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ABSTRACT

Distributed approaches have many computational benefits, but they are vulnerable
to attacks from a subset of devices transmitting incorrect information. This paper
investigates Byzantine-resilient algorithms in a decentralized setting, where devices
communicate directly with one another. We investigate the notion of breakdown
point, and show an upper bound on the number of adversaries that decentralized
algorithms can tolerate. We introduce CG+, an algorithm at the intersection
of ClippedGossip and NNA, two popular approaches for robust decentralized
learning. CG+ meets our upper bound, and thus obtains optimal robustness
guarantees, whereas neither of the existing two does. We provide experimental
evidence for this gap by presenting an attack tailored to sparse graphs which breaks
NNA but against which CG+ is robust.

1 INTRODUCTION

Distributed machine learning, in which the training process is performed on multiple computing
units (or nodes), responds to the increasingly distributed nature of data, its sensitivity, and the rising
computational cost of optimizing models. While most distributed architectures rely on coordination
from a central server, some communication networks favor peer-to-peer exchanges, and global
coordination can be costly in these cases. Besides, the decentralized setting has several other perks: it
mitigates the communication bottleneck and failure risk at the main server, and provides additional
privacy guarantees since agents only have a local view of the system (Cyffers et al., 2022). However,
distributing optimization over a large number of devices introduces new security issues: software may
be faulty, local data may be corrupted, and nodes can be hacked or even controlled by a hostile party.
Such issues are modeled as Byzantine node failures (Lamport et al., 1982), defined as omniscient
adversaries able to collude with each other.

Standard distributed learning methods are known to be vulnerable to Byzantine attacks (Blanchard
et al., 2017), which has led to significant efforts in the development of robust distributed learning
algorithms. From the first works tackling Byzantine-robust SGD (Blanchard et al., 2017; Yin et al.,
2018; Alistarh et al., 2018; El-Mhamdi et al., 2020), methods have been developed to tackle stochastic
noise using Polyak momentum (Karimireddy et al., 2021; Farhadkhani et al., 2022a) and mixing
strategies to handle heterogeneous loss functions (Karimireddy et al., 2020; Allouah et al., 2023). In
parallel to these robust algorithms, efficient attacks have been developed to challenge Byzantine-robust
algorithms (Baruch et al., 2019; Xie et al., 2020). To bridge the gap between algorithm performance
and achievable accuracy in the Byzantine setting, tight lower bounds have been constructed for the
heterogeneous setting (Karimireddy et al., 2020; Allouah et al., 2024). Yet, all these works rely on a
trusted central server to coordinate training.
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In contrast, the decentralized case has been less explored. In particular, it is still unclear how many
Byzantine nodes can be tolerated over a given communication network before aggregation protocols
fail. In fact, the network is often assumed to be fully connected (El-Mhamdi et al., 2021; Farhadkhani
et al., 2023), and most papers that go beyond this assumption by addressing sparse graphs either do
not give clear convergence rates or give weak guarantees on the asymptotic error (Peng et al., 2021;
Fang et al., 2022; Wu et al., 2023). While criteria for using SGD with generic robust decentralized
aggregation rules have been proposed (Wu et al., 2023; Farhadkhani et al., 2023), Decentralized
SGD suffers from the same flaws. For instance, while (α, λ)-reduction (Farhadkhani et al., 2023)
is agnostic to the communication network, NNA, the associated robust communication scheme, is
only introduced and analyzed for fully-connected networks. ClippedGossip (He et al., 2022), which
consists in clipping the standard gossip averaging updates (Boyd et al., 2006) used for decentralized
mean estimation, is designed for sparse networks. Unfortunately, its clipping threshold requires
inaccessible information, and the theory only applies for a small fraction of Byzantine failures.

Our work revisits both the ClippedGossip and NNA frameworks to solve the aforementioned
shortcomings. To do so, we carefully study the decentralized mean estimation problem. This
seemingly simple problem retains most of the difficulty of handling Byzantine nodes while allowing
us to derive strong convergence and robustness guarantees. We then tackle general (smooth non-
convex) optimization problems through a reduction. Our contributions are the following.

1 - New upper bound on the breakdown point of robust algorithms. We show that in general,
Byzantine robust algorithms fail arbitrarily if the number of Byzantine neighbors per node exceeds a
given threshold. This threshold is expressed in terms of spectral quantities of the graph (the algebraic
connectivity), and recovers usual ones for fully-connected topologies.

2 - Practical robust gossip algorithm with optimal breakdown. We propose CG+, a practical
robust aggregation procedure at the intersection of ClippedGossip and NNA. We show that CG+ is
robust as soon as the number of Byzantine neighbors per agent does not exceed the upper bound on
the breakdown point indicated in the previous paragraph (up to an additive factor of 2). This indicates
that our upper bound is tight, and that CG+ obtains optimal breakdown. We also extend the existing
NNA aggregation method to sparse graphs, but do not achieve optimal breakdown in this case.

3 - Efficient decentralized optimization beyond averaging. Using appropriate reductions (Farhad-
khani et al., 2023), we show that Decentralized SGD on top of CG+ obtains state-of-the art con-
vergence guarantees, including when comparing with specialized approaches on fully-connected
networks. We experimentally demonstrate the effectiveness of our proposed algorithm.

4 - Stronger attacks for decentralized systems. We propose a theoretically grounded attack
specifically designed to challenge decentralized algorithms. In this setting, honest nodes hold
different parameters, and Byzantine nodes can force them to diverge in opposite directions by
declaring distinct messages to each of the honest nodes. Our attack, called Spectral Heterogeneity
(SpH), uses the eigenvectors of the graph’s Laplacian matrix to identify which attack has to be made
on each honest node to disrupt the communication.

We summarize our contributions in Table 1, comparing our algorithm to He et al. (2022) and
Farhadkhani et al. (2022b). The remainder of the paper is organized as follows. Section 2 introduces
the notion of Byzantine robust decentralized optimization. Section 3 presents the upper bound on
the breakdown point for sparse graphs. Section 4 introduces CG+, shows it has optimal breakdown
and evaluates its robustness both for one-step aggregation and for D-SGD on top of CG+. Finally,
Section 5 presents the Spectral Heterogeneity attack designed for disrupting decentralized robust
optimization scheme, as well as an experimental evaluation of several robust aggregation schemes
against various attacks (including ours).

2 BACKGROUND

2.1 DECENTRALIZED OPTIMIZATION.

We consider a system composed of m computing units that communicate synchronously through a
communication network, which is represented as an undirected graph G. We denote by H the set
of honest nodes, and B the (unknown) set of Byzantine nodes. Each unit i holds a local parameter
xi ∈ Rd, a local loss function fi : Rd → R, and can communicate with its neighbors in the graph G.
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Method Scheme Threshold Breakdown (decentralized)
Existing New

NNA Trimming Adaptive and computable No general result 8b > µmin

Clipped Gossip Clipping Impractical O(γ) from optimal
CG+ Clipping Adaptive and computable Optimal† (2(b+ 1) > µmin)

Table 1: Summary of our results and comparison to previous work. NNA only had results for the
fully-connected topology. †: up to an additive factor or 2.

We denote the set of neighbors of node i by n(i) and by nH(i) (resp. nB(i)) the set of honest (resp.
Byzantine) ones.

We study decentralized algorithms for solving

argmin
x∈Rd

{
fH(x) :=

1

|H|
∑
i∈H

fi(x)

}
. (1)

Due to the averaging nature of Equation (1), centralized algorithms for solving this problem rely on
global averaging of the gradients computed at each node. In the decentralized setting, we rely on
(local) inexact averaging instead.

Gossip Communication. Standard decentralized optimization algorithms typically rely on the
so-called gossip communication protocol (Boyd et al., 2006; Nedic & Ozdaglar, 2009; Scaman
et al., 2017; Kovalev et al., 2020). The gossip protocol consists in updating parameters of any
node i with a linear combination of the parameters of its neighbors, with updates of the form
xt+1
i = xt

i − η
∑m

j=1 wijx
t
j , where η ≥ 0 denotes a communication step-size. The matrix of the

weights W = (wij)i,j is called the gossip matrix, and naturally defines the communication graph
G, in the sense that wij = 0 if nodes i and j are not neighbors. By considering the matrix of honest
parameters X = (x1, . . . ,xm)T , the gossip update is also conveniently written as

Xt+1 = Xt − ηWXt. (2)

In this work, we instantiate gossip algorithms by using as gossip matrix the Laplacian matrix of
the graph defined as W = D − A, where D is the diagonal matrix of the degrees and A is the
adjacency matrix of the graph. The Laplacian matrix is symmetric non-negative. We denote by
µmax(GH) and µ2(GH) the largest and smallest non-zero eigenvalues of the Laplacian matrix WH
of the honest subgraph GH, and by γ = µ2(GH)/µmax(GH) its spectral gap. Spectral properties of
the gossip matrix are known to characterize the convergence of gossip optimization methods. For
instance, in the absence of Byzantine nodes, the plain gossip update with step-size η ≤ µmax(G)−1

leads to a linear convergence of the nodes parameter values to the average of the initial parameters:
∥Xt −X

0∥2 ≤ (1− ηµ2(G))t∥X0 −X
0∥2, for X

0
the matrix with columns m−1

∑m
j=1 x

0
j .

