

Preservation and early evolution of scalidophoran ventral nerve cord • Short title: Nervous system of early Scalidophora Authors

Deng Wang, Jean Vannier, José M Martín-Durán, María Herranz, Chiyang Yu

▶ To cite this version:

Deng Wang, Jean Vannier, José M Martín-Durán, María Herranz, Chiyang Yu. Preservation and early evolution of scalidophoran ventral nerve cord • Short title: Nervous system of early Scalidophora Authors. Science Advances , In press, XX (XX), pp.XX. hal-04830511

HAL Id: hal-04830511 https://hal.science/hal-04830511v1

Submitted on 11 Dec 2024

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Science Advances

Manuscript Template

MAAAS

1	FRONT MATTER
2 3 4 5 6 7	 Title Preservation and early evolution of scalidophoran ventral nerve cord Short title: Nervous system of early Scalidophora
7 8 9	Authors Deng Wang ^{1,2,*,†} , Jean Vannier ^{3, †} , José M. Martín-Durán ⁴ , María Herranz ⁵ , Chiyang Yu ¹
10 11	Affiliations
12 13	¹ State Key Laboratory of Continental Dynamics, Shaanxi Key Laboratory of Early Life & Environments and Department of Geology, Northwest University, Xi'an, China.
14	² Yunnan Key Laboratory for Palaeobiology, Yunnan University, Kunming, China.
15	³ Univ Lyon, Univ Lyon 1, ENSL, CNRS, LGL-TPE, F-69622, Villeurbanne, France
16 17	⁴ School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK.
18 19	⁵ Area of Biodiversity and Conservation, Superior School of Experimental Science and Technology (ESCET), Rey Juan Carlos University, Madrid, Spain.
20 21	* To whom correspondence may be addressed. Email: wangdeng_12@outlook.com † These authors contributed equally.
22 23	Abstract
24 25	Ecdysozoan worms (Nematoida + Scalidophora) are typified by disparate grades of neural organization reflecting a complex evolutionary history. The fossil record offers a unique
26 27 28	opportunity to reconstruct the early character evolution of the nervous system via the exceptional preservation of extinct representatives. We focus here on their nervous system
28 29	representatives of the group either preserved in carbonaceous compression (early and mid-
30	Cambrian Burgess-type preservation) or secondarily phosphatized in three-dimensions
31	(3D) (e.g. basal Cambrian Kuanchuanpu Formation, ca. 535 ma) had an unpaired ventral
32	nerve cord (VNC) that ran along the trunk in an eccentric position as in modern priapulids
33	and nematodes. A phylogenetic analysis integrating these fossil data suggests that
34	ancestral scalidophorans had an unpaired VNC and that paired nervous systems probably
35	evolved independently in Kinorhyncha and Loricitera, and, more importantly, in
30 27	panaruropous in possible relation with the rise of paired appendages and bilaterally coordinated motricity.
38	coordinated motifeity.
39	Teaser

Teaser

42

Fossils from the early Cambrian indicate that arthropods evolved from worm-like 40 ancestors with a single ventral nerve cord. 41

43 Introduction

Throughout evolution, bilaterian animals have developed extraordinarily sophisticated 44 nervous systems that dramatically increased their capacity to analyze, coordinate, and 45 transmit signals, thus allowing them to perform vital functions such as motricity and 46 adequate responses to external stimuli (1). Most groups possess peripheral nerve networks 47 and a central nervous system (CNS) with a differentiated brain in the cephalic region that 48 extends posteriorly into an axial structure known as the nerve cord, which runs ventrally in 49 50 ecdysozoans (1-3). Fossilized remains of brains and the ventral nerve cord (VNC) are now known in various early ctenophores (4), annelids (5) and especially panarthropods from 51 celebrated Cambrian Lagerstätten, such as that of Chengjiang and the Burgess Shale. These 52 are mainly euarthropods, such as Fuxianhuia protensa (6, 7) and Mollisonia symmetrica 53 (8), and have far-reaching evolutionary implications (e.g. coupling of brain elements with 54 cephalic appendages, (9-11)). However, their interpretation is difficult, especially in fossils 55 preserved in compression where different anatomical features overlap, and accurate 56 recognition criteria are required (12). Fossilized nervous systems undoubtedly represent a 57 critical source of phylogenetic information but have until now been used mainly to explore 58 the evolutionary relationships within euarthropods or panarthropods (8, 12-14). In contrast, 59 the nervous systems of other early ecdysozoan worms have drawn less attention (15), 60 although they are potentially important to clarify the relationships between Nematoida, 61 Scalidophora, and Panarthropoda (16, 17). Ecdysozoan worms comprise Nematoida 62 (Nematoda and Nematomorpha, (18)) and Scalidophora (Priapulida, Loricifera, and 63 Kinorhyncha, (19)) and are characterized by a ring-like circumpharyngeal brain, except for 64 nematomorphs (17, 20, 21). While sometimes referred to as Cycloneuralia (20), the 65 monophyly of this group remains controversial, with molecular evidence strongly 66 supporting nematoids and panarthropods as a clade (e.g. (22-24)). Notably, the VNC of 67 ecdysozoan worms is either an unpaired (Priapulida, Nematoda and Nematomorpha) or 68 paired (Loricifera and Kinorhyncha (17, 21)) structure. Longitudinal features interpreted as 69 possible VNCs have been described in several Cambrian representatives of the group, such 70 as Ottoia prolifica (25), Yunnanpriapulus halteroformis (26), Xiaoheigingella peculiaris 71 (27), Acosmia maotiania (28), and the phosphatized palaeoscolecid Austroscolex 72 spatiolatus (29, 30). However, these remains are either incomplete and/or extremely 73 difficult to interpret and make it difficult to draw conclusions about the evolution of the 74 nervous system of early ecdysozoan worms (e.g. (31) but see (16, 32)). 75 To fill this knowledge gap, we describe here the oldest known VNC in scalidophoran 76 worms occurring in Eopriapulites sphinx (33-35) and Eokinorhynchus rarus (36) from the 77 ca. 535 ma basal Cambrian of China. We also re-describe the VNC of other key Cambrian 78 species of the group, such as Xiaoheigingella peculiaris and Ottoia prolifica, from the 79 Chengijang biota and Burgess Shale, respectively, in the light of comparisons with modern 80 priapulid worms, giving particular importance to their mode of preservation. The fossil 81 dataset obtained here is used to define the possible VNC ground pattern of Priapulida and 82 Scalidophora and propose scenarios about the evolution of the VNC among early 83 ecdysozoan worms. 84

85

86 **Results**

87 Eccentric longitudinal feature in Cambrian scalidophorans

Eopriapulites sphinx. Three 3D-preserved, secondarily phosphatized specimens
 (ELIXX118-96, ELIXX139-256, and UMCU 14CHD0816-008) are represented by curved
 cylindrical bodies bearing a closely spaced pattern of fine annulated folds and wrinkles

