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Investigating Variance Definitions for

Stochastic Mirror Descent with Relative Smoothness

Hadrien Hendrikx 1

Abstract

Mirror Descent is a popular algorithm, that ex-

tends Gradients Descent (GD) beyond the Eu-

clidean geometry. One of its benefits is to enable

strong convergence guarantees through smooth-

like analyses, even for objectives with exploding

or vanishing curvature. This is achieved through

the introduction of the notion of relative smooth-

ness, which holds in many of the common use-

cases of Mirror descent. While basic determinis-

tic results extend well to the relative setting, most

existing stochastic analyses require additional as-

sumptions on the mirror, such as strong convex-

ity (in the usual sense), to ensure bounded vari-

ance. In this work, we revisit Stochastic Mirror

Descent (SMD) proofs in the (relatively-strongly-

) convex and relatively-smooth setting, and intro-

duce a new (less restrictive) definition of variance

which can generally be bounded (globally) under

mild regularity assumptions. We then investigate

this notion in more details, and show that it nat-

urally leads to strong convergence guarantees for

stochastic mirror descent. Finally, we leverage

this new analysis to obtain convergence guaran-

tees for the Maximum Likelihood Estimator of a

Gaussian with unknown mean and variance.

1. Introduction

The central problem of this paper is to solve optimization

problems of the following form:

min
x∈C

f(x), where f(x) = E [fξ(x)] , (1)

where C is a closed convex subset of Rd, and fξ are differ-

entiable convex functions (stochasticity is on the variable

ξ). The problems that we will consider typically arise from

machine-learning use-cases, meaning that the dimension d
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can be very large. Therefore, first-order methods are very

popular for solving these problems, since they usually scale

very well with the dimension.

In standard machine learning setups, computing a gradi-

ent of f is very costly (or even impossible), since it re-

quires computing gradients for all individual examples in

the dataset. Yet, gradients of fξ are relatively cheap, and

arbitrarily high precisions are generally not required. This

makes Stochastic Gradient Descent (SGD) the method of

choice (Bottou, 2010). The SGD updates can be written as:

x+
SGD = argmin

u∈C

{

η∇fξ(x)
⊤u+

1

2
‖u− x‖2

}

. (2)

While the standard Euclidean geometry leading to Gradient

Descent (GD) fits many use-cases quite well, several appli-

cations are better solved with Mirror Descent (MD), a gen-

eralization of GD which allows to better capture the geom-

etry of the problem. For instance, the Kullback-Leibler di-

vergence might be better suited to discriminating between

probability distributions than the (squared) Euclidean norm,

and this is something that one can leverage using MD

with entropy as a mirror. As a matter of fact, many stan-

dard algorithms can be interpreted as MD, i.e., as gener-

alized first-order methods. This is for instance the case

in statistics, where Expectation Minimization and Maxi-

mum A Posteriori estimators can be interpreted as running

MD with specific mirror and step-sizes (Kunstner et al.,

2021; Le Priol et al., 2021). Mirror descent can also be

used to solve Poisson inverse problems, which have many

applications in astronomy and medicine (Bertero et al.,

2009), to reduce the communication cost of distributed al-

gorithms (Shamir et al., 2014; Hendrikx et al., 2020b), or

to solve convex quartic problems (Dragomir & Nesterov,

2023). In the online learning community as well, many

standard algorithms such as Exponential Weight Updates

or Follow-The-Regularized-Leader can be interpreted as

running mirror descent (McMahan, 2011; Hoeven et al.,

2018). There are still many open questions regarding the

convergence guarantees for most of the algorithms men-

tioned above. Therefore, progress on the understanding

of MD can lead to a plethora of results on these appli-

cations, and more generally to a more consistent theory

for Majorization-Minimization algorithms. This paper is
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a stepping stone in this direction.

Let us now introduce the mirror map, or potential function

h, together with the Bregman divergence with respect to h,

which is defined for x, y ∈ dom h as:

Dh(x, y) = h(x) − h(y)−∇h(y)⊤(x− y). (3)

We now introduce the Stochastic Mirror Descent (SMD)

update, which can be found in its deterministic form in,

e.g., Nemirovskij & Yudin (1983). SMD consists in replac-

ing the squared Euclidean norm from the SGD update (2)

by the Bregman divergence with respect to the mirror map

h:

x+(η, ξ) = argmin
u∈C

{

η∇fξ(x)
⊤u+Dh(u, x)

}

. (4)

Note that since D‖·‖2(x, y) = ‖x − y‖2, one can recover

SGD by taking h = 1
2‖ · ‖2. In this sense, Stochastic Mir-

ror Descent can be viewed as standard SGD, but changing

the way distances are computed, and so the geometry of

the problem. Yet, this change significantly complicates the

convergence analysis of the method, since the Bregman di-

vergence, in general:

1. Does not satisfy the triangular inequality,

2. Is not symmetric,

3. Is not translation-invariant,

4. Is not convex in its second argument.

This means that analyzing mirror descent methods requires

quite some care, and that many standard (S)GD results do

not extend to the mirror setting. For instance, one can

prove that mirror descent cannot be accelerated in gen-

eral (Dragomir et al., 2021b). Similarly, applying tech-

niques such as variance-reduction requires additional as-

sumptions (Dragomir et al., 2021a).

To ensure that x+(η, ξ) exists and is unique, we first make

the following blanket assumption throughout the paper:

Assumption 1. Function h : Rd → R∪ {∞} is twice con-

tinuously differentiable and strictly convex on C. For every

y ∈ R
d, the problem minx∈C h(x) − x⊤y has a unique

solution, which lies in int C, and all fξ are convex.

Note that the regularity assumption on h could be relaxed,

as discussed in Section 3, but we choose a rather strong

one to make sure all the objects we will manipulate are

well-defined. Interestingly, while mirror descent changes

the way distances are computed to move away from the

Euclidean geometry, standard analyses of mirror descent

methods, and in particular in the online learning commu-

nity, still require strong convexity and Lipschitz continuity

with respect to norms (Bubeck et al., 2015, Chapter 4). It

is only recently that a relative smoothness assumption was

introduced to study mirror descent (Bauschke et al., 2017;

Lu et al., 2018), together with the corresponding relative

strong convexity.

Definition 1. The function f is said to be L-relatively

smooth and µ-relatively strongly convex with respect to h
if for all x, y ∈ C:

µDh(x, y) ≤ Df (x, y) ≤ LDh(x, y). (5)

Definition 1 extends the standard smooth and strongly con-

vex assumptions that correspond to the case h = 1
2‖ ·‖2, so

that for all x ∈ C, ∇2h(x) = I the identity matrix. These

assumptions allow MD analyses to generalize standard GD

analyses, and in particular to obtain similar linear and sub-

linear rates, with constant step-size and conditions adapted

to the relative assumptions.

While the basic deterministic setting is now well-

understood under relative assumptions, a good understand-

ing of the stochastic setting remains elusive. In particu-

lar, as we will see in more details in the related work sec-

tion, all existing proofs somehow require the mirror h to be

globally strongly convex with respect to a norm, or have

non-vanishing variance. The only case that can be ana-

lyzed tightly is under interpolation (there exists a point that

minimizes all stochastic functions), or when using Coordi-

nate Descent instead of SMD (Hanzely & Richtárik, 2021;

Hendrikx et al., 2020a). This is a major weakness, as the

goal of relative smoothness is precisely to avoid compar-

isons to norms. Indeed, even when these “absolute” regu-

larity assumptions hold, the smoothness and strong convex-

ity constants are typically very loose, and the theory is not

representative of the observed behaviour of the algorithms.

However, as hinted at earlier, this was expected: accel-

eration is notoriously hard to achieve for mirror descent

(and even impossible in general (Dragomir et al., 2021b)),

and variance reduction typically encounters the same prob-

lems (Dragomir et al., 2021a). For stochastic updates, this

comes from the fact that it is impossible to disentangle the

stochastic gradient from the effect of the curvature of h at

the point at which it is applied.

Contribution and outline. The main contribution of this

paper is to introduce a new analysis for mirror descent,

with a variance notion which is provably bounded under

mild regularity assumptions: typically, the same as those

required for the deterministic case. We introduce our new

variance notion, and compare it with standard ones from

the literature in Section 2. This new analysis is both sim-

pler and tighter than existing ones, as shown in Section 3.

Finally, we use our results to analyse the convergence of

the Maximum Likelihood and Maximum A Posteriori es-

timators for a Gaussian with unknown mean and variance
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in Section 4, and show that it is the first generic stochastic

mirror descent analysis that obtains meaningful finite-time

convergence guarantees in this case.

2. Variance Assumptions

We now focus on the various variance assumptions under

which Stochastic Mirror Descent is analyzed. Some ma-

nipulations require technical lemmas, such as the duality

property of the Bregman divergence or the Bregman co-

coercivity lemma, which can be found in Appendix A.

We start by introducing our variance definition, prove a few

good properties for it, and then compare it with the existing

ones to highlight their shortcomings. The two key proper-

ties we would like to ensure (and which are not satisfied by

other definitions) are: (i) boundedness without strong con-

vexity of h or restricting the SMD iterates, and (ii) finite-

ness for η → 0 (with the appropriate scaling).

2.1. New variance definition

Let η > 0, and recall that x+(η, ξ) is the result of a stochas-

tic mirror descent step from x using function fξ with step-

size η (Equation (4)). From now on, when clear from the

context, we will simply denote this point x+. Yet, although

the dependence is now implicit, do keep in mind that x+ is

a stochastic quantity that is not independent from ξ nor η,

as this is critical in most results. Under Assumption 1, x+

writes:

∇h(x+) = ∇h(x) − η∇fξ(x). (6)

Similarly, we denote by x+ the deterministic Mir-

ror Descent update, which is such that ∇h
(

x+
)

=

∇h(x) − η∇f(x). We also introduce h∗ : y 7→
argmaxx∈C x⊤y−h(x) the convex conjugate of h, which

verifies ∇h∗(∇h(x)) = x. Let us now define the function

fη(x) = f(x)− 1

η
E
[

Dh(x, x
+)
]

, (7)

which is at the heart of our variance definition:

Definition 2. We define the variance of the stochastic mir-

ror descent iterates given by (4) as:

σ2
⋆,η =

1

η
sup
x∈C

(f(x⋆)− fη(x)) =
f⋆ − f⋆

η

η
, (8)

where f⋆ and f⋆
η are respectively the infima of f and fη.