Robustness Issue. Gossip communication relies on updating nodes parameters by performing non-
robust local averaging. As such, similarly to the centralized case, any Byzantine neighbor of node i
can drive the update to any desired value (Blanchard et al., 2017). Then, the poisoned information
spreads through gossip communications.

2.2 BYZANTINE ROBUST OPTIMIZATION.

Threat model. We consider Byzantine nodes to be omniscient adversaries, able to collude and
to send distinct values to each of their neighbors. As such, the exact number |B| of Byzantine
nodes, a common metric to quantify robustness in centralized (or fully-connected) settings, does
not matter, and we instead bound the number of Byzantine neighbors that each honest node has,
i.e. {|nB(i)|; i ∈ H}, as it is standard in decentralized analyses (He et al., 2022; Wu et al., 2023).

Similarly, the total number of honest nodes does not provide relevant information anymore, as the
results depend on how they are linked, i.e., the topology of the honest subgraph. Therefore, for sparse
topologies, we need to make an assumption about some property of the graph related to its topology,
instead of simply the number honest neighbors. In the remainder of this paper, we consider spectral
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properties of the Laplacian of the honest subgraph as a relevant quantity for robustness analyses.
Yet, we emphasize that our results on the breakdown depend on the spectral properties of the honest
subgraph, meaning that for a given graph, these properties change depending on the location of
Byzantine nodes. We introduce the following class of graphs to take this dependence into account.

Definition 1. For any µmin ≥ 0 and b ∈ N, we define the class of graphs

Γµmin,b =

{
G s.t. µ2(GH) ≥ µmin and max

i∈H
|nB(i)| ≤ b

}
.

In other words, we introduce a subset of all possible graphs, partitioning in terms of (i) their algebraic
connectivity, that is restricted to be larger than a minimal value µmin, and (ii) the maximal number of
Byzantine neighbors of a honest node, that is restricted to be smaller than b.

One should read Definition 1 as a sparse graph extension of the standard “there are at most b byzantine
nodes and at least |H| honest ones”, which now involves the relative positions of Byzantine and
honest nodes in the graph. For given b and µmin ≥ 0, depending on the location of the Byzantine
nodes, a given graph topology can either fall in Γµmin,b (if Byzantine nodes are “well-spread”), or not
(if they are adversarially chosen).

Approximate Average Consensus. The average consensus problem consists in finding the average
of m vectors locally held by nodes. Average consensus is a specific case of Equation (1) obtained by
taking fi(x) = ∥x − yi∥2. Because of adversarial attacks, some bias is introduced by Byzantine
nodes during aggregation steps, so only an approximate solution of the average of honest nodes vector
yH := |H|−1

∑
i∈H yi can be expected. Thus, in the centralized setting, the variance between honest

nodes is reduced to 0 (consensus is reached in one step), at the cost of some bias. In the decentralized
setting (gossip), exact consensus is not possible: in this case, we aim for reducing the variance, still at
the cost of some bias. The guarantees we give in Section 4 exactly reflect this trade-off: they quantify
how much variance reduction is obtained at each step, and at the cost of what bias. Note that variance
reduction here is to be understood as how different the parameters of the various nodes are, and is
not directly linked with the variance of stochastic gradients. We now introduce the α-robustness of a
communication algorithm on a graph.

Definition 2 (α-robustness on G.). For any α < 1, a communication algorithm A is α-robust on a
graph G if from any initial local parameters {xi; i ∈ H}, it allows any honest node i to compute a
vector x̂i such that

1

|H|
∑
i∈H

∥x̂i − xH∥2 ≤ α
1

|H|
∑
i∈H

∥xi − xH∥2.

Imposing α < 1 means that we would like to be closer to the initial solution after the aggregation
step than before (the variance reduction needs to be larger than the bias we introduce). Note that
α = 1 can trivially be achieved by not communicating at all. Remark that the α-robustness of an
algorithm on a graph G means that a single step of the algorithm strictly reduces the average quadratic
error. However, it does not mean that multiple steps would result in a geometric decrease, indeed, we
cannot simply use induction as x̂H ̸= xH. In the following, we show that α-robustness on all graphs
in Γµmin,b cannot be achieved for all values of µmin and b.

3 FUNDAMENTAL LIMITS OF DECENTRALIZED COMMUNICATION SCHEMES

In this section we provide an upper bound on the number of Byzantine neighbors that can be tolerated
by any algorithm running on a communication network in which the honest subgraph has a given
algebraic connectivity.

Theorem 1. For any µmin ≥ 0, b ≥ 0, if µmin ≤ 2b, then for any H ≥ 2b, there exists G ∈ Γµmin,b

with H honest nodes such that no communication algorithm can be α-robust on G.

Sketch of proof. The proof relies on considering a specific graph GH,b, decomposed as three cliques
of H/2 nodes, for an even H such that H/2 ≥ b. We choose that nodes in any of the three cliques
is neighbor to exactly b = k nodes in each of the two other cliques, in circular order. Finally, we
assume that two of the three cliques are honest, and the third one is composed of Byzantine nodes.
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First, GH,b ∈ Γµmin,b. Indeed, the Laplacian matrix of the honest subgraph has an algebraic
connectivity of 2b, i.e. µ2((GH,b)H) = 2b, and 2b ≥ µmin by our assumption. Moreover, each honest
node has exactly b-Byzantine neighbors. Second, we show that no algorithm can be α-robust on G.
Indeed, for any of the two honest cliques, the Byzantine clique is indistinguishable from the other
honest clique. As such, Byzantine nodes can send parameter values such that honest nodes cannot
hope to improve the global error in general. We refer the reader to Appendix B.1 for details.

It follows from Theorem 1 that, when aiming at obtaining a theoretical guarantee that quantifies the
robustness of the honest graph through µmin, we must have µmin > 2b. In the specific case of a fully
connected graph, where µmin = |H|, this condition boils down to requiring |H| > 2|B|, which is
aligned with common robustness criteria for distributed system (Lamport et al., 1982; Vaidya et al.,
2012; El-Mhamdi et al., 2021). As we show in Section 4, this upper bound on b is tight in the sense
that there exists an α-robust communication scheme over all G ∈ Γµmin,b as soon as 2b+ 2 < µmin.

Algebraic connectivity as a robustness criterion. Note that Theorem 1 does not imply that all
aggregation methods fail as long as 2b ≥ µmin, but rather than since there exists a graph for which it
is the case, one cannot prove that an aggregation method works with b > µmin/2 Byzantine nodes
for all graphs. Yet, one can still prove breakdown points using other graph-related quantities (which
might lead to tolerating b > µmin/2 Byzantine nodes for some graph architectures), or restricting the
graph topologies considered. This gap is standard in the optimization literature, since convergence
results often involve the spectral properties of the gossip matrix, whereas they do not naturally appear
when proving lower bounds on the number of iterations required to reach a certain accuracy. For
instance, the convergence rates of decentralized optimization algorithms depend on the (square root of
the) spectral gap of the Laplacian matrix of the communication graph (Scaman et al., 2017; Kovalev
et al., 2020), whereas iteration lower bounds are proven in terms of diameter. Yet, these decentralized
algorithms are termed as optimal as their guarantees match the lower bound on the path graph.

The Approximate Consensus Problem and dimension-dependent breakdown points. The design
of algorithms aiming at finding the average of parameters within a communication network is related
to the approximate consensus problem (ACP) (Dolev et al., 1986). In the standard ACP problem,
nodes need to converge to the same value while remaining within the convex hull of initial parameters.
Yet, communication-optimal methods for this problem are memory and computationally expensive
(Fekete, 1986). More recently, the work of LeBlanc et al. (2013) aims at designing communication
schemes that only use local information with computationally efficient aggregation rules. They show
that standard robustness criterion of connectivity (Sundaram & Hadjicostis, 2010) does not properly
reflect the robustness of a network for such methods. To mitigate this issue, they introduce the notion
of r-robust networks. Vaidya (2014) generalizes this result by proving that the ACP cannot be solved
using an algorithm with iterative communication on a system of m nodes with b Byzantine failures in
dimension d when m ≤ (d+2)b+1. This dependence on the dimension - intractable for ML usage -
derives from the requirement of staying within the convex hull of initial parameters for solving ACP:
staying in the convex hull of initial parameters is increasingly difficult as the dimension increases.
On the contrary, our definition of α-robustness only requires the algorithms to improve the average
squared distance to the target value. This relaxation of the consensus requirement allows us to prove
dimension independent breakdown point. Linking LeBlanc et al. (2013)’s robustness criterion with
algebraic connectivity is an interesting direction for future work.

