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The description of the generation mechanism of impulse surface waves remains an important
challenge in environmental fluid mechanics, owing to the need for a better understanding
of large-scale phenomena such as landslide-generated tsunamis. In the present study, we
investigated the generation phase of laboratory-scale water waves induced by the impulsive
motion of a rigid piston, whose maximum velocity 𝑈 and total stroke 𝐿 are independently
varied, as well as the initial liquid depth ℎ. By doing so, the influence of two dimensionless
numbers is studied: the Froude number Fr𝑝=𝑈/(𝑔ℎ)1/2, with 𝑔 the gravitational acceleration,
and the relative stroke Λ𝑝 = 𝐿/ℎ of the piston. During the constant acceleration phase of the
vertical wall, a transient water bump forms and remains localised in the vicinity of the piston,
for all investigated parameters. Experiments with a small relative acceleration 𝛾/𝑔, where
𝛾 = 𝑈2/𝐿, are well captured by a first-order potential flow theory established by Joo et al.
(1990), which provides a fair estimate of the overall free surface elevation and the maximum
wave amplitude reached at the contact with the piston. For large Froude numbers, however,
wave breaking hinders the use of such an approach. In this case, an unsteady hydraulic jump
theory is proposed, which accurately predicts the time evolution of the wave amplitude at the
contact with the piston throughout the generation phase. At the end of the formation process,
the dimensionless volume of the bump evolves linearly with Λ𝑝 and the wave aspect ratio is
found to be governed, at first-order, by the relative acceleration 𝛾/𝑔. As the piston begins its
constant deceleration, the water bump evolves into a propagating wave and several regimes
such as dispersive, solitary-like and bore waves, as well as water jets are then reported and
mapped in a phase diagram in the (Fr𝑝, Λ𝑝) plane. While the transition from waves to water
jets is observed if the typical acceleration of the piston is close enough to the gravitational
acceleration 𝑔, the wave regimes are found to be mainly selected by the relative piston stroke
Λ𝑝. On the other hand, the Froude number determines whether the generated wave breaks
or not.
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1. Introduction
The generation of waves at the surface of a liquid is a crucial physical problem for
understanding a wide range of phenomena that occur in Nature or in industrial processes,
such as periodic water waves generated by the wind at the ocean surface (Perrard et al. 2019),
slamming in the context of ship hydrodynamics (Dias & Ghidaglia 2018), sloshing in moving
containers (Chwang & Wang 1984; Ibrahim 2005), impulse waves generated by landslides
(Fritz et al. 2004; Robbe-Saule et al. 2021a; Rauter et al. 2022; Darvenne et al. 2024) or
iceberg calving (Wolper et al. 2021).

The description of the free surface elevation resulting from an initial impulsion is a
long-standing problem in fluid mechanics that can be traced back to the classical works of
Cauchy and Poisson at the beginning of the nineteenth-century (Poisson 1818; Cauchy 1827;
Darrigol 2003). Later, surface waves produced by a harmonic forcing have been studied
analytically by Havelock (1929), who employed linear theory to this end [see also Biésel
& Suquet (1951a,b,c) for more detail]. After these seminal contributions, and motivated
by the growing number of potential applications of the subject, many studies followed,
that investigated waves generated by the impulsive motion of a rigid body, with the aim of
describing the free surface elevation in the vicinity of the forcing region. In particular, based
on the prior theoretical work made by Kennard (1949), Noda (1970) derived solutions to
the linearized equations for gravity surface waves corresponding to two idealized cases of
landslides: the vertical fall of a solid block and the horizontal translation of a rigid wall. In
the second scenario, the linear relationship

𝐴𝑚0

ℎ
≃ 1.2 Fr𝑝 (1.1)

was established between the maximum wave amplitude 𝐴𝑚0 at the contact with the translating
piston, the initial fluid depth ℎ and the Froude number Fr𝑝 = 𝑈/

√︁
𝑔ℎ. This dimensionless

quantity compares the forcing velocity 𝑈 of the advancing wall to the celerity
√︁
𝑔ℎ of linear

gravity waves in shallow water, where 𝑔 stands for the gravitational acceleration. The linear
relationship obtained by Noda (1970) was successfully compared with previous experiments
performed by Miller & White (1966), and further confirmed by another experimental
investigation conducted by Das & Wiegel (1972). In this study, these authors reported a
phase diagram in the (Fr𝑝, Λ𝑝) plane, with Λ𝑝 = 𝐿/ℎ being the ratio between the total piston
stroke 𝐿 and the initial water depth ℎ, and Fr𝑝 being calculated using the average velocity of
the advancing wall during the generation phase. Several wave regimes were identified: two
dominated by dispersive effects (the so-called oscillatory and non-linear transition regions),
and two revealing an increasing influence of non-linear effects (solitary and bore waves).
Other experimental measurements and theory for the force developing on an accelerating
piston in a fluid channel and the free surface elevation have also been reported by Synolakis
(1986, 1989) for different kinds of piston motion. In particular, these studies revealed that
the maximum relative amplitude of the wave is very close to the linear law 𝐴𝑚0/ℎ = Fr𝑝
when Fr𝑝 < 1. However, when the Froude number becomes large, two nonlinear theoretical
relations are put forward by Synolakis (1986, 1989) to connect the wave amplitude at the
contact with the piston to Fr𝑝: under shallow water conditions and using the method of
characteristics, one gets
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𝐴𝑚0

ℎ
= Fr𝑝 +

1
4

Fr𝑝2 (1.2)

while, when the plate is generating bores,

Fr𝑝 =
𝐴𝑚0

ℎ

(
1 + 𝐴𝑚0/(2ℎ)

1 + 𝐴𝑚0/ℎ

)1/2
(1.3)

results from the mass and momentum conservation equations (Whitham 1999). This second
nonlinear law has also been shown to give good predictions for bore waves generated by the
collapse of a granular column into shallow water, where the granular front acts like a rigid
piston (Sarlin et al. 2021b).

In another approach of the problem, several authors such as Chwang (1983), Lin (1984),
or Chwang & Wang (1984) considered the Euler equations and developed methods based on
the potential flow assumption and on small-time expansions to model the early generation
phase of impulse waves. They derived first and second-order solutions for the free surface
elevation and identified a singular behaviour at the contact point with the advancing rigid
wall. In particular, Chwang & Wang (1984) described the structure of the nascent wave in the
case of an impulsive sloshing motion, with accelerated rectangular and cylindrical containers
partially filled with water. The non-uniformity of the solution was successfully analyzed by
Roberts (1987) who developed a theory based on small-amplitude expansions, which was
shown to circumvent the singular behaviour at the contact point between the free surface and
the solid piston. This aspect was also studied by King & Needham (1994), who considered the
case of waves generated by a uniformly accelerated plate and employed matched asymptotic
small-time expansions, which allowed these authors to develop a temporally uniform solution.
Similar approaches were followed later by Needham et al. (2007) and Uddin & Needham
(2015), who considered the free surface elevation caused by a rigid wall advancing at constant
velocity and the influence of weak surface tension effects on the problem, respectively. In the
latter case, Uddin & Needham (2015) demonstrated that four asymptotic regions have to be
studied to correctly describe the induced wave. They successfully compared their analytical
solution to experimental measurements of the free surface elevation during the early times
of the generation process. Following Roberts (1987), Joo et al. (1990) developed a theory
based on a Fourier integral method and a small Froude number expansion of a potential flow.
Their analysis included surface tension and wettability effects and led to the derivation of
leading-order solutions for the free surface elevation in various forcing cases including ramp,
step or even harmonic velocities imposed at the advancing wall. The asymptotic behaviour
of these expressions was thoroughly discussed by these authors, as well as the influence of
surface tension which has, for instance, the effect of removing the small wiggles that are
observed otherwise in the vicinity of the wavemaker. In a different approach, to obtain a
given long wave, it is also possible to solve an inverse evolution problem, as shown by the
pioneering works of Goring (1978), Goring & Raichlen (1980), and Synolakis (1990). By
applying this method to solutions to the Korteweg–de Vries equation, these authors were able
to determine the correct trajectory to confer to a piston wavemaker to produce a given solitary
or cnoidal wave. More recently, studies made, amongst others, by Guizien & Barthélemy
(2002) or Francis et al. (2020) refined this approach to accurately generate solitary waves
either in laboratory experiments or numerically.

