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REMARK ON LOWER SEMICONTINUITY OF UNBOUNDED QUASICONVEX
INTEGRALS

OMAR ANZA HAFSA AND JEAN-PHILIPPE MANDALLENA

ABSTRACT. We introduce a class of unbounded quasiconvex integrands for which we prove a
lower semicontinuity theorem of the associated integrals.

1. INTRODUCTION AND MAIN RESULT

Let m, N € IN* be two positive integers. Let W : IM — [0, 0] be a lower semicontinuous
function where IM is the space of m rows N columns matrices. Let p € [1,00[. We consider the
integral functional I : WHP(Q; R™) — [0, o0] defined by

I(u) = /Q W (Vau(z))da.

In vectorial calculus of variations, i.e. when min(N,m) > 1, Morrey [25] introduced the
concept of quasiconvexity as a necessary and sufficient condition for weak lower semicontinuity
on WH®(€Q; R™). This condition is distinct from convexity and is very difficult to grasp due
to its non-local character [2I]. Quasiconvexity is a necessary and sufficient condition in the
case of integrands with p-polynomial growth conditions [I]; for the case of finite integrands, see
[22, 24], 131, 30}, 27, 28, [18§].

Very little is known about the problem of lower semicontinuity for integrals I when the
quasiconvex integrands take the value c0. Of course, there is the well-known case where W is
convex and lower semicontinuous; in this case, the associated integral is lower semicontinuous.
On the other hand, the concept of polyconvexity [14], which allows W to take the value oo
and which is not necessarily convex, is suitable in the context of hyperelasticity as it allows for
considering the following two basic conditions: the impossibility of reducing a finite volume to
zero volume and the non-interpenetration of matter, i.e.

d%iglOW(F)zoo and (VFelM W(F)<w <= detF >0). (1)

ot Fo
We should mention other classes of integrands which can take infinite values, and which have
been studied for their connections to weak lower semicontinuity of I. One of such class is
the closed W!P-quasiconvex integrands introduced by Pedregal [26]. These integrands have
been caracterized by Kristensen [20] as being supremum of quasiconvex functions with p-growth
conditions (this also discussed in [22] [I5]), thus allowing them to take the value co. Additionally,
various classes of integrands satisfying conditions related to the blow-up method of proof (see
[19]) have emerged in recent years, as highlighted in [24], 23] [32]. It is worth noting that this
blow-up method has been used in problems of relaxation, homogenization, and I'-convergence
problems since the mid-1990s.

Our aim here is to propose a new class of integrands which can take the value oo, and which
contains naturally the class of lower semicontinuous convex integrands.

Denote by domW := {{e M : W({) < oo} the effective domain of W. We consider the fol-
lowing assertions on W:

(A1) int(domW) £ & and there exists C' > 0 such that for every &,¢ € M and every ¢ €]0, 1]
W(ts + (1 —=1)¢) < C(1+W(E) + W(Q));
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Ag) W is ru-usc, i.e. there exists £ € int(domW') such that lim,_,;- Aaﬂ’gro t) < 0 where for
some a > 0

ato 1y ._ Wt + (1 —t)&) — W ()
A = EEEBEW a+W() '

The condition |(A;)| means that there is self-control by the function W itself over potential
bumps it may have. This hypothesis was initially introduced in [5] following works in relaxation
and homogenization [29 [3]. Subsequently, it has been used in problems of I'-convergence,
homogenization, and relaxation for unbounded functionals in [11} [7, [8 10]. Note that this
condition implies that domW the effective domain of W is convex.

The concept of a ru-usc function was introduced in [2] and further studied in [6, @]. It
has been used in works concerning relaxation, homogenization, and I'-convergence of unbounded
integrals, see [3], 4], 111, 17, [7, [8, [10].

When W satisfies and we say that W is a ru-usc function with self-control over
its (own potential) bumps. The following proposition provides conditions under which is
satisfied.