4 CLIPPED GOSSIP +

In this section, we introduce a robust gossip scheme derived from ClippedGossip (He et al., 2022), but
with a well-chosen and practical clipping threshold that makes it closely related to NNA (Farhadkhani
et al., 2023). This scheme verifies two key properties: (i) a contraction property (bias-variance
tradeoff); and (ii) it has an optimal breakdown point up to a small additive constant. Our one-step
bias-variance characterizations can directly be plugged in results from Farhadkhani et al. (2023) to
show state-of-the-art guarantees for D-SGD on top of CG+.

4.1 THE ALGORITHM

Making Gossip Robust. ClippedGossip (He et al., 2022) is a robust aggregation algorithm, in
which each node projects the parameters declared by its neighbors on a ball centered at its own
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parameter before performing a local averaging step. Given a “communication step-size” η > 0, it
writes

ClippedGossipτi
(
xi; (xj)j∈n(i)

)
:= xi + η

∑
j∈n(i)

Clip(xj − xi; τi). (CG)

The clipping threshold should be set with extreme care, as it is instrumental in limiting malicious
nodes’ influence, but can also slow the algorithm down, or introduce bias. With a constant clipping
threshold, a constant bias is added at each step, and so one needs to limit the number of aggregation
step to avoid infinite drift. A better approach is to choose the clipping threshold adaptively, depending
on the pairwise distances with neighbors.

This is what He et al. (2022) do, introducing the following adaptive threshold: τ ti :=
( 1
(|H|−b)b

∑
j∈nH(i) E∥xt

i − xt
j∥22)1/2. Yet, this threshold leads to far from optimal robustness

guarantees (with a breakdown least O(γ) from the optimal one), and cannot be computed in reason-
able practical settings: not only does each node need to know the variance of the noise of its neighbors,
but it also requires to know which nodes are honest. This breaks the fundamental assumption of not
knowing the identity (honest or Byzantine) of the nodes. While an efficient rule of thumb is proposed
to circumvent this, it is not supported by theory.

Nearest Neighbors Averaging (NNA). Another baseline for robust decentralized averaging is
NNA (Farhadkhani et al., 2023), proposed for fully-connected communication graphs. In this rule,
each node gathers the n(i) parameters from its neighbors, drops the b furthest from its own, and
averages the n(i)−b remaining ones (trimmed mean). While Farhadkhani et al. (2023) only introduce
and analyze it for the fully-connected setting, we argue that this rule naturally extends to sparse graphs.
Indeed, NNA can be viewed as performing update CG, but where the x 7→ Clip(x, τ) operator is
replaced by x 7→ x1(∥x∥ ≤ τi) where 1 is the indicator function and τi is chosen as the b + 1-th
furthest value (and a well-chosen η = (n(i)− b+ 1)−1). The largest updates are dropped instead
of clipped. We give an analysis for this sparse graphs version of NNA and show in Theorem 3 that
dropping large updates is too brutal, and does not lead to an optimal breakdown. In the remainder of
this paper, we may simply call this method NNA, although it generally refers to the sparse graphs
extension that we introduce. Note that in Farhadkhani et al. (2023), a subset of the nodes is allowed
not to respond to account for messages loss, or Byzantine nodes deciding not to send messages. We
do not consider such a variation here.

CG+: the best of both worlds. We now go back to the ClippedGossip framework (of which NNA
is a variant, as discussed above), and introduce the following clipping rule:

1. Each honest node i computes the norm of the differences of its parameter with the one of its
neighbors: St

i = {∥xt
i − xt

j∥; j ∈ n(i)}.

2. Define as clipping threshold the b+ 1 largest value of the set St
i : τCG+

i,t := Q |n(i)|−b+1
|n(i)|

(St
i ).

This threshold can then be used in (CG) to obtain CG+. Note that this threshold is close to the
one discussed for NNA, using the local number of neighbors n(i) instead of n, but CG+ uses the
clipping operator instead of x 7→ x1(∥x∥ ≤ τi). Therefore, CG+ is an interesting midpoint between
ClippedGossip and NNA: it can be viewed either as performing the sparse graph extension of NNA
but with the clipping operator, or performing ClippedGossip but with NNA-type thresholds.

Here, b is a parameter of the algorithm, which corresponds to the number of Byzantine nodes that we
would like to be robust to. We do not need to know the exact number of Byzantine nodes, but simply
need to specify to how many we would like to be robust.

Gossip with CG+ has only a linear computational overhead. The first step of computing τCG+

i,t

requires that node i performs O (d · |n(i)|) computations, and the third one can be done in O (|n(i)|)
on average using Quickselect, so that CG+ only requires O (d · |n(i)|) computations. Consequently,
in average, CG+ has the same linear complexity with respect to d and |n(i)| as simple averaging.

4.2 CONVERGENCE RESULTS

As briefly discussed in the introduction, the goal of communicating is to reduce the variance,
which comes at the price of bias. This is unavoidable, since communicating allows nodes to
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inject wrong information which biases the system. We now tightly quantify how much a single
step of CG+ reduces the variance, and how much bias is injected in the process. Let us denote
VarH(x) = 1

|H|
∑

i∈H ∥xi − xH∥2, the variance of honest nodes.

Theorem 2. Let b and µmin be such that 2(b + 1) ≤ µmin, and let G ∈ Γµmin,b. Then, assuming
η ≤ µmax(GH)−1, the output y = CG+(x) (obtained by one step of CG+ on G from x) verifies:

1

|H|
∑
i∈H

∥yi − xH∥2 ≤ (1− η (µmin − 2(b+ 1)))VarH(x) (3)

∥yH − xH∥2 ≤ 2η(b+ 1)VarH(x). (4)

In particular, CG+ is (1− η (µmin − 2(b+ 1)))-robust on all G ∈ Γµmin,b.

Note that Equation (3) cannot be chained directly, but it can if we notice that VarH(y) ≤
1

|H|
∑

i∈H ∥yi − xH∥2. We refer the reader to Appendix B for the proof. While the bound on
parameter η depend on the honest subgraph, µmax(GH) ≤ µmax(G), so η can be set conservatively
by evaluating µmax on the whole graph.

Tight breakdown point. Theorem 2 shows that the upper bound on the breakdown point from Sec-
tion 3 is tight, since it shows that if 2(b + 1) < µmin, CG+ is α-robust on G for any G ∈ Γµmin,b,
while Theorem 1 says that this is impossible as soon as 2b ≥ µmin. Note that while α-robustness
is guaranteed for the whole class, the value of α will depend on the actual graph within the class
(through γ). The only gap left is when µmin ∈ {2b+ 1, 2b+ 2}. This is a significant improvement
over He et al. (2022), who obtain an equivalent result, but where where the µmin − 2(b+ 1) factor is
essentially replaced by µmin − c

√
bµmax) (for regular graphs for instance), where c > 0 is a constant

factor. This means that they obtain a breakdown of b ≤ c2γµmin, and so they lose non-negligible
constant factors as well as a full γ factor, which rapidly shrinks with the size (and connectivity) of
the graph. In other words, our guarantees are comparable when the number of Byzantine agents is
small, but theirs collapse significantly before the actual breakdown point, whereas ours gracefully
loosen until it is actually impossible to guarantee anything.

Chaining aggregation steps. When low variance levels are required, it is necessary to perform
several aggregation steps one after the other. This contrasts with the centralized setting, in which
the variance can be brought to zero in one step. While the variance reduces at a linear rate, the bias
accumulates as more robust aggregation steps are performed. We provide bounds for t aggregation
steps in the following Corollary.

Corollary 1. Let b and µmin be such that 2(b+ 1) ≤ µmin, let G ∈ Γµmin,b, and denote δ = 2(b+1)
µmin

and γ = µmin/µmax(GH). Then, let (xt)t≥0 be obtained from any x0 through xt+1 = CG+(xt),
with η = µmax(GH)−1. We have that for any t ≥ 0,

VarH(xt) ≤ (1− γ(1− δ))
t
VarH(x0), (5)

∥xt
H − x0

H∥ ≤
√
γδ
(
1− [1− γ(1− δ)]t/2

)
1−

√
1− γ(1− δ)

√
VarH(x0). (6)

When t → ∞, we have that VarH(xt) → 0 (so, consensus is reached) and:

∥xt
H − x0

H∥2 ≤ γδ

(1−
√
1− γ(1− δ))2

VarH(x0) ≤ 4δ

γ(1− δ)2
VarH(x0). (7)

The proof of this Corollary is given in Appendix B.3. Equation (7) shows that while one-step
convergence results ensure that the total L2 error (bias plus variance) decreases, we can be in a
situation in which the total L2 distance increases after several CG+ steps because of bias accumulation.
This happens when the factor multiplying the variance in Equation (7) is larger than 1, which
essentially happens when γ ≪ δ. Yet, despite this bias, the output of the robust aggregation procedure
are (arbitrarily) close to consensus, which can be desirable.