In order to simplify the presentation for this section, we

make the following blanket assumption. However, note

that most results hold without it, since derivations are per-

formed for all x, and then specialized to x = xη . In case xη

is not achieved (if it is on the boundary of C for instance),

we can replace all results by a limit for x → xη.

Assumption 2. If σ2
⋆,η < ∞, the supremum is realized at

point xη , so that σ2
⋆,η = 1

η (f(x⋆)− fη(xη)).

We now state various bounds on σ2
⋆,η , to help understand

its behaviour. We start by positivity, which is an essential

property that justifies the square in the definition.

Proposition 2.1 (Positivity). For all η > 0, σ⋆,η ≥ 0.

This result is direct from the fact that fη(x) ≤ f(x) since

Dh(x, x
+) ≥ 0 for all x ∈ C by convexity of h.

Stochastic functions after a step. We first provide a re-

sult that upper bounds σ2
⋆,η directly in terms of fξ.

Proposition 2.2. If fξ is L-relatively-smooth with respect

to h and η ≤ 1/L, then:

σ2
⋆,η ≤ 1

η

(

f(x⋆)−min
x∈C

E
[

fξ(x
+)
]

)

. (9)

Proof. We write:

Dh(x,x
+) = 〈∇h(x+)−∇h(x), x+ − x〉 −Dh(x

+, x)

= −η∇fξ(x)
⊤(x+ − x)−Dh(x

+, x)

= η
(

Dfξ(x
+, x)− fξ(x

+) + fξ(x)
)

−Dh(x
+, x).

The relative smoothness of fξ and the step-size condi-

tion imply that ηDfξ(x
+, x) ≤ Dh(x

+, x), leading to
1
ηDh(x, x

+) ≤ fξ(x)−fξ(x
+), and the result follows.

This bound offers a new point of view on the variance,

which can be bounded as the difference between the op-

timum of f , and the optimum of a related function, in

which we make one mirror descent step before evaluat-

ing each fξ. Note that we can also allow this gradient

step on the f part, but it would not change anything since

x+
⋆ = x⋆. In this sense, if we define the operator T (g) =

g(∇h∗(∇h(x) − η∇g(x))), then the bound from proposi-

tion (2.2) becomes:

σ2
⋆,η ≤ min

x∈C
T (E [fξ])(x)−min

x∈C
E [T (fξ)] (x). (10)

We recognize the structure of a variance, as the difference

between an operator applied to the expectation of a ran-

dom variable, and the expectation of the operator applied

to the random variable. Yet, compared to standard (Eu-

clidean) analyses of SGD, it does not simply corresponds to

the variance of the stochastic gradients (at optimum), and

bears a more complex form. We will see that σ2
⋆,η can ac-

tually directly be expressed in such a form, by using the

c-transform.

An interesting observation is that E [fξ(x
+)] is remines-

cent of meta-learning objectives (Finn et al., 2017). This

connection highlights that the variance is bounded by the

3
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difference between the standard objective and the MAML

one.

Finiteness. Proposition 2.2 implies the following:

Corollary 2.3. If fξ is L-relatively-smooth w.r.t. h and

admits a minimum xξ
⋆ ∈ int C a.s., then for all η ≤ 1/L,

σ2
⋆,η ≤ f(x⋆)−E[fξ(xξ

⋆)]
η . In particular, σ2

⋆,η is finite.

This result directly comes from the fact that

minx∈C E [fξ(x
+)] ≥ E [minx∈C fξ(x

+)] ≥ E

[

fξ(x
ξ
⋆)
]

.

It shows that the standard regularity assumptions for the

convergence of stochastic mirror descent guarantee that the

variance as introduced in Definition 2 remains bounded.

This is a strong result, that justifies the supremum in the

variance definition. Indeed, most other variance defini-

tions require additional assumptions for the variance

to remain bounded after the supremum. Instead, we

globalize the variance definition, by taking the supremum

over the right quantity to ensure that it remains bounded

over the whole domain without having to explicitly assume

it.

Note that the bound from Corollary 2.3 has already been

investigating in other settings for stochastic optimiza-

tion (Loizou et al., 2021), as discussed in Section 2.2.

While useful to show boundedness, this bound has a ma-

jor drawback, which is that it0 explodes when the step-size

η vanishes. This does not reflect what happens in practice,

which is why we investigate finer bounds on σ2
⋆,η .

Gradient norm at optimum. A usual way of formulat-

ing variance is to express it as the norm of the difference be-

tween stochastic gradients and the deterministic gradients.

While the previous bounds highlight dependencies on the

gradient steps (through evaluations at x+), none of them

really corresponds to “the size of the stochastic gradients

at optimum”. The key subtlety is that when using mirror

descent, it is important to also specify the point at which

these gradients are applied, and the following proposition

gives a bound of this flavor on σ2
⋆,η .

Proposition 2.4. If f is L-relatively-smooth w.r.t. h, η ≤
1/L and x⋆ ∈ int C we have:

σ2
⋆,η ≤ 1

η2
E

[

Dh

(

x+
η , x

+
η

)]

. (11)

This can safely be considered as the Mirror Descent equiv-

alent of E
[

‖∇fξ(x⋆)‖2
]

. Yet, a key difference is that

stochastic gradients are evaluated at point xη instead of x⋆,

and ∇f(xη) 6= 0 in general.

Proof. For all x, we have:

E
[

Dh(x, x
+)
]

= E
[

Dh∗(∇h(x+),∇h(x))
]

= E [Dh∗(∇h(x) − η∇fξ(x),∇h(x))]

= E [Dh∗(∇h(x) − η∇f(x),∇h(x))]

+ E [Dh∗(∇h(x) − η∇fξ(x),∇h(x) − η∇f(x))]

= E [Dh∗(∇h(x) − η [∇f(x)−∇f(x⋆)] ,∇h(x))]

+ E

[

Dh

(

x+, x+
)]

≤ ηDf (x, x⋆) + E

[

Dh

(

x+, x+
)]

.

Here, the first equality comes from the duality property

of the Bregman divergence, the third one from the Breg-

man bias-variance decomposition Lemma (Pfau, 2013),

and the last inequality from the Bregman cocoercivity

Lemma (Dragomir et al., 2021a). All these technical re-

sults can be found in Appendix A. Therefore,

fη(x) ≥ f(x⋆)−
1

η
E

[

Dh(x+, x+)
]

, (12)

and this is in particular true for x = xη .

Limit behaviour. A first observation is that both the

Dh(x, x
+) term in the definition of fη and our variance

definition are scaled by η−1, potentially indicating that they

blow up when η → 0. While it is clear that it is not the case

in the Euclidean setting, this property holds more generally,

as shown in the two following results.

Proposition 2.5. Let x ∈ C and η0 > 0 be such that

EDh(x, x
+(η0, ξ)) < ∞ . Then, fη(x) → f(x) for η → 0.

Note that uniform convergence of fη to f would require

that there exists η > 0 such that supx∈C Dh(x, x
+) is fi-

nite, which we cannot guarantee in general (it does not hold

for f = g = 1
2‖ · ‖2 defined on R

d for instance). Denote

‖x‖2A = x⊤Ax, then:

Proposition 2.6 (Small step-sizes limit). If fξ are L-

relatively-smooth and f has a unique minimizer x⋆ then:

lim
η→0

σ2
⋆,η = lim

η→0

1

η2
E
[

Dh(x
+
⋆ , x⋆)

]

(13)

=
1

2
E

[

‖∇fξ(x⋆)‖2∇2h(x⋆)−1

]

. (14)

This variance is actually the best we can hope for in the

Bregman setting, which indicates the relevance of Defini-

tion 2. Indeed, this term exactly correspond to the variance

one would obtain when making infinitesimal SMD steps

from x⋆, i.e., the norm of the stochastic gradients at opti-

mum in the geometry given by ∇2h(x⋆)
−1.

4
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2.2. Standard Assumptions

We now compare Definition 2 with several variance as-

sumptions from the literature. Note that they typically

“only” require the bounds to hold for all iterates over the

trajectory. However, in the absence of proof that the iter-

ates stay in certain regions of the space, suprema over the

whole domain are required for all variance definitions.

Euclidean case. Let us now take a step back and look at

Eculidean case, h = 1
2‖·‖2, and assume that f is L-smooth.

Writing Equation (11) with this specific h and replacing xη

by a supremum, we obtain:

σ2
⋆,η ≤ sup

x∈C
E

[

1

2
‖∇f(x)−∇fξ(x)‖2

]

, (15)

which is a common though debatable variance assumption.

Indeed, it involves a maximum over the domain, and is in

particular not bounded in general even for simple examples

like Linear Regression. Yet, we can recover another stan-

dard variance assumption by assuming the smoothness of

all fξ (e.g., Gower et al. (2019)), which writes:

σ2
⋆,η ≤ E

[

‖∇fξ(x⋆)‖2
]

. (16)

This result is obtained by writing that ‖∇fξ(x)‖2 ≤
2‖∇fξ(x)−∇fξ(x⋆)‖2+2‖∇fξ(x⋆)‖2, and bounding the

first term using smoothness. In particular, we see that stan-

dard Euclidean variance definitions are natural bounds of

σ2
⋆,η . Detailed derivations can be found in Appendix B.

Divergence between stochastic and deterministic

gradients. An early variance definition for stochas-

tic mirror descent in the relative setting comes

from Hanzely & Richtárik (2021), who define σ2
sym

as:

σ2
sym =

1

η
sup
x∈C

〈

∇f(x)−∇fξ(x), x
+ − x+

〉

(17)

=
1

η2
sup
x∈C

[

Dh

(

x+, x+
)

+Dh

(

x+, x+
)]

, (18)

where we recall that x+ is such that ∇h
(

x+
)

= ∇h(x)−
η∇f(x). This quantity is sometimes called the sym-

metrized Bregman Divergence.