Proposition 1. We have

(i) of W is conver with int(domW') + & then|(A1)| and |(As)| hold;
(ii) of W has G-growth from above and below with G : M — [0,00] satisfying (A1)}, i.e.
int(domG) £ J, and there exist o, § > 0 such that for all £ € M

aG(§) < W(E) < B(1+G(9)), (2)
then holds.

A function W : M — [0, o0] is W1P-quasiconvex if
(A3) for every £ e M

Wie) = iut{ [ Wi+ Vota)de s o e wirvimn |

where Y =]0, 1[V. When p = o0, we say that W is quasiconvex.

We say that I : WYP(Q;R™) — [0,00] is sequentially weakly lower semicontinuous on
WLP(Q; R™), if for every u € WHP(€; R™) and every {u,}new © WIP(Q; R™) satisfying u,—u
we have

lim [ W (Vi (2))dz > /Q W (Vu(z))dz.

n—o0 J O

Here the main result of the paper.

Theorem 1. Assume that p > N and that|(A1)| and |(As)| hold. Then I is sequentially weakly
lower semicontinuous on WP(Q; R™) if and only if W is W'P-quasiconves, i.e. satisfies .

Our result is related to the questions raised by the Ball-Murat Conjecture [I3, Conjecture 3.7,
p. 232] which states that if W is continuous, then I is sequentially weakly lower semicontinuous
on WP(Q; R™) (sequentially weakly* lower semicontinuous if p = c0) if and only if W is W1P-
quasiconvex. While we are clearly far from providing some answers to these questions, our result
may be viewed as a step in this direction.

The plan of the paper is as follows. Section [2] is devoted to the proof of Theorem In
Section |3] we give some examples. In Subsection [3.1] we provide a class of ru-usc integrands
under differentiability assumption. In Subsection [3.2] we give an example of unbounded ru-
usc quasiconvex integrands satisfying the two basic conditions in hyperelasticity in the two
dimensional case. Then, we prove Proposition [I| in Section
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2. PROOF OF THEOREM [I]

The necessary condition of the sequentially weakly lower semicontinuity on W1?(Q; R™) of I
is given by [13, Corollary 3.2, p. 231].

Consider & € int(domW) given by m We can assume that £ = 0, indeed, we can make
the following change of integrand W(A &) := W(A) for all A e M. The new integrand (%
satisfies |(A1)| and |(Az)| with Aao

Let us show that if W is Wl’p—quasmonvex ie. m (A3)| holds, then I : WHP(Q; R™) — [0, 0]
defined by

u) = /Q W (Vu(z))dz.

is sequentially weakly lower semicontinuous on W1P(Q; R™).

Let u e WIP(Q;R™) and a sequence {uc}e~o = WHP(Q; R™) satisfy

ue—u in WH(Q;R™)  and  lim I(u.) = hm I(ug) < o0.
e—0
It follows that Vu.(-) € domW a.e. in €, and since domW is convex, it follows that Vu(-) €
domW a.e. in Q. By the line segment principle, we have tVu(-) € int(domW) a.e. in € for all
e [0, 1].

Since the compact imbedding of Sobolev spaces into L*(€2;R™) because p > N, we can

assume, up to a subsequence, that

lim fjus —uf g (rm) = 0. (3)

We set pe := W (Vue(-))Ln|q for all € > 0. The sequence of positive Borel measures {jc}:.~0 is
bounded, i.e.

sup p1e(§2) < o,

e>0
there exists then a subsequence (not relabelled) and a Borel measure p such that g 2 1 weakly

in the sense of measures. To prove the lower semicontinuity result, it is sufficient to show that
for Ly-a.e. xg € Q

dp
4
(o) = W (Vu(an)) (®)
indeed, by Alexandrov theorem
lim 1) = Jiny ) > im e (@) > 5() > [ FE(@pdo > [ W(Vala
e—0 e e—0 dﬁN