91 (Figs. 1C, G, 2A; fig. S1). Their diameter slightly enlarges at one end and gradually

tappers at the opposite. The thicker end is truncated and incomplete, whereas the thinner 92 one shows a central anal depression (34) with a smooth rounded rim and tiny pits (Fig. 1C, 93 D). Specimens of comparable size and external ornament from the same locality as the 94 present material were described (34) as belonging to *Eopriapulites sphinx*, one of the 95 oldest known scalidophorans (Kuanchuanpu Formation, Xixiang section ca. 535 ma). 96 97 Complete specimens of *Eopriapulites sphinx* display a swollen introvert lined with 18 rows of stout scalids, a terminal mouth surrounded by monodentate pharyngeal teeth, a 98 99 finely annulated trunk with no sclerotized ornament and a tapering posterior end with no circum-anal features (Figs. 1A–C, 2A, see (33, 34) for detailed descriptions). 100 Two compressed specimens are also shown here. UMCU 14CHD0816-007 is strongly 101 flattened and twisted (Fig. 2D, E). ELIXX42-269 is fragmentary and deformed, with a 102 larger diameter than the other studied specimens (Fig. 2A-C, table S1). Its annuli are well-103 defined and ca. 25–35 µm distant from each other. Importantly, five of our studied 104 specimens show a remarkable longitudinal feature that runs along the trunk in an eccentric 105 position. It is a slightly elevated strip (width ca. 40–60 µm, table S1) that, in places, forms 106 two longitudinal lobes separated by a very shallow furrow. Its relief gradually vanishes 107 posteriorly when reaching the peri-anal rounded rim (bursa). Locally, the longitudinal 108 structure shows a single thick rod (Fig. 1F, H). As the studied specimens are incomplete, it 109 is impossible to determine how far this strip extended anteriorly (e.g. circum-oral or 110 introvert region). A transverse section through Eopriapulites sphinx (Fig. 1B) shows that 111 the VNC is not preserved as its own tissue but only materialized by the thin cuticular layer 112 that covers it externally. In flattened specimens, the bilobate structure has a more eroded 113 relief (Fig. 2D, E) or is truncated (deep furrow flanked by ridges), thus revealing a double-114 layered structure (Fig. 2C). 115 *Eokinorhynchus rarus.* ELIXX140-23, also from the Kuanchuanpu Formation, displays 116 an incomplete (a little of proximal introvert) annulated trunk bearing small and larger 117 sclerites, as well as small plates (without a spine pointing outwards). This specimen 118 resembles Eokinorhynchus rarus (36). One side of the trunk exhibits a longitudinal strip of 119 constant width with a positive relief. Abundant fine cuticular folds cross the boundary 120 between annulations (Fig. 2F, G). 121 Ottoia prolifica. A comparable longitudinal feature distinct from the digestive tract (black 122 band along the trunk, Fig. 3A) is clearly present in two specimens of Ottoia prolifica from 123 the mid-Cambrian Burgess Shale Lagerstätte. In contrast to those from Kuanchuanpu, 124 these fossils are preserved in carbonaceous compression and clearly show a longitudinal 125 ladder-like reflective feature running perpendicular to the trunk annulations. This feature 126 consists of two thin parallel strips (continuous or locally interrupted; Fig. 3B, C) that 127 connect at a right angle to the inter-annular boundaries similarly preserved as carbon 128 films. A faint additional linear feature occurs in places between these two strips (Fig. 3D, 129 E, white arrows). One of these Burgess Shale specimens (USNM 188635) is likely to be 130 an incomplete, partly folded exuvia - i.e., a thin cuticle-only flimsy structure, with well-131 marked boundaries between annulations but no trace of soft tissues (e.g. muscles). 132 **Cambrian scalidophorans from China.** Poorly preserved colored longitudinal traces 133 also occur in at least three specimens of the early Cambrian of China. These belong to: 134 Yunnanpriapulus halteroformis (26), Xiaoheigingella peculiaris (27), and Acosmia 135 maotiania (28) but are extremely difficult to characterize. Similarly questionable are the 136 fine linear features seen along part of the trunk of Acosmia maotiania and the mid-137 Cambrian phosphatized palaeoscolecid Austroscolex spatiolatus (29, 30). However, a new 138 specimen of *Mafangscolex yunnanensis* from the Chengjiang Lagerstätte (Fig. 3J, K) 139 much more clearly shows a fine longitudinal feature that co-occurs with the digestive tract. 140 In addition, one specimen of *Xiaoheigingella peculiaris*, also from Chengjiang, 141

158

171

172

shows a curved linear feature running from the introvert to the pre-caudal region that locally intersects the sinuous gut tract (Fig. 3F–I).

Muscle and nervous systems of living priapulids

145 Extant priapulids have a dense network of circular and longitudinal muscle fibres 146 within their body wall (i.e., below the epidermis; Fig. 4D, E, K), plus longitudinal, oblique 147 bundles of retractile muscles (e.g. from trunk to introvert). The VNC of priapulids is 148 149 intraepidermal (i.e., within the epidermal cell layer), sandwiched between the thin cuticle and the double layer of circular and longitudinal muscle fibers (Fig. 4D, E), and 150 always appears as an unpaired structure in live specimens (Priapulopsis australis, Fig. 151 4A; Priapulus caudatus, Fig. 4B, C). However, specimens of Priapulus caudatus 152 preserved in 70% alcohol or desiccated (critical point) for scanning electron 153 microscopy (Fig. 4D, E) exhibit local positive and negative deformation, particularly 154 along the nerve cord that thus takes the form of a bilobate structure (Fig. 4F–H). The very 155 thin cuticle (ca. 10 µm, exuvia) is also affected by micro-folding forming multi-folds (Fig. 156 4I, J). 157

Phylogeny

159 Phylogenetic analyses were performed to explore the phylogeny of ecdysozoan worms and 160 possibly clarify the evolution of their nervous system, exemplified by their VNC. The 161 monophyly of Cycloneuralia based on anatomical characters is not supported by molecular 162 evidence (e.g. (23, 24)), which instead supports a clade composed of Nematoida plus 163 Panarthropoda. Accordingly, the clade Nematoida plus Panarthropoda was constrained in 164 cladistic analysis. Our results resolve Cambrian scalidophorans such as Eokinorhynchus 165 rarus as stem-group Scalidophora and Xiaoheiqingella peculiaris as stem-group Priapulida 166 (Fig. 6, fig. S2). Mafangscolex vunnanensis, Ottoia prolifica, and Eopriapulites sphinx 167 form a clade as the sister group to Eokinorhynchus rarus plus crown-group Scalidophora 168 (Fig. 6, fig. S2). The position of Acosmia maotiania, which is a separate branch within 169 Ecdysozoa, is not well resolved. 170