We remark two main things when comparing σ2
sym with

Proposition 2.4: (i) σ2
⋆,η is not symmetrized, and contains

only one of the two terms, and (ii) the bound only needs to

hold at xη instead of for all x ∈ C. As a result, we directly

obtain that σ2
⋆,η ≤ σ2

sym, and σ2
sym is actually infinite in

most cases, whereas σ2
⋆,η is usually finite, as seen above.

Stochastic gradients at optimum. Dragomir et al. (2021a)

define the variance as:

σ2
DEH = sup

x∈C

1

2η2
E [Dh∗(∇h(x) − 2η∇fξ(x⋆),∇h(x))]

(19)

= sup
x∈C

E

[

‖∇fξ(x⋆)‖2∇2h∗(z(x))

]

, (20)

where z(x) ∈ [∇h(x),∇h(x) − η∇fξ(x⋆)] The main in-

terest of this definition is that stochastic gradients are only

taken at x⋆. In particular, this variance is 0 in case there

is interpolation (all stochastic functions share a common

minimum). However, this quantity can blow up if h is

not strongly convex, since in this case ∇2h∗ is not upper

bounded (indeed, smoothness of the conjugate is ensured

by strong convexity of the primal function (Kakade et al.,

2009)). Following similar derivations, but after the supre-

mum has been taken, we arrive at:

Proposition 2.7. If f is L-relatively-smooth w.r.t. h, then

for η < 1/(2L), the variance can be bounded as:

σ2
⋆,η ≤ E

[

‖∇fξ(x⋆)‖2∇2h∗(zη)

]

, (21)

where zη ∈ [∇h(xη),∇h(xη)− η∇fξ(x⋆)].

In particular, we obtain a finite bound without having to

restrict the space.

Functions variance. Another variance definition that

appears in the SGD literature is of the form f(x⋆) −
E

[

fξ(x
ξ
⋆)
]

, using the optima of the stochastic func-

tions (Loizou et al., 2021). Unfortunately, the results de-

rived with this definition do not obtain a vanishing vari-

ance term when η → 0, unlike most other variance defi-

nitions, and contrary to what is observed in practice, that

smaller step-sizes reduce the variance. The vanishing vari-

ance term can be obtained by rescaling by 1/η (so consid-

ering
(

f(x⋆)− E

[

fξ(x
ξ
⋆)
])

/η instead), but the problem

is that this variance definition would explode for η → 0.

This is because using such a definition would come down

to performing the supremum step within the expectation

in (9), using that fξ(x
+) ≥ fξ(x

ξ
⋆), which is a very crude

bound. Instead, Corolary 2.3 directly shows that our vari-

ance definition is tighter than this one, and in particular (i)

it is bounded for all η > 0, (ii) it remains finite as η → 0
even with the proper rescaling (Proposition 2.6).

Relation to c-transform. Léger & Aubin-Frankowski

(2023) revisited the analysis of gradient descent, view-

ing it as an alternate minimization method on transforms

of f . This point of view subsumes many methods, in-

cluding the Newton Method or Mirror Descent. Central

to their analysis is the notion of c-transform f c(y) =
supx∈C f(x) − c(x, y), a standard quantity from optimal

5
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transport (Villani et al., 2009). It turns out that for η ≤ 1/L,

fη is actually linked to the c-transform as:

fη(x) = E
[

f c
ξ (x

+)
]

, (22)

where we use the cost c(x, y) = 1
ηDh(x, y). Since

f(x⋆) = f c(x⋆) = argminx∈C f
(

x+
)

, denoting

Tc(g) = gc(∇h∗(∇h(x) − η∇g(x))), we have that:

σ2
⋆,η=

1

η

(

min
x∈C

Tc(E [fξ])(x)−min
x∈C

E [Tc(fξ)] (x)
)

. (23)

This alternative way of looking at σ2
⋆,η suggests that it can

also be expressed as a “variance”, similarly to (10), without

resorting to the bound from Proposition 2.2, and incorporat-

ing the notion of c-transform instead.

In this section, we have highlighted the connections with

other definitions, and argued that fη (and its minimum) is

a relevant quantity. In particular, Definition 2 is the only

definition that allows boundedness of the variance notion

both after a supremum step over the iterates (and without

strong convexity of h) and in the η → 0 limit with the

proper rescaling.

3. Convergence Analysis

Now that we have (extensively) investigated σ2
⋆,η, and the

various interpretations that come from different bounds, we

are ready to state the convergence results. Some proofs in

this section are just sketched, but complete derivations can

be found in Appendix C.

3.1. Relatively Strongly Convex setting.

Recall that f⋆
η = infx∈C fη(x). Starting from an arbitrary

x(0), the sequence (x(k))k≥0 is built as x(k+1) = (x(k))+

for k ∈ {0, T } for some T > 0

Theorem 3.1. If f is µ-relatively-strongly-convex with re-

spect to h, under a constant step-size η, the iterates ob-

tained by SMD (Equation (6)) verify

η
[

E

[

fη(x
(T ))

]

− f⋆
η

]

+ E

[

Dh(x⋆, x
(T+1))

]

≤

(1 − ηµ)T+1Dh(x⋆, x
(0)) +

ησ2
⋆,η

µ
.

(24)

Note that the (relatively) strongly-convex theorem has a

standard form, and recovers usual MD results if we re-

move the variance, and standard SGD results if we take

h = 1
2‖ · ‖2. Let us now proceed to the proof of Theo-

rem 3.1.

Proof. We start from a standard equality, which is a varia-

tion of e.g., Dragomir et al. (2021a, Lemma 4):

E
[

Dh(x⋆, x
+)
]

−Dh(x⋆, x) + ηDf (x⋆, x) (25)

= −η[f(x)− f(x⋆)] + E
[

Dh(x, x
+)
]

(26)

= η

[

f(x⋆)−
(

f(x)− 1

η
E
[

Dh(x, x
+)
]

)]

(27)

= η [f(x⋆)− fη(x)] (28)

= −η
[

fη(x)− f⋆
η

]

+ η
[

f(x⋆)− f⋆
η

]

. (29)

Using that Df (x⋆, x) ≥ µDh(x⋆, x) (relative strong con-

vexity), and remarking that f(x⋆)−f⋆
η = ησ2

⋆,η , we obtain:

η
[

fη(x) − f⋆
η

]

+ E
[

Dh(x⋆, x
+)
]

≤
(1− ηµ)Dh(x⋆, x) + η2σ2

⋆,η.
(30)

At this point, we can neglect the η
[

fη(x) − f⋆
η

]

≥ 0 terms

and chain the inequalities for x = x(t) for t from 0 to T to

obtain the result.

This proof is quite simple, and naturally follows from

Lemma C.1. One can also note that relative smoothness

of f is not required to obtain Theorem 3.1, which has no

condition on the step-size. This is not a typo, but reflects

the fact that step-size conditions are needed to obtain a

bounded variance. Indeed, the variance as defined here

entangles aspects tied with the error due to discretization

(which is usually dealt with using smoothness), and the er-

ror due to stochasticity. This is natural, as the stochastic

noise vanishes in the continuous limit (η → 0). Besides,

the magnitude of the updates depends both on where the

stochastic gradient is applied and on the step-size. Yet, the

simplicity of the proof is partly due to this entanglement,

meaning that we have deferred some of the complexity to

the bounding of the variance term.

Also note that Theorem 3.1 uses constant step-sizes, but

Equation (30) can be used with time-varying step-sizes, as

is done for instance in the proof of Theorem 4.3.

A variant of Theorem 3.1 in which the discretization error

is partly removed from the notion of variance writes:

Corollary 3.2. If f is µ-strongly-convex and L-relatively-

smooth with respect to h, if η ≤ 1/L, the iterates obtained

by SMD (Equation (6)) with constant step-size η verify

η
[

E

[

fξ((x
(T ))+)

]

− f⋆
+

]

+ E

[

Dh(x⋆, x
(T+1))

]

≤

(1 − ηµ)T+1Dh(x⋆, x
(0)) +

η

µ

[

f(x⋆)− f⋆
+

η

]

,
(31)

where f⋆
+ = infx∈C E [fξ(x

+)].

This alternate version is obtained by the key result in the

proof of Proposition 2.2, i.e., fη(x) ≥ E [fξ(x
+)], in

line (28). Note that in the deterministic case, f⋆
+ = f(x⋆),

and we recover standard results.

6
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3.2. Convex setting.

Let us now consider the convex case, meaning that µ = 0.

Theorem 3.3. If f is convex, the iterates obtained by SMD

using a constant step-size η > 0 verify

1

T + 1

T
∑

k=0

E

[

fη(x
(k))− f⋆

η +Df (x⋆, x
(k))
]

≤ Dh(x⋆, x
(0))

η(T + 1)
+ ησ2

⋆,η.

This theorem is obtained by summing Equation (29) for

x = x(k) for all k ∈ {1, . . . , T } and rearranging the terms.

Note that we choose a constant step-size for simplicity, but

varying step-size results can be obtained in the same way.

This case differs from standard convex analyses, in that we

obtain a control on fη(x
(k))−f⋆

η +Df(x⋆, x
(k)) instead of

the usual f(x(k)) − f(x⋆). One of the main consequences

is that we cannot get a control on the average iterate since

Bregman divergences are in general not convex in their sec-

ond argument, and fη is not necessarily convex. This non-

standard result is a direct consequence of our choice of vari-

ance definition, but it is actually a quantity that naturally

arises in the analysis. Note that a variant involving f⋆
+ can

be obtained in the same lines as Corollary 3.2.

Controlling fη. The results in this section do not directly

control the function gap f(x) − f∗, but rather the trans-

formed one fη(x) − f⋆
η . Yet, the continuity result (in η)

from Proposition 2.5 shows that the bounds we provide can

still be interpreted as relevant function values for small η.

Controlling Df (x⋆, x
(k)). An interesting property of

Df (x⋆, x
(k)) is that it can be linked with the size of the

gradients of f , as shown by the following result.