We have for Ly-a.e. zg € Q and for every s €]0, 1]
g BS € BS
dp ——(zp) = lim lim HelPspl0)) (Bsp(z0)) = lim lim HelPspl®0)). (Bsp(20)) ,
N p—0:20 LN(Bsp(wo))  p—0e—0 Ly (Bsp(wo))
indeed, by Alexandrov theorem we can write that for every zo € Q and every (s, p) €]0, 1[?
WBsp(wo)) 1. He(Bsp(0)) i e(Bsp(0)) M(Eip($0))
LN(Bsp(wo)) 50 £n(Bsp(wo)) =0 Ly (Bsp(w0)) — Ln(Bsp(wo))

now, by passing to the limits p — 0 we get .
Fix t €]0,1[. Let 7 €]t, 1] be such that A%’ (1) < 0. Let zq € Q satisfy:

()

W(rVu(zg)) < o0; (6)

Vu(zg) € domW; (7)
dp N TP ,ug(BSp(mo)) NE(BS;J($O))

= lim lim lim 2522222 — lim lim lim 2222 < o 8

dﬁ ( ) s—1— p—0:. [,N(Bsp(aj‘o)) s—1— p—0e—0 ﬁN( Sp(l'o)) ( )

0= ;i_{% ;HU — Uz | L% (By p (0);RT) 9)



The last equation (9) comes from the fact that every Sobolev function in W1?(Q; R™) with
p > N is almost everywhere differentiable; u, () := u(z) + Vu(z)(- — x) is the affine tangent
map to u at x € Q).

(T(; simplify the notation, let us denote A%{,O = AY,. We also set for every (u, 0) € WHP(Q; R™) x
o

I(u,0) = / W (Vu(z))dz
o
where O() is the set of all open subsets of €.
By using |(As)| the ru-usc assumption on W, we have for every ¢, s, p €]0, 1] and every € > 0
I(tUmBSp(xO)) <I(u€7BSp(x0)) I(ue, B ( 0))
Ln(Bsp(zo)) LN (Bsp(o) Ln(B 50(1‘0))
)

)
I(ug, sp (z0)) a (N\a a I(ue, B sp (20))
S In(Bolao)) WO AVOL T o)

e ( 8p($0)) Ma(Bsp($0))
——————+A“ta+A“t——————
L (Boplao)) WAL G o)

passing to the limits € — 0,p — 0 and s — 1 we have

1 B B
lim lim lim I(tue, Byp(0)) < lim lim lim #e(Bsyl@o)) + Afy(t)a
5—1p—0e—0 ﬁN( sp(x[))) s—1 p—0e—0 EN( sp(xO))

+ Ajy(t)a + Ay (2)

) pe(Bsp(20))
+ Ay (1) lim. ,{%iﬂm
(

— - (w0) + Ay (a-+ Afy(6) 77 ()

~ i ta0) + A3 0) (g (a0).

1 B
lim lim lim lim (tue, Byp(wo)) < o
t—1s—1p—0e—0 ﬁN( sp(xo)) dLn

So, a sufficient condition to have is to show

letting ¢ — 1 and using |(A2)| we obtain

(o).

W (Vu(zo)) < lim lim lim lim M.
om0 Ly (Bap(ao))

(10)
Let us prove (|10)).

Let  €]0, 1[ and let (s, p) €]0, 1[? satisfy B,(xo). Let xx € Wol’oo(Bsp(xo); [0,1]) satisfy

_ 4
Xk =1 0n Bysp(20), xu=0o0n QBsp(wo) and  |[Viu|ros,,@o)mm) < m

We define ug, (z) := u(zo) + Vu(zo)(x — zo) for all z € Q.

Let ¢ > 0. We set

v = xpte + (1 — Xk)Ug,
We see that v% € ug, + Wy (Bsy(20); R™), implying the existence of ¢ € WP (Bs,(xo); R™)
such that
V= Uy, + .