Despite this extensive research, open questions remain about the generation of impulse
surface waves due to the intrinsic complexity of the problem. In particular, the phase diagram
of the possible wave regimes provided by Das & Wiegel (1972) is, according to these authors,
incomplete, as in their study a weak coupling existed between the stroke and the velocity
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Figure 1: (a) Schematic view of the experimental setup. (b) Prescribed evolution of the relative stroke 𝑥𝑝/𝐿
(dash-dotted line) and velocity 𝑣𝑝/𝑈 (solid line) of the piston with the dimensionless time 𝑡𝑈/𝐿, which
consists of a constant acceleration phase for a time 0 ⩽ 𝑡 ⩽ 𝐿/𝑈 followed by a constant deceleration for
𝐿/𝑈 ⩽ 𝑡 ⩽ 2𝐿/𝑈. The measured values for the relative stroke (□) and velocity (◦) of the piston are also
reported for a typical experiment where 𝐿 = 14.5 cm, 𝑈 = 1.19 m.s−1 and ℎ = 3 cm.

of the piston. A similar pairing is observed in other configurations, for instance in model
experiments studying water waves generated by the gravity-driven fall of a granular medium
(Sarlin et al. 2022a). Thus, what happens when such a coupling is removed remains unclear.
Another important aspect is to determine to which extent the theoretical models existing in the
literature are able to describe waves generated experimentally and give a relevant prediction
for the free surface elevation for the different wave regimes. In this study, we report extensive
experiments on impulse surface waves generated by the horizontal translation of a rigid
vertical wall in a water flume. In section 2, the experimental methods, parameters of interest,
and the forcing mechanism are presented. This is followed by an analysis of the wave
regimes obtained in section 3, which leads to their mapping in a phase diagram. Section
4 provides a qualitative and quantitative description of the generation phase for different
representative examples of impulse waves observed in the experiments. This preludes to a
thorough discussion given in section 5 on the manner to predict the transient shape of the
induced waves and the maximum amplitude reached at the contact with the moving wall
when the generation process ends. Concluding remarks and perspectives for future work are
finally given in section 6.

2. Experimental apparatus and protocol
The present investigation was conducted using the experimental setup sketched in figure 1(a).
It consists of a glass tank of length 2 m, width 15 cm and height 30 cm, in which is placed an
aluminum vertical wall of thickness 1 cm, width 14 cm and height 35 cm, referred to as the
piston in the following. An additional aluminum framing is fixed to the back of the vertical
wall to prevent it from deforming when it is set into motion and to avoid oscillations when
stopped. In addition, a rubber seal is glued to the lateral sides of the piston to maximize
tightness. The piston is initially positioned at one end of the flume and is connected to a
linear brushless servo-motor (Transtechnik DSM 5.22.11Z8).

At the beginning of a series of experiments, water is poured into the flume up to a height ℎ
which defines the initial water depth, as illustrated in figure 1(a). The 𝑥 axis is defined along
the streamwise direction of the channel, the 𝑦 axis follows the spanwise direction and the 𝑧

axis is oriented vertically and opposed to gravity. The origin is set at the undisturbed water
level, at the initial contact between the piston and the liquid. Water is dyed with fluorescein
to enhance the contrast. The piston is then translated along the 𝑥 axis at a controlled velocity
𝑣𝑝 and stroke 𝑥𝑝. As a result of its translating motion, a certain amount of water is displaced,
thereby generating an impulse wave. Two parameters set the dynamics of the piston: the
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maximum velocity𝑈 reached by the translating wall during its horizontal course and its total
stroke 𝐿, i.e., its final position along the channel. It should be emphasised that𝑈 and 𝐿 can be
chosen independently with the present experimental setup. The prescribed impulsive forcing
motion is the following: the piston first undergoes a constant acceleration phase where its
position is given by

𝑥𝑝 (𝑡) =
𝑈2

2𝐿
𝑡2 for 0 ⩽ 𝑡 ⩽ 𝐿/𝑈, (2.1)

followed by a constant deceleration where

𝑥𝑝 (𝑡) = 𝐿

(
− 𝑈2

2𝐿2 𝑡
2 + 2

𝑈

𝐿
𝑡 − 1

)
for 𝐿/𝑈 ⩽ 𝑡 ⩽ 2𝐿/𝑈. (2.2)

As a result, for both stages, the prescribed evolution of the position of the piston is quadratic
in time, whereas the corresponding velocity evolves linearly, as illustrated in figure 1(b)
by the solid and dashed lines, respectively. By doing so, the prescribed wave forcing is
symmetrical with a constant acceleration 𝛾 = 𝑈2/𝐿 (respectively, deceleration −𝑈2/𝐿)
during the first (respectively, second) phase of the motion. The choice of this “free-fall”-like
law of motion is motivated by its geophysical relevance, as highlighted by recent studies on
dry granular collapses and subsequent generated impulse waves, where the granular front
was found to behave in a similar manner (Sarlin et al. 2021a, 2022a). A typical measurement
of the effective motion of the piston during an experiment in terms of relative stroke (□) and
velocity (◦) is shown in figure 1(b). In all cases, the recorded motion is observed to be very
close to the prescribed one.

Through the experiments, the initial water depth ℎ was varied in the range [1, 23] cm, the
stroke 𝐿 of the piston between 2 cm and 30 cm and its maximum velocity 𝑈 in the range
[0.1, 1.2] m.s−1. From these parameters, we define two dimensionless numbers that are the
relative stroke of the piston, Λ𝑝 = 𝐿/ℎ, varied here between 0.1 and 10, and the Froude
number, Fr𝑝 = 𝑈/

√︁
𝑔ℎ, based on the maximum velocity 𝑈 of the piston and varied in the

range [0.09, 2.2]. The systematic variation of these parameters leads to a data set of 266
experiments, which substantially extends the phase space covered by previous studies (Miller
& White 1966; Das & Wiegel 1972).

A Nikon D3300 camera, operating at 50 Hz, records the wave generation process from the
side of the glass tank. As a result, the measurements of the free surface elevation correspond to
the liquid height in the vicinity of the side wall. Based on preliminary experiments, the camera
is placed so as to fully capture the formation stage of the wave and the first moments of its
propagation along the channel, with a spatial resolution varying approximately between 0.2
mm and 0.7 mm. A set of custom MATLAB routines, based on a thresholding method, allows
us to extract the water free surface elevation, 𝜂(𝑥, 𝑡), from the video recordings. From there,
the amplitude 𝐴0(𝑡) = 𝜂(𝑥𝑝, 𝑡) at the contact with the moving wall is determined, as well as
the corresponding mid-height width 𝜆0, defined at any time 𝑡 from 𝜂(𝑥𝑝 + 𝜆0, 𝑡) = 𝐴0(𝑡)/2.
To check the reproducibility of the generated waves, several representative experiments were
repeated five times. By doing so, the wave characteristics 𝐴0 and 𝜆0 obtained at 𝑡 = 𝐿/𝑈
were found to vary by less than 1 % and 4 %, respectively. We did not observe any significant
variation in height across the span of the channel, as reported in Sarlin et al. (2022b) where
views from a different angle are provided.
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3. Mapping of the wave regimes
3.1. Phase diagram of the generated impulse waves

Various kinds of waves are observed through the experiments, as illustrated in figure 2,
which suggests a great behavioural richness. These observations echo the different regimes
previously reported in the context of wave generation by a rigid wall (Miller & White
1966; Noda 1970; Das & Wiegel 1972) or by the entrance of a Newtonian fluid (Kriaa
et al. 2022) or a granular material (Fritz et al. 2004; Heller & Hager 2011; Sarlin et al.
2021b) into water. When both the stroke and velocity of the piston are small enough (i.e.,
for 𝐿 < ℎ and 𝑈 <

√︁
𝑔ℎ), dispersive waves are generated [see figure 2(a)], which are akin to

damped oscillations featuring a decrease in amplitude over time and a frequency dispersion
during their propagation. The behaviour of these waves, and especially the evolution of their
free-surface elevation, is reminiscent of that of the Cauchy–Poisson waves discussed, for
instance, by Whitham (1999). Dispersion gets balanced by non-linearity when the stroke
of the piston is increased (𝐿 ∼ ℎ and 𝑈 <

√︁
𝑔ℎ), leading to the formation of solitary-

like waves as illustrated in figure 2(b). In such cases, the sole propagating peak is not
necessarily stable as, in some experiments, the wave eventually breaks. The presence of
such solitary-like waves indicates that the law of motion of the piston approaches here the
particular situations investigated in the studies of Goring & Raichlen (1980), Synolakis
(1990) and Guizien & Barthélemy (2002), where these authors solved an inverse problem to
accurately generate experimentally solitary waves. When 𝐿 > ℎ, bore waves are engendered
and present a characteristic non-linear steepening of the wavefront that systematically leads
to wave breaking as illustrated in figure 2(c). Wave breaking is spilling when 𝑈 is close
to

√︁
𝑔ℎ, so that no noticeable air entrapment is visible. By increasing 𝑈 while all other

parameters are kept fixed, breaking occurs increasingly closer to the piston, as non-linear
effects become dominant. This eventually leads to the formation of plunging breakers for a
sufficiently large velocity of the piston (𝑈 >

√︁
𝑔ℎ), for which a significant air entrapment

by the breaking wave is observed [see figure 2(c)]. Finally, a last situation is encountered
experimentally when the typical acceleration of the piston is large enough: in this case, a
peculiar thin jet of water gets propelled downstream from the forming wave, as illustrated in
figure 2(d). This regime seems to mark the transition from classical waves to splashes and,
to the best of our knowledge, this is the first report of such a fluid structure in the context
of wave generation by a translating wall. These water jets are, however, reminiscent of the
“hydrodynamic impact craters” reported by Fritz et al. (2003a,b) when these authors studied
the formation of impulse waves caused by the impact of a thin granular slide propelled
pneumatically. In our case, once the jet detaches from the vicinity of the piston, it seems to
experience a ballistic motion over its course before impacting the free surface of the main
fluid body, thereby dissipating a lot of energy in the process. The water jet is reproducible,
i.e., repeating the same experiment twice results in the same observed fluid motion and free
surface deformation. The video recordings of the four cases presented in figures 2(a)-(d) are
available in supplementary material, alongside a typical experiment of a spilling breaking
bore. It should be emphasised that all generated waves can be considered as gravity waves,
as they exhibit a longitudinal dimension significantly larger than the capillary wavelength
of water, 𝜆𝑐 = 2𝜋(𝜎/(𝜌𝑔))1/2 ≃ 1.7 cm (where 𝜎 = 72 mN.m−1 and 𝜌 = 997 kg.m−3 are
the water surface tension and density evaluated at a temperature of 25 ℃, respectively). The
only exception is the water jet regime for which, in some cases, the developing fluid filament
is very thin, as illustrated in figure 2(d). As a result, it is possible that some parts of it are
affected by surface tension after the generation process. However, we will not focus on this
situation in the following discussion.