Dependence on the parameters. As expected, the bias increases with the amount of Byzantine
corruption (through δ), and decreases as the graph becomes more connected (i.e, γ → 1). One
can then use parameter η (up to its maximum value) to control the bias-variance trade-off of the
aggregation procedure.
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Another important method in the decentralized setting is the adaptation of NNA (Farhadkhani et al.,
2023) discussed in Section 4.1, which consists in choosing the same τi as in CG+, but dropping
updates such as ∥xj − xj∥ > τi instead of clipping them to τi. We extend our analysis to show that
NNA is robust over sparse graphs as well, as shown in the following result.
Theorem 3 (NNA breakdown for sparse graphs.). NNA also verifies the guarantees of Corollary 1,
where δ is replaced by δ̃ = 8b/µmin.

The proof of this result can be found in Corollary 4. Farhadkhani et al. (2023) provide a guarantee for
NNA, but only in the specific case of fully-connected graphs. We both improve the constants in the
fully-connected case, and generalize this result to arbitrary sparse graphs.

Note that δ̃ > δ for b > 1, so NNA is worse than CG+. This worse breakdown is not an artifact of
the analysis, as we verify in Section 5.3, where we show experiments in which NNA breaks before
CG+ does.

4.3 BYZANTINE ROBUST DISTRIBUTED SGD ON GRAPHS

We now give convergence results for a D-SGD-type algorithm which uses CG+ for decentralized
robust aggregation. Several works on Byzantine-robust SGD abstract away the aggregation procedure
through some contraction properties (Karimireddy et al., 2021; Wu et al., 2023; Farhadkhani et al.,
2023), so that the global D-SGD result follows from the robustness of the averaging procedure.
Corollary 2 builds on the reduction from Farhadkhani et al. (2023), since their requirements on the
aggregation procedure exactly matches the guarantees of Theorem 2. We consider Problem 1, where
we assume that each local function fi is a risk computed using a loss ℓ on a data distribution Di, i.e
fi(x) = Eξ∼Di [∇ℓ(x, ξ)]. We propose to solve Problem 1 using decentralized stochastic gradient
descent over a communication network G. Robustness to Byzantine nodes is obtained using CG+ as
the aggregation rule, coupled with Polyak momentum to reduce the stochastic noise.

Algorithm 1 Byzantine-Resilient Decentralized SGD with CG+

Input: Initial model x0
i ∈ Rd, local loss functions fi, initial momentum m0

i = 0, momentum
coefficient β = 0, learning rate ρ, communication step size η = µmax(GH)−1, assumption on
Byzantine local corruption b.
for t = 0 to T do

for i ∈ H in parallel do
Compute a noisy oracle of the gradient: gt

i = ∇fi(x
t
i) + ξti .

Update the local momentum: mt
i = βmt−1

i + (1− β)gt
i .

Make an optimization step: xt+1/2
i = xt

i − ρmt
i.

Communicate parameters xt+1/2
i with neighbors n(i). Receive their parameters.

Update the model using the gossip scheme: xt+1
i = CG+

(
x
t+1/2
i ; {xt+1/2

j ; j ∈ n(i)}
)
.

To ensure the convergence of this algorithm, we make the following standard assumptions.
Assumption 1. Objective functions regularity.

1. (Smoothness) There exists L ≥ 0, s.t. ∀x,y ∈ Rd, ∥∇fi(x)−∇fi(y)∥ ≤ L∥x− y∥.

2. (Bounded noise) There exists σ ≥ 0 s.t. ∀x ∈ Rd, E[∥∇ℓ(x, ξ)−∇fi(x)∥2] ≤ σ2.

3. (Heterogeneity) There exist ζ ≥ 0 s.t. ∀x ∈ Rd, 1
H
∑

i∈H ∥∇fi(x)−∇fH(x)∥2 ≤ ζ2.

Under these assumptions, we can prove the following corollary.
Corollary 2. Let b and µmin be such that 2(b + 1) < µmin, and let G ∈ Γµmin,b. Suppose
that Assumption 1 holds. Then, for all i ∈ H, the iterates produced by Algorithm 1 on G with
η ≤ 1/µmax(G) and learning rate ρ = O(1/

√
T ) (depending also on problem parameters such as

L, γ or δ), verify as T increases:
T∑

t=1

E
[∥∥∇fH(xt

i)
∥∥2] ∈ O

(
Lσ

γ(1− δ)
√
T

+
ζ2

γ2(1− δ)2

)
.
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If we perform Õ(γ−1(1− δ)−1) steps of CG+ between each gradient computation, we obtain:

T∑
t=1

E
[∥∥∇fH(xt

i)
∥∥2] ∈ O

(
Lσ√
T

√
1

|H|
+

δ

γ(1− δ)2
+

δζ2

γ(1− δ)

)
.

As shown above, the guarantees improve when performing more aggregation steps between gradients
computations. Yet, the communication cost also increases significantly in that case. This corollary
is obtained by combining our Theorem 2 with Theorem 1 of Farhadkhani et al. (2023), which only
requires that the robust aggregation satisfies an (α, λ)-reduction property. Our Theorem 2 ensures
that CG+ satisfies it with α = 1− γ(1− δ) and λ = γδ. The multiple communication steps case
corresponds to α ≈ 0 and λ = 4δ/[γ(1− δ)2]. A detailed proof can be found in Appendix B.4.

5 DESIGNING DECENTRALIZED ATTACKS.

Similarly to robust aggregation methods, most proposed distributed attacks focus on centralized
communication networks. For instance, Baruch et al. (2019) and Xie et al. (2020) propose that all
Byzantine units send the same vector to the server to poison the update. However, the decentralized
setting offers an additional surface for attacks: all nodes have different parameters, and Byzantine
nodes can leverage this heterogeneity to disrupt learning even further. We show how to leverage this
in two different ways, and then compare robust algorithms against these attacks.

5.1 CHANGING THE CENTER OF THE ATTACK

Farhadkhani et al. (2023) implement existing centralized attacks in a decentralized setting by making
all Byzantine nodes declare the same attack vector to their neighbors, namely, xt

H + a where a is the
attack direction. We make Byzantine nodes declare the parameter xt

i + a to node i instead. In other
words, Byzantine nodes take the parameter of the honest node they attack as the reference point for
the attack instead of the average of parameters. This reduces the likelihood of updates being clipped,
but still pushes the overall system in the same direction.

5.2 TOPOLOGY-AWARE ATTACK

We now introduce the Spectral Heterogeneity (SP) attack, which is specifically designed to drive
honest nodes away farther apart. To this end, we leverage the matrix formulation of the gossip
communication, thus denoting by XH = (x1, . . . ,x|H|)

T ∈ R|H|×d the matrix of honest parameters.
To design attacks on gossip-based robust aggregation mechanisms, we model communication as a
perturbation of a gossip scheme, as it is the case for CG+ (cf Lemma 5), and for NNA.

Xt+1
H = (IH − ηWH)Xt

H + ηEt. (8)

By doing so, we omit the impact of the robust aggregation rule, and only consider the error term due
to Byzantine nodes, i.e, we assume that [Et]i = ζtia

t
i for any honest node i, where ζti is a scaling

factor of the attack, and at
i is the direction of attack on node i. We will see that this leads to powerful

attacks even when taking the defense mechanism into account.

Dissensus Attack. To disrupt the aggregation procedure, Byzantine agents might aim at maximizing
the variance of the honest parameters. A natural notion of variance in a decentralized setting is
the average of pairwise differences of the neighbors parameters, which corresponds to ∥XH∥2WH

.
Finding at

i such that these pairwise differences are maximized at t+ 1 writes

argmax
[Et]i=ζt

ia
t
i

∥(IH − ηWH)Xt
H + ηEt∥2WH

= argmax
[Et]i=ζt

ia
t
i

2η⟨WHXt
H,Et⟩+ o(η2).

Hence, maximizing the heterogeneity at time t + 1 suggests to take at
i = [W t

HXt
H]i =∑

j∈nH(i)(x
t
i − xt

j). This choice of at
i corresponds to the Dissensus attack proposed in He et al.

(2022). However, as gossip communication is usually operated for a large number a communication
rounds, maximizing only the pairwise differences at the next step is a short-sighted approach.

Spectral Heterogeneity Attack. Taking into account the fact that several communication rounds are
performed over iterations, Byzantine nodes should aim at time t at maximizing for any s ≥ 0 the
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pairwise differences at time t+ s, i.e, finding

argmax
[Et]i=ζt

ia
t
i

2η⟨WH(IH − ηWH)2s+1Xt
H,Et⟩+ o(η2).