Let ¢’ €]0,1[ be such that ¢t = 7¢’. We have

tVu.(z) if z € Bysp(20)

tVol(x) = t' (7xx(2)Vue(z) + 7(1 — xx(2))Vu(zo))

() ® (ue(x) —ug,(z)) ifze Bsp(:vo)\ﬁmp(:co).
4
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and by the WP-quasiconvexity of W, we use [13, Proposition 2.3, p. 228] to see that the
inequality in the definition of WP-quasiconvexity holds over any nonempty bounded open set
with zero measure of their boundary

W (tVu(zo)) = inf ][ W (tVu(zo) + Vo(x))dr < ][ W (tVol(z))dz.
WGW(}VP(BSp(mO)JRm) Bsp(zo) Bsp(o)
Letting e - 0,p — 0 and s — 1 we get
Timm Tim Tim inf ][ W (tVu(zo) + Vo(x))da
s—1p—0e—0 LpGWOI’p(BSp(J)o);Rm) Bsp(xo)
< lim lim lim lim W (tVol(z))dzx

s—1Kk—1p—0e—0 Bsp(o)

and when t — 1 we have by lower semicontinuity of W

W (Vu(zg)) < lim lim lim lim lim W (tVos(x))dz.

t—1s—>1Kk—1p—0e—0 Bsp(z0)

Therefore is a consequence of

lim lim lim lim lim WtV (z))dz < lim lim lim lim W (tVue(z))dx. (11)
t—1s—>1k—1p—0e—0 Bsp(z0) t—1s—1p—0e—0 Bsp(z0)

Let us prove (L1)). We set ULy := Bs,(20)\Bhsp(zo). By using the definition of tVv? we have

][ W (tVoZ(z))dx
Bsp(zo)

v
Ln(Bsp(zo))

<][ W (tVue(z))dx +
Bap(xo) L

S0, holds if

< W (tVol(x))dx

W (tVue(x))dx + —————
/anp(ﬁo) ( 8( )) ﬁN(BSP(xO)) Usp“%
! W (tVvE(x))de,

N (Bsp(z0)) Jue,,

L T T T T 1 K _
We are then reduced to prove (12)). By using[(A;)| we have
_
LN (Bsp(z0)) UL
p
<C( Ln(ULL) N 1
LN (Bsp(z0))  Ln(Bsp(zo

W (tVoE(x))dz

) /U” WX Ve + 7(1 = xx) (Vu(zo)))dz

1
¥ EnBo@o)) Jue, W“Ps’p(m”d“”)

<C <(1 — RN) (1 + W(rVu(xo))) + ﬁN(Bip(ﬁUo)) /UP W(rVue)dz

1
n m " W(\Ilg,p(m))dx> (13)

where W, ,(+) := 757 Vxu(-) @ (ue(-) — uay (+)) satisfies

t 4
—t'sp(1 — k)

[We,pl

L% (Bap(ao)R™) ST <|u5 — Ul Lo (B, (20)Rm) T [0 — Uz HL°O(BSP(:C0);]R’")>-
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Since 0 € int(domW), there exists R > 0 such that W (F') < oo for all F' € M satisfying |F| < R
Using Lemma [5] we can deduce

Mp := sup W(§) < . (14)
lEI<R

By (9) there exists pg €]0, 1[ such that for every p €]0, pg[ one has

t 4 1 R

Fix p €]0, pr[. Since (3) there exists €, €]0, 1 such that for every € €]0,¢,[

t 4 R
1—¢ Sp(l _ li) “Us - UHLOO(BSP(IO);]R’”) < 5

It follows that W p| 10 (B,,(z0)mm) < R for every € €]0,¢,[ and consequently by

1 EN(Ué)n) ][ N
hmi W(w dm<hm7’ sup W(&)dx < (1 — k" )Mpg.
50 EN( sp(x()» ue, ( £,p ( )) 50 EN( sp(xO)) vt |§‘<13% (g) ( ) R

Now, by letting p — 0 and Kk — 1 we obtain
1
lim lim lim ——————— W (¥, ,(x))dx = 0. (15)

k—1 p—0e—0 EN( Sp(xo)) UL .