Following these observations, the parameters ℎ, 𝐿 and 𝑈 have been systematically varied,
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Figure 2: Representative cases of the different regimes of impulse waves observed: (a) a dispersive wave for
𝐿 = 7 cm,𝑈 = 0.42 m.s−1, and ℎ = 20 cm (Fr𝑝 = 0.3 and Λ𝑝 = 0.35) at time 𝑡 = 0.72 s ≃ 4.3𝐿/𝑈 after the
beginning of the piston movement, (b) a solitary-like wave for 𝐿 = 15 cm, 𝑈 = 0.47 m.s−1, and ℎ = 10 cm
(Fr𝑝 = 0.47 and Λ𝑝 = 1.5) at time 𝑡 = 0.76 s ≃ 2.4𝐿/𝑈, (c) a plunging breaking bore for 𝐿 = 30 cm,
𝑈 = 1.09 m.s−1, and ℎ = 3 cm (Fr𝑝 = 2.0 and Λ𝑝 = 10) at time 𝑡 = 0.36 s ≃ 1.3𝐿/𝑈, and (d) a water jet
for 𝐿 = 14.5 cm, 𝑈 = 1.19 m.s−1, and ℎ = 3 cm (Fr𝑝 = 2.2 and Λ𝑝 = 4.8) at time 𝑡 = 0.3 s ≃ 2.5𝑈/𝐿.
For each experiment, the corresponding scale is indicated by a white bar. (e) Diagram of the impulse wave
regimes in the (Fr𝑝 ,Λ𝑝) plane: (◦) dispersive waves, (□) nonbreaking and (■) breaking solitary-like waves,
(▲) spilling and (▶) plunging breaking bores, and (♦) water jets, respectively. Crosses (×) correspond to
experiments at the transition between several wave types, for which it is not straightforward to discriminate
between regimes. The solid line (—) marks the transition from waves to water jets when Λ𝑝 = 2.2 Fr𝑝2

or 𝑈2/𝐿 ≃ 0.45 𝑔. The dashed line ( ) corresponds to the expression Λ𝑝 = 5.8 Fr𝑝2 (or equivalently
𝑈2/𝐿 ≃ 0.17 𝑔), observed in the context of impulse waves engendered by the collapse of a granular column
in shallow water (Sarlin et al. 2022a).

in order to constitute a phase map in the (Fr𝑝, Λ𝑝) plane that is represented in figure 2(e). For
each experiment, the corresponding wave regime has been determined by visual inspection
of the video recordings and is reported with distinct symbols for (◦) dispersive waves, (□)
nonbreaking and (■) breaking solitary-like waves, (▲) spilling and (▶) plunging breaking
bores, and (♦) water jets. In the diagram, crosses (×) correspond to experiments at the
transition between regimes, for which it is challenging to objectively discriminate. No data
are available in the bottom right-hand corner of figure 2(e) as this is the realm of large relative
accelerations 𝛾/𝑔 ≡ 𝑈2/(𝑔𝐿), whereas the motorized piston used in the present study could
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only reach 𝛾/𝑔 ≃ 1. Furthermore, no experiments have been reported in the top left-hand
corner of figure 2(e) corresponding to low relative acceleration, typically 𝛾/𝑔 ≲ 0.04 as, in
this case, the length of our channel is too small to be able to clearly distinguish the wave
regime. As highlighted by the solid line of slope 2 in the log-log plot of figure 2(e), the
transition from waves to water jets (or splashes) occurs when Λ𝑝 ≲ 2.2 Fr𝑝2, or equivalently

𝛾

𝑔
=
𝑈2

𝑔𝐿
≳ 0.45. (3.1)

Interestingly, this criterion does not constitute a threshold based on Λ𝑝 or Fr𝑝 alone, but it
combines the two parameters. From there, it can be inferred that, for a given value of the
relative forcing length Λ𝑝, one can produce such a water jet by starting from either of the
three previously described regions (i.e., of dispersive, solitary-like or bore waves) and then
increasing the Froude number up to the point where relation (3.1) is satisfied. A dashed line,
corresponding to the relation 𝛾/𝑔 ≃ 0.17 (Λ𝑝 = 5.8 Fr𝑝2), is also reported in figure 2(e).
This particular value for the relative acceleration is observed in the context of impulse waves
triggered by gravity-driven granular collapses in shallow water, where the granular front acts
like a moving piston (Sarlin et al. 2022a). Such a relation between 𝛾 and 𝑔 reveals that the
existing coupling between the position of the granular front and its velocity inherently selects
the possible wave regimes observed during a granular collapse into water (either dispersive,
solitary, or bore waves) and explains why no water jets could be observed by Robbe-Saule
et al. (2021a) and Sarlin et al. (2021b). There is a qualitative agreement between the results
reported in the present study and those obtained by Das & Wiegel (1972), who used a similar
experimental configuration. However, a direct quantitative comparison is not straightforward
because the Froude number considered by these authors is based on the average velocity of
the piston rather than on the maximum velocity used here while, at the same time, the precise
law of motion of the piston is not provided by them. The main difference lies in the fact that
Das & Wiegel (1972) did not observe the water jet regime, probably because their setup did
not allow them to achieve a high enough relative acceleration.

3.2. The observed waves regimes in light of the Korteweg – de Vries equation
The richness of the physics at play explains the long-standing research interest on how to
relate each kind of wave to an existing wave theory (Fritz et al. 2004; Heller & Hager
2011). However, a simplified analysis might already be helpful in the aim of understanding
the origins of these different regimes of impulse waves. Indeed, in the case of weakly non-
linear shallow water waves, one can consider, for instance, the classical Korteweg – de Vries
equation to describe the evolution of the free surface elevation, 𝜂(𝑥, 𝑡) (Korteweg & de Vries
1895). In its standardized dimensionless form, this equation reads

𝜂∗𝑡∗ + 𝜂∗𝜂∗𝑥∗ + 𝜂∗𝑥∗𝑥∗𝑥∗ = 0, (3.2)

with 𝑡∗ ≡ 𝑡
√︁
𝑔/ℎ/6, 𝑥∗ ≡ 𝑥/ℎ, and 𝜂∗ ≡ 9𝜂/ℎ + 6. Equation (3.2) involves a competition

between a non-linear term, 𝜂∗𝜂∗
𝑥∗ , that tends to steepen the wavefront, and a dispersive

one, 𝜂∗
𝑥∗𝑥∗𝑥∗ , which promotes the appearance of an oscillatory behaviour (Whitham 1999;

Dauxois & Peyrard 2004). In a slightly different approach, we consider here an alternate
transformation based on the variables 𝑡 ≡ 𝑡

√︁
𝑔/ℎ/6, 𝑥 ≡ 𝑥/𝐿, and 𝜂 ≡ 9𝜂/ℎ + 6, which leads

to

𝜂𝑡 + Λ𝑝
−1 𝜂𝜂 �̃� + Λ𝑝

−3 𝜂 �̃� �̃� �̃� = 0. (3.3)
This writing, which differs from the previous one by using 𝐿 instead of ℎ for making 𝑥
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dimensionless, reveals the importance of the relative stroke of the piston, Λ𝑝 = 𝐿/ℎ, in the
selection of the wave regime. Indeed, equation (3.3) suggests that increasingΛ𝑝 tends to favor
non-linearity, which is in agreement with the presence of bore waves (▶), (♦) for large values
of this dimensionless number [figure 2(e)]. Contrariwise, decreasing Λ𝑝 enforces dispersive
effects and, as a result, the development of oscillatory waves (◦), which also agrees with
the present experimental observations. This analysis also suggests that the Froude number
has a less significant influence on the selection of the wave regime, as illustrated in figure
2(e). Indeed, it can be observed at a crude first order that, by increasing Fr𝑝 while keeping
a constant value for Λ𝑝, there is almost no change from a wave regime to another above
the transition from waves to water jets delimited by equation (3.1). Nevertheless, the Froude
number strongly determines whether the generated waves are stable or not: for instance, as
can be seen in figure 2(e), empty (i.e., non-breaking) and filled (i.e., breaking) symbols for the
solitary-like and bore wave regimes are separated based on Fr𝑝 in such a way that breaking
systematically occurs when Fr𝑝 ≳ 0.6, regardless of the value of Λ𝑝. However, all these
observations do not apply to the water jet regime, which occurs for relative accelerations
larger than the critical value given by equation (3.1), as discussed previously.