Considering the asymptotic s → +∞ leads to approximating WH(IH − ηWH)2s as a projection
on its eigenspace associated with the largest eigenvalue of WH(IH − ηWH)2s. This eigenspace
corresponds to the space spanned by the eigenvector of WH associated with the smallest non-zero
eigenvalue of WH, i.e µmin. This eigenvector (denoted efied) is commonly referred to as the Fiedler
vector of the graph. Its coordinates essentially sort the nodes of the graph with the two farthest nodes
associated with the largest and smallest value. Hence the signs of the values in the Fiedler vector
are typically used to partition the graph into two components. Our Spectral Heterogeneity attack
consists in taking at

i = [efiede
T
fiedX

t
H]i, which essentially leads Byzantine nodes to cut the graph

into two by pushing honest nodes in either plus or minus eTfiedX
t
H.

5.3 EXPERIMENTAL EVALUATION

Our experimental setting is the same as Farhadkhani et al. (2023), from which we used the imple-
mentation. Namely, we train a CNN with two convolutional layers followed by two fully-connected
layers, and nodes draw samples from the original dataset using a Dirichlet distribution (α = 5). The
main differences are that (i) we changed the part corresponding to ClippedGossip since the clipping
threshold was not properly implemented, (ii) we implemented the CG+ clipping rule, (iii) each
Byzantine attack is centered on the parameter of the attacked node instead of the average of honest
nodes, as described earlier, (iv) we implemented support for arbitrary sparse graphs and our spectral
heterogeneity attack. The rest of the setting is detailed in Figure 1’s caption.

We observe that all robust aggregation rules are robust against attacks that do not exploit the graph
topology. Clipping-based attacks initially struggle against ALIE, but eventually converge to the
right value. On the other hand, MoNNA fails to learn against our Spectral Heterogeneity attack,
demonstrating both the efficiency of the attack and that it has a worse breakdown point than CG+

(which obtains an optimal one), and so fails quicker when approaching the max theoretical breakdown
point. While ClippedGossip performs on par with CG+ overall, we insist on the fact that we used
their rule of thumb clipping rule, which is not theoretically grounded, and thus might fail against
other attacks. More details (including the link to the code repository) are given in Appendix A.
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Figure 1: Test accuracies achieved by D-SGD, MoNNA, CG+ and ClippedGossip on MNIST
against 4 attacks. There are |H| = 26 honest workers, each is neighbor to b = 6 Byzantine nodes and
µ2(G) = 16. The communication graph consists of two fully connected cliques of 13 honest nodes,
each honest node is connected to 8 nodes in the other clique. Byzantine nodes execute ALIE (row 1
left), FOE (row 1 right), Dissensus (row 2 left) and Spectral Heterogeneity (row 2 right). D-SGD is
used as a reference and is thus not attacked by Byzantine nodes.
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6 CONCLUSION

This paper revisits robust averaging over sparse communication graphs. We provide an upper
bound on the optimal breakdown point, and then introduce CG+, a midpoint between NNA and
ClippedGossip, which meets this optimal breakdown (unlike the two other). Our experiments show
that NNA indeed fails before the optimal breakdown point. To obtain this result, we introduced a
new Spectral Heterogeneity attack that exploits the graph topology for sparse graphs. Now that we
have precisely quantified the impact of the topology, an interesting future direction is the precise
characterization of robustness when the constraint on the number of neighbors cannot be met globally,
but local convergence can be obtained by considering that honest nodes with too many Byzantine
neighbors are Byzantine themselves. Conversely, this opens up questions of which nodes should an
attacker corrupt to maximize its influence for a specific graph, under the light of our results.
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Stephan. Fixing by mixing: A recipe for optimal byzantine ml under heterogeneity. In International
Conference on Artificial Intelligence and Statistics, pp. 1232–1300. PMLR, 2023.

Youssef Allouah, Rachid Guerraoui, Nirupam Gupta, Rafaël Pinot, and Geovani Rizk. Robust
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Dmitry Kovalev, Adil Salim, and Peter Richtárik. Optimal and practical algorithms for smooth and
strongly convex decentralized optimization. Advances in Neural Information Processing Systems,
33:18342–18352, 2020.

Leslie Lamport, Robert Shostak, and Marshall Pease. The byzantine generals problem. ACM
Transactions on Programming Languages and Systems, 4(3):382–401, 1982.

Heath J LeBlanc, Haotian Zhang, Xenofon Koutsoukos, and Shreyas Sundaram. Resilient asymptotic
consensus in robust networks. IEEE Journal on Selected Areas in Communications, 31(4):766–781,
2013.

Angelia Nedic and Asuman Ozdaglar. Distributed subgradient methods for multi-agent optimization.
IEEE Transactions on Automatic Control, 54(1):48–61, 2009.

Jie Peng, Weiyu Li, and Qing Ling. Byzantine-robust decentralized stochastic optimization over
static and time-varying networks. Signal Processing, 183:108020, 2021.
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Appendices
A DESCRIPTION OF THE EXPERIMENTS

Our experimental setting is built on top of the code provided by Farhadkhani et al. (2023), with the
following differences:

• Attacks are designed through a linear search, but the reference point taken is the parameter
of the attacked node instead of the average of all parameters. Hence, each honest node
receives different messages from Byzantine nodes.

• The aggregation is performed using a gossip update in the form of Equation (CG) with
η = µmax(GH)−1 to adapt the communication to sparse communication networks.

• Instead of considering a constant clipping threshold for ClippedGossip of He et al. (2022),
as done in the experiments of (Farhadkhani et al., 2023), we use the adaptive clipping rule
suggested in He et al. (2022).

The code used to run the experiments in the paper can be accessed at the following link: https:
//anonymous.4open.science/r/clipped_gossip_plus_ICLR/

A.1 DESCRIPTION OF THE ATTACKS

In our experiments, we consider the Dissensus and Spectral Heterogeneity attacks, and two other
state-of-the art attacks developed for the federated SGD setting: Fall of Empire (FOE) from Xie
et al. (2020) and A little is enough (ALIE) from Baruch et al. (2019). Consistently with their original
setting, these attacks rely on all Byzantine nodes declaring the same parameter at. As we suggest
in Section 5.3, we adapt them to the decentralized setting: Byzantine nodes declare to the honest
node i having the parameter xt

i + ζtia
t
i, where ζti is the scaling of the attack defined using a linear

search and at
i is the direction of the attack. In the case of Dissensus and Spectral Heterogeneity, at

i is
defined as described in Section 5.2. In the case of FOE and ALIE at

i is defined as follows:

• ALIE. The Byzantine nodes compute the mean of the honest parameters xt and the
coordinate-wise standard deviation σt. Then they declare the parameter at

i = σt.
• FOE. The Byzantine nodes declare at

i = −xt
H.

B PROOFS

B.1 PROOF OF THEOREM 1 - UPPER BOUND ON THE BREAKDOWN POINT.

Let µmin, b be such that µmin ≤ 2b. Let H be an even number larger than 2b.

To prove Theorem 1, we consider a communication network GH,b composed of three cliques of
m = |H|/2 nodes C1, C2 and C3. Each node in Ci is additionally connected to exactly b nodes
in Ci+1 mod 3 and to b nodes in Ci−1 mod 3. Moreover, those connections are assumed to be in
circular order, i.e., for any j ∈ [m], node j in Ci is connected to nodes j, . . . , j + b mod m in
Ci+1 mod 3 and Ci−1 mod 3. If we assume that honest nodes can have up to b Byzantine neighbors,
then any of the three cliques can be composed of Byzantine adversaries.

The proof then goes as follows: we first show by contradiction that no α-robust algorithm is possible
in this setting, and then that b = 2µmin for this specific graph, so that GH,b ∈ Γµmin,b. To show the
contradiction, we first assume that there exists an α-robust algorithm on GH,b and then:

• We show that if all nodes within one clique hold the same parameter xt, and receive this
parameter from nodes of either of the two other cliques, then they cannot change their
parameter.

• We consider a setting where the two honest cliques holds different parameters, and we
conclude that Byzantine nodes can force all honest nodes to keep their initial parameter at
all times. This shows that in the considered setting, α < 1 is impossible.
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Figure 2: Topology of GH,b in the lower bound: two cliques are honest, one is Byzantine.

B.1.1 NO ALGORITHM CAN BE α-ROBUST ON GH,b.

Lemma 1. Consider three clique C1, C2 and C3 of m nodes. And say G is the graph composed by
these three cliques, and that any node within one of the three cliques is connected to exactly b ≤ m
nodes in each of the other two cliques. Assume one of these cliques is made of Byzantine nodes, then
no communication algorithm is α-robust on GH,b.

Proof.

Part I. Assume that there exists an algorithm A that is α-robust on Gh,b. We denote x̂i the output
from node i after running A. We consider the following setting: nodes in one clique, say C1, are
honest and hold the same parameter x0. Nodes in another clique, say C2, declare the parameter x0

as well, while nodes in C3 declare another parameter. We show that all nodes i ∈ C1 must output the
parameter x̂i = x.