Discussion

Nature of the longitudinal structure

173 Extant scalidophorans have two major longitudinal anatomical structures, the digestive 174 tract (gut) that runs centrally from the mouth to the anus throughout the animal's body 175 cavity and the ventral nerve cord nested within the body wall. The gut is relatively narrow, 176 cylindrical and, importantly, not attached to the trunk wall (37-39). In contrast, the 177 longitudinal strip seen in *Eopriapulites sphinx* and *Eokinorhynchus rarus* has an eccentric 178 location and is clearly embedded within the body wall. It is unlikely to represent the gut 179 that would have collapsed onto the inner body wall after death or its imprint. 180 Extant priapulids have an orthogonal muscle system (see above), whereas adult 181 kinorhynchs and loriciferans have only longitudinal muscles along their trunk (40, 41). No 182 single thick muscle bundle running along the trunk is known to occur in any extant 183 scalidophoran. Besides, experimental taphonomy shows that muscles are labile tissues that 184 decay rapidly after death ((42) for priapulids, lost after 4 or 6 days). For these reasons, the 185 single strip seen in *Eopriapulites sphinx* and *Eokinorhynchus rarus*, is unlikely to 186 represent any of these muscle types. 187 Rare cases of muscle preservation result from the extremely rapid post-mortem 188

- precipitation of calcium phosphate over undecayed structures (43, 44). Well-preserved 189
- muscle fibres are exceptionally found in some lobopodians (45, 46) and cnidarians (47) 190
- but have no equivalent in any Cambrian worm preserved in carbonaceous compression 191
 - (Burgess Shale-type localities). Gonads are arranged in longitudinal pairs in all extant

scalidophorans and occupy a large part of the pseudocoel in extant (see (37)) and 192 Cambrian (48) priapulids. By their clustered shape and location, these organs differ 193 markedly from the single strip seen in *Eopriapulites sphinx* and *Eokinorhynchus rarus*. In 194 summary, the most meaningful interpretation is that the three-dimensionally preserved 195 longitudinal strip seen in Eopriapulites sphinx and Eokinorhynchus rarus corresponds to 196 the ventral nerve cord (VNC). No other typical elements of the nervous system known in 197 extant scalidophorans (e.g. the circumpharyngeal ring and caudal ganglia) could be 198 199 observed in our incomplete specimens.

VNC preservation modes

200

201

226

227

Cambrian scalidophorans are preserved either in fine shales as carbonaceous compression 202 (e.g. Chengjiang, Burgess) or mineralized in three-dimensional (3D) via secondary 203 phosphatization (e.g. phosphatic limestones of the Kuanchuanpu Formation). 204 Experimental taphonomy (see (42) for priapulids) shows that muscle fibers (lost after 4 to 205 6 days) and epidermal cells (lost after 8 days) rapidly decompose after death, contrasting 206 with the more decay-resistant cuticle. Paradoxically, the VNC retains its consistency and 207 external configuration over about 4 days, allowing the overlying thin cuticle to imprint its 208 shape before its final breakdown (42). This information on the timing of decay processes 209 supports the hypothesis that the mineralized cuticle of the scalidophorans from 210 Kuanchuanpu faithfully replicated the overall shape of the VNC after the latter had 211 completely decomposed. 212

- In the Burgess Shale-type preservation (e.g. Burgess Shale, Chengjiang localities), the 213 nervous tissues of numerous Cambrian arthropods (8, 12, 49) and annelids (5) are 214 typically preserved as reflective carbon films with a greater or lesser proportion of iron 215 oxide (e.g. brain (6, 8); originally microcrystalline pyrite). Similarly, the VNC of 216 scalidophorans typically appears as a brownish strip, presumably slightly enriched in iron 217 oxides and carbon. 218
- We suggest a possible taphonomic scenario for these two different modes of preservation 219 (Fig. 5) in which Steps 1 and 2 (Fig. 5A, B) would correspond to the post-mortem collapse 220 of most tissues creating cuticular deformation and folding; Step 3a (Fig. 5C, D; in 221 environments favorable to phosphatic precipitation) to the mineralization of the folded 222 cuticle (50, 51); Step 3b (Fig. 5E–G; in environments where worms are buried in fine 223 mud) to the compression of all tissues (possibly including VNC) and cuticular remains 224 and their fossilization as carbon films (12). 225

Was the VNC of the oldest known scalidophorans paired or unpaired?

The VNC of *Eopriapulites sphinx* is seemingly made of juxtaposed longitudinal lobes in 228 preservation, at least locally (see Figs. 1H, 2), raising the question of its possible paired 229 nature. Our decay experiments conducted with priapulids indicate that post-mortem 230 bilobate and micro-folded structures appear along the VNC, which seem to result from the 231 shrinkage and collapse of underlying tissues (e.g. muscles) at various stages of post-232 mortem evolution or preparation. The very similar configuration seen in the fossil 233 specimens from Kuanchuanpu (bilobate relief of VNC, see Figs. 1H, 2) is most probably 234 artefactual and does not represent the remains of a paired structure originally made of two 235 closely juxtaposed nerve cords. 236

- Interestingly, the VNC of *Eopriapulites sphinx* is preserved as its externally cuticular 237 imprint instead of its own tissue (see above). As with most labile tissues, the VNC 238 probably collapsed and decayed before the phosphatic mineralization of the cuticle while 239 leaving its external 3D-imprint. In this context, the hypothesis of cuticular deformation 240 over the VNC appears most plausible. Additionally, the truncated lobes seen in some 241

- specimens (Fig. 2D, E) seem to result from the shrinkage of the cuticular structure
 followed by relief abrasion after phosphatic deposition.
- It should also be noted that, unlike *Eopriapulites sphinx*, *Eokinorhynchus rarus* clearly displays an unequivocal unpaired VNC (Fig. 2F, G). Thus, the VNC of the oldest known scalidophorans from Kuanchuanpu had most likely an unpaired structure, as seen in other Cambrian scalidophorans preserved in compression and in extant priapulids.
- Interestingly, the ladder-like structure seen in the exuvia of *Ottoia prolifica* from the
 Burgess Shale (Fig. 3C–E) has an exact equivalent in that of *Priapulus caudatus* (Fig. 4I,
 J), where crisscrossed cuticular folds occur both at the boundary between annulations and
 longitudinally on both sides of the VNC. The same pattern observed in *Ottoia prolifica* is,
 therefore, unlikely to represent the fossilized remains of neural tissues, and, a fortiori, a
 paired nerve cord (*16, 49*).
- To summarize, none of the early and mid-Cambrian scalidophorans currently known shows evidence of a paired VNC, suggesting that ancestors and modern representatives (e.g. priapulids) of the group are characterized by an unpaired structure.