The presence of these various wave regimes raises questions about their generation process:
is there a universal manner of describing it, or are different approaches necessary to this end?
What governs the typical extent of the disturbance produced by the translational motion of
the piston when it injects energy into the fluid? To address these points, a more thorough
analysis of the wave hydrodynamics during the generation phase is provided thereafter.

4. The birth of an impulse surface wave
4.1. Time evolution of the induced water bump

When the piston starts its translational motion along the channel, a water bump forms in
the vicinity of the advancing wall, leaving the rest of the fluid undisturbed. This initial
perturbation then grows in volume as long as the vertical wall is accelerating, as illustrated
in figure 3 for four representative experiments. At the end of this generation phase, the bump
reaches its maximum elevation 𝐴𝑚0 at the contact with the piston. After this moment, i.e.,
during the deceleration of the wall, the local water disturbance detaches from the piston and
relaxes, thereby evolving to a wave that propagates away from the source region and belongs
to one of the regimes previously described in figure 2. The shape of the growing water bump
varies between the investigated configurations, as highlighted in figure 3. Broadly speaking,
the perturbation has a small amplitude and a large width for a small velocity of the piston
[figures 3(a)-(b)], whereas it has the shape of a slim water column for large values of 𝑈
[figures 3(c)-(d)].

The temporal evolution of the wave amplitude 𝐴0(𝑡) = 𝜂(𝑥 = 𝑥𝑝, 𝑡) at the contact with the
piston is illustrated in figure 4(a)-(d) for the four experiments reported in figure 3. For every
configuration, 𝐴0 increases with time until it reaches a maximum value 𝐴𝑚0 at time 𝑡 = 𝜏𝑔.
𝐴0 then decreases when the moving wall decelerates and the wave begins to propagate along
the channel. At later times, when the wave has left the vicinity of the piston, 𝐴0 tends to
zero as the water locally comes back to rest: this is illustrated, for instance, in figure 4(b)
when 𝑡 ≳ 0.6 s. Noticeably, all curves display the same overall behaviour, regardless of the
experimental parameters. The bell-shaped trends for 𝐴0 are not perfectly symmetrical about
the vertical line 𝑡 = 𝜏𝑔, which suggests that the two phases of generation and propagation are
driven by different physical mechanisms. Indeed, during the first stage, the translating wall
injects momentum into the fluid, but once the wave travels into the channel it does not receive
energy anymore, so that its evolution is then described by a competition between dissipation,
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Figure 3: Image sequences of the generation phase, for the impulse waves presented in figure 2: (a) 𝐿 = 7 cm,
𝑈 = 0.42 m.s−1, and ℎ = 20 cm (Fr𝑝 = 0.3 and Λ𝑝 = 0.35); (b) 𝐿 = 15 cm,𝑈 = 0.47 m.s−1, and ℎ = 10 cm
(Fr𝑝 = 0.47 and Λ𝑝 = 1.5); (c) 𝐿 = 30 cm, 𝑈 = 1.09 m.s−1, and ℎ = 3 cm (Fr𝑝 = 2.0 and Λ𝑝 = 10); (d)
𝐿 = 14.5 cm, 𝑈 = 1.19 m.s−1, and ℎ = 3 cm (Fr𝑝 = 2.2 and Λ𝑝 = 4.8). The last picture of each line is
taken at the end of the generation phase, i.e., when the wave amplitude at the contact with the piston reaches
its maximum value 𝐴𝑚0. For each experiment, the white bar traced on the first image gives the scale.

non-linearity and dispersion. The generation time 𝜏𝑔, defined as the duration of the growth
phase of 𝐴0, is systematically extracted for all experiments and compared in figure 4(e) to
the duration of the acceleration phase of the piston, 𝐿/𝑈. Overall, it can be observed that
the two times coincide for the whole dataset. The scattering of the data is mainly due to the
experimental uncertainty in determining 𝜏𝑔, which is of order 0.03 s, however no systematic
deviation can be observed. This result indicates that the wave generation process is closely
tied to the acceleration phase of the translating piston, so that 𝐿/𝑈 is the relevant timescale
for the generation stage.

To further elaborate on the description of the water bump formation, the free surface
elevation 𝜂(𝑥, 𝑡) is presented in figure 5(a)-(d) as a function of the distance 𝑥′ = 𝑥 − 𝑥𝑝 (𝑡)
from the vertical wall, for the representative experiments presented in figure 3. On each plot,
several successive profiles are reported (one for each marker colour), with a time increment
between two consecutive curves of 0.04 s in (a)-(c) and 0.02 s in (d). In all cases, one may
note that both the height and the horizontal extent of the water perturbation increase with
time. In figure 5(a), Λ𝑝 < 1 and Fr𝑝 < 1, which results in a short bump with a small vertical
extent compared to the large horizontal length affected by the disturbance. At all times, the
elevation of the free surface in this situation essentially exhibits a decay with the distance
from the piston, except at the very vicinity of the advancing wall. This decrease of the free
surface elevation with 𝑥′ is reminiscent of the logarithmic decay at small times identified
by previous theoretical studies (Chwang 1983; Lin 1984). When Λ𝑝 ∼ 1 while Fr𝑝 < 1,
similar characteristics are observed, as illustrated in figure 5(b), but the decrease of 𝜂 with 𝑥′

is now divided into two regions: a relatively small slope in the vicinity of the piston, which
is less pronounced than the one occurring further downstream [highlighted, for instance, by
the evolution of 𝜂 after 𝑥′ ≃ 7 cm for the upper green curve in figure 5(b)]. This phenomenon
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Figure 4: (a)-(d) Temporal evolution of the free surface elevation 𝐴0 (𝑡) = 𝜂(𝑥 = 𝑥𝑝 (𝑡), 𝑡) at the contact
with the piston, for the four experiments of figure 3. (a) 𝐿 = 7 cm, 𝑈 = 0.42 m.s−1, and ℎ = 20 cm, (b)
𝐿 = 15 cm, 𝑈 = 0.47 m.s−1, and ℎ = 10 cm, (c) 𝐿 = 30 cm, 𝑈 = 1.09 m.s−1, and ℎ = 3 cm, and (d)
𝐿 = 14.5 cm, 𝑈 = 1.193 m.s−1, and ℎ = 3 cm. For each case, the vertical dash-dotted line indicates the
generation time, 𝜏𝑔, whereas the horizontal dashed line corresponds to the maximum wave amplitude 𝐴𝑚0
at the junction between the fluid and the advancing wall. (e) Generation time 𝜏𝑔 as a function of the duration
𝐿/𝑈 of the acceleration phase of the piston. The solid line corresponds to 𝜏𝑔 = 𝐿/𝑈. In (a)-(e), the symbols
and colours used are the same as in figure 2(e).

gets accentuated when Λ𝑝 ≫ 1 and Fr𝑝 ∼ 1, as illustrated in figure 5(c): the region of gentle
slope then becomes wider. In the upper green curve of figure 5(c), corresponding to the last
time belonging to the generation phase, 𝜂 decreases by only about 2 cm over a distance of 6
cm in the inner region located upstream of the shock. A non-linear steepening occurs before
the end of the generation process, leading to the formation of a hydrodynamic shock, that is
illustrated by the onset of breaking visible in figure 3(c) for 𝑡 = 0.32 s or by the upper green
curve in figure 5(c) which features a straight front around 𝑥′ ∼ 6 cm. Finally, by reducing the
piston stroke 𝐿 while keeping the same initial water depth ℎ and velocity 𝑈 of the piston as
in figure 5(c), one obtains a tall water bump, as illustrated in figure 5(d), which will evolve to
a water jet after the generation phase [figure 2(d)]. In that case, the gentle slope region has a
smaller extent than the outer one, and the aspect ratio of the growing perturbation becomes
significant.