Proposition 3.4. If ∇f(x⋆) = 0 then for all x 6= x⋆,

Df (x⋆, x) ≥ LDh∗

(

∇h(x⋆)+
∇f(x)

L
,∇h(x⋆)

)

> 0.

This is a Bregman equivalent of controlling the gradient

squared norm, with the additional benefit that the reference

point at which we apply the gradient is the optimum x⋆.

Besides, Proposition 3.4 shows that Df (x⋆, x) > 0 for x 6=
x⋆ without requiring f to be strictly convex (only h).

Minimal assumptions on h. Note that the theorems in

this section do not actually require h to satisfy Assump-

tion 1, but only that iterations can be written in the form of

Equation 6 (which is guaranteed by Assumption 1). While

Assumption 1 allows for instance to use the Bregman co-

coercivity lemma with any points, or ensures that ∇2h is

well-defined, which we leverage extensively in Section 2,

our theorems are much more general than this, and include

applications such as proximal gradient mirror descent (next

remark) or the MAP for Gaussian Parameters Estimation

(next section).

Stochastic Mirror Descent with a Proximal term. We

briefly discuss a generalization of the mirror descent itera-

tions, which writes:

x+ = argmin
u∈C

η
[

∇fξ(x)
⊤u+ g(u)

]

+Dh(u, x), (32)

where g is a proper lower semi-continuous convex func-

tion. This is a “proximal” version, which for instance cor-

responds to projected stochastic mirror descent if g is the

indicator of a convex set. Let ω ∈ ∂g(x+) be such that

∇h(x+) = ∇h(x) − η [∇fξ(x) + ω], then this iteration

can be rewritten as ∇h(x+) + ηω = ∇h(x) + ηωx −
η [∇fξ(x) + ωx] for any ωx ∈ ∂g(x). In particular, (32)

can be interpreted as a Stochastic mirror descent step with

objective fξ + g and mirror h+ ηg. While the mirror does

not satisfy Assumption 1 (and in particular twice differen-

tiability in case g is the indicator of a set), the iterations can

still be written in the form of Equation (6). In particular, the

theorems from Section 3 still apply, with the adapted vari-

ance definition involving function f + g and mirror h+ ηg.

Similarly, f + g is 1/η relatively-smooth with respect to

h + ηg as long as f is L-relatively-smooth with respect to

h and η ≤ 1/L. More details can be found in Appendix E.

4. MAP For Gaussian Parameters Estimation.

So far, we have proposed new variance definitions for the

analysis of stochastic mirror descent, and we have shown

that they compare favorably to existing ones, while leading

to simple convergence proofs. In this section, we investi-

gate the open problem formulated by Le Priol et al. (2021),

which is to find non-asymptotic convergence guarantees for

the KL-divergence of the Maximum A Posteriori (MAP)

estimator. In particular, this example will highlight the rel-

evance of the infimum step on fη, since it gives the first

generic analysis that obtains meaningful finite time conver-

gence rates.

4.1. MAP and MLE of exponential families.

In this section, we rapidly review the formalism of expo-

nential family. More details can be found in Le Priol et al.

(2021), and Wainwright et al. (2008, Chapter 3). Let X be

a random variable, and T a deterministic function, then the

density of an exponential family for a sample x writes:

pθ(x) = p(x|θ) = exp(〈θ, T (x)〉 −A(θ)), (33)

where A is often refered to as the log-partition function. In

this case, θ is called the natural parameter, and T is the

sufficient statistic. Function A is convex, and we can thus

establish a form of duality through convex conjugacy. The

7
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entropy thus writes:

A∗(µ) = max
θ′∈Θ

〈µ, θ′〉 −A(θ′). (34)

Parameter µ is called the mean parameter, and the standard

MAP estimator can be derived for n0 ∈ N, µ0 ∈ R as:

µ
(n)
MAP =

n0µ
(0) +

∑n
i=1 T (Xi)

n0 + n
(35)

The Maximum Likelihood Estimator (MLE) corresponds

to taking n0 = 0. An interesting observation is that µ
(n)
MAP

can be obtained recursively for n > 0, as

µ
(0)
MAP = µ(0), ηn = (n+ n0)

−1, (36)

µ
(n+1)
MAP = µ

(n)
MAP − ηn∇gXn

(µ
(n)
MAP), (37)

with ∇gXn
(µ) = µ − T (Xn). In terms of primal variable

θ(n) = ∇A∗(µ(n)
MAP), (37) writes:

∇A(θ(n+1)) = ∇A(θ(n))− η∇fXn
(θ(n)), (38)

where fXn
(θ) = A(θ) − 〈θ, T (Xn)〉, so that f(θ) =

A(θ) − 〈θ, µ⋆〉. We recognize stochastic mirror descent it-

erations, with mirror A and stochastic gradients ∇fX . Sim-

ilar results on the MLE can be obtained by taking n0 = 0.

This key observation implies that convergence guarantees

on the MAP and the MLE can be deduced from stochas-

tic mirror descent convergence guarantees.

While this seems to be a very appealing way to obtain con-

vergence guarantees for the MAP estimator, Le Priol et al.

(2021) observe that none of the existing convergence rates

for stochastic mirror descent allow to obtain meaningful

rates for the convergence of the MAP for general exponen-

tial families. In particular, none of them recover the O(1/n)
asymptotic convergence rate for estimating a Gaussian with

unknown mean and covariance.

This is due to the variance definitions used in the existing

analyses, that all have issues (not uniformly bounded over

the domain, not decreasing with the step-size...) as dis-

cussed in Section 2. Our analysis fixes this problem, and

thus yields finite-time guarantees for the MAP and MLE

estimators for the estimation of a Gaussian with unknown

mean and covariance. This shows the relevance of Assump-

tion 2.

4.2. Full Gaussian (unknown mean and covariance)

The main problem studied in Le Priol et al. (2021) is that

of the one-dimensional full-Gaussian case, where the goal

is to estimate the mean and covariance of a Gaussian from

i.i.d. samples X1, . . . , Xn ∼ N (m⋆,Σ⋆), with Σ⋆ > 0.

Note that although notation Σ is usually reserved for the

covariance matrix of a multivariate Gaussian, we use it for

a scalar value here to highlight the distinction with σ2
⋆,η ,

the variance from stochastic mirror descent. In this case,

the sufficient statistics write T (X) = (X,X2), and the

log-partition and entropy functions are, up to constants:

A(θ) =
θ21

−4θ2
− 1

2
log(−θ2), A

∗(µ) = −1

2
log(µ2 − µ2

1),

for θ ∈ Θ = R× R
∗
− and µ ∈ {(u, v), u2 < v}. The goal

is to estimate DA(θ, θ⋆), for which Le Priol et al. (2021)

show that only partial solutions exist: results are either

asymptotic, or rely on the objective being (approximately)

quadratic. Note that there is a relationship between natural

parameters, mean parameters, and (m,Σ2), the mean and

covariance of the Gaussian we would like to estimate. In

the following, we will often abuse notations, and write for

instance DA(θ̃, θ) in terms of (m,Σ2) and (m̃, Σ̃2) rather

than θ and θ̃. More specifically:

DA(θ̃, θ) = −1

2
log

(

Σ2

Σ̃2

)

− Σ̃2 − Σ2

2Σ̃2
+

(m̃−m)2

2Σ̃2
.

The update formulas for the parameters are given by:

m+ = (1− η)m+ ηX, (39)

(Σ2)+ = (1− η)
[

Σ2 + η(m−X)2
]

. (40)

Note that in our case, ∇2A = ∇2fξ for all ξ, and so in

particular DA = Dfξ = Df . Therefore, we obtain that:

fη(θ)− f(θ⋆) =
1

2η
E

[

log

(

(1− η)

(

1 + η
(m−X)2

Σ2

))]

− 1

2
log

(

Σ2
⋆

Σ2

)

. (41)

At this point, the main question is: What can we lower

bound fη by? We start by showing the following propo-

sition:

Proposition 4.1. The iterations (38) are well-defined for

η < 1 in the sense that if θ(n) ∈ Θ = R × R
∗
−, then

∇A(θ(n)) − η∇fXn
(θ(n)) ∈ Range(∇A) almost surely,

so that θ(n+1) ∈ Θ is well-defined almost surely. Besides,

fξ is 1-relatively-smooth and 1-relatively-strongly-convex

with respect to A.

This result is a direct consequence of the fact that Dfξ =
DA for all ξ, and the fact that ∇A(θ) − η∇fXn

(θ) =
(1 − η)∇A(θ) + ηT (Xn) ∈ {(u, v), u2 < v} if ∇A(θ) ∈
{(u, v), u2 < v}. One can then deduce from this result that

the variance of the mirror descent iterations σ2
⋆,η is bounded

for η < 1, thanks to Corolary 2.3. We now investigate

the properties of the minimizer of fη in this case, and first

prove the following lemma:

Lemma 4.2. Let (mη,Σ
2
η) be the minimizer of fη. Then,

for η < 1/3:

mη = m⋆, Σ2
⋆ ≥ Σ2

η ≥ (1− 3η)Σ2
⋆. (42)

8
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In particular, the variance σ2
⋆,η verifies:

σ2
⋆,η ≤ − 1

2η
log (1− 3η) . (43)

For 1/3 < η ≤ 1 − ε, σ2
⋆,η ≤ cε, where cε is a numerical

constant that only depends on ε.

Note that we show in this example that Σ2
η is arbitrarily

close to Σ2
⋆ as η → 0, which is expected.

Theorem 4.3. The MAP estimator satisfies:

DA(θ⋆, θ
(n)) ≤

n0DA(θ⋆, θ
(0)) + 3

2 log(1 +
n+1
n0

) + Γ

n+ n0
,

where Γ ≥ 0 is a numerical constant and Γ = 0 if n0 > 3.

Note that the numerical constants are not optimized. The

main benefit is that we obtain an anytime result on the con-

vergence of the MAP estimator for all n ≥ 0, n0 ≥ 1 di-

rectly from the general Stochastic Mirror Descent conver-

gence theorem. Yet, the open problem from Le Priol et al.

(2021) is not completely solved still. We discuss these as-

pects below.