Early evolution of the nervous system in ecdysozoan worms

- Many uncertainties remain concerning the early evolution of ecdysozoans, such as the rise 259 of leg-bearing panarthropods from assumed vermiform ancestors (35, 52) and the 260 chronology of divergence between the main vermiform lineages (Priapulida, Loricifera, 261 Kinorhyncha, Nematomorpha, Nematoda; see (20, 22, 23)). Despite persisting debates 262 concerning the monophyly of Cycloneuralia (molecular versus anatomical data, (23), 263 summarized in (53), it is largely admitted that ecdysozoan worms except Nematomorpha 264 share important features in the general organization of their nervous systems (e.g. 265 circumpharyngeal ring (17, 21) and could potentially provide key information on the 266 neural organization of more remote ecdysozoan ancestors. 267
- However, the coexistence of distinct nervous system arrangements within ecdysozoans 268 raises important questions about how this organ system evolved and diversified among 269 ecdysozoan worms over time (9, 17, 20, 54, 55). There are marked differences between 270 the central nervous system of panarthropods and that of ecdysozoan worms (17): 271 ganglionated versus ring-like brain, respectively, and their VNC (with ganglia in 272 panarthropods except Onychophora). In addition, the VNC is unpaired in priapulids and 273 nematoids (37, 56, 57) but paired in kinorhynchs, loriciferans (32, 39, 40) and 274 panarthropods (54, 55, 58, 59). 275
- Our phylogenetic results support an unpaired VNC as the ancestral condition of 276 Scalidophora (e.g. Eokinorhynchus rarus) and Priapulida (e.g. Xiaoheiqingella peculiaris) 277 and seem to be conserved throughout the total-group Priapulida (16, 60) from the 278 Cambrian to the present day (Fig. 6, fig. S2). This contradicts previous hypotheses that 279 considered the unpaired VNC of priapulids as a derived condition possibly resulting from 280 the fusion of a hypothetical paired structure present in the ancestors of the group (31). 281 Although lacking Cambrian representatives, both extant nematodes and nematomorphs 282 have an unpaired VNC, too (20, 21, 56, 57). Altogether, this evidence suggests that the 283 nervous system of early scalidophorans was characterized by an unpaired VNC (Fig. 6, 284 fig. S2). 285
- Interestingly, two groups of meiobenthic scalidophorans, the Kinorhyncha and Loricifera, complicate this apparently simple evolutionary scenario. Kinorhynchs differ from other scalidophorans (e.g. annulated priapulids) by the presence of (i) 11 cuticularized and articulated segments (either ring-like or divided into articulating tergal (dorsal) and sternal (ventral) plates, and (ii) segmentally arranged muscles (*32, 38, 41, 61*). These externally well-differentiated segments correlate internally with segmentally arranged elements of

257

- the muscular and nervous systems (32), thus recalling arthropods. In kinorhynchs, ten 292 longitudinal neurite bundles originate from the brain and converge into five units along the 293 trunk, where the VNC diverges again posteriorly (32, 38, 60). As a result, their VNC 294 appears as a paired structure made of more or less closely juxtaposed (but never fused) 295 neurite bundles (32). Like in kinorhynchs, the VNC of loriciferans similarly consists of 296 two longitudinal neurite bundles (62), thus contrasting with the unpaired strand of 297 priapulids (37). 298 299 Another peculiar feature of kinorhynchs is the presence of paired ganglia along the VNC (21, 38), corresponding (or with a slight offset) to the trunk segments (32, 61, 63). These 300 paired ganglia might be concomitant to the evolution of body segmentation (e.g. to 301 innerve segmental muscles). We hypothesize that paired VNCs and paired associated 302 ganglia may have arisen independently among ecdysozoans as a possible evolutionary 303 response to body segmentation and the development of lateral appendages (e.g. 304 panarthropods). Although legs are absent in kinorhynchs, these animals are characterized 305 by a well-marked segmentation and bilateral profile, which may correlate with the 306 development of paired ganglia and juxtaposed VNC bundles (see transverse sections in 307 (32)). Likewise, loriciferans display a clear bilateral construction exemplified by their 308 lorica made of jointed plates with underlying and associated paired muscular and nervous 309 features (e.g. paired VNC). 310 Leaving the apparent originality of kinorhynchs and loriciferans aside, there is a huge gap 311 between ecdysozoan worms and panarthropods in terms of neural organization (17), the 312 latter having a ladder-like paired VNC with segmentally distributed pairs of ganglia 313 (except for onychophorans that have a lateralized VNC; (55)), each pair being connected 314 by transverse commissures. How this highly differentiated nervous system may have 315 evolved from possible ecdysozoan ancestors remains to be elucidated (e.g. (13, 17, 29)). 316 Based on our results, the unpaired VNC might represent the ancestral condition of 317 ecdysozoan worms and perhaps even their deeper ancestors (Fig. 6, fig. S2). Furthermore, 318 it is clear that unsegmented ecdysozoan worms (Priapulida and Nematoida) have an 319 unpaired VNC, whereas segmental kinorhynchs have evolved ganglionated and paired 320 VNC, resembling that of Euarthropoda and Tardigrada. 321 This strongly suggests a relation between the presence of a paired VNC, ganglia, and legs 322 and the development of segments as a necessary condition for coordinating locomotion in 323 panarthropods (64-66). This assumed major innovation, -i.e. evolution of ganglia and 324 paired VNC, is likely to have taken place among the basal panarthropods such as 325 lobopodians that had paired soft-bodied appendages (67, 68). This suggests that the 326 development of legs in invertebrate animals that most likely occurred during the 327 Precambrian-Cambrian transition (first lobopodians) is concomitant and inextricably 328 linked with major transformations of the ventral nerve cord and muscle systems. 329 330 **Materials and Methods** 331 Fossil material- Eopriapulites sphinx (Specimens ELIXX42-269, ELIXX118-96 and 332 ELIXX139-256) and Eokinorhvnchus rarus (Specimen ELIXX140-23) were collected 333 from the basal Cambrian Kuanchuanpu Formation (Fortunian Stage, Terreneuvian Series), 334 more precisely from Bed 2, Zhangjiagou Section, Xixiang County, Shaanxi Province (33). 335 Fossils were obtained by digesting calcareous rock samples in 8-10% acetic acid. 336 Phosphatic residues were picked up under the binocular microscope. Specimens of 337 *Mafangscolex yunnanensis* (ELIJS0055) and *Xiaoheiqingella peculiaris* (ELIJS1260) 338 were both collected from the Chengjiang Lagerstätte (Cambrian Stage 3; see (69) for 339
- details). All fossils are deposited in the collections of the Shaanxi Key Laboratory of Early
- 341 Life and Environments collections, Northwest University, Xi'an, China (ELIXX