4.2. Volume and aspect ratio of the water bumps
At the end of the generation phase (at 𝜏𝑔 ≃ 𝐿/𝑈), the two characteristic lengthscales
associated with the induced water hump can be taken as the maximum amplitude 𝐴𝑚0 at the
contact with the piston and the mid-height width 𝜆𝑚0, which is defined as the width of the
perturbation at 𝑧 = 𝐴𝑚0/2 so that 𝜂(𝑥𝑝 + 𝜆𝑚0, 𝜏𝑔) = 𝐴𝑚0/2. These two quantities define a
typical bump volume per unit width, 𝐴𝑚0𝜆𝑚0. By mass conservation, it is straightforward to
establish that 𝐴𝑚0𝜆𝑚0 = 𝜗𝐿ℎ, where 𝜗 is a numerical prefactor that depends on the shape
of the forming wave and on the leaks between the flume walls and the piston that lower
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Figure 5: Transient free surface elevation 𝜂 during the generation phase as a function of the distance 𝑥′ from
the piston for the four examples of figure 3, corresponding to relative accelerations 𝛾/𝑔 of (a) 0.26, (b) 0.15,
(c) 0.4 and (d) 1, respectively. Experiments are represented by the coloured markers, with a timelapse between
each consecutive curve of (a)-(c) 0.04 s and (d) 0.02 s. The solid lines are the corresponding predictions
from the theory of Joo et al. (1990), given by equation (5.1) with 𝜎 = 72 mN.m−1, 𝜌 = 997 kg.m−3 and
assuming a contact angle of 90◦. Here, 𝑥′ = 𝑥 − 𝑥𝑝 (𝑡) for the experimental curves, while 𝑥′ = 𝑥 for the
theoretical profiles.

the displaced volume of water. By making this relation dimensionless with the use of the
lenghtscale ℎ, one obtains

𝐴𝑚0𝜆𝑚0

ℎ2 = 𝜗Λ𝑝 . (4.1)

In figure 6(a), the dimensionless bump volume per unit width, 𝐴𝑚0𝜆𝑚0/ℎ2, is reported as a
function of the relative stroke of the piston, Λ𝑝, for all experiments. All data collapse on the
master curve 𝐴𝑚0𝜆𝑚0/ℎ2 = 0.47Λ𝑝 revealing that, at leading order, the typical volume per
unit width 𝐴𝑚0𝜆𝑚0 of the nascent wave is proportional to 𝐿ℎ with no significant influence
of the details of the bump shape through the numerical prefactor 𝜗. In other terms, when
𝐿 and ℎ are set to a fixed value, the higher the maximum amplitude 𝐴𝑚0, the smaller the
characteristic length 𝜆𝑚0 and vice versa, regardless of the ultimate wave regime obtained after
the generation process. Furthermore, this implies that there is solely one relevant lengthscale
to describe the generated water bump, which will be taken as 𝐴𝑚0 in the following.

In addition, the wave aspect ratio 𝐴𝑚0/𝜆𝑚0 is compared in figure 6(b) with the relative
acceleration 𝛾/𝑔 = 𝑈2/(𝑔𝐿) of the piston. A monotonic increase with 𝛾/𝑔 is observed: the
larger the acceleration of the piston, the slender the resulting water bump. At a crude first
order, one can observe the wave aspect ratio to be approximately linear in 𝛾/𝑔, here again
independently of the wave regime obtained at long time. An important remark can be made
from these scalings for the displaced volume of water and the aspect ratio of the wave: one
can anticipate that 𝜆𝑚0/ℎ should be linearly related to the ratio Λ𝑝/Fr𝑝, whereas the relative
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Figure 6: (a) Dimensionless water bump volume 𝐴𝑚0𝜆𝑚0/ℎ2 per unit width at the end of the generation
phase as a function of the relative piston stroke Λ𝑝 . (b) Evolution of the bump aspect ratio 𝐴𝑚0/𝜆𝑚0 with
the relative acceleration 𝛾/𝑔 of the piston. In both plots, all experiments are represented and the solid line
indicates (a) 𝐴𝑚0𝜆𝑚0/ℎ2 = 0.47Λ𝑝 and (b) 𝐴𝑚0/𝜆𝑚0 = 3 𝛾/𝑔. The symbols and colours used are the same
as in figure 2(e).

amplitude 𝐴𝑚0/ℎ should scale with the Froude number Fr𝑝, at first order. Nevertheless, a
power law fit on the data displayed in figure 6(b) gives an exponent of 1.23, which slightly
departs from such a linear evolution. Furthermore, if the collapse of the measurement points
is quite convincing in figure 6(a), a larger scattering can be noticed in figure 6(b).

5. Modelling the wave generation process
In this section, a particular attention will be devoted to the description of the wave amplitude
𝐴0(𝑡) at the contact with the translating vertical wall, and especially to its maximum value
𝐴𝑚0 reached at the end of the generation stage (i.e., at the time 𝐿/𝑈). Given the variety of
the observed wave behaviours, it already appears that finding a unique description might
be a challenging path. Instead of doing so, we will consider successively the two limiting
scenarios of a small relative acceleration 𝛾/𝑔 = 𝑈2/(𝑔𝐿) of the piston and of a high Froude
number Fr𝑝.

5.1. Small relative acceleration
Describing the impulse wave generation process is a long-standing and challenging problem
in the fluid dynamics community, which explains the numerous theoretical studies devoted
to the expression of the free surface elevation for various configurations (Lin 1984; Chwang
& Wang 1984; Roberts 1987; Joo et al. 1990; King & Needham 1994; Needham et al.
2007; Uddin & Needham 2015). Among these, Joo et al. (1990) addressed the problem of
waves generated by a piston translating horizontally with a uniform acceleration, using a
potential flow assumption and taking into account capillary effects due to surface tension
and wettability. Using an asymptotic analysis based on a small relative acceleration 𝛾/𝑔 of
the piston, they obtained the following leading-order solution for the free surface elevation

𝜂(𝑥, 𝑡) = 2ℎ𝛾
𝜋𝑔

∫ +∞

0

1 − cos
(
𝛽(𝑘, 𝑇)𝑡

√︁
𝑔/ℎ

)
𝑘2 (1 + 𝑇𝑘2) cos (𝑘𝑥/ℎ) d𝑘, (5.1)
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where the bound variable 𝑘 corresponds to a dimensionless wavenumber, 𝑇 = 𝜎/
(
𝜌𝑔ℎ2)

with 𝜎 the surface tension of the fluid, and 𝛽(𝑘, 𝑇) =
√︃
𝑘
(
1 + 𝑇𝑘2) tanh 𝑘 .

Even if expression (5.1) does not constitute a closed-form solution, it can be evaluated
numerically. As there is no small-time assumption in the approach followed by Joo et al.
(1990), this model is expected to be more relevant than those of Lin (1984); Chwang & Wang
(1984); King & Needham (1994); Needham et al. (2007) and Uddin & Needham (2015) for
a comparison with the present experimental results.

Equation (5.1) is evaluated for the four initial conditions of figure 3, up to the time 𝑡 = 𝐿/𝑈,
and is reported in black solid lines in figure 5(a)-(d). In doing so, the surface tension of water
is set to 𝜎 = 72 mN.m−1 and its density 𝜌 to 997 kg.m−3 (i.e., their values at a temperature
of 25 ℃), while the contact angle with the wavemaker was assumed to be 90◦. The analytical
profiles from equation (5.1) are shown in figure 5 with a timelapse of (a)-(c) 0.04 s, and
(d) 0.02 s between each curve. It should be specified that while 𝑥′ = 𝑥 − 𝑥𝑝 (𝑡) for the
experimental curves, 𝑥′ = 𝑥 for the theoretical curves. This is due to the fact that Joo et al.
(1990) considered the case of a small displacement of the wavemaker, which resulted in
neglecting 𝑥𝑝 (𝑡) in their analysis while retaining only the influence of the velocity of the
piston. An overall good agreement is observed for the first two cases reported in figures 5(a)
(for which 𝛾/𝑔 ≃ 0.26) and 5(b) (𝛾/𝑔 ≃ 0.15), corresponding to small relative accelerations
of the piston that eventually lead to the formation of (a) a dispersive and (b) a solitary-
like wave, respectively. This is especially true in the vicinity of the wavemaker, where the
analytical predictions are very close to the measured free surface elevations. This is expected
as, for both cases, the relative acceleration is 𝛾 ≪ 𝑔. The observed agreement reveals that,
in this case, the theory developed by Joo et al. (1990) gives a quite accurate description of
the generated wave, both qualitatively and quantitatively. It should be emphasised that the
experimental and theoretical curves are not perfectly superimposed because of the initial time
shift present in the video recordings, that never start exactly at the beginning of the motion of
the piston. Furthermore, one may notice in figure 5 that the generation stage can last a little
longer than 𝐿/𝑈 for some cases, for there are more experimental curves than theoretical ones.
This slight difference could be attributed to second-order entrainment effects. Away from
the wavemaker, however, the theoretical predictions deviate from the experimental curves,
a feature that is clearly visible in figure 5(b), for instance around 𝑥′ ≃ 10 cm for the upper
curve. This discrepancy can possibly be attributed to the assumption of a small wavemaker
displacement made by Joo et al. (1990) that is not satisfied here. Finally, as expected, when
the relative acceleration becomes significant in the experiments, as illustrated in figures 5(c)
(where 𝛾/𝑔 ≃ 0.4) and 5(d) (for which 𝛾/𝑔 ≃ 1), the leading-order theory of Joo et al. (1990)
fails in predicting efficiently the wave generation phase. Indeed, in such cases, non-linear
effects become significant, as highlighted for instance by the steepening of the wave front
observed during the wave generation for the example in figure 5(c). As a result, the higher-
order terms in the analysis of Joo et al. (1990) can no longer be neglected, hence requiring a
dedicated analysis.