Reverse KL bound. We obtain a bound on DA(θ⋆, θ
(n)),

instead of DA(θ
(n), θ⋆) = f(θ) − f(θ⋆). Note that the

second term can be controlled asymptotically thanks to the

bound on fη(θ
(n))−fη(θη), and fη → f when η = 1/n →

0, but we might also be able to exploit this control over the

course of the iterations.

Asymptotic convergence. Theorem 4.3 leads to a

O(log n/n) asymptotic convergence rate instead of the ex-

pected O(1/n) (Le Priol et al., 2021). This probably in-

dicates that the globalization step (replacing θ by θη), al-

though leading to a finite variance, is too crude in this case.

Indeed, θn actually has a lot of structure in this example,

since ∇A(θn) = 1
n

∑n
k=1 T (Xk). The SMD analysis is

oblivious to this structure, hence the gap. Note that we can

get rid of the logn factor and recover the right O(1/n) rate

from the same analysis by using a slightly different estima-

tor than the MAP (or MLE). This is done by setting the

step-size as ηn = 2
n+1 for n > 1, and the analysis of this

variant follows Lacoste-Julien et al. (2012), as detailed in

Appendix F.3.

The special case of the MLE. The MLE corresponds to

n0 = 0, which is not handled in our analysis since the

first step corresponds to η = 1, which necessarily results

in θ
(1)
2 = −∞ (which corresponds to Σ2 = 0, as can be

seen from (40)). If we consider that mirror descent is run

from θ(1), then we obtain E
[

DA(θ⋆, θ
(1))
]

= ∞ in gen-

eral, where the expectation is over the value of the first sam-

ple drawn. Therefore, we need to start the SMD analysis at

θ(2) to fit the MLE into this framework, and in particular

we need to be able to evaluate E
[

DA(θ⋆, θ
(2))
]

. This is

further discussed in Appendix F.4.

5. Conclusion

This paper introduces a new notion of variance for the anal-

ysis of stochastic mirror descent. This notion, based on

the fact that a certain function fη admits a minimum, is

less restrictive than existing ones, has the right asymptotic

scaling with the step-size and is bounded regardless of the

trajectory of the iterates without further assumptions.

We strongly believe that our analysis of SMD opens up

new perspectives. As an example, we use our SMD results

to show convergence of the MAP for estimating a Gaus-

sian with unknown mean and covariance. As evidenced

in Le Priol et al. (2021), all existing generic analyses of

stochastic mirror descent failed to obtain such results.

Beyond SMD, this new way of looking at variance could

prove useful for the analysis of many majorization min-

imization algorithms, including for instance (Euclidean)

proximal SGD. While we have focused on stochastic gradi-

ents of the objective, considering stochastic mirror maps is

an interesting problem that would widely extend the range

of applications, and likely require even more general vari-

ance notions.
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A. Technical results on Bregman divergences

As for the rest of this paper, Assumption 1 is assumed throughout this section. However, some of these results hold even

with less regularity, and in particular do not require second order continuous differentiability.

Lemma A.1 (Duality). For all x, y ∈ C, it holds that:

Dh(x, y) = Dh∗(∇h(y),∇h(x)) (44)

See, e.g. Bauschke et al. (1997, Theorem 3.7) for the proof.

Lemma A.2 (Symmetrized Bregman). For all x, y ∈ C, it holds that:

Dh(x, y) +Dh(y, x) = 〈∇h(x)−∇h(y), x− y〉 (45)

The proof immediately follows from the definition of the Bregman divergence. The following result corresponds

to Dragomir et al. (2021a, Lemma 3).

Lemma A.3 (Bregman cocoercivity). If a convex function f is L-relatively-smooth with respect to h, then for all η ≤ 1/L,

Dh∗(∇h(x) − η [∇f(x)−∇f(y)] ,∇h(x)) ≤ ηDf (x, y). (46)

Denoting x+y = ∇h∗(∇h(x) − η [∇f(x)−∇f(y)]), a tighter result actually writes:

Dh(x, x
+y) + ηDf (x

+y , y) ≤ ηDf (x, y). (47)

The proof of the tighter version is simply obtained by not using that Df (x
+y, y) ≥ 0 in the original proof. While we

don’t directly use it in this paper, it is sometimes useful. We now introduce the generalized bias-variance decomposition

Lemma (Pfau, 2013, Theorem 0.1).

Lemma A.4. If X is a random variable, then for all u ∈ C,

E [Dh∗(X,u)] = Dh∗(E [X ] , u) +Dh∗(X,E [X ]). (48)

B. Missing results on the variances

We start this section by proving the following lemma, which in particular ensures that Dh(x, x
+)/η increases with η (and

so decreases as η → 0).

Lemma B.1. Let φξ : η 7→ 1
ηDh(x, x

+(η, ξ)). Then, ∇φξ(η) =
1
η2Dh(x

+(η, ξ), x) ≥ 0.

Proof. First remark that since ∇h(x+) = ∇h(x) − η∇fξ(x), we can write

∇η

[

Dh(x, x
+)
]

= ∇η

[

h(x) − h(x+)−∇h(x+)⊤(x− x+)
]

= −∇h(x+)⊤∇ηx
+ +∇fξ(x)

⊤(x− x+) +∇h(x+)⊤∇ηx
+

= ∇fξ(x)
⊤(x − x+)

=
1

η

(

∇h(x) −∇h(x+)
)⊤

(x− x+) =
Dh(x, x

+) +Dh(x
+, x)

η
.

Then, the expression follows from

∇φξ(η) = ∇η

[

1

η
Dh(x, x

+)

]

=
1

η
∇η

[

Dh(x, x
+)
]

− 1

η2
Dh(x, x

+) =
1

η2
Dh(x

+, x). (49)

Proof of Proposition 2.5. We now prove that fη → f when η → 0. To show this, we note that for any fixed x ∈ int C:

12
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• For any fixed ξ, 1
ηDh(x, x

+) = η
2 ||∇fξ(x)||2∇2h∗(z) for z ∈ [∇h(x),∇h(x)− η∇fξ(x)]. Therefore, 1

ηDh(x, x
+) →

0 for η → 0 since ∇2h∗(∇h(x)) = (∇2h(x))−1 < ∞ by strict convexity of h.

• Let η ≤ η0. Then, for all ξ, 1
ηDh(x, x

+(η, ξ)) ≤ 1
η0
Dh(x, x

+(η0, ξ)) since the function η 7→ 1
ηDh(x, x

+(η, ξ)) is an

increasing function (positive gradient using Lemma B.1).

• 1
η0
E [Dh(x, x

+(η0, ξ))] is finite.

Then, using the dominated convergence theorem, we obtain that we can invert the integral (expectation) and the limit, so

that limη→0 E
1
ηDh(x, x

+) = E limη→0
1
ηDh(x, x

+) = 0.

Proof of Proposition 2.6. We prove this result by successively upper bounding and lower bounding σ2
⋆,η, and making η →

0.

1 - Upper bound on σ2
⋆,η . One side is direct, by writing that f(xη) ≥ f(x⋆):

σ2
⋆,η =

1

η

(

f(x⋆)− f(xη) +
1

η
E
[

Dh(xη, x
+
η )
]

)

≤ 1

η2
E
[

Dh(xη, x
+
η )
]

. (50)

From the proof of Proposition 2.5 we have pointwise convergence of fη to f . Since f is convex and has a unique minimizer

x⋆, then xη → x⋆ for η → 0, which leads to the result.

2 - Lower bound on σ2
⋆,η. By definition of xη as the minimizer of fη, we have fη(xη) ≤ fη(x⋆), and so:

σ2
⋆,η =

f(x⋆)− fη(xη)

η
≥ f(x⋆)− fη(x⋆)

η
=

1

η2
E
[

Dh(x⋆, x
+
⋆ )
]

. (51)

Let us now prove the following proposition, which follows the proof from Dragomir et al. (2021a).

Proof of Proposition 2.7. Let us prove that σ2
⋆,η ≤ E

[

‖∇fξ(x⋆)‖2∇2h∗(zη)

]

. We start by

Dh(x, x
+) = Dh∗(∇h(x) − η∇fξ(x),∇h(x)) (52)

= Dh∗(∇h(x) − η [∇fξ(x)−∇fξ(x⋆)]− η∇fξ(x⋆),∇h(x)) (53)

= Dh∗(
(∇h(x) − 2η [∇fξ(x)−∇fξ(x⋆)]) + (∇h(x)− 2η∇fξ(x⋆))

2
,∇h(x)). (54)

Using the convexity of Dh∗ in its first argument and then the Bregman cocoercivity lemma, we obtain for η ≤ 1/2L:

Dh(x, x
+) ≤ 1

2
Dh∗(∇h(x) − 2η [∇fξ(x)−∇fξ(x⋆)]),∇h(x)) +

1

2
Dh∗(∇h(x)− 2η∇fξ(x⋆),∇h(x)) (55)

≤ ηDfξ(x, x⋆) +
1

2
Dh∗(∇h(x) − 2η∇fξ(x⋆),∇h(x)). (56)

Using that E
[

Dfξ(x, x⋆)
]

= Df (x, x⋆) and applying this to x = xη , we obtain

σ2
⋆,η =

f(x⋆)− fη(xη)

η

=
E
[

Dh(xη, x
+
η )
]

+ ηf(x⋆)− ηf(xη)

η2

≤ 1

2η2
E [Dh∗(∇h(xη)− 2η∇fξ(x⋆),∇h(xη))] +

Df (xη, x⋆) + f(x⋆)− f(xη)

η

≤ 1

2η2
E [Dh∗(∇h(xη)− 2η∇fξ(x⋆),∇h(xη))] =

1

2η2
× E

[

1

2
‖2η∇fξ(x⋆)‖2∇2h∗(zη)

]

,

and the result follows. The last inequality comes from the fact that if x⋆ = argminx∈C f(x), then −∇f(x⋆) is normal to

C so −∇f(x⋆)
⊤(xη − x⋆) ≤ 0. .
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C. Convergence results.

In this section, we detail the proofs of the various convergence theorems that were only sketched in the main text. We start

by proving the first identity, which is a variation of e.g., Dragomir et al. (2021a, Lemma 4), which we detail here for the

sake of completeness.