Using and we have with C' := C + CMp + 1

1
QV(BSP(:CO))/% W(rVue)de < cN(BprO/ C(1 + W(Vue) + W(0))dz

_ kN pe(Us ) _ kN
<ofa-w+ cN<Bsp<xo>>> o= wi)

, N ME(UQ”)
<C ((1 —KT) F wmm>

and

lim lim M — lim im ( pie(Bsp(wo)) o pe(Bsrp(0)) N)
p—0e—0 LN(Bgp(x0))  p—0e=0 Ly (Bsp(x0))  Ln(Bskp(o))
< lim lim M — lim lim M,{N
= p=0e=0 LN (Bsp(70))  p02-0 LN (Bssp(wo))

) (1 k)

T dly
thus, we have
Tmfm - [ WEVa)ds < ¢ <1 — Ny <1 + du(m)))
p—0e=0 LN(Bsp(wo)) Jue, dL N
so, taking into account and letting x — 1 we obtain
lim lim lim S W(rVue)dz = 0. (16)

k—1 p—0e—0 ,CN( Sp(.fﬂ(])) Ufy,i

Now, passing to the limits in by using , , we obtain . |
6



3. EXAMPLES
3.1. Example of a class of differentiable ru-usc integrands. Let W : IM — [0, o0] be a function.
We consider the following conditions:

(E1) domW is a nonempty open and convex set satisfying 0 € domW;
(Eg) W is of class C' on domW and there exists K > 0 such that for every £ € domW

[DeW(E) - & < K(1+ W (E)).

The class of integrands satisfying |(E2)| was introduced in [I5] (see also [12]) to deriving the
Euler-Lagrange equation for minimization problems under the two basic conditions of hy-
perelasticity.

Proposition 2. Assume that and |(Eg)| hold. Assume that W has G-growth, i.e. holds
with G : M — [0, 0] satisfying|(A1)] Then W satisfies|(A1)| and |(Ag)}

Proof of Proposition [2 By Proposition the condition |(A1)| holds. Let £ € domW. Then
for every ¢ €]0, 1]

W(tg) —W(§) = /1 DeW (s€) - &ds = /1 %D&W(Sf) - s&ds.

It follows that
1 1
W(t€) — W(E) < / L\ Daw (se) - seds < K / L+ wise))ds
t t S

5]

< KC(1+ W (E) + W(0) /1 éds

<ln (1) C"(1+ W(€)),

where C” = KC(1 + W(0)). Thus Aj;’ () < —In(t) for all £ €]0, 1[. 1
Remark 1. It is easy to see that the condition |[(A;)|is equivalent to
V(t,&,()€[0,1] x M x M Wt + (1 —1)¢) < Cmax(W (), W(())

for some C' > 0. In case C' = 1 the condition means that W is quasiconvex in the sense of
convex analysis, i.e.

(Eg) W(t§ + (1 —1)¢) < max(W(£), W(()) for all (¢,£,¢) € [0,1] x I x M.
Consequently, if [(Eq)| [(E2)| and [(E3)[ hold, then W satisfies and

3.2. Example of unbounded ru-usc quasiconvex function. We assume here that m = N = 2. In
this section we show how to construct an unbounded ru-usc quasiconvex function W : M —
[0, 0] which is not convex and satisfying the two basic conditions of hyperelasticity: the non-
interpenetration of the matter and the non possibility to compress a finite volume of matter into
zero volume

Vé e domW  det(I+&) >0 and lim  W(¢) = 0. (17)
det(I+£)—0

_ (&1 &2
$:= <§21 522)'

C = {§ eM: 1+ {11>‘§12‘ and 1+ 522>’£21‘}

Every £ € M is denoted by

The set

satisfies

(C1) 0€C;

(Cg) C is convex and open;

(C3) det(I +¢&) >0 for all € € C,
(C1) SO() & T+ C;



(Cs) tr(cof(I +&)T(L +¢)) > 0 for all £, ¢ € C where cof (F') denotes the matrix of cofactors of
a 2 rows and 2 columns matrix F'.

Let g : M — [0, 0] be defined by
h(det(I +€)) ifeeC
9(8) :=
0 otherwise
where h :]0,00[— [0, 0] is a function satisying:
(Hi) h is convex and nonincreasing;

(Hz) there exists r < 1 such that for every A €]0, 1] and every x €]0, oo[
1
@) (18)

(Hs) there exists K > 0 such that for every (z,y) €]0, oo[?
h(Az + (1 —N)y) < K(1 + h(z) + h(y)).