So far, the region of validity of the theory of Joo et al. (1990) remains to be clarified.
In order to discuss this aspect in a more quantitative manner, the comparison between the
modelling derived by these authors and the present experimental measurements can be further
completed by considering the maximum wave amplitude 𝐴𝑚0 at the contact with the piston,
which is reached at the end of the generation phase. For each experiment, the corresponding
prediction 𝐴Joo from Joo et al. (1990) is determined by evaluating equation (5.1) for the same
initial parameters and at the time 𝐿/𝑈. The measured and theoretical values, normalized
by the initial liquid depth ℎ, are compared in figure 7(a). A good agreement is observed
between the two quantities for a large number of water bumps that will ultimately lead to
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Figure 7: (a) Comparison between the relative maximum wave amplitude 𝐴𝑚0/ℎ measured experimentally
and the prediction 𝐴Joo/ℎ from the theory of Joo et al. (1990), obtained using equation (5.1). The solid
line is the linear trend of slope one. (b) Evolution of 𝐴𝑚0/𝐴Joo as a function of the relative acceleration
𝛾/𝑔 = 𝑈2/(𝑔𝐿). The horizontal solid line is the plateau value 𝐴𝑚0/𝐴Joo = 1.

(◦) dispersive or (□) nonbreaking solitary-like waves, as well as for most of the forming (▲)
spilling breaking bores. However, the vast majority of the (▶) plunging breaking bore waves
and (♦) water jets depart significantly from the modelling. This observation is completed by
the analysis of the ratio 𝐴𝑚0/𝐴Joo, shown as a function of the relative acceleration 𝛾/𝑔 in
figure 7(b). One may note that 𝐴𝑚0/𝐴Joo increasingly deviate from unity as 𝛾/𝑔 increases,
which is expected due to the small relative acceleration assumption in the theory of Joo et al.
(1990). Furthermore, the most non-linear wave regimes [(■) breaking solitary-like waves,
(▶) plunging breaking bores and (♦) water jets] tend to have a maximum wave amplitude
larger than the analytical prediction. If it is not obvious to define a clear criterion for the
applicability of the analytical model, one can observe that the data located at 𝛾/𝑔 ≲ 0.2
seems to be fairly well distributed around the plateau value 𝐴𝑚0/𝐴Joo = 1 with a typical
dispersion of order ±10 %. Therefore, this sets an upper limit for the validity of the theory
developed by Joo et al. (1990) for the present configuration. Strictly speaking, an additional
assumption is made in the work of Joo et al. (1990), which is that of a small displacement of
the vertical wall. This translates into 𝑥𝑝/ℎ ≪ 1 which, at the time 𝑡 = 𝐿/𝑈, implies Λ𝑝 ≪ 2.
However, the theory gives an accurate estimate of the wave maximum amplitude even in the
case of the (▲) spilling breaking bore waves, for which the value of Λ𝑝 is always greater than
2. We infer from this observation that the small piston displacement assumption has a minor
influence on the free surface elevation in the vicinity of the translating wall, and thus is not
critical for estimating 𝐴𝑚0.

Therefore, the theory developed by Joo et al. (1990) efficiently describes the generated
waves for small relative accelerations of the piston such that 𝛾/𝑔 ≲ 0.2, both in terms of the
overall free surface elevation 𝜂(𝑥, 𝑡) and the maximum wave amplitude 𝐴𝑚0 at the contact
with the translating wall. Nevertheless, this approach fails at larger values of 𝛾/𝑔, especially
in cases where a hydrodynamic shock occurs, as highlighted in figures 5(c) and 5(d).

5.2. Large Froude number: the unsteady hydraulic jump
As already discussed beforehand, non-linear effects induce a steepening of the wave near
the end of the generation phase for large values of the Froude number Fr𝑝. This feature is
pronounced for the plunging breaking bores and the water jets, as illustrated in figures 3(c) and
3(d). This observation is reminiscent of the formation of a hydrodynamic shock close to the
source region, which is the response of the fluid to the impulse motion of the translating wall.
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Figure 8: Schematic of an idealized transient hydraulic jump of upstream and downstream elevations 𝐴0 (𝑡)+ℎ
and ℎ, respectively. Here, 𝑥𝑝 (𝑡) is the distance travelled by the piston at time 𝑡, 𝑣𝑝 (𝑡) its horizontal velocity,
𝜁 (𝑡) the location of the shock and 𝛿 the position of the shock at the end of the generation phase, i.e.,
𝛿 ≡ 𝜁 (𝑡 = 𝐿/𝑈). The letters CV stands for control volume (per unit width), which is highlighted by the red
contour.

To capture the physical mechanism at play in those circumstances, we consider the idealized
case of a two-dimensional unsteady shock located at position 𝜁 (𝑡) at time 0 < 𝑡 < 𝐿/𝑈, which
separates an upstream region of thickness 𝐴0(𝑡) + ℎ, for 𝑥𝑝 (𝑡) < 𝑥 < 𝜁 (𝑡), from another one
of thickness ℎ located downstream, i.e., for which 𝑥 > 𝜁 (𝑡). Such a scenario is illustrated by
the schematic shown in figure 8. It will be assumed here that (i) the flow is purely horizontal
and invariant along the 𝑧 direction, that (ii) the fluid is inviscid and incompressible, and that
(iii) the pressure can be considered as hydrostatic, i.e., 𝑝(𝑥, 𝑧, 𝑡) = 𝜌𝑔[𝜂(𝑥, 𝑡)−𝑧]. Conditions
(i) and (iii) correspond to the shallow water approximation, which implies that the vertical
acceleration of the fluid is neglected (Acheson 1990), and (ii) means that no dissipation
occurs at the bottom of the flume during the bump formation. The fixed downstream position
𝛿, indicated in figure 8 and corresponding to the right side of the control volume (CV), is
chosen as the location of the shock along the 𝑥 axis at the end of the generation phase, i.e.,
𝛿 ≡ 𝜁 (𝑡 = 𝐿/𝑈). Therefore, the volume of fluid comprised between the abscissa 𝑥𝑝 (𝑡) and
𝛿 and between the altitudes −ℎ (bottom of the water tank) and 𝜂(𝑥, 𝑡) always contains the
same water particles during the generation process. From a calculation detailed in Appendix
A, the mass and horizontal momentum conservation equations applied to such an unsteady
control volume read (

𝐴0(𝑡) + ℎ

) (
¤𝜁 (𝑡) − 𝑣𝑝 (𝑡)

)
− ℎ ¤𝜁 (𝑡) = 0, (5.2)

(
𝐴0(𝑡) + ℎ

) (
¤𝜁 (𝑡) − 𝑣𝑝 (𝑡)

)2
− ℎ ¤𝜁 (𝑡)2 + 1

2
𝑔

( (
𝐴0(𝑡) + ℎ

)2 − ℎ2
)
= 0. (5.3)

The combination of these two equations leads to the following non-linear relation between
the instantaneous Froude number Fr(𝑡) = 𝑣𝑝 (𝑡)/

√︁
𝑔ℎ and relative amplitude of the bore

𝐴0(𝑡):

Fr(𝑡) = 𝐴0(𝑡)
ℎ

(
1 + 𝐴0(𝑡)/(2ℎ)

1 + 𝐴0(𝑡)/ℎ

)1/2
. (5.4)

Equation (5.4) constitutes a transient version of the classical bore relationship (Synolakis
1989; Whitham 1999). Furthermore, a comparison between this expression and the prediction
for a stationary hydraulic jump given by equation (1.3) reveals the quasi-static behaviour of
the unsteady hydraulic jump. As this equation corresponds to a third-order equation for
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Figure 9: Wave amplitude 𝐴0 at the contact with the piston as a function of the adjusted time 𝑡′, for the four
experiments of figure 5. Only the generation phase is represented here and 𝑡′ is defined as 𝑡 − 𝑡0, where
𝑡0 corresponds to the starting time of the generation process. The solid (–) and dashed (- - -) lines are the
predictions given by equations (5.5) and (5.6), respectively. The symbols and their colours are the same as
in figures 4(a)-(d).

𝐴0/ℎ(𝑡), the only explicit expression for 𝐴0/ℎ(𝑡) as a function of Fr(𝑡) which is physical is
therefore

𝐴0(𝑡)
ℎ

=
2
3

2
√︁

1 + 3Fr(𝑡)2/2 cos
©«

1
3

cos−1


3
4

(
Fr(𝑡) − 2

√
2/3

) (
Fr(𝑡) + 2

√
2/3

)
(
Fr(𝑡)2 + 2/3

) √︁
1 + 3Fr(𝑡)2/2


ª®®¬ − 1

 .

(5.5)
It should be emphasised that the equations (5.2)-(5.5) are obtained for the generation phase,
i.e., when 𝑡𝑈/𝐿 ⩽ 1. Interestingly, as during this stage the piston velocity is 𝑣𝑝 (𝑡) = 𝑈2𝑡/𝐿,
equations (5.4) and (5.5) predict that the maximum amplitude 𝐴𝑚0 reached at 𝑡 = 𝐿/𝑈 is
independent of the piston stroke 𝐿.