Lemma C.1. Let x+ ∈ C be such that ∇h(x+) = ∇h(x) − η∇fξ(x), with fξ a random differentiable function such that

E [fξ] = f . Then, for all points y ∈ C,

E
[

Dh(y, x
+)
]

−Dh(y, x) + ηDf (y, x) = −η[f(x)− f(y)] + E
[

Dh(x, x
+)
]

(57)

In particular, we can apply the result to y = x⋆.

Proof. We give a slightly different proof than Dragomir et al. (2021a), and in particular this version of the identity is

slightly more direct (though maybe less insightful) and does not require ∇f(y) = 0. We write:

E
[

Dh(y, x
+)
]

= E
[

h(y)− h(x+)−∇h(x+)⊤(y − x+)
]

= E
[

h(y)− h(x+)−∇h(x+)⊤(y − x)−∇h(x+)⊤(x− x+)
]

= E
[

h(y)− h(x)−∇h(x)⊤(y − x) + η∇fξ(x)
⊤(y − x) −∇h(x+)⊤(x− x+) + h(x) − h(x+)

]

= Dh(y, x) + η∇f(x)⊤(y − x) + E
[

Dh(x, x
+)
]

= Dh(y, x)− ηDf (y, x) + η [f(y)− f(x)] + E
[

Dh(x, x
+)
]

.

Proof of Corollary 3.2. We start back from Equation (28), and write, using that fη(x) ≥ E [fξ(x
+)] (proof of Proposi-

tion 2.2):

E
[

Dh(x⋆, x
+)
]

−Dh(x⋆, x) + ηDf (x⋆, x) = η [f(x⋆)− fη(x)] (58)

≤ η
[

f(x⋆)− E
[

fξ(x
+)
]]

(59)

≤ −η
[

E
[

fξ(x
+)
]

− f+
⋆

]

+ η2
(

f(x⋆)− f+
⋆

η

)

. (60)

The result follows naturally from using the relative strong convexity of f , leading to:

η[E
[

fξ(x
+)
]

− f⋆
+] +Dh(x⋆, x

+) ≤ (1− ηµ)Dh(x⋆, x) + η2
[

f(x⋆)− f⋆
+

η

]

. (61)

Then, we chain iterations as done for Theorem 3.1

Proof of Theorem 3.3. We also start from the same result as above, and write it for x = x(k), so that x+ = x(k+1):

E

[

Dh(x⋆, x
(k+1))

]

−Dh(x⋆, x
(k)) + ηDf (x⋆, x

(k)) = η
[

f(x⋆)− fη(x
(k))
]

≤ −η
[

fη(x
(k))− fη(xη)

]

+ η2σ2
⋆,η.

(62)

Moving the fη terms to the left, and summing this for k = 0 to T leads to:

η

T
∑

k=0

[

fη(x
(k))− fη(xη) +Df (x⋆, x

(k))
]

≤ Dh(x⋆, x
(0))−Dh(x⋆, x

(k+1)) + Tη2σ2
⋆,η. (63)

The final result is obtained by dividing by ηT , and the fact that Dh(x⋆, x
(k+1)) ≥ 0.

Proof of Proposition 3.4. We use Bregman cocoercivity (Lemma A.3) with η = 1
L between x⋆ and x (instead of x and x⋆

as it had been done previously), which directly leads to:

Dh∗

(

∇h∗(x⋆)−
1

L
[∇f(x⋆)−∇f(x)]

)

≤ 1

L
Df (x⋆, x). (64)
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The first part of the proposition follows from the fact that ∇f(x⋆) = 0. For the rest proof, we start with Inequality (32),

which gives:

0 = Dh∗(∇h(x⋆)−
1

L
∇f(x),∇h(x⋆))

= Dh

(

x⋆,∇h∗
(

∇h(x⋆)−
1

L
∇f(x)

))

.

At this point, strict convexity of h leads to ∇h∗ (∇h(x⋆)− 1
L∇f(x)

)

= x⋆, so that ∇f(x) = 0 by applying ∇h on both

sides.

D. Variation on the convex case

In this section, we quickly illustrate that the result we obtain is tightly linked to the notion of variance that we define. As

an example, a variation of Theorem 3.3 can be obtained with a control on f(x)− f(x⋆), but this requires a different notion

of variance:

Theorem D.1. If f is convex, the iterates obtained by SMD using a constant step-sizes η > 0 verify

f

(

1

T

T
∑

k=0

x(k)

)

− f(x⋆) ≤
Dh(x⋆, x

(0))

ηT
+ ησ̃2

⋆,η, (65)

where

σ̃2
⋆,η =

1

η
max
x∈C

{

1

η
E
[

Dh(x, x
+)
]

−Df (x⋆, x)

}

. (66)

Note that this alternative variance definition can be unbounded even when σ2
⋆,η is bounded, as is the case for instance in

the Gaussian MAP example. Besides, it does not inherit from most of the good properties of σ2
⋆,η presented in Section 2,

and cannot be compared to the other standard variance notions. The main case in which this alternative definition makes

sense is the Euclidean case, in which σ̃2
⋆,η can be bounded using cocoercivity.

Proof of Theorem D.1. This proof directly starts from Lemma C.1:

E

[

Dh(x⋆, x
(k+1))

]

= Dh(x⋆, x
(k))− ηDf (x⋆, x

(k))− η[f(x(k))− f(x⋆)] + E

[

Dh(x
(k), (x(k))+)

]

(67)

= Dh(x⋆, x
(k))− η[f(x(k))− f(x⋆)] + η

[

1

η
E

[

Dh(x
(k), (x(k))+)

]

−Df (x⋆, x
(k))

]

(68)

≤ Dh(x⋆, x
(k))− η[f(x(k))− f(x⋆)] + η2σ̃2

⋆,η. (69)

Summing this for k = 0 to T , and dividing by ηT we obtain:

1

T

T
∑

k=0

f(x(k))− f(x⋆) ≤
Dh(x⋆, x

(0))

ηT
+ ησ̃2

⋆,η (70)

The result on the average iterate then follows from convexity of f .

E. Stochastic Mirror Descent with a Proximal term

We are interested in this section in a variation of the original problem, where we would like to solve the following problem:

min
x∈C

f(x) + g(x), (71)

where g is a convex proper lower semi-continuous function (but not necessarily differentiable). This problem can be solved

using the following stochastic proximal mirror descent algorithm:

x+ = argmin
u∈C

g(u) +∇fξ(x)
⊤u+

1

η
Dh(u, x). (72)
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In this case, the iterations write:

∇h(x+) = ∇h(x)− η [∇fξ(x) + ω] (73)

where ω ∈ ∂g(x+). We now prove an equivalent for Lemma C.1.

Lemma E.1. Let x+ ∈ C be such that ∇h(x+) = ∇h(x)−η [∇fξ(x) + ω], with fξ a random differentiable function such

that E [fξ] = f and ω ∈ ∂g(x+) where g is a convex proper lower semi-continuous function. Then, for all y ∈ C ∩ domg,

E
[

Dh(y, x
+)
]

= Dh(y, x)− ηDf (y, x)− η[f(x) − f(y)] + E
[

Dh(x, x
+f )−Dh(x

+, x+f )
]

+ ηω⊤(y − x+), (74)

where x+f is the point such that ∇h(x+f ) = ∇h(x)− η∇fξ(x).

Proof. We write:

Dh(y, x
+) = h(y)− h(x+)−∇h(x+)⊤(y − x+)

= h(y)− h(x+f )−∇h(x+f )⊤(y − x+) + ηω⊤(y − x+)− h(x+) + h(x+f )

= Dh(y, x
+f )−∇h(x+f )⊤(x+f − x+) + ηω⊤(y − x+)− h(x+) + h(x+f )

= Dh(y, x
+f )−Dh(x

+, x+f ) + ηω⊤(y − x+)

The result follows from applying Lemma C.1 to Dh(y, x
+f ).

Note that by abuse of notation, if we denoteDg(y, x
+) = g(y)−g(x+)−ω⊤(y−x+), andDg(y, x) = g(y)−g(x)−ω⊤

x (y−
x) for any ωx ∈ ∂g(x), then with a few lines of computations, and noting in particular that Dh(x, x

+f )−Dh(x
+, x+f ) =

Dh(x, x
+) −

[

∇h(x+f )−∇h(x+)
]⊤

(x − x+) we recover exactly the result of Lemma C.1 applied to the iterations in

which we take (sub)-gradients of f + g with mirror h+ ηg. This is not surprising and justifies the remark about Stochastic

Mirror Descent with a proximal term written out in the main text. In particular, Theorems 3.1 and 3.3 can be transposed

directly to the composite (f + g) setting by simply defining generalized Bregman divergences where the gradient parts are

replaced by the subgradients picked in the actual SMD steps.

While h + ηg does not necessarily satisfy Assumption 1, the key point is that iterations can be written in the form of

Equation (73), which is the case for instance if g is the indicator of a convex set.

Note that Corollary 3.2 also holds in the same way, since relative smoothness is only needed to obtain that

ηDfξ+g(x, x
+) ≤ Dh+ηg(x, x

+), which is equivalent to ηDfξ(x, x
+) ≤ Dh(x, x

+), which holds by L-relative smooth-

ness of f with respect to h for η ≤ 1/L.

F. Gaussian case with unknown covariance.

In this section, we prove the various results for Gaussian estimation with unknown mean and covariance. For the sake of

brevity, we only prove the propositions, and refer the interested reader to, e.g., Le Priol et al. (2021) for standard results

about the setting.

F.1. Instanciation in the Stochastic mirror descent setting

We first write what the various divergences are in our setting, together with the mirror updates and finally the form of fη.