Note that the function h can be chosen to satisfy lim,_.o h(z) = o (for instance, h(z) := 1 for
all £>0 satisfying with r = 1.)

h(Ax) <

Proposition 3. We have
(i) g is polyconvexr where §(-) := g(- — I);
(ii) there exists vy > 0 such that for every &, € C and every X €]0, 1] it holds

g+ (1= X)) <1 +9(8) +9(0);
(iii) g is ru-usc.

Proof. We have [(1)| because we can write §(F') = ¢(F,det(F)) with ¢ : M x R — [0, 0] is the

convex function defined by
h(s) ifFel+C

©(F,s) =
0 otherwise.

We show [(ii)} Fix &,¢ € C and A €]0,1[. We set F :=I + ¢ and F’ := I + (. Then for every
(§,Q)eCxC

det(A(I + &) + (1= MN)(I +¢)) = A det F' + (1 — A)? det I + A\(1 — A)tr (cof (F)T (F)).
Since we have
det(A\F + (1 = N F') = XNdet F + (1 — \)*det F'.
Using properties [(Hy)|, [(Ho)[ and [(Hs3)| of h, we have
gAE+ (1= N)Q)) = h (det(AF + (1 = \)F')) <h(A*det F + (1 — \)? det ) (19)

<K (14 h(Adet F) + h((1 — X) det "))
<K (1+ A""h(det F) + A" h(det F”))
<K (1+9(&) +9(0)-

Applying inequality with ¢ = 0, and using properties of h, we have for every ¢ € C and
every t €]0, 1]

1
g(t&) = h (t*det F + (1 —t)%) < h (*det F) < hldet F)

= - hldet F) — h(det F) + g(¢)

_ 42r
<t 1+ 9(6) + (6)

which shows that g is ru-usc with A},’O(t) < %.l
8



Let W : M — [0, 00] be defined by
W(E) = { f(€) +g(&) ifgeC (20)

0 otherwise,

where f : IM — [0,00] is a quasiconvex function with p-polynomial growth, i.e. there exist
¢, C' > 0 such that for every £ e M

gl < f(§) < C(L+[¢7). (21)
The following proposition shows that such a W is consistent with the assumptions of Theorem [I]

as well as with the two basic conditions of hyperelasticity.

Proposition 4. Assume that p > 2. If h satisfies lim,_,o h(z) = oo then W is a quasiconvex
function satisfying and (17).

The only point to verify is that a quasiconvex function with p-polynomial growth is ru-usc,
we refer to [11l Sect. 3].

4. AUXILIARY RESULTS

Proof of Proposition [I} Let us prove [(i)l Let W : IM — [0,00] be a convex function with
intdomW = (. It easy to see that |(Aj)|holds. Let ¢ € [0, 1] and £ € domW. Since intdomW =
&, take & € intdomW. We have

W((1 =) + t&) = W(E) < (1 =)(W(&) + W(E))
which shows that A%)(t) < 1—t with a = W(&).

Let us prove We start by proving |(A;)l Consider W : M — [0, 0] having G-growth with
G : M — [0,00] satisfying |(A1)} i.e. there exist v,a,8 > 0 such that for every &, ¢ € M and
every t € [0,1]

G+ (1-1)¢) <71+ G +G(C) and  aG(§) < W(E) < B(1 + G(S)).
First, it is direct to see that domW = domG, thus int(domW) = int(domG) + . Now, fix
&,¢eM and t € [0,1], we have

W+ (1 -1)¢) < L+ G+ (1 = 1)¢)) < B(L + (1 + G(§) + G(()))

max(1,7)(1 + G(§) + G(¢))
W)