As a matter of fact, from the point of view of nodes in C1, it is impossible to distinguish between
these two settings:

• Setting I: C2 is honest, and C3 is Byzantine.

• Setting II: C2 is Byzantine, and C3 is honest.

Consequently, nodes in C1 act in the same way in both settings. Furthermore, in Setting I, nodes of
C2 are honest, and nodes in C1 and C2 have the initial same parameter; hence, the initial error is 0.
Yet the α criterion writes ∑

i∈H
∥x̂i − xH∥2 ≤ α

∑
i∈H

∥xi − xH∥2 = 0.

It follows that for any node i in C1, x̂i = x, i.e., nodes do not change their parameters.

Part II. Consider the setting where C1 and C2 are honest, while C3 is Byzantine, and that nodes C1

hold the parameter x, while node in C2 hold the parameter y ̸= x.

As Byzantine nodes can declare different values to their different neighbors, nodes in C3 can declare
to nodes in C1 that they hold the value x, and to nodes in C2 that they hold the value y. Following
Part I, nodes in C1 and in C2 cannot update their parameter, (x̂i = xi). In particular:∑

i∈H
∥x̂i − xH∥2 ≤ α

∑
i∈H

∥xi − xH∥2 = α
∑
i∈H

∥x̂i − xH∥2,

i.e α ≥ 1 since
∑

i∈H ∥x̂i − xH∥2 > 0, which means that Algorithm A is not α-robust on GH,b.
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B.1.2 EIGENVALUES OF THE CONSIDERED GRAPH.

To conclude our lower bound, we only need to show that on the considered graph, the smallest
non-zero eigenvalue of the honest subgraph is equal to 2b. This corresponds to the following lemma.

Lemma 2. Let G be a graph defined as two cliques C1 and C2 of m nodes, with connections between
C1 and C2 such that any node in C1 is connected to exactly 0 ≤ b ≤ m nodes in C2. Then the
smallest non zero eigenvalue of the Laplacian matrix of G is equal to µ2(GH) = 2b.

Proof. Let M be a circulant matrix defined as M =
∑b−1

q=0 J
q , where J denotes the permutation

J :=


0 1 0 . . . 0
0 0 1 . . . 0
...

. . .
...

0 1
1 0 0 . . . 0

 .

The Laplacian matrix of G can be written as:

WG =

(
mIm − 1m1T

m 0
0 mIm − 1m1T

m

)
+

(
bIm −M
−MT bIm

)
Hence

WG = (b+m)I2m −
(
−1m1T

m 0
0 −1m1T

m

)
−
(

0 M
MT 0

)
. (9)

This matrix decomposition allows to have the eigenvalues of the the matrix WG .

Lemma 3. The eigenvalues of WG are {0, 2b}∪ {b+m± |
∑b−1

q=0 ω
pq|; p ∈ {1, . . . ,m− 1}} where

ω := exp( 2iπm ).

To prove the Lemma 3, we first need to following result.

Lemma 4. If A is a symmetric matrix in R2m×2m, which can be decomposed as A =

(
0 M

MT 0

)
,

where M ∈ Rm×m is a matrix with complex eigenvalues µ0, . . . µm−1.

Then the eigenvalues of A are {±|µq|; q = 0 . . .m− 1} .

Proof of Lemma 4. NB: In this specific proof, we denote by D the matrix of complex conjugate of
elements in D.

Lemma 4 follows from(
0 M

MT 0

)
=

(
0 U∗DU

UTDU 0

)
=

A=A

(
0 U∗DU

U∗DU 0

)
.

Hence

A =

(
U∗ 0
0 U∗

)(
0 D
D 0

)(
U 0
0 U

)
.

A simple calculus (using that D is diagonal) yields that all eigenvalues of
(
0 D
D 0

)
are {±|Dq|; q =

0 . . .m− 1}.

Proof of Lemma 3. We start from the decomposition of Equation (9) :

WG = (b+m)I2m −
(
−1m1T

m 0
0 −1m1T

m

)
−
(

0 M
MT 0

)
.
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We first notice that (1T
m,1T

m)T and (1T
m,−1T

m)T are the only two eigenvectors of(
−1m1T

m 0
0 −1m1T

m

)
associated with non zero eigenvalues. These are eigenvectors of

(
0 M

MT 0

)
as well, and as such are eigenvector of WG of eigenvalues 0 and 2b. Furthermore the three matrices
of Equation (9) can be diagonalized in the same orthogonal basis.

The matrix M is a circulant matrix, so it can be diagonalized in C. The eigenvalues are {µq =∑b−1
p=0 ω

pq; q ∈ {0, . . . ,m − 1}}, where ω := exp( 2iπm ). The eigenvector associated with µq is
xq = (1, ωq, . . . , ω(m−1)q)T . As such, with U = (x0, . . . , xm−1) and D = Diag(µ0, . . . , µm−1),
M writes:

M = U∗DU.

Considering Lemma 4, the eigenvalue of
(

0 M
MT 0

)
are {±|µq|; q = 0, . . . ,m− 1}, considering

that q = 0 corresponds to the eigenvalues +b and −b, hence the eigenvectors (1T
m,1T

m)T and
(1T

m,−1T
m)T , we deduce that the eigenvalues of WG are {±|µq|; q = 0 . . .m− 1}.

End of the proof of Lemma 2.

To prove Lemma 2, considering the decomposition of Equation (9), we only have to show that m− b
is always the second largest eigenvalue of the matrix

B :=

(
1m1T

m 0
0 1m1T

m

)
+

(
0 M

MT 0

)
.

First, considering Lemma 3, the eigenvalues of B are {m+ b,m− b}∪{±|µp|; p ∈ {1, . . . ,m−1}}
with µp =

∑b−1
q=0 ω

pq . As such showing that |µp| ≤ m− b if p ∈ {1, . . . ,m− 1}} yields the result.

As ωmp = ω0p = 1, we have that
∑m−1

q=0 ωpq(1 − ωp) = 0. Hence, for p ∈ {1, . . . ,m − 1},
as ωp ̸= 1,

m−1∑
q=0

ωpq = 0 =⇒ µp =

b−1∑
q=0

ωpq = −
m−1∑
q=b

ωpq.

It follows from |ω| = 1 that for p ∈ {1, . . . ,m− 1}, |µp| ≤ m− b.

B.2 CONVERGENCE OF CG+

We first prove Theorem 2, and then use it to derive convergence for the Byzantine-robust decentralized
optimization framework. We recall that all nodes follow the following update scheme .{

xt+1
i = xt

i + η
∑

j∈n(i) Clip(x
t
j − xt

j ; τ
t
i ) if i ∈ H

xt+1
i = ∗ if i ∈ B

(10)

Before proving Theorem 2, we introduce the following notations:

• The matrix of honest parameters Xt
H :=

 (xt
1)

T

...
(xt

|H|)
T

 ∈ R|H|×d.

• The error due to clipping and Byzantine corruption:

∀i ∈ H, [Et]i :=
∑

j∈nH(i)

(
xt
i − xt

j − Clip(xt
i − xt

j ; τ
t
i )
)
+

∑
j∈nB(i)

Clip(xt
j − xt

i; τ
t
i ))

Lemma 5. Equation (10) writes

Xt+1
H = (IH − ηWH)Xt

H + ηEt.
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Proof. Let i ∈ H. We decompose the update due to the gossip scheme and consider the error term
coming from both clipping and the influence of Byzantine nodes.

xt+1
i = xt

i + η
∑

j∈n(i)

Clip(xt
j − xt

i; τ
t
i )

= xt
i − η

∑
j∈nH(i)

Clip(xt
i − xt

j ; τ
t
i ) + η

∑
j∈nB(i)

Clip(xt
j − xt

i; τ
t
i )

xt+1
i = xt

i − η
∑

j∈nH(i)

(xt
i − xt

j)

+ η
∑

j∈nH(i)

[(
xt
i − xt

j

)
− Clip

(
xt
i − xt

j ; τ
t
i

)]
+ η

∑
j∈nB(i)

Clip(xt
j − xt

i; τ
t
i )

Finally, the proof is concluded by remarking that [WHXt
H]i =

∑
j∈nH(i)(x

t
i − xt

j).