Following Le Priol et al. (2021, Section 4.2), we write that:

θ1 =
m

Σ2
, θ2 = − 1

2Σ2
. (75)

This allows us to express A(θ) in terms of (m,Σ2):

A(θ) = −1

2
log(−θ2)−

θ21
4θ2

=
1

2
log(2Σ2) +

1

2

m2

Σ2
(76)

Proposition F.1. The Bregman divergence with respect to θ̃, θ writes:

DA(θ̃, θ) = −1

2
log

(

Σ2

Σ̃2

)

− Σ̃2 − Σ2

2Σ̃2
+

(m̃−m)2

2Σ̃2
. (77)
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Proof. We know that ∇A(θ) = µ = (m,m2 +Σ2). Therefore,

∇A(θ)⊤(θ̃ − θ) = m

(

m̃

Σ̃2
− m

Σ2

)

− 1

2
(m2 +Σ2)

(

1

Σ̃2
− 1

Σ2

)

(78)

=
mm̃

Σ̃2
− m2

2Σ2
− m2

2Σ̃2
− 1

2

(

Σ2

Σ̃2
− 1

)

(79)

= − (m− m̃)2

2Σ̃2
+

m̃2

2Σ̃2
− m2

2Σ2
− Σ2 − Σ̃2

2Σ̃2
. (80)

Using Equation (76), we obtain:

DA(θ̃, θ) = A(θ̃)−A(θ) −∇A(θ)⊤(θ̃ − θ)

=
1

2
log(2Σ̃2)− 1

2
log(2Σ2) +

Σ2 − Σ̃2

2Σ̃2
+

(m− m̃)2

2Σ̃2
,

which finishes the proof.

In the Gaussian with unknown covariance, the sufficient statistics are:

T (X) = (X,X2), (81)

where x ∈ R is an observation drawn from N (m⋆,Σ⋆).

Let us now prove the proposition on the updates, which corresponds to Equations (39) and (40):

Proposition F.2. In (m,Σ2) parameters, the updates write:

m+ = (1− η)m+ ηX, (82)

(Σ2)+ = (1− η)
[

Σ2 + η(m−X)2
]

. (83)

Proof. Since the (stochastic) gradients write g(µ) = µ− T (X), the iterations are defined by:

µ+
1 = (1− η)µ1 + ηX (84)

µ+
2 = (1− η)µ2 + ηX2. (85)

Since (µ1, µ2) = (m,m2 +Σ2), the update on m is immediate. For the update on Σ2, we write:

(Σ2)+ = µ+
2 − (m+)2

= (1− η)µ2 + ηX2 − ((1− η)m+ ηX)2

= (1− η)Σ2 + (1 − η)m2 + ηX2 − (1− η)2m2 − 2η(1− η)Xm− η2X2

= (1− η)Σ2 + η(1 − η)(m−X)2.

We can now proceed to proving the form of fη. We first start by writing that:

f(θ) = A(θ) − θ⊤(m⋆,m
2
⋆ +Σ2

⋆) (86)

=
1

2
log(2Σ2) +

1

2

m2

Σ2
− mm⋆

Σ2
+

m2
⋆ +Σ2

⋆

2Σ2
. (87)

Therefore,

f(θ) =
1

2
log(2Σ2) +

Σ2
⋆

2Σ2
+

(m−m⋆)
2

2Σ2
(88)

In particular,

f(θ)− f(θ⋆) =
1

2
log

(

Σ2

Σ2
⋆

)

+
Σ2

⋆ − Σ2

2Σ2
+

(m−m⋆)
2

2Σ2
(89)
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Note that, as expected, this corresponds to DA(θ, θ⋆), that we can also compute through Proposition F.1. We now write:

DA(θ, θ
+) = −1

2
log

(

(Σ2)+

Σ2

)

− Σ2 − (Σ2)+

2Σ2
+

(m−m+)2

2Σ2
(90)

= −1

2
log

(

(1 − η)

[

1 + η
(m−X)2

Σ2

])

+
(1− η)(Σ2 + η(m−X)2)− Σ2

2Σ2
+

η2(m−X)2

2Σ2
(91)

= −1

2
log

(

(1 − η)

[

1 + η
(m−X)2

Σ2

])

− η

2
+ η(1 − η)

(m−X)2

2Σ2
+

η2(m−X)2

2Σ2
(92)

= −1

2
log

(

(1 − η)

[

1 + η
(m−X)2

Σ2

])

− η

2
+ η

(m−X)2

2Σ2
. (93)

Therefore,

f(θ)− DA(θ, θ
+)

η
− f(θ⋆) (94)

=
1

2
log

(

Σ2

Σ2
⋆

)

+
Σ2

⋆ − Σ2

2Σ2
+

(m−m⋆)
2

2Σ2
+

1

2η
log

(

(1 − η)

[

1 + η
(m−X)2

Σ2

])

+
1

2
− (m−X)2

2Σ2
(95)

=
1

2
log

(

Σ2

Σ2
⋆

)

+
1

2η
log

(

(1 − η)

[

1 + η
(m−X)2

Σ2

])

+
Σ2

⋆

2Σ2
+

(m−m⋆)
2

2Σ2
− (m−X)2

2Σ2
. (96)

Finally, E
[

(m−X)2
]

= (m−m⋆)
2 +Σ2

⋆, and so:

fη(θ)− f(θ⋆) =
1

2
log

(

Σ2

Σ2
⋆

)

+
1

2η
E

[

log

(

(1− η)

[

1 + η
(m−X)2

Σ2

])]

, (97)

which precisely corresponds to Equation (41). We now proceed to proving bounds on θη for η < 1.

F.2. Bounding the stochastic mirror descent variance σ2
⋆,η.

Now that we have an explicit form for fη , we can characterize its minimizer θη , and use this to prove results on fη(θη),
which will in turn lead to bounds on σ2

⋆,η . This is the core of Lemma 4.2.

Proof. Proof of Lemma 4.2. The proof will proceed in three different stages:

• Differentiating fη with respect to m and Σ2.

• Using these expressions to obtain bounds on the (mη,Σ
2
η) for which ∇fη is 0.

• Plugging these bounds into the expression of fη to bound Σ2
η.

1 - Differentiating fη. Before differentiating, we rewrite:

fη(θ)− f(θ⋆) =
1

2
log
(

Σ2
)

+
1

2η
E

[

log

(

1 + η
(m−X)2

Σ2

)]

− 1

2
log
(

Σ2
⋆

)

+
1

2η
log(1− η) (98)

= −1− η

2η
log
(

Σ2
)

+
1

2η
E
[

log
(

Σ2 + η(m−X)2
)]

− 1

2
log
(

Σ2
⋆

)

+
1

2η
log(1 − η). (99)

Indeed, the two terms on the right are constant and so do not matter. If we differentiate in m, we obtain:

∇mfη(θ) = E

[

1

2η
2η

m−X

Σ2

1

Σ2 + η(m−X)2

]

= E

[

m−X

Σ2 + η(m−X)2

]

. (100)

Now, differentiating in Σ2 yields:

∇Σ2fη(θ) = −1− η

2ηΣ2
+

1

2η
E

[

1

Σ2 + η(m−X)2

]

=
1

2Σ2
− E

[

(m−X)2

2Σ2(Σ2 + η(m−X)2)

]

. (101)
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2 - Obtaining bounds on (mη,Σ
2
η). The solution to ∇mfη(θ) = 0 is m = m⋆. Indeed, it is direct to verify that in this

case, E
[

X̃
Σ2+ηX̃2

]

= 0 since X̃ = m⋆ −X is symmetric (with respect to 0). For m > m⋆, E
[

X̃
Σ2+ηX̃2

]

> 0 since we

integrate the same values as the previous case, but now more mass is put on the positive values (and similarly for m < m⋆).

Note that this is the case regardless of Σ2
η.

We are now interested in Σ2
η. Note that we will not get such a clean expression as for mη , but only bounds. From its

expression, we deduce that ∇Σ2fη(θη) = 0 can be reformulated as:

E

[

(mη −X)2

Σ2
η + ηη(m−X)2

]

= 1 (102)

For the upper bound, we simply write that:

1 = E

[

(mη −X)2

Σ2
η + ηη(m−X)2

]

≤ E

[

(mη −X)2

Σ2
η

]

=
Σ2

⋆

Σ2
η

, (103)

from which we deduce that Σ2
η ≤ Σ2

⋆. Let us now introduce some α > 0. We have that:

E

[

(mη −X)2

Σ2
η + η(mη −X)2

]

= E

[

(mη −X)2

α− α+Σ2
η + η(mη −X)2

]

= E

[

(mη −X)2

α

1

1− 1 +
Σ2

η+η(mη−X)2

α

]

(104)

We now use that for u ≥ −1, 1
1+u ≥ 1− u, and so:

E

[

(mη −X)2

Σ2
η + η(mη −X)2

]

≥ E

[

(mη −X)2

α

(

1−
[

−1 +
Σ2

η + η(mη −X)2

α

])]

(105)

= E

[

(mη −X)2

α

(

2−
Σ2

η

α

)

− η
(mη −X)4

α2

]

. (106)

Now, recall that mη = m⋆, so X −mη ∼ N (0,Σ⋆), leading to

1 = E

[

(mη −X)2

Σ2
η + η(mη −X)2

]

≥ Σ2
⋆

α

(

2−
Σ2

η

α

)

− η
3Σ4

⋆

α2
. (107)

Rearranging terms, we obtain:

α2

Σ2
⋆

− 2α ≥ −Σ2
η − 3Σ2

⋆, so Σ2
η ≥ 2αΣ2

⋆ − α2

Σ2
⋆

− 3ηΣ2
⋆. (108)

We see that α = Σ2
⋆ maximizes the right term, and we obtain the desired result, i.e.:

Σ2
η ≥ (1 − 3η)Σ2

⋆. (109)

Unfortunately, we see that this bound is only informative for 3η < 1. For the rest of the cases, we will use the Markov

inequality instead, which writes for all a > 0:

P

(

(mη −X)2

Σ2
η + η(mη −X)2

≥ a

)

≤ 1

a
E

[

(mη −X)2

Σ2
η + η(mη −X)2

]

=
1

a
. (110)

Yet,

P

(

(mη −X)2

Σ2
η + η(mη −X)2

≥ a

)

= P

(

(mη −X)2

Σ2
⋆

≥ a

1− ηa

Σ2
η

Σ2
⋆

)

= 2P

(

X −m⋆

Σ⋆
≥
√

a

1− ηa

Ση

Σ⋆

)

. (111)
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Therefore, denoting Φ the cumulative distribution function of the standard Gaussian, we have:

2

(

1− Φ

(
√

a

1− ηa

Ση

Σ⋆

))

≤ 1

a
, (112)

and since Φ−1 is an increasing function, this leads to:

√

a

1− ηa

Ση

Σ⋆
≥ Φ−1

(

1− 1

2a

)

, (113)

so that:

Ση ≥
√

1− ηa
Φ−1

(

1− 1
2a

)

√
a

Σ⋆ (114)

One can check that Φ−1
(

1− 1
2a

)

/
√
a < 1 for all a, which is consistent with the fact that Σ2

η ≤ Σ2
⋆. Also note that for

η = 1, a non-trivial bound would require a < 1, but then Φ−1
(

1− 1
2a

)

≤ 0 so (as expected), we cannot get better than

Σ2
η ≥ 0. However, the previous bounding (Equation (109)) is more precise for small η since Φ−1

(

1− 1
2a

)

/
√
a < 1 − c

with c > 0 a constant regardless of a. In particular, for any ε, by using any 1 < a < 1/(1− ε), we obtain that Σ2
η ≥ αεΣ

2
⋆

for some constant αε that only depends on the a that we choose. In particular, we can handle the cases η = 1/2 and

η = 1/3 that gave trivial results Σ2
η ≥ 0 with the previous bounds.