1
«

B
< fmax(1,7) (1 + éW(f) +
C

<O+ W(E)+W(Q)

where C' := fmax(1,v) max(1, é)l
The following proposition was proved for the first time in [5] (see also [11, lemma 4.1]).
Proposition 5. Let V be a finite dimensional vector space. Let f : V — [0,00] be a Borel

measurable function. Assume that

(i) there exists v > 0 such that f(v) < 00 whenever |v| < r for allve V;
(ii) there exists C > 0 such that for every (v,w) eV x V we have

sup f(tv+ (1 —t)w) < C(1+ f(v) + f(w)).
te]0,1]

Then

sup f(v) < o0.
lv|<r

The proof of Proposition [5|is a consequence of the following lemma:

Lemma 1. Let L : R? — [0, 0] be a function. Assume that

(i) there exists r > 0 such that L(v) < oo whenever |v|o < r for all ve RY;
9



(i) there exists a mondecreasing concave function ® : Ry — Ry such that for every (v,w) €
domL x domL we have

sup L(tv + (1 — t)w) < ®(max(L(v), L(w))).
te]0,1[
Then
sup L(v) < 0.

[v|oo<r

Proof of Lemmal[ll Let S := {v = (v1,...,v49) e R*: Vk € {0,...,d} vy € {—r,0,r}}. Since
we have L* := sup,.g L(v) < 0.

We define d equivalence relations on R?. Let (v,w) € R? x R?. For each i e {1,...,d — 1},
we say that v ~; w if there exists u = (uy,...,ug,...,uq) €S such that

d
V—w = 2 UKEL

k=i+1

where {ej}¢_, is the standard basis of R%. When i = d, we say that v ~4 w if v = w. We denote
by [v]; the equivalence class of v for the relation ~; for all 4 € {0,...,d}. Let v € R? satisfy
|v|oo < 7. We claim that is enough to show that

Vie{l,...,d} Ywe [Z vkek] L(w) < ®'(L*). (22)

k=1
where we set for every t € R4

dH(t):=®(t) and @(t) := ®(D(t)) for all i > 2.
Indeed, when ¢ = d we have [ZZ:l Ukek]d = {v}, so by using we get

L(v) < @ (L),
and then taking the supremum over all v € R? satisfying |v|,, < 7, we obtain

sup L(v) < @ (L*).

[v]co<r
Let us prove by induction. Let w € [vie1];. There exists u = (u1,...,Ug,...,uq) € S such
that w = vie; + Zi:l urer, which can be rewritten as

d d
v v
= Jor] r1| <sign(v1)re1 + Z Uk€k> + (1 _ Jol 7}’) (0 + 2 ’LLlc€k> .
k=2 k=2

By and using the fact that ® is nondecreasing, we have

d d
Lw)<® (max (L (w,sign(vl)rel + Z ukek> , L (w, (Z Uk@c)))) < O(L¥).
k=2 k=2

So, we proved that L(w) < ®(L*) for all w € [vie1];.
Let i € {1,...,d}. Assume that

J
Vie{l,...,i} Ywe [Z vkek] L(w) < ®(L*). (23)
k=1 j
Let w € [ o fukek] - We are going to show that L(w) < ®1(L*). There exists u =
+ .
(Ugy..., Uk, ..., uq) €S such that w = 22:11 vLer + Z]kv,iﬁ uger, which can be rewritten as
i d
V4 v
= [vis] (Z viex + sign(vip1)r + Z ukek> + ( | Hl‘) (Z Vg€ + Z ukek>
" k=1 k=i+2 k=i+2

10



By it follows that

d

i i d
L(w) < ®|max |L [z, Z vgex + sign(vip1)r + Z urer |, L | x, Z Vg€ + Z ULl
k=1

k=1 k=i+2 k=1+2

We see that

i i d i
Z vgek + sign(viy1)r + Z upey € Z vper | and Z VL€ + Z upey € Z vker |
k=1 k=i+2 k=1 i k=1 k=1

d i

k=142 i

so, by and using the fact that ® is nondecreasing, we have by using
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2
3
]
51
6]
17
8]
19

[10]

11]

12]

113

14]

15]

[16]

17]

18]

[19]

120]

21]

22]

23]

L(w) < <1><<1>Z’(L*)) — ¢itL(L*).
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