In order to compare the outcomes of this modelling to the experiments, figure 9 displays
the temporal evolution of 𝐴0 during the generation phase for the four experiments of figure
5. In each plot, the solid line is the prediction given by the quasi-static hydraulic jump
theory presented in this section, that is obtained by evaluating equation (5.5). The time 𝑡′

corresponds to 𝑡 − 𝑡0, where 𝑡0 has been slightly adjusted for the experimental curves to
initially coincide with the analytical ones, as the acquisition frequency of the camera (50 Hz)
did not allowed us to determine accurately the starting time of the generation process. Despite
the strong underlying assumptions of the present modelling, there is a striking agreement
between the theoretical predictions and the experimental water bumps that will eventually
evolve to (c) a bore wave and (d) a water jet, for which the Froude number Fr𝑝 is large
(Fr𝑝 = 2.0 and Fr𝑝 = 2.2, respectively). More surprisingly, the prediction from equation
(5.5) also captures the time evolution of the wave amplitude 𝐴0 for the two cases leading to
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Figure 10: Evolution of the relative maximum amplitude of the wave at the contact with the piston, 𝐴𝑚0/ℎ,
as a function of the Froude number, Fr𝑝 . The black solid line ( ) corresponds to the quasi-static hydraulic
jump prediction obtained by evaluating equation (5.5) at 𝑡 = 𝐿/𝑈, the black dashed line ( ) corresponds
to equation (5.6) from Synolakis (1989), calculated at the same time, while the gray dash-dotted line ( )
corresponds to equation (1.1) from Noda (1970). All experiments from the present study are reported, with
the same symbols and colours as in figure 2(e), alongside data from Synolakis (1986, 1989) (•).

a dispersive wave [figure 9(a)] and a solitary-like wave [figure 9(b)], even if these regimes
consist during their formation of a water bump that seems to be quite different from the
idealized situation considered in figure 8. This suggests that the approach followed in section
5.2 remains valid for a large range of Froude numbers. In addition, the prediction

𝐴0(𝑡)
ℎ

= Fr(𝑡) + 1
4

Fr2(𝑡) (5.6)

from Synolakis (1986, 1989) is also reported in dashed line in figures 9(a)-(d). This law also
exhibits good agreement with the measured values for the two low Froude number cases of
figures 9(a) and 9(b), where it is almost indistinguishable from equation (5.5). However, the
prediction from equation (1.2) slightly overestimates 𝐴0 at the end of the generation phase
for experiments featuring large values for the Froude number [figures 9(c) and 9(d)].

To further compare the experimental results with the different available models, the relative
maximum amplitude of the wave at the contact with the piston, 𝐴𝑚0/ℎ, is shown as a function
of the piston Froude number Fr𝑝 in figure 10, for all the experiments performed in the present
study. Regardless of the wave regime that is obtained after the generation process, all data
collapse on a master curve, highlighting once more the strong link between 𝐴𝑚0/ℎ and Fr𝑝
that has already been emphasised in several past studies (Noda 1970; Das & Wiegel 1972;
Fritz et al. 2004; Viroulet et al. 2013; Robbe-Saule et al. 2021b; Sarlin et al. 2021b, 2022a).
As a corollary to this observation, there is no significant influence of the stroke 𝐿 of the piston
on the value of 𝐴𝑚0/ℎ. The data from Synolakis (1986, 1989), corresponding to three laws
of motion for the piston (constant velocity, trajectory optimized for solitary wave generation
and asymmetric parabolic trajectory), are also reported in figure 10 (•). These measurements
lie on the same trend as the experiments from the present study, which suggests that the
relationship between 𝐴𝑚0/ℎ and Fr𝑝 is robust and independent on the detail of the forcing
in a wide range of Froude numbers. Furthermore, as the studies performed by Synolakis
(1986, 1989) involved a much larger tank as the one used here, this confirms that there
is no significant effect of capillarity in the present experiments. The quasi-static hydraulic
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jump prediction, obtained by evaluating equation (5.5) at time 𝑡 = 𝐿/𝑈, is also reported in
figure 10 in black solid line. It closely matches the experimental measurements, especially
for Fr𝑝 ≳ 0.4, without any adjustable parameters. This further validates the approach of
describing the generated waves as quasi-static shock waves. As equation (5.5) is obtained
in the limit of large Froude numbers, experiments for which the shock is pronounced, i.e.,
(▲,▶) bore waves or (♦) water jets, are better captured by the theoretical prediction than, for
instance, (◦) dispersive waves. The prediction given by equation (1.2) (which is equation (5.6)
from Synolakis (1989) evaluated at time 𝑡 = 𝐿/𝑈), reported in black dashed line in figure
10, is almost superimposed with equation (5.5) when Fr𝑝 ≲ 0.8 but slightly overestimates
the generated wave height for the experiments at larger values of Fr𝑝. Furthermore, equation
(1.1) obtained by Noda (1970) using the linear theory is also reported in figure 10 in
gray dash-dotted line for comparison. Although it gives a good first order estimate of the
relative maximum amplitude 𝐴𝑚0/ℎ, it can be observed that the quasi-static hydraulic jump
theory gives a slightly better prediction when Fr𝑝 ≲ 0.7. For larger Froude numbers, the
good agreement between the theory of Noda (1970) and the experimental measurements is
surprising as there is no proper justification for using the linear theory anymore, given that
non-linear effects then become dominant.

The successful comparison between the experiments and the analytical development
presented in the present section thereby suggests that, during the generation process, the
observed water bumps behave as quasi-static hydraulic jumps whose vertical heights at the
contact with the piston are dictated by the wall velocity 𝑣𝑝 (𝑡) and the initial fluid depth ℎ. This
leads, at the end of the formation stage, to a maximum wave amplitude 𝐴𝑚0 which follows
a weakly non-linear evolution with the Froude number Fr𝑝, as highlighted by the evaluation
of equation (5.5) at time 𝑡 = 𝐿/𝑈. From there, when the piston starts its deceleration, the
water bump of height 𝐴𝑚0 relaxes into one of the different wave regimes reported in figure
2(a)-(d).

6. Conclusion and perspectives
In the present study, the formation and early propagation of impulse surface waves in a water
channel have been investigated experimentally at the laboratory scale. Waves were generated
by the translational motion of a rigid vertical wall, which follows a constant acceleration
phase followed by a constant deceleration, thereby advancing in a quadratic-in-time manner
in the flume. This model experimental set-up allowed to systematically and independently
vary three initial parameters: the total stroke of the piston, 𝐿, its maximal velocity, 𝑈, and
the initial water depth, ℎ. This was tantamount to exploring the role of two dimensionless
numbers, the Froude number Fr𝑝 = 𝑈/

√︁
𝑔ℎ and the relative stroke Λ𝑝 = 𝐿/ℎ of the piston.

During the wave generation process, a water bump is generated in the vicinity of the
source region, as a result of the translational motion of the piston, with a volume that
grows with time. This nascent wave can have a large horizontal extent and a small vertical
amplitude when Λ𝑝 < 1 and Fr𝑝 < 1 or, on the contrary, exhibits the shape of a slim and
tall water column when Λ𝑝 ≫ 1 and Fr𝑝 ∼ 1. For a relative acceleration of the piston such
that 𝛾/𝑔 = 𝑈2/(𝑔𝐿) ≲ 0.2, the leading-order potential flow theory derived by Joo et al.
(1990) gives a satisfactory description of the free surface elevation close to the advancing
piston during the generation phase, alongside an accurate prediction for the maximum wave
amplitude 𝐴𝑚0 at the contact with the rigid wall. The main observed discrepancy lies in the
fact that the free surface elevation is overestimated by theory far from the translating wall,
a fact that is possibly due to the assumption of a small piston displacement made by Joo
et al. (1990). Thereupon, a theoretical analysis in which this hypothesis is relaxed is needed
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to reach a more comprehensive description of the free-surface elevation. At larger values of
𝛾/𝑔, non-linear effects are no longer negligible, and the theory developed by Joo et al. (1990)
then systematically underestimates 𝐴𝑚0.

For large enough Froude numbers, the non-linear steepening of the generated water bumps,
especially visible at the onset of breaking, reveals the presence of a hydrodynamic shock. In
that case, a quasi-static hydraulic jump theory successfully captures the transient behaviour
of 𝐴0(𝑡) in the vicinity of the vertical wall during the whole formation stage and for all
kinds of water bumps produced experimentally. As a result, it allows one to finely predict
the maximum wave amplitude 𝐴𝑚0 reached at the end of the generation process. While
this is expected for experiments where the Froude number is large, by assumption, we yet
showed that the quasi-static hydraulic jump theory applies to all investigated configurations
where Fr𝑝 ≳ 0.4. This analysis shines light on the previously identified relevance of the
hydraulic jump solution for describing the typical height of such perturbations (Miller &
White 1966; Synolakis 1986, 1989; Sarlin et al. 2021b). As the wave amplitude 𝐴𝑚0 reached
at the end of the formation stage can be estimated finely, it is also possible to calculate the
typical horizontal extent, taken for instance as 𝜆𝑚0 in the present study, using the fact that
the dimensionless volume of the waves, 𝐴𝑚0𝜆𝑚0/ℎ2, evolves as 0.47Λ𝑝 for all experiments
reported here. All these considerations open the path for a more detailed examination of the
free surface elevation. In particular, it would be of great interest to investigate the spatial
structure of the shock (Whitham 1999) more thoroughly, which could be done by relying
on the quasi-static hydraulic jump model derived here. Notwithstanding the fact that this
constitutes a challenging theoretical prospect, it could lead to the obtainment of the complete
shape of the transient jumps during the acceleration phase of the piston.

