clin-
icohistopathologic parameters (age, staging, CA125 level, muta-
tional status, treatment, or response to therapy). Differential 
haplotype proportions between healthy and cancer subgroups were 
also mostly conserved (Supplementary Fig. S8C; Supplementary 
Table S11). Overall, the method showed good reliability with the 7- 
amplicon panel used and good robustness in detecting 
L1 methylation levels and changes. 

Because age-related changes in DNA methylation have been de-
scribed (64, 65) and that the healthy donors included in the study 
are younger overall than the patients with cancer (Supplementary 
Fig. S9A), we have investigated whether there was an effect on the 
methylation patterns we studied. We found a significant but very 
small effect which seemed much smaller that the effect of disease 
status (Supplementary Fig. S9B and S9C). This small effect was 
tending toward an increase in methylation with age (Supplementary 
Fig. S9D), and we observed similar patterns and differences between 
healthy and cancer samples when adjusting for the age (Supple-
mentary Fig. S9E–S9G; Supplementary Table S12). Furthermore, we 
observed similar performances in age-matched and non–age- 
matched cohorts extracted from C2 (Supplementary Fig. S9H– 
S9J), demonstrating that age is not a confounding factor. 

To validate our classifiers, we trained models on the entire first 
cohort and evaluated them on the second set of independent sam-
ples. The results showed excellent classification performances with 
an overall AUC of 88% when testing all cancers together with no 
annotations of their histologic types and AUC between 88% and 
100% for the cancer subgroup “expert” models with sensitivities at 
99% specificity between 49% and 100% (Fig. 4E), including 55% for 
localized breast cancers. It was, however, lower for metastatic lung 
cancer with a mean sensitivity of 49%. We observed that haplotype 
models were more robust compared with single CpG methylation 
rates (Supplementary Fig. S8D–S8G). This could be explained by the 
fact that haplotypes capture true methylation patterns at the mol-
ecule level, enabling to discard noise caused by experimental vari-
ability for example. Next, we applied the same validation method, 
training on C1 and testing on C2, for the three-stage “expert” 
classifiers and observed great classification performances with a 
mean AUC of 99% and a mean sensitivity of 79% for early stages 
(Fig. 4F). When comparing the performances for each subgroup 
with the classification rates extracted from the model “all,” we ob-
served similar AUCs for most cancers, but lower rates for the BRC 
M0 subgroup and the early-stage group (Supplementary Fig. S10A), 
which is mostly composed of BRC M0 (Supplementary Fig. S10B). 

To further investigate the generalization of our marker, we have 
also tested the ability of DIAMOND to detect cancers of a type or 
subgroup for which the model is not trained. To do so, we have 
combined the data from cohorts C1 and C2 and trained on the 
whole data set, systematically removing one cancer subgroup or one 
cancer type and testing specifically for this subgroup or type (see 
“Materials and Methods”; Fig. 4G; Supplementary Fig. S10C). We 
observed performances similar to when the subgroup is included in 
the train set, which demonstrates the universality of L1PA hypo-
methylation. Classification performance is noticeably lower for the 
BRC M0 subgroup when the model still performs well for OVC 
M0 and GAC M0. This may be because the BRC M0 subgroup 
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Figure 4. 
Multicancer classification performances are reproducible on an independent cohort. A, Number of patients and HDs in the discovery cohort (C1) and in the 
validation cohort (C2) for each cancer type and dissemination stage (nonmetastatic: M0 vs. metastatic: M+, NA, stage not available). Generated using Servier 
Medical Art. B, Methylation level at each targeted CpG sites (x-axis), for each healthy sample (y-axis) from C1 vs. C2, depicted as a heatmap. No clustering is 
done on the data, which come ordered by targeted CpG site on the x-axis (amplicon numbers are indicated). The metaplots represent the average levels for 
donors of C1 vs. C2 at each CpG site. C, Mean centered abundance of the most important haplotypes, with the highest co-methylation patterns, in HDs from C1 vs. 
C2. (Statistical differences computed using the Mann–Whitney U test are available in Supplementary Table S9) D, Comparison of the global levels of methylation 
in C1 vs. C2. Methylation levels are calculated as explained previously in Fig. 2. The P values are computed using the Mann–Whitney U test (PCRC_M+ ¼ 0.680, 
POVC_M+ ¼ 0.816, PBRC_M+ ¼ 0.783, PLC_M+ ¼ 0.596, PHealthy ¼ 0.316, POVC_M0 ¼ 4.74e�05, PBRC_M0 ¼ 0.132; Supplementary Table S10). Black dotted lines 
represent the median. E, Performances for validation classifiers using haplotype features presented as ROC curves, AUCs, and sensitivities at 99% specificity 
obtained with the “all” cancers model or the “expert” models for cancer subgroups. All classifications include 5,000 stratified random repetitions of learning on 
the whole discovery cohort and testing on the whole validation cohort without undersampling. ROC curves shown are obtained by averaging the sensitivity and 
specificity of each repetition of learning. Average AUCs are computed from the 5,000 AUCs generated by each repetition of learning. Bars indicate 95% CI. F, 
Performances for three-stage “expert” classifiers: early stages (I/II, NC1 ¼ 31, NC2 ¼ 38), locally advanced stages (III, NC1 ¼ 30, NC2 ¼ 54), and metastatic stages 
(IV, NC1 ¼ 281, NC2 ¼ 113), presented as mean ROC curves, AUCs, or sensitivities at 99% specificity. G, Performances for integrated models (“all” or “stack”) when 
training for the specific group tested (seen) vs. when not training for this subgroup (blind). These classifications have been performed on the whole sample set, 
including C1 and C2. HD, healthy donor. 
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contains the earliest stages of both cohorts (Supplementary Fig. 
S10B) and the model is less well trained for these stages when re-
moving it. To improve this, we have developed another integrated 
model that is trained for all cancer types and stages together but also 
incorporates the probabilities from the “expert” models, defining 
profiles for various stages and dissemination status. This “stack” 
model provides a unique prediction for cancer versus healthy status 
for each sample at once, independently of their cancer type/ 
dissemination status, and allows to balance for the cancer charac-
teristics used to train the model by including them all. We have then 
extracted the performances per cancer subgroups out of this inte-
grated model, which reached better performances to classify BRC 
M0 and early-stage samples (see “Materials and Methods”; Fig. 4G; 
Supplementary Fig. S10A). 