- numbers). Specimens of *Eopriapulites sphinx* and *Eokinorhynchus rarus* were mounted on 342 stubs, coated with gold, and observed under the Scanning Electron Microscope (SEM; FEI 343 Quanta 400 FEG, high vacuum, secondary electrons) at Northwest University Xi'an. Light 344 photographs of scalidophoran worms (Xiaoheiqingella peculiaris ELIJS1260 and 345 Mafangscolex yunnanensis ELIJS0055) were taken with a Canon EOS 5DS R. Images of 346 Ottoia prolifica (Burgess Shale) in cross-polarized light were obtained from Jean-Bernard 347 Caron (Royal Ontario Museum, Toronto, Canada; Desmond Collins' archives), those of 348 349 two additional specimens of Eopriapulites sphinx (UMCU 14CHD0816-007 and 14CHD0816-008) from Yunhuan Liu, Tiequan Shao, and Jiachen Qin (Chang'an 350 University, China). 351
- Biological material- Priapulus caudatus was collected near the Kristineberg Marine 353 Station (Gullmarsfjord, Sweden; University of Göteborg) and the White Sea Biological 354 Station (WSBS; along the coast of the Kandalaksha Bay, Moscow State University), fixed, 355 preserved in 70% ethanol, dissected, and desiccated (Critical Point method) before 356 observations and imaging under the SEM (FEI Quanta 250 FEG; high vacuum, 357 acceleration voltage 5 KV) at CTµ, University Claude Bernard Lyon 1, France. Images of 358 specimens immersed in 70% ethanol were taken with a Leica MZ 125 binocular 359 microscope. Andreas Schmidt-Rhaesa (Museum der Natur Hamburg, Germany) provided 360 a light photograph of a specimen of Priapulopsis australis (accession number 162937 361 from the National Institute of Water and Atmospheric Research collection in Auckland, 362 New Zealand). 363
- Phylogenetic analysis. A dataset with 42 taxa and 120 characters was assembled from (28, 365 35, 70-72). It contains new neurological characters (see details in data S1 and other 366 supplementary material). This dataset was analyzed using parsimonious inference with 367 TNT v.1.6 (73) using new technology search (Driven Search with Sectorial Search, 368 Ratchet, Drift, and Tree fusing options activated) in default settings under equal weight 369 and implied weights (74, 75). A strict consensus of the five most parsimonious trees is 370 presented from equal character weighting (fig. S2A) and clade support was assessed by 371 jack-knife resampling (76). A strict consensus of the two most parsimonious trees (fig. S 372 2B) is presented for implied character weighting (using the default concavity constant k =373 3) and clade support was assessed by symmetrical resampling (77). Nematoida plus 374 Panarthropoda were constrained as monophyletic group based on strongly molecular 375 phylogenetic evidence (e.g. (23, 24)). 376

378 **References**

352

364

- A. Schmidt-Rhaesa, *The evolution of organ systems*. (Oxford university press, 2007), pp. 54-73.
- R. C. Brusca, G. Giribet, W. Moore, *Invertebrates*. (Oxford University Press, Sunderland, 2023), pp. 563-856.
- G. Giribet, G. D. Edgecombe, *The iInvertebrate tree of life*. G. Gonzalo, E. Gregory D.,
 Eds., (Princeton University Press, Princeton and Oxford, 2020), pp. 156-257.
- 4. L. A. Parry, R. Lerosey-Aubril, J. C. Weaver, J. Ortega-Hernández, Cambrian comb jellies
 from Utah illuminate the early evolution of nervous and sensory systems in ctenophores. *iScience* 24, 102943 (2021).
- 5. L. Parry, J.-B. Caron, *Canadia spinosa* and the early evolution of the annelid nervous system. *Science Advances* 5, eaax5858 (2019).
- 390 6. X. Ma, G. D. Edgecombe, X. Hou, T. Goral, N. J. Strausfeld, Preservational pathways of
 391 corresponding brains of a Cambrian euarthropod. *Current Biology* 25, 2969-2975 (2015).

- X. Ma, X. Hou, G. D. Edgecombe, N. J. Strausfeld, Complex brain and optic lobes in an
 early Cambrian arthropod. *Nature* 490, 258-261 (2012).
- J. Ortega-Hernández, R. Lerosey-Aubril, S. R. Losso, J. C. Weaver, Neuroanatomy in a middle Cambrian mollisoniid and the ancestral nervous system organization of chelicerates. *Nature Communications* 13, (2022).
- J. Ortega-Hernandez, R. Janssen, G. E. Budd, Origin and evolution of the panarthropod head
 A palaeobiological and developmental perspective. *Arthropod Structure & Development*46, 354-379 (2017).
- B. J. Eriksson, N. N. Tait, G. E. Budd, Head development in the onychophoran
 Euperipatoides kanangrensis with particular reference to the central nervous system.
 Journal of Morphology 255, 1-23 (2003).
- 403 11. G. Mayer, M. Koch, Ultrastructure and fate of the nephridial anlagen in the antennal
 404 segment of *Epiperipatus biolleyi* (Onychophora, Peripatidae)—evidence for the
 405 onychophoran antennae being modified legs. *Arthropod Structure & Development* 34, 471406 480 (2005).
- 407 12. C. Aria, J. Vannier, T.-Y. S. Park, R. R. Gaines, Interpreting fossilized nervous tissues.
 408 *BioEssays* 45, (2023).
- J. Yang, J. Ortega-Hernández, N. J. Butterfield, Y. Liu, G. S. Boyan, J. Hou, T. Lan, X.
 Zhang, Fuxianhuiid ventral nerve cord and early nervous system evolution in Panarthropoda. *Proceedings of the National Academy of Sciences* 113, 2988-2993 (2016).
- 412 14. T.-Y. S. Park, J.-H. Kihm, J. Woo, C. Park, W. Y. Lee, M. P. Smith, D. A.T. Harper, F.
 413 Young, A. T. Nielsen, J. Vinther, Brain and eyes of *Kerygmachela* reveal protocerebral
 414 ancestry of the panarthropod head. *Nature Communications* 9, 1019 (2018).
- 415 15. X. Dong, B. Duan, J. Liu, P. C. J. Donoghue, Internal anatomy of a fossilized embryonic
 416 stage of the Cambrian-Ordovician scalidophoran *Markuelia*. *Royal Society Open Science* 9,
 417 (2022).
- 418 16. J. M. Martín-Durán, G. H. Wolff, N. J. Strausfeld, A. Hejnol, The larval nervous system of
 419 the penis worm *Priapulus caudatus* (Ecdysozoa). *Philosophical Transactions B* 371,
 420 20150050 (2016).
- 421 17. A. Schmidt-Rhaease, B. H. Rothe, in *Deep metazoan phylogeny: the backbone of the tree*422 *of life New insights from analyses of molecules, morphology, and theory of data analysis,*423 J. W. Wägele, T. Bartolomaeus, Eds. (De Gruyter, Berlin, 2014), pp. 93-104.
- A. Schmidt-Rhaesa, The nervous system of *Nectonema munidae* and *Gordius aquaticus*,
 with implications for the ground pattern of the Nematomorpha. *Zoomorphology* 116, 133142 (1996).
- 427 19. C. Lemburg, Ultrastructure of sense organs and receptor cells of the neck and lorica of the
 428 *Halicryptus spinulosus* larva (Priapulida). *Microfauna Marina* 10, 7-30 (1995).
- C. Nielsen, *Animal Evolution: Interrelationships of the Living Phyla*. (Oxford university press, Oxford, ed. Third, 2012), pp. 238-310.
- 431 21. A. Schmidt-Rhaesa, S. Henne, in *Structure and Evolution of Invertebrate Nervous Systems*,
 432 A. Schmidt-Rhaesa, S. Harzsch, G. Purschke, Eds. (Oxford University Press, Oxford, 2016),
 433 vol. 30, pp. 368-382.
- 434 22. C. E. Laumer, R. Fernández, S. Lemer, D. Combosch, K. M. Kocot, A. Riesgo, S. C. S.
 435 Andrade, W. Sterrer, M. V. Sørensen, G. Giribet, Revisiting metazoan phylogeny with
 436 genomic sampling of all phyla. *Proceedings of the Royal Society B* 286, 20190831 (2019).
- R. J. Howard, M. Giacomelli, J. Lozano-Fernandez, G. D. Edgecombe, J. F. Fleming, R. M.
 Kristensen, X. Ma, J. Olesen, M. V. Sørensen, P. F. Thomsen, M. A. Wills, P. C. J.
 Donoghue, D. Pisani, The Ediacaran origin of Ecdysozoa: integrating fossil and
 phylogenomic data. *Journal of the Geological Society* 179, jgs2021-2107 (2022).