We begin by controlling the norm of the error term ∥Et∥22.
Lemma 6 (Control of the error, case of local clipping). The error due to clipping and Byzantine
nodes is controlled by the heterogeneity as measured by the gossip matrix:

∥Et∥22 ≤ 2(b+ 1)∥Xt
H∥2WH

= (b+ 1)
∑

i∈H,j∈nH(i)

∥xt
i − xt

j∥2

Proof. We recall that

∀i ∈ H, [Et]i :=
∑

j∈nH(i)

(
xt
i − xt

j − Clip(xt
i − xt

j ; τ
t
i )
)
+

∑
j∈nB(i)

Clip(xt
j − xt

i; τ
t
i ))

By applying the triangle inequality, and by denoting (a)+ = max(a, 0), we get

∥Et∥2 =
∑
i∈H

∥∥∥∥∥∥
∑

j∈nH(i)

xt
i − xt

j − Clip(xt
i − xt

j ; τ
t
i ) +

∑
j∈nB(i)

Clip(xt
i − xt

j ; τ
t
i )

∥∥∥∥∥∥
2

2

≤
∑
i∈H

 ∑
j∈nH(i)

∥xt
i − xt

j − Clip(xt
i − xt

j ; τ
t
i )∥2 +

∑
j∈nB(i)

∥Clip(xt
i − xt

j ; τ
t
i )∥2

2

≤
∑
i∈H

 ∑
j∈nB(i)

(
∥xt

i − xt
j∥2 − τ ti

)
+
+ bτ ti

2

.

Plugging in the fact that τ ti is the b+ 1 largest value of {∥xt
i − xt

j∥; j ∈ n(i)}, we can control each
term ∑

j∈nB(i)

(
∥xt

i − xt
j∥2 − τ ti

)
+
+ bτ ti .

To do so, we apply the technical Lemma 7 below, where we denote a1 ≥ . . . ≥ a|nH(i)| the sorted
values within {∥xt

i − xt
j∥; j ∈ nH(i)}, and k is the number of clipped honest neighbors of node i.

As b+ 1 ≥ b, at least one honest node is clipped, and τ ti ≤ ak. Lemma 7 ensures that

∥Et∥2 ≤
∑
i∈H

 ∑
j∈nH(i)
b+1 largest

∥xt
i − xt

j∥


2

.

Which, using Cauchy-Schwarz inequality, yields

∥Et∥2 ≤
∑
i∈H

(b+ 1)
∑

j∈nH(i)

∥xt
i − xt

j∥2.
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The result finally follows by noting that 2∥Xt
H∥2WH

=
∑

i∈H,j∈nH(i) ∥xt
i − xt

j∥2. Indeed, consider-
ing that GH is an undirected graph, i ∈ nH(j) ⇐⇒ j ∈ nH(i) and we have:

∥Xt
H∥2WH

= ⟨XH,WHXH⟩

=
∑
i∈H

〈
xt
i,
∑

j∈nH(i)

xt
i − xt

j

〉

=
∑
i∈H

∑
j∈nH(i)

〈
xt
i,x

t
i − xt

j

〉
=

1

2

∑
i∈H

∑
j∈nH(i)

〈
xt
i − xt

j ,x
t
i − xt

j

〉
∥Xt

H∥2WH
=

1

2

∑
i∈H, j∈nH(i)

∥∥xt
i − xt

j

∥∥2
2

Lemma 7 (Technical lemma for controlling Et with CG+). let a1 ≥ . . . ≥ an ≥ 0 be n sorted
non-negative real numbers, and err(k) :=

∑k
i=1(ai − ak) + bak. Recall that k denotes the number

of honest neighbors clipped and we assume that b + 1 neighbors are clipped. It follows that
k ∈ {1, . . . , b+ 1} and

max
k=1...,b+1

{
err(k) =

k∑
i=1

(ai − ak) + bak

}
≤

b+1∑
i=1

ai

Proof. The err function writes

err(k) =

k∑
i=1

ai + (b− k)ak.

• If b ≤ k, then err(k) ≤
∑k

i=1 ai.

• If b > k, then

err(k) =

b∑
i=1

ai −
b∑

i=k+1

(ai − ak)︸ ︷︷ ︸
≥0

.

It follows that

err(k) ≤
max(k,b)∑

i=1

ai.

Hence, as k ≤ b+ 1, we have that

err(k) ≤
b+1∑
i=0

ai

Now that we control the error term, we can conclude the proof of Theorem 2 using standard optimiza-
tion arguments. Before proving this theorem, we prove the following one, from which Corollary 1 is
direct.
Theorem 4. Let b and µmin be such that 2(b + 1) ≤ µmin, and let G ∈ Γµmin,b. Then, assuming
η ≤ µmax(GH)−1, the output y = CG+(x) (obtained by one step of CG+ on G from x) verifies:

1

|H|
∑
i∈H

∥xt+1
i − xt+1

H ∥2 ≤ (1− η (µmin − 2(b+ 1)))
1

|H|
∑
i∈H

∥xt
i − xt

H∥2 (11)
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∥xt+1
H − xt

H∥2 ≤ η
2(b+ 1)

|H|
∑
i∈H

∥xt
i − xt

H∥2 (12)

Proof. Part I: Equation (12).

Equation (12) is a direct consequence of Lemma 6. Indeed applying P1H := 1
|H|1H1T

H - the
orthogonal projection on the kernel of WH - on Lemma 5 results in

P1HXt+1
H = P1H(IH − ηWH)Xt

H + ηP1HEt = P1HXt
H + ηP1HEt.

Taking the norm yields
∥P1HXt+1

H − P1HXt
H∥2 = η2∥P1HEt∥2 ≤ η2∥Et∥2. (13)

We now apply Lemma 6, and use that µmax(GH) is the largest eigenvalue of WH. It gives
∥P1HXt+1

H − P1HXt
H∥2 ≤ η22(b+ 1)∥Xt

H∥2WH

≤ µmax(GH)η22(b+ 1)∥(IH − P1H)Xt
H∥2

Finally, Equation (12) derives from [P1HXt
H]i∈H = [

∑
j∈H xt

j ]i∈H = [xt
H]i∈H and

ηµmax(GH) ≤ 1.

Part II: Equation (11).

To prove Equation (11), we consider the objective function ∥(IH − P1H)Xt∥2. We denote by W †
H

the Moore-Penrose pseudo inverse of WH. We begin by applying Lemma 5.

∥(IH − P1H)Xt+1
H ∥2 = ∥Xt

H − ηWHXt
H + ηEt∥2(IH−P1H )

= ∥Xt
H∥2(IH−P1H ) − 2η

〈
Xt

H,WHXt
H −Et

〉
(IH−P1H )

+ η2
∥∥WHXt

H −Et
∥∥
(IH−P1H )

= ∥Xt
H∥2(IH−P1H ) − 2η

〈
Xt

H,Xt
H −W †

HEt
〉
WH

+ η2
∥∥∥Xt

H −W †
HEt

∥∥∥
W 2

H

.

Applying 2⟨a, b⟩ = ∥a∥2 + ∥b∥2 − ∥a− b∥2 leads to

∥Xt+1
H ∥2(IH−P1H )−∥Xt

H∥2(IH−P1H )

= −η
∥∥Xt

H
∥∥2
WH

− η
∥∥∥Xt

H −W †
HEt

∥∥∥2
WH

+ η
∥∥∥W †

HEt
∥∥∥2
WH

+ η2
∥∥∥Xt

H −W †
HEt

∥∥∥
W 2

H

= −η
∥∥Xt

H
∥∥2
WH

+ η
∥∥Et

∥∥2
W †

H
(14)

− η
∥∥∥Xt

H −W †
HEt

∥∥∥2
WH

+ η2
∥∥∥Xt

H −W †
HEt

∥∥∥
W 2

H

.

We now apply that µmax(GH) (resp. µ2(GH)) is the largest (resp. smallest) non-zero eigenvalue of
WH.

∥Xt+1
H ∥2(IH−P1H )−∥Xt

H∥2(IH−P1H )

≤ −η
∥∥Xt

H
∥∥2
WH

+ η
1

µ2(GH)

∥∥Et
∥∥2

− η(1− µmax(GH)η)
∥∥∥Xt

H −W †
HEt

∥∥∥2
WH

.
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Eventually Lemma 6 with the assumption η ≤ 1/µmax(GH) yield the result

∥Xt+1
H ∥2(IH−P1H ) ≤ ∥Xt

H∥2(IH−P1H ) − η

(
1− 2(b+ 1)

µ2(GH)

)∥∥Xt
H
∥∥2
WH

∥Xt+1
H ∥2(IH−P1H ) ≤

(
1− ηµ2(GH)

(
1− 2(b+ 1)

µ2(GH)

))∥∥Xt
H
∥∥2
(IH−P1H )

.

To obtain Theorem 4, we note that we can actually control the one-step variation of the MSE using
α only, thus strengthening the first inequality. We rewrite the first part of Theorem 2 below for
completeness.
Corollary 3. Let b and µmin be such that 2(b + 1) ≤ µmin, and let G ∈ Γµmin,b. Then, assuming
η ≤ µmax(GH)−1, the output y = CG+(x) (obtained by one step of CG+ on G from x) verifies:

1

|H|
∑
i∈H

∥xt+1
i − xt

H∥2 ≤ (1− η (µmin − 2(b+ 1)))
1

|H|
∑
i∈H

∥xt
i − xt

H∥2

Proof. We consider Equation (13) and Equation (14), which write

∥P1HXt+1
H − P1HXt

H∥2 = η2∥P1HEt∥2.