This demonstrates the robustness of cancer detection by probing 
L1PA hypomethylation from plasma DNA with the DIAMOND 
assay and its ability to detect early stages. Finally, we evaluated if the 
extent of L1PA hypomethylation was associated with survival. In the 
validation cohort, we compared patients with high methylation to 
those with low methylation levels (above or below the median 
threshold—Supplementary Fig. S10D) and observed that more 
pronounced hypomethylation is clearly associated with shorter 
survival (Supplementary Fig. S10E). This effect is thought to mainly 
reflect the tumor burden, which directly impacts the fraction of 
tumor DNA circulating in the blood, but it remains an interesting 
noninvasive tumor marker. 

DIAMOND data contain signal to infer the tumor burden, 
which improves cancer detection 

When looking at the overall methylation rates, we detected sig-
nificantly more hypomethylation for more advanced stages of the 
disease, in particular in metastatic stages compared with localized 
stages (Fig. 5A; Supplementary Table S13). However, there was no 
significant differences between metastatic tumor tissues and primary 
tissues (Fig. 5B; Supplementary Table S14), which confirmed that 
L1PA methylation alteration is an early event in carcinogenesis (66, 
67) and also affects early-stage cancers. The differences observed in 
the blood (Fig. 5A) reflect the ctDNA fraction, which is known to be 
directly influenced by the tumor burden and the stage of the disease 
(1, 9). This demonstrates the quantitative potential of DIAMOND, 
which could help quantify the tumor burden and monitor the 
disease. 

A recognized marker to noninvasively estimate the tumor burden 
and the fraction of ctDNA is the aneuploidy or CNAs (68, 69), a 
hallmark of cancer genomes (70). Given that DIAMOND hits are 
dispersed throughout the genome (Fig. 1B), we investigated the 
possibility to use our data to perform CNA analysis. The mFast- 
SeqS approach had previously used a PCR-based L1PA targeting as a 
prescreening tool to estimate the fraction of ctDNA (71, 72). This 
was done on native DNA whereas our data resulted from bisulfite- 
treated DNA. 

We first tested this approach on 15 breast cancer cell lines that 
were also assessed by CytoScan HD microarrays for aneuploidy. 
DIAMOND provided an average of 78,000 uniquely mappable reads 
per cell line, corresponding to around 10,000 L1PA copies precisely 
located in the genome. These L1PA hits homogeneously overlapped 
with regions covered by CytoScan probes along the genome 
(Fig. 5C). We computed z-scores, quantifying CNAs, at the level of 
chromosome arms as previously described (see “Materials and 
Methods”; refs. 57, 72) and obtained similar results to those found 
with CytoScan arrays (Supplementary Fig. S11A). We observed low 

alteration scores for the normal-like breast cell line HTERT-HME1 
and good correlations between the two methods for the majority of 
the cell lines (Supplementary Fig. S11B). 