- L. I. Campbell, O. Rota-Stabelli, G. D. Edgecombe, T. Marchioro, S. J. Longhorn, M. J.
 Telford, H. Philippe, L. Rebecchi, K. J. Peterson, D. Pisani, MicroRNAs and phylogenomics
 resolve the relationships of Tardigrada and suggest that velvet worms are the sister group
 of Arthropoda. *Proceedings of the National Academy of Sciences* 108, 15920-15924 (2011).
- 445 25. S. Conway Morris, Fossil priapulid worms. *Special Papers in Palaeontology* 20, 1-95
 446 (1977).
- D. Huang, J. Vannier, J. Chen, Recent Priapulidae and their Early Cambrian ancestors:
 comparisons and evolutionary significance. *Geobios* 37, 217-228 (2004).
- J. Han, D. Shu, Z. Zhang, J. Liu, The earliest-known ancestors of Recent Priapulomorpha
 from the Early Cambrian Chengjiang Lagerstätte. *Chinese Science Bulletin* 49, 1860 (2004).
- 451 28. R. J. Howard, G. D. Edgecombe, X. Shi, X. Hou, X. Ma, Ancestral morphology of
 452 Ecdysozoa constrained by an early Cambrian stem group ecdysozoan. *BMC Evolutionary*453 *Biology* 20, 156 (2020).
- A. Y. Zhuravlev, J. A. G. Vintaned, E. Liñán, The Palaeoscolecida and the evolution of the
 Ecdysozoa. *Palaeontographica Canadiana* 31, 177-204 (2011).
- 456 30. K. J. Müller, I. Hinz-Schallreuter, Palaeoscolecid worms from the middle Cambrian of
 457 Australia. *Palaeontology* 36, 549-592 (1993).
- B. H. Rothe, A. Schmidt-Rhaesa, Structure of the nervous system in *Tubiluchus troglodytes*(Priapulida). *Invertebrate Biology* 129, 39-58 (2010).
- M. Herranz, B. S. Leander, F. Pardos, M. J. Boyle, Neuroanatomy of mud dragons: a
 comprehensive view of the nervous system in *Echinoderes* (Kinorhyncha) by confocal laser
 scanning microscopy. *BMC Evolutionary Biology* 19, 86 (2019).
- 463 33. Y. Liu, S. Xiao, T. Shao, J. Broce, H. Zhang, The oldest known priapulid-like scalidophoran
 464 animal and its implications for the early evolution of cycloneuralians and ecdysozoans.
 465 *Evolution & Development* 16, 155-165 (2014).
- 466 34. T. Shao, Y. Liu, Q. Wang, H. Zhang, H. Tang, Y. Li, New material of the oldest known scalidophoran animal *Eopriapulites sphinx*. *Palaeoworld* 25, 1-11 (2016).
- X. Shi, R. J. Howard, G. D. Edgecombe, X. Hou, X. Ma, *Tabelliscolex* (Cricocosmiidae:
 Palaeoscolecidomorpha) from the early Cambrian Chengjiang Biota and the evolution of
 seriation in Ecdysozoa. *Journal of the Geological Society*, jgs2021-2060 (2021).
- 471 36. H. Zhang, S. Xiao, Y. Liu, X. Yuan, B. Wan, A. D. Muscente, T. Shao, H. Gong, G. Cao,
 472 Armored kinorhynch-like scalidophoran animals from the early Cambrian. *Scientific*473 *Reports* 5, 16521 (2015).
- A. Schmidt-Rhaesa, in *Handbook of zoology-Gastrotricha, Cycloneuralia and Gnathifera,*A. Schmidt-Rhaesa, Ed. (De Gruyter, Germany, 2013), vol. 1, chap. 4, pp. 147-180.
- 476 38. B. Neuhaus, in *Handbook of zoology-Gastrotricha, Cycloneuralia and Gnathifera*, A.
 477 Schmidt-Rhaesa, Ed. (De Gruyter, Germany, 2013), vol. 1, chap. 5, pp. 181-323.
- 478 39. I. H. Bang-Berthelsen, A. Schmidt-Rhaease, K. Møbjerg, in *Handbook of zoology-*479 *Gastrotricha, Cycloneuralia and Gnathifera,* A. Schmidt-Rhaesa, Ed. (De Gruyter,
 480 Germany, 2013), vol. 1, chap. 6, pp. 349-370.
- 481 40. R. C. Neves, X. Bailly, F. Leasi, H. Reichert, M. V. Sørensen, R. M. Kristensen, A complete
 482 three-dimensional reconstruction of the myoanatomy of Loricifera: comparative
 483 morphology of an adult and a Higgins larva stage. *Frontiers in Zoology* 10, 19 (2013).
- 484 41. M. Herranz, M. J. Boyle, F. Pardos, R. C. Neves, Comparative myoanatomy of *Echinoderes*485 (Kinorhyncha): a comprehensive investigation by CLSM and 3D reconstruction. *Frontiers*486 *in Zoology* 11, 1-27 (2014).
- 487 42. R. S. Sansom, Preservation and phylogeny of Cambrian ecdysozoans tested by experimental
 488 decay of *Priapulus*. *Scientific Reports* 6, 32817 (2016).
- 489
 43. P. A. Allison, Konservat-Lagerstätten: cause and classification. *Paleobiology* 14, 331-344
 (1988).