The last part consists in proving that fη(θη)− f(θ⋆) ≥ 1
2 log

(

Σ2
η

Σ2
⋆

)

. To do so, we start back from

fη(θ)− f(θ⋆) =
1

2
log

(

Σ2

Σ2
⋆

)

+
1

2η
E

[

log

(

(1− η)

[

1 + η
(m−X)2

Σ2

])]

,

and show that E
[

log
(

(1− η)
[

1 + η
(mη−X)2

Σ2
η

])]

≥ 0. We start by the inequality log(1 + x) ≥ x
1+x , leading to:

E

[

log

(

(1− η)

[

1 + η
(mη −X)2

Σ2
η

])]

≥ E





(1− η)
[

1 + η
(mη−X)2

Σ2
η

]

− 1

(1− η)
[

1 + η
(mη−X)2

Σ2
η

]



 (115)

= E





η(1 − η)
(mη−X)2

Σ2
η

− η

(1− η)
[

1 + η
(mη−X)2

Σ2
η

]



 (116)

= ηE

[

(1 − η)(mη −X)2 − Σ2
η

(1− η)
[

Σ2
η + η(mη −X)2

]

]

(117)

Recall that the optimality conditions for (mη,Σ
2
η) write:

1 = E

[

(mη −X)2

Σ2
η + η(mη −X)2

]

=
1

η
E

[

1−
Σ2

η

Σ2
η + η(mη −X)2

]

, (118)

so that

E

[

Σ2
η

Σ2
η + η(mη −X)2

]

= 1− η. (119)

Combining these, we obtain that

E

[

log

(

(1− η)

[

1 + η
(mη −X)2

Σ2
η

])]

≥ ηE

[

(1− η)(mη −X)2 − Σ2
η

(1 − η)
[

Σ2
η + η(mη −X)2

]

]

= η

(

E

[

(mη −X)2

Σ2
η + η(mη −X)2

]

− 1

1− η
E

[

Σ2
η

Σ2
η + η(mη −X)2

])

= 0,
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which is the desired result.

The final result is obtained by plugging the lower bounds for Σ2
η into this bound, leading to either σ2

⋆,η ≤ − 1
2η log(1− 3η)

for η < 1/3 or σ2
⋆,η ≤ − 1

2η logαε for η < 1− ε.

F.3. Unrolling the recursions to derive actual convergence results.

F.3.1. PROOF OF THEOREM 4.3

Now that we have bounded the stochastic mirror descent variance σ2
⋆,η in this setting, we can plug it into Theorem 3.1 to

obtain finite-time convergence guarantees on the MAP and MLE estimators.

Proof of Theorem 4.3. Starting from Theorem 3.1, we obtain:

DA(θ⋆, θ
(k+1)) ≤ (1− η)DA(θ⋆, θ

(k))− η

2
log (1− 3η) ≤ (1− η)DA(θ⋆, θ

(k)) +
3η2

2
, (120)

where the right term is replaced by cε (where cǫ = − 1
2 logαε) for k ≤ 3. Taking η = 1/k for k > 1 and multiplying by k

leads for k > 3 to:

kDA(θ⋆, θ
(k+1)) ≤ (k − 1)DA(θ⋆, θ

(k)) +
3

2k
. (121)

Therefore, a telescopic sum leads to, for n0 > 0:

(n+ n0)DA(θ⋆, θ
(n)) ≤ n0DA(θ⋆, θ

(0)) +
3

2

n+n0
∑

k=n0

1

k
+ 2c1/2, (122)

and so, since
∑n

k=n0

1
k ≤ log(n+ n0 + 1)− log(n0):

DA(θ⋆, θ
(n)) ≤ n0DA(θ⋆, θ

(0)) + (3/2) log(1 + (n+ 1)/n0) + Γ

n+ n0
, (123)

where Γ = 2c1/2 and we actually have Γ = 0 for n0 > 3.

F.3.2. O(1/n) CONVERGENCE RESULT.

We now consider a different estimator (from the MAP and the MLE), which we construct in the following way:

• Choose n0 ≥ 6 and initial parameter θ̃(n0).

• Obtain θ̃(n) by performing n − n0 stochastic mirror descent steps from θ̃(n0) with step-sizes ηk = 2/(k + 1) for

k ∈ {n0, ..., n}.

This estimator is a modified version of the MAP, where n0 controls how much weight we would like to put on the prior,

and θ̃(n0) would typically be the same starting parameter as for the MAP estimator. This estimator is built so that we can

use the convergence analysis from Lacoste-Julien et al. (2012) and obtain a O(1/n) convergence rate. Note that we make

the n0 ≥ 6 restriction for simplicity to ensure that σ2
⋆,η ≤ 3/2, but the result can be easily adapted to n0 ≥ 2.

Proposition F.3. After n− n0 steps, this modified estimator θ(n) verifies:

EDh(θ⋆, θ̃
(n)) ≤ 2n0(n0 − 1)

n(n− 1)
Dh(θ⋆, θ̃

(n0)) +
6

n
. (124)

Proof. Let us note Dk = E

[

Dh(θ⋆, θ̃
(k))
]

. In this case, using that σ2
⋆,η ≤ 3/2, Theorem 3.1 writes (since µ = 1):

Dk+1 ≤ (1− ηk)Dk +
3η2k
2

. (125)
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At this point, we can multiply by k(k + 1) on both sides, and take ηk = 2
k+1 for k ≥ n0. Remarking that 1 − ηk =

1− 2
k+1 = k−1

k+1 , we obtain that:

(k + 1)kDk+1 ≤ k(k − 1)Dk +
6k

k + 1
≤ k(k − 1)Dk + 6. (126)

Unrolling this recursion from k = n0 to k = n− 1 (since (k + 1)kDk+1 = Lk+1, where Lk = k(k − 1)Dk), we obtain:

n(n− 1)Dn ≤ n0(n0 − 1)Dn0 +

n−1
∑

k=n0

6, (127)

and the result follows by dividing by n(n− 1), and using that (n− n0)/(n− 1) ≤ 1.

F.4. The case of the MLE

For the MLE estimator, directly applying the mirror descent approach would require using η0 = 1, starting from an arbitrary

θ(0) (that would not affect the results anyway). The problem in this case is that Dh(θ⋆, θ
(1)) is infinite since Σ(2) = 0. This

also means that we cannot start the stochastic mirror descent algorithm from θ(1), since the recursion would still involve

the infinite Dh(θ⋆, θ
(1)). Therefore, in the case of the MLE, considering that the first two samples are X(1) and X(2), then

the first two points are:

m(1) = X(1),Σ(1) = 0 and m(2) =
X(1) +X(2)

2
, (Σ(2))2 =

(X(1) −X(2))2

4
. (128)

More generally, a direct recursion for the MLE leads to:

m(n) =
1

n

n
∑

k=1

X(k), (Σ(n))2 =
1

n

n
∑

k=1

(X(k) −m(n))2. (129)

From this, we derive that:

E

[

(Σ(n))2
]

= E

[

(X(n) −m(n))2
]

(130)

= E

[

((

1− 1

n

)

X(n) − n− 1

n
m(n−1)

)2
]

(131)

=

(

n− 1

n

)2

E

[

(

X(n) −m⋆ − (m(n−1) −m⋆)
)2
]

(132)

=

(

n− 1

n

)2

E

[

(

X(n) −m⋆

)2

+
(

m(n−1) −m⋆

)2
]

(133)

=

(

n− 1

n

)2(

Σ2
⋆ +

1

n− 1
Σ2

⋆

)

=

(

1− 1

n

)

Σ2
⋆, (134)

where (133) comes from the fact that X(n) and m(n−1) are independent with mean m⋆. Plugging this into the expression

of Dh(θ⋆, θ) for the MLE after n steps, we obtain:

Dh(θ⋆, θ
(n)) = −1

2
E

[

log
(Σ(n))2

Σ2
⋆

]

. (135)

Unfortunately, there is no closed-form for this expression for arbitrary n, hence the need for a more involved analysis, for

instance through the mirror descent framework. For the case n = 2 however (which is the one we are interested in), we

obtain that

Dh(θ⋆, θ
(2)) = −1

2
E

[

log

(

X(1) −X(2)

2Σ⋆

)2
]

= −1

2
E

[

log
Y 2

2

]

, (136)
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where Y = X(1)−X(2)
√
2Σ⋆

∼ N (0, 1). Therefore, this can simply be treated as a constant that we can precisely evaluate

numerically (for instance remarking that Y 2 is gamma distributed and using results on logarithmic expectations of gamma

distributions).

For n > 2, it is tempting to use the convexity of − log to use a similar reasoning, but this only leads to a constant bound

on Dh(θ⋆, θ
(n)).
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