Next, we computed genome-wide z-scores in healthy and cancer 
plasma samples and observed high alteration scores specifically in 
cancer samples (Fig. 5D). Cancer subgroup z-scores mirrored global 
hypomethylation profiles (Figs. 2B, 4D, and 5E; Supplementary 
Table S15), both reflecting tumor burden and ctDNA fractions 
available. However, global methylation rates and z-scores were only 
moderately anticorrelated (Fig. 5F), demonstrating that these are 
partially independent markers that can provide distinct signals 
(Supplementary Fig. S11C). 

To obtain a final classification labeling each sample as healthy or 
cancer, we used a two-step categorization incorporating CNA 
analysis, which improved cancer detection. We used the probability 
of the cancer prediction provided by the methylation-based vali-
dation models (“expert” and “all” models), applying a threshold 
identified on the discovery cohort, followed by a reclassification of 
samples which presented a z-score >121, as cancer. This cut-off 
value was deduced from a cross-validation applied on C1 (see 
“Materials and Methods”; Supplementary Fig. S11C). This classifier 
achieved high sensitivities with specificities between 97% and 100% 
for the “expert” models and 93% for the integrated “all” model in 
four distinct cancer types (breast cancer, colorectal cancer, lung 
cancer, and ovarian cancer; Fig. 5G) and could be applied as is in 
the clinic. This was particularly promising for localized breast 
cancer with a sensitivity of 100% with both model types. 

Discussion 
In this study, we established a robust proof of concept that tar-

geting hypomethylation of retrotransposons from cfDNA is a sen-
sitive and specific biomarker to detect multiple forms of cancer 
noninvasively. Repetitive regions provide genome-wide information 
as they hold half of the CpG sites present in the human genome 
(73). Hypomethylation of L1 elements, which is a common feature 
of multiple forms of cancer, is a universal marker and helps cover 
the heterogeneous profiles of patients with cancer in a single test. 
Previous methylation studies have left these regions aside as they are 
inherently difficult to map, and differentially methylated region 
analysis is commonly performed on mapped data. However, repeats 
were previously used to profile aneuploidy and one of the first re-
ported liquid biopsy cancer detection test was based on serum DNA 
integrity calculated with the ratio of short over long Alu 
fragments (74). 

Here, we developed a new pipeline to detect methylation profiles 
at repeats with a single bp resolution, without resorting to mapping 
on a reference genome. This allowed us to rescue unmappable se-
quences (such as polymorphic copies that are not annotated in the 
reference genomes) or sequences that are difficult to map (such as 
multi-mappers) and retain most of our data. This is instrumental in 
achieving high sensitivity. The DIAMOND assay demonstrated high 
performance in detecting cancer samples and we established its 
feasibility in six different cancer types, including three at localized 
stages. It outperforms mutation screening, as it covers virtually all 
patients and presents a promising marker for pan-cancer detection. 

Previous cfDNA multicancer tests enabled sensitive detection and 
classification of multiple forms of cancers such as the CancerSeek 
test, based on the combination of mutations and proteins detection 
(11, 75) and more recently combined with aneuploidy profiling using 
representation of Alu sequences (76) or the cfDNA methylation test 
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Figure 5. 
DIAMOND data contain signal to infer the tumor burden, which improves cancer detection. A and B, Comparison of the average levels of methylation observed in 
localized vs. metastatic plasma samples (A, PEarly/Adv. ¼ 0.327, PAdv./Meta. ¼ 3.14e�11, PEarly/Meta. ¼ 2.82e�14; PBRC_M0/M+ ¼ 1.3e�18, POVC_M0/M+ ¼ 0.006, and 
PGAC_M0/M+ ¼ 0.005; Supplementary Table S13) or in primary vs. metastatic tissues (B, POVC ¼ 0.257; PUVM ¼ 0.820; Supplementary Table S14). C, L1PA unique 
hits obtained for 15 breast cancer cell lines compared with the distribution of CytoScan probes distributed throughout the human genome. D, Genome-wide 
z-score for all cancer (N ¼ 564) vs. healthy plasma samples (N ¼ 120, 63 of the total 183 HDs are used as references to compute the z-score and are not 
displayed here, p ¼ 1.21e�20). E, Genome-wide z-score by cancer subgroups vs. healthy samples. The P values are computed using the Mann–Whitney U test 
(PCRC_M+ ¼ 2.05e�18, PBRC_M+ ¼ 1.01e�18, PUVM_M+_ ¼ 0.169, PLC_M+ ¼ 0.769, POVC_M+_ ¼ 1.84e�11, PGAC_M+ ¼ 0.003, PBRC_M0 ¼ 5.12e�17, POVC_M0 ¼ 1.09e�12, 
and PGAC_M0 ¼ 8.40e�06; Supplementary Table S15). F, Correlation analysis for genome-wide z-score vs. global methylation (roverall ¼ �0.62; P ¼ 1.25e�69). G, 
Performances of the two-step model incorporating CNA with DNA methylation analysis (classification is done as follows: ProbaCancer ≤ Threshold C1 AND GZ- 
score ≤ 121: prediction ¼ Healthy; ProbaCancer > Threshold C1 OR GZ-score > 121: prediction ¼ Cancer, see “Materials and Methods”). HD, healthy donor. 
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Galleri from GRAIL, which targets 1,100,000 CpGs within 
unique regions (39, 40). In comparison, DIAMOND targets 
about 100,000 CpG sites within 30 to 40,000 copies of LINE-1 
using a unique set of probes for all these copies and the various 
cancer type tested. Very recently, several multicancer detection 
methods based on retrotransposons were published. This in-
cludes the detection of the circulating L1 protein ORF1p (67) as 
well as the probing of the representation of all type of repeats 
from Annapragada and colleagues (77). Another study demon-
strated that cfDNA cleavage profiles at Alu sequences reflect 
their methylation status and can be used to detect liver cancer 
and nasopharyngeal carcinoma (78). 