∥Xt+1
H ∥2(IH−P1H ) − ∥Xt

H∥2(IH−P1H ) ≤ −η
∥∥Xt

H
∥∥2
WH

+ η
∥∥Et

∥∥2
W †

H
.

It follows from the bias - variance decomposition of the MSE

∥Xt+1
H − P1HXt

H∥2 = ∥(IH − P1H)Xt+1
H ∥2 + ∥P1HXt+1

H − P1HXt
H∥2

that

∥Xt+1
H − P1HXt

H∥2 − ∥Xt
H∥2(IH−P1H ) ≤ −η

∥∥Xt
H
∥∥2
WH

+ η
∥∥Et

∥∥2
W †

H
+ η2∥P1HEt∥2

≤ −η
∥∥Xt

H
∥∥2
WH

+ η
1

µ2(GH)

∥∥Et
∥∥2
(IH−P1H )

+ η2∥P1HEt∥2

As η ≤ 1
µmax(GH) ≤

1
µ2(GH) , we eventually get

∥Xt+1
H − P1HXt

H∥2 ≤ ∥Xt
H∥2(IH−P1H ) − η

∥∥Xt
H
∥∥2
WH

+ η
1

µ2(GH)

∥∥Et
∥∥2

≤ ∥Xt
H∥2(IH−P1H ) − η

(
1− 2(b+ 1)

µ2(GH)

)∥∥Xt
H
∥∥2
WH

≤
(
1− ηµ2(GH)

(
1− 2(b+ 1)

µ2(GH)

))
∥Xt

H∥2(IH−P1H )

B.3 CONSEQUENCES

A direct consequence of the above results is Corollary 1, as we show below.

Proof. Using the (α, λ) reduction notations, we have:{
α = 1− γ (1− δ))

λ = γδ

We denote here the drift increment dt+1 = ∥P1HXt+1
H − P1HXt

H∥ and the variance at time t as
σ2
t = ∥Xt+1

H ∥2(IH−P1H ).

Corollary 3 ensures that
σ2
t+1 + d2t ≤ ασ2

t .
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Hence,we have σ2
t+1 + d2t+1 ≤ ασ2

t , and so σ2
t+1 ≤ ασ2

t , which implies that σt ≤ αt/2σ0. This
proves the first part of the result. Using this, we write that Theorem 4 ensures that

dt+1 ≤
√
λσt ≤

√
λβtσ0,

leading to:
T∑

t=1

dt ≤
√
λ

T−1∑
t=0

σt ≤
√
λ

T−1∑
t=0

αt/2σ0 ≤
√
λ(1− αT/2)

1− α1/2
σ0,

which proves the second part. The last inequality is obtained by writing.

∥P1HXT
H − P1HX0

H∥ ≤
T∑

t=1

dt ≤
√
λ

1−
√
α
σ0

Then, we use that 0 ≤ 1
1−

√
1−x

≤ 2
x for x ≥ 0, with x = γ(1− δ).

B.3.1 CASE OF NNA ON SPARSE GRAPHS.

The previous CG+ analysis can actually be performed exactly in the same way for a sparse version
of nearest neighbors averaging. Consider that, instead of clipping the b+ 1 farthest neighbors, each
honest node i removes the b farthest neighbors. Then all results are the same with a factor 8b instead
of a factor 2(b+ 1). And we have the following result.
Corollary 4. Let b and µmin be such that 8b ≤ µmin, and let G ∈ Γµmin,b. Then, assuming
η ≤ µmax(GH)−1, the output y = NNA(x) (obtained by one step of NNA on G from x) verifies:

1

|H|
∑
i∈H

∥xt+1
i − xt

H∥2 ≤ (1− η (µmin − 8b))
1

|H|
∑
i∈H

∥xt
i − xt

H∥2 (15)

∥xt+1
H − xt

H∥2 ≤ η
8b

|H|
∑
i∈H

∥xt
i − xt

H∥2 (16)

To prove Corollary 4, we only need to change Lemma 6 to adapt if for controlling the error due to
NNA. The proof hinges on the following lemma, which we state and prove first, then we will prove
the equivalent of Lemma 6 in the case of NNA.
Lemma 8 (NNA: Technical lemma for controlling Et). Let a1 ≥ . . . ≥ an ≥ 0, and err(k) :=∑k

i=1 ai + kak, where k ≤ b ≤ n. Then

err(k) ≤ 2
b∑

i=1

ai.

Proof. We write

err(k) = 2

k∑
i=1

ai −
k∑

i=1

(ai − ak) ≤ 2

b∑
i=1

ai

Where we used that ai − ak ≥ 0 for i ≤ k.

Lemma 9 (NNA: Control of the error). The error due to removing honest nodes and due to Byzantine
nodes is controlled by the heterogeneity as measured by the gossip matrix.

∥Et∥22 ≤ 8b∥Xt
H∥2WH

= 4b
∑

i∈H,j∈nH(i)

∥xt
i − xt

j∥2

Proof. In this setting the error term writes

∀i ∈ H, [Et]i :=
∑

j∈nH(i)

(
xt
i − xt

j − (xt
i − xt

j)1j not removed
)
+

∑
j∈nB(i)

Clip(xt
j − xt

i; τ
t
i ))

21



Applying the triangle inequality, we get

∥Et∥2 =
∑
i∈H

∥∥∥∥∥∥
∑

j∈nH(i)

(xt
i − xt

j)1j removed +
∑

j∈nB(i)

(xt
i − xt

j)1j not removed

∥∥∥∥∥∥
2

2

≤
∑
i∈H

 ∑
j∈nH(i)

∥xt
i − xt

j∥1j removed +
∑

j∈nB(i)

∥xt
i − xt

j∥21j not removed

2

By considering that node i ∈ H removes the b + 1 largest value within {∥xt
i − xt

j∥; j ∈ n(i)},
we can consider for any choice of the Byzantine nodes, that k honest neighbors are removed,
and b − k Byzantine neighbors are removed. As such, we can use Lemma 9, where we denote
a1 ≥ . . . ≥ a|nH(i)| the sorted values within {∥xt

i − xt
j∥; j ∈ nH(i)}.

Lemma 7 ensures that

∥Et∥2 ≤
∑
i∈H

2
∑

j∈nH(i)
b largest

∥xt
i − xt

j∥


2

.

Which, using Cauchy-Schwarz inequality, yields

∥Et∥2 ≤
∑
i∈H

4b
∑

j∈nH(i)

∥xt
i − xt

j∥2.

The final result derives from the fact that 2∥Xt
H∥2WH

=
∑

i∈H,j∈nH(i) ∥xt
i − xt

j∥2.

B.4 PROOFS FOR D − SGD

Proof of Corollary 2. This proof hinges on the fact that the proof of Farhadkhani et al. (2023, The-
orem 1) does not actually require that communication is performed using NNA, but simply that
the aggregation procedure respects (α, λ)-reduction, which they prove in their Lemma 2. Then,
all subsequent results invoke this Lemma instead of the specific aggregation procedure. CG+ also
satisfies (α, λ)-reduction, as we prove in Theorem 2. We can then use the bounds on the errors out of
the box.

Then, as T grows, and ignoring constant factors, only the first and last terms in their Theorem 3
remain, leading to:

T∑
t=1

E
[∥∥∇fH(xt

i)
∥∥2] = O

(
Lσ√
T
(1 + C) + ζ2C

)
, (17)

where C = c1 + λ + λc1, with c1 = α(1 + α)/(1 − α)2. Note that we give O() versions of the
Theorems for simplicity, but Farhadkhani et al. (2023, Theorem 1) allows to derive precise upper
bounds for any T ≥ 1.

One-step derivations. The one-step result is obtained by taking the values of α = 1− γ(1− δ) and
λ = γδ, and considering γ < 1 (otherwise, the guarantees are essentially the same as in Farhadkhani
et al. (2023)). More specifically:

c1 =
(1− γ(1− δ))(2− γ(1− δ))

γ2(1− δ)2
= O

(
1

γ2(1− δ)2

)
. (18)

Meanwhile, λ = γδ ≤ 1, so that C = O(c1), leading to the result.

Multi-step derivations. In the previous case, we see that C is dominated by the c1 term since
c1 >> λ. In particular, the guarantees would increase if we were able to trade-off some α for some λ,
which is possible by using multiple communications steps. This is what we do, and take enough steps
that c1 << λ (i.e., α ≈ 0), so that C ≈ λ. Following Corollary 1, this requires Õ(γ−1(1 − δ)−1)

steps, where logarithmic factors are hidden in the Õ notation. We then plug the multi-step λ value
from Corollary 1 to obtain the result.
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