- 49. 44. D. E. G. Briggs, The role of decay and mineralization in the preservation sf soft-bodied
 492 fossils. *Annual Review of Earth and Planetary Sciences* **31**, 275-301 (2003).
- 493 45. X. G. Zhang, M. R. Smith, J. Yang, J. B. Hou, Onychophoran-like musculature in a 494 phosphatized Cambrian lobopodian. *Biology Letters* **12**, (2016).
- 46. F. J. Young, J. Vinther, X. Zhang, Onychophoran-like myoanatomy of the Cambrian gilled
 lobopodian *Pambdelurion whittingtoni*. *Palaeontology* 60, 27-54 (2017).
- 497 47. X. Wang, J. Vannier, X. Yang, L. Leclère, Q. Ou, X. Song, T. Komiya, J. Han, Muscle
 498 systems and motility of early animals highlighted by cnidarians from the basal Cambrian.
 499 *eLife* 11, (2022).
- 48. X. Yang, J. Vannier, J. Yang, D. Wang, X. Zhang, Priapulid worms from the Cambrian of China shed light on reproduction in early animals. *Geoscience Frontiers* **12**, 101234 (2021).
- J. Ortega-Hernández, R. Lerosey-Aubril, S. Pates, Proclivity of nervous system preservation
 in Cambrian Burgess Shale-type deposits. *Proceedings of the Royal Society B: Biological Sciences* 286, 20192370 (2019).
- 505 50. A. D. Butler, J. A. Cunningham, G. E. Budd, P. C. Donoghue, Experimental taphonomy of
 506 Artemia reveals the role of endogenous microbes in mediating decay and fossilization.
 507 Proceedings of the Royal Society B: Biological Sciences 282, 20150476 (2015).
- 508 51. F. Saleh, A. C. Daley, B. Lefebvre, B. Pittet, J. P. Perrillat, Biogenic iron preserves
 509 structures during fossilization: A hypothesis: iron from decaying tissues may stabilize their
 510 morphology in the fossil record. *Bioessays* 42, e1900243 (2020).
- 51. 52. M. R. Smith, A. Dhungana, Discussion on '*Tabelliscolex* (Cricocosmiidae:
 512 Palaeoscolecidomorpha) from the early Cambrian Chengjiang Biota and the evolution of
 513 seriation in Ecdysozoa' by Shi *et al.* 2021 (JGS, jgs2021-060). *Journal of the Geological*514 Society 179, jgs2021-2111 (2022).
- 515 53. G. Giribet, G. D. Edgecombe, Current understanding of Ecdysozoa and its internal 516 phylogenetic relationships. *Integrative and Comparative Biology* **57**, 455-466 (2017).
- 517 54. C. Martin, V. Gross, L. Hering, B. Tepper, H. Jahn, I. S. Oliveira, P. A. Stevenson, G. Mayer,
 518 The nervous and visual systems of onychophorans and tardigrades: learning about arthropod
 519 evolution from their closest relatives. *Journal of Comparative Physiology A* 203, 565-590
 520 (2017).
- 521 55. V. Gross, G. Mayer, Neural development in the tardigrade *Hypsibius dujardini* based on anti-acetylated α-tubulin immunolabeling. *EvoDevo* 6, (2015).
- 523 56. A. Schmidt-Rhaesa, in *Handbook of zoology-Gastrotricha, Cycloneuralia and Gnathifera,*524 A. Schmidt-Rhaesa, Ed. (De Gruyter, Germany, 2013), vol. 1, chap. 3, pp. 29-146.
- 525 57. A. Schmidt-Rhaesa, *Handbook of Zoology-Nematoda*. A. Schmidt-Rhaesa, Ed.,
 526 Gastrotricha, Cycloneuralia and Gnathifera (De Gruyter, Germany, 2014), vol. 2, pp. 5-12.
- 527 58. V. Gross, S. Treffkorn, G. Mayer, in *Evolutionary Developmental Biology of Invertebrates:* 528 *Ecdysozoa I: Non-Tetraconata*, A. Wanninger, Ed. (Springer, 2015), vol. 3, pp. 35-52.
- 529 59. G. Scholtz, G. D. Edgecombe, The evolution of arthropod heads: reconciling morphological,
 developmental and palaeontological evidence. *Development Genes and Evolution* 216, 395 531 415 (2006).
- M. Herranz, F. Pardos, M. J. Boyle, Comparative morphology of serotonergic-like
 immunoreactive elements in the central nervous system of kinorhynchs (Kinorhyncha,
 Cyclorhagida). *Journal of Morphology* 274, 258-274 (2013).
- M. Herranz, M. V. Sørensen, T. Park, B. S. Leander, K. Worsaae, Insights into mud dragon
 morphology (Kinorhyncha, Allomalorhagida): myoanatomy and neuroanatomy of *Dracoderes abei* and *Pycnophyes ilyocryptus*. Organisms Diversity & Evolution 20, 467493 (2020).
- R. M. Kirstensen, in *Microscopic Anatomy of Invertebrates*, F. W. Harrison, E. E. Ruppert,
 Eds. (Wiley-Liss, New York, 1991), vol. 4, pp. 351-375.