The DIAMOND assay interrogates specifically the methylation 
status of L1 to obtain a global representation of the hypomethylation 
occurring during carcinogenesis and assess the potential of circu-
lating DNA methylation changes at L1PA elements as a universal 
tumor biomarker. Our aim was to develop a new highly sensitive 
strategy to detect cancer-specific signatures in blood. Overall, DI-
AMOND reached great performances for multicancer detection 
using “expert” models for specific cancer subgroups or integrated 
models including all types of cancers. Lower detection rate in 
metastatic lung cancer may be related to the fact that these samples 
seem to have a low tumor burden as indicated by their genome-wide 
z-scores (Fig. 5E). However, integrating other regions with cancer- 
specific methylation changes could help improve detecting this type 
of cancer. 

The DIAMOND assay provides methylation profiles from minute 
amount of cfDNA, down to a few nanograms, with high precision 
and high coverage using an affordable sequencing depth. Stronger 
L1PA hypomethylation was associated with shorter overall survival 
demonstrating its prognostic value. We therefore anticipate that our 
method has the potential to be applied for the development of 
routine clinical tests. Although our integrated models provide proof 
of concept for cancer detection with blood screening in asymp-
tomatic patients, the “expert” models could also be useful to help 
diagnosis when we suspect the cancer location or to perform disease 
follow up. 

To push the DIAMOND assay toward a clinically applicable test, 
we also demonstrated that DIAMOND data can be used to perform 
CNAs analysis which improves cancer detection. We integrated this 
analysis in a classifier providing “healthy” or “cancer” labels for each 
sample and reached a detection of 91% of true positives for all 
cancers together and in particular a 100% sensitivity with 100% 
specificity for localized breast cancer with the BRC M0 expert 
model. 

Further testing with a larger number of samples covering earlier 
stages, including an independent cohort of gastric nonmetastatic 
cancers, more subtypes and different types of cancer will enable to 
consolidate and expand these findings. Moreover, this will 
strengthen the classification models, which will perform better with 
more samples for training and testing. In the current study, we did 
not control for ethnic origin of samples tested. The potential impact 
of L1 polymorphism linked to ancestry should be estimated in fu-
ture studies. It will also be important to study the impact of other 
conditions, such as autoimmune diseases, which may lead to the 
detection of L1 hypomethylation in blood. The recent study on the 
detection of circulating L1 ORF1p in cancer by Taylor and col-
leagues (67) demonstrated a high specificity and no sign of 
L1 reactivation in blood of patients with autoimmune disease, in-
dicating that it might be a cancer-specific phenomenon. DIAMOND 
analysis could further be used to infer the tumor burden and 

monitor the disease to better detect minimal residual disease and the 
relapse early. However, the impact of treatments on methylation 
status should be investigated first. 

Overall, we developed a turnkey analysis method that identifies 
tumor plasmas across multiple types of cancer with the same 
marker. This approach offers an optimized balance between the 
number of targeted regions and sequencing depth, which could 
extensively improve the sensitivity of ctDNA detection in a cost- 
effective manner and improve management of patients with cancer. 
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