When the translating piston begins to decelerate, the water bump of maximum amplitude
𝐴𝑚0 and mid-height width 𝜆𝑚0 then relaxes into a propagating wave. In the experiments,
several wave regimes are obtained and mapped in the (Fr𝑝,Λ𝑝) plane, ranging from
dispersive waves obtained at small Fr𝑝 and Λ𝑝 to unstable spilling or plunging breaking
bore waves obtained at large Fr𝑝 and Λ𝑝, which reflects the richness of the physics at play.
The occurrence of stable solitary-like waves, when Λ𝑝 is of order unity and Fr𝑝 ≲ 0.8,
denotes a situation of equilibrium between dispersion and non-linearity. More generally, in
the present experiments, the value of Λ𝑝 selects at first order which of these two effects
will prevail, while the Froude number Fr𝑝 governs the relative maximum amplitude of the
wave and its “stability” (whether it will break or not). However, when Λ𝑝 ≲ 2.2 Fr𝑝2,
corresponding to 𝛾/𝑔 ≳ 0.45, a transition from classical wave regimes to water splashes
is identified, the latter consisting of reproducible water jets that are abruptly ejected from
the vicinity of the piston. These peculiar liquid structures differ significantly from the other
regimes. Preliminary investigations suggest that these water filaments possibly undergo a
ballistic flight, although this point deserves further analysis. If, in the present study, the
explored accelerations of the piston were constrained by the motor limitations, it would be
interesting to conduct systematic experiments at larger values of the relative acceleration
𝛾/𝑔 or the Froude numbers Fr𝑝, to determine whether this conducts to the fragmentation
of the water filament into large drops or not. This could help compare these water jets to
other splashing phenomena as, for instance, those occurring during drop impacts (Riboux &
Gordillo 2015).

Lastly, several directions of investigation emerge from the results of the present study. On
one hand, although the impulse surface wave diagram presented in figure 2(e) extends the
present state of knowledge, the region located at large Λ𝑝 but small Froude number was
hardly accessible using the experimental setup presented here, as it resulted in very small
bump amplitudes. Preliminary experiments suggest that undular bores could be observed
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in this situation. However, further investigations are needed to conclude on that point. A
water channel and wavemaker of larger scales could be helpful to observe these waves more
accurately. Moreover, to complete the present findings, a forthcoming study dedicated to
the estimation of the energy budget during the wave generation and propagation processes
for the different wave regimes would be of great interest, for instance using Particle Image
Velocimetry (PIV) measurements. On the other hand, studying impulse capillary waves
generated, for instance, using a piston with a millimetric course, could also provide an
original extension to the present work. Furthermore, it should be recalled that attention was
restricted here to the case of a symmetrical forcing [see figure 1(b)]. However, symmetry
breaking is expected to alter drastically the behaviour of the induced waves: we infer that this
point should be further explored experimentally. In the same vein, the case of waves produced
by the submarine impulsive motion of a rigid wall or by a partially-immersed piston could
be of great interest, especially in the aim of comparing the results gathered to experiments
involving immersed granular collapses (Cabrera et al. 2020). This could constitute a model
experiment to observe the transition from shallow to deep water waves, which is of paramount
interest if one keeps in mind the applications to geophysical modelling.
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Appendix A. The quasi-static hydraulic jump
As described in section 5.2 of the main text, the mass and horizontal momentum conservation
equations applied to the control volume of figure 8, under the shallow water approximation
applied to an inviscid fluid, read

d
d𝑡

∫ 𝛿

𝑥𝑝 (𝑡 )
𝜌 (𝜂 + ℎ) d𝑥 = 0, (A 1)

d
d𝑡

∫ 𝛿

𝑥𝑝 (𝑡 )
𝜌 (𝜂 + ℎ) 𝑢 d𝑥 =

∫ 𝐴0 (𝑡 )

−ℎ
𝑝 d𝑧 −

∫ 0

−ℎ
𝑝 d𝑧

=
1
2
𝜌𝑔

(
(𝐴0(𝑡) + ℎ)2 − ℎ2

)
, (A 2)

where 𝑢 is the horizontal velocity of the fluid, which by assumption depends only on 𝑥 and
𝑡. Then, following the development made by Stoker (1957) in a similar situation, one may
observe that the left-hand side integrals of equations (A 1) and (A 2) are of the form
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d
d𝑡

∫ 𝑏 (𝑡 )

𝑎 (𝑡 )
𝜓(𝑥, 𝑡) d𝑥 =

d
d𝑡

∫ 𝜁 (𝑡 )

𝑎 (𝑡 )
𝜓(𝑥, 𝑡) d𝑥 + d

d𝑡

∫ 𝑏 (𝑡 )

𝜁 (𝑡 )
𝜓(𝑥, 𝑡) d𝑥, (A 3)

with 𝑎 and 𝑏 two continuous functions such that 𝑎 < 𝑏 and 𝜓 corresponding either to 𝜌(𝜂+ℎ)
or to 𝜌(𝜂+ℎ)𝑢 depending on whether equation (A 1) or (A 2) is to be considered, respectively.
Then, by Leibniz’s rule,

d
d𝑡

∫ 𝑏 (𝑡 )

𝑎 (𝑡 )
𝜓(𝑥, 𝑡) d𝑥 =

∫ 𝑏 (𝑡 )

𝑎 (𝑡 )
𝜓𝑡 (𝑥, 𝑡) d𝑥 + 𝜓

(
𝜁− (𝑡), 𝑡

) ¤𝜁 (𝑡) − 𝜓
(
𝑎(𝑡), 𝑡

)
¤𝑎(𝑡)

+ 𝜓
(
𝑏(𝑡), 𝑡

) ¤𝑏(𝑡) − 𝜓
(
𝜁+(𝑡), 𝑡

) ¤𝜁 (𝑡). (A 4)

Here, ¤𝑎(𝑡) and ¤𝑏(𝑡) are the horizontal components of the velocities at the contact with the
vertical wall and at the end of the control volume, respectively, while ¤𝜁 (𝑡) is the velocity of
the travelling shock. Besides, 𝜓 (𝜁− (𝑡), 𝑡) and 𝜓 (𝜁+(𝑡), 𝑡) are the limits of 𝜓 to the left and
to the right of the shock, respectively. As highlighted by Stoker (1957), in the limiting case
where 𝑎(𝑡) → 𝑏(𝑡) but such that the discontinuity remains inside the control volume, the
integral in the right-hand side of equation (A 4) vanishes. We assume that this is the case
here, and apply this approach to equations (A 1) and (A 2). By considering that 𝑎 = 𝑥𝑝 (𝑡) and
𝑏 = 𝛿 (so that ¤𝑎(𝑡) = 𝑣𝑝 (𝑡) and ¤𝑏(𝑡) = 0 as 𝛿 is constant), that 𝜓 (𝜁− (𝑡), 𝑡) = 𝜓

(
𝑥𝑝 (𝑡), 𝑡

)
and

𝜓 (𝜁+(𝑡), 𝑡) = 𝜓 (𝛿, 𝑡) and since 𝜂(𝑥 = 𝑥𝑝 (𝑡), 𝑡) = 𝐴0(𝑡) and 𝜂(𝑥 = 𝛿, 𝑡) = 0 by definition,
one obtains

𝜌

(
𝐴0(𝑡) + ℎ

) (
¤𝜁 (𝑡) − 𝑣𝑝 (𝑡)

)
− 𝜌ℎ ¤𝜁 (𝑡) = 0, (A 5)

𝜌

(
𝐴0(𝑡) + ℎ

) (
¤𝜁 (𝑡) − 𝑣𝑝 (𝑡)

)
𝑣𝑝 (𝑡) =

1
2
𝜌𝑔

( (
𝐴0(𝑡) + ℎ

)2 − ℎ2
)
. (A 6)

From there, by observing that(
𝐴0(𝑡) + ℎ

) (
¤𝜁 (𝑡) − 𝑣𝑝 (𝑡)

)
𝑣𝑝 (𝑡) = ¤𝜁 (𝑡)2ℎ −

(
𝐴0(𝑡) + ℎ

) (
¤𝜁 (𝑡) − 𝑣𝑝 (𝑡)

)2
, (A 7)

one eventually establishes that(
𝐴0(𝑡) + ℎ

) (
¤𝜁 (𝑡) − 𝑣𝑝 (𝑡)

)
− ℎ ¤𝜁 (𝑡) = 0, (A 8)

(
𝐴0(𝑡) + ℎ

) (
¤𝜁 (𝑡) − 𝑣𝑝 (𝑡)

)2
− ℎ ¤𝜁 (𝑡)2 + 1

2
𝑔

( (
𝐴0(𝑡) + ℎ

)2 − ℎ2
)
= 0. (A 9)

Equations (A 8) and (A 9) constitute the transient version of the classical hydraulic jump
relationships, and correspond to equations (5.2) and (5.3) in the main text.
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