- 63. M. Herranz, T. Park, M. D. Domenico, B. S. Leander, M. V. Sørensen, K. Worsaae,
 Revisiting kinorhynch segmentation: variation of segmental patterns in the nervous system
 of three aberrant species. *Frontiers in Zoology* 18, 54 (2021).
- 64. G. E. Budd, Why are arthropods segmented? *Evolution & Development* **3**, 332–342 (2001).
- 545 65. J. S. Deutsch, Segments and parasegments in Arthropods: a functional perspective.
 546 *BioEssays* 26, 1117-1125 (2004).
- 547 66. E. Clark, A. D. Peel, M. Akam, Arthropod segmentation. *Development* 146, (2019).
- 67. G. E. Budd, G. Mayer, R. Janssen, B. J. Eriksson, Comment on "The lower Cambrian lobopodian *Cardiodictyon* resolves the origin of euarthropod brains". *Science* 380, eadg1412 (2023).
- 551 68. X. Hou, X. Ma, J. Zhao, J. Bergström, The lobopodian *Paucipodia inermis* from the Lower
 552 Cambrian Chengjiang fauna, Yunnan, China. *Lethaia* 37, 235-244 (2004).
- K. Hou, D. J. Siveter, D. J. Siveter, R. J. Aldridge, P. Cong, S. E. Gabbott, X, Ma, M. A.
 Purnell, M. Williams, *The Cambrian Fossils of Chengjiang, China: The Flowering of Early Animal Life.* (Wiley Blackwell, ed. Second Edition, 2017), pp. 98-270.
- T. H. P. Harvey, X. Dong, P. C. J. Donoghue, Are palaeoscolecids ancestral ecdysozoans?
 Evolution & Development 12, 177-200 (2010).
- M. A. Wills, S. Gerber, M. Ruta, M. Hughes, The disparity of priapulid, archaeopriapulid
 and palaeoscolecid worms in the light of new data. *Journal of Evolutionary Biology* 25, 2056-2076 (2012).
- 561 72. D. Wang, J. Vannier, C. Aria, J. Sun, J. Han, Tube-dwelling in early animals exemplified
 562 by Cambrian scalidophoran worms. *BMC Biology* 19, 243 (2021).
- 73. P. A. Goloboff, J. M. Carpenter, J. S. Arias, D. R. M. Esquivel, Weighting against
 homoplasy improves phylogenetic analysis of morphological data sets. *Cladistics* 24, 758773 (2008).
- K. C. Nixon, The Parsimony Ratchet, a new method for rapid parsimony analysis. *Cladistics*15, 407-414 (1999).
- 75. P. A. Goloboff, Analyzing large data sets in reasonable times solutions for composite optima.
 Cladistics 24, 774-786 (1999).
- 570 76. J. S. Farris, V. Albert, M. Källersjö, D. L. Lipscomb, A. G. Kluge, Parsimony jackknifing
 571 outperforms neighbor-joining. *Cladistics* 12, 99-124 (1996).
- 572 77. P. Goloboff, Improvements to resampling measures of group support. *Cladistics* 19, 324573 332 (2003).
- 574 78. C. Yu, D. Wang, Y. Yong, Q. Tang, W. Hao, J. Sun, X. Yang, K. He, N. Yue, J. Han,
 575 Ecdysis of *Eopriapulites sphinx* from the early Cambrian Kuanchuanpu biota. *Acta*576 *Micropalaeonotogica Sinica* 39, 285-291 (in Chinese with English Abstract) (2022).

Acknowledgments:

- We thank Jian Han (Northwest University, China) and Andreas Schmidt-Rhaesa (Museum der Natur Hamburg, Germany) for instructive discussions. We thank Andreas SchmidtRhaesa and Jean-Bernard Caron (Royal Ontario Museum) for images of extant
- 583 (*Priapulopsis australis* that is deposited at the National Institute of Water and
- 584 Atmospheric Research collection in Auckland, New Zealand) and Burgess Shale
- specimens, Yunhuan Liu, Tiequan Shao and Jiachen Qin for taking photos of
 Eopriapulites at Chang'an University, Juan Luo for technical help, Yuanyuan Yong for
- artwork (Figure 1A), and Qian Zhang and Juanping Zhai for assistance with photography
 of fossil specimens (*Xiaoheiqingella* and *Mafangscolex*).
- 588 589

577 578

579

590 **Funding**:

591	This work was supported by:
592	National Natural Science Foundation of China grant 42202009 (DW)
593	China Post-doctoral Science Foundation grant 2022M722568 (DW)
594	"open for collaboration" grant from Yunnan Key Laboratory for Palaeobiology, Yunnan
595	University (DW)
596	Région Auvergne Rhône Alpes and Université Claude Bernard Lyon 1 (JV)
597	
598	Author contributions:
599	Conceptualization: DW
600	Methodology: DW, JV
601	Investigation: DW, JV, CY
602	Visualization: DW, JV
603	Supervision: DW, JV
604	Writing—original draft: DW
605	Writing—review & editing: DW, JV, JMM, MH, CY
606	
607	Competing interests: Authors declare that they have no competing interests.
608	
609	Data and materials availability: All data are available in the main text or the
610	supplementary materials.
611	
612	
613	
614	
615	
616	
617	
618	
619	
620	
621	
622	
623	
624	
625	
626	
627	
628	
629	
630	
631	
632	
633	
634	
635	
636	
637	
638	
639	
640	

Figures and Tables

653

incomplete trunk showing both sides of the body (one with unpaired VNC). (**D**), close-up of (C) showing unpaired VNC near bursa (white arrowheads), longitudinal folds, and bilobate aspect of VNC that vanishes posteriorly. (E and F), close-up of (C) showing bilobate aspect of VNC in the middle part of the trunk. (G and H), ELIXX139-256, incomplete trunk showing unpaired VNC on one side in low relief and close-up of (G) showing faint bilobate feature locally. Abbreviations: ae, anterior end; an, annulation; bu, bursa; bv, bilobate VNC; fu, furrow; in, introvert; lf, longitudinal folds; pe, posterior end; tr, trunk; vnc, ventral nerve cord.

666

667

Fig. 2. Flattened incomplete specimens from the early Cambrian Kuanchuanpu 669 Formation, showing VNC. (A–E), *Eopriapulites sphinx*. (A–C), ELIXX42-269 670 showing truncated bilobate VNC with central furrow. (B and C), close-up of (A) 671 showing details of smooth and broken lobes. (D and E), UMCU 14CHD0816-007 672 showing low-relief VNC. (F and G), Tubular incomplete specimens of 673 Eokinorhynchus rarus. (F), Fragment of trunk showing small and large sclerites, 674 small plates (without spines), and unpaired VNC. (G), Details of unpaired VNC 675 in positive relief showing transverse folds across annulations. Abbreviations: ae, 676 anterior end; an, annulation; bl, broken lobe; bv, bilobate VNC; fu, furrow; ls, 677 large sclerite; sl, smooth lobe; sp, small plate; ss, small sclerite; vnc, ventral nerve 678 cord. 679

Science Advances

681	Fig. 3. Burgess Shale-type early to mid-Cambrian scalidophorans with VNC. (A–E),
682	Ottoia prolifica from the mid-Cambrian (Miaolingian Series, Wuliuan Stage)
683	Burgess Shale Lagerstätte. (A), ROM 61780a, group of complete worms on the
684	surface of a rock slab. (B-E), USNM 188635, exuvia showing interconnected
685	transverse and longitudinal ladder-like features; both representing cuticular folds
686	and thickenings and cannot be interpreted as fossilized remains of soft nervous
687	tissues (e.g. paired VNC and circular fibers; see ref. (22)). (D and E), close-up
688	showing a faint additional linear feature between these two strips. (F-K)
689	Scalidophorans from the early Cambrian Chengjiang Lagerstätte (Jianshan
690	County, Yunnan, China). (F-I), Xiaoheiqingella peculiaris (ELIJS1260), general
691	view (gut in black; VNC in red, see white arrowheads) and close-ups of VNC. (J
692	and K), Mafangscolex yunnanensis (ELIJS0055), general view showing gut
693	(dark strip) and VNC (thin line with white arrowheads); note tiny longitudinal
694	wrinkles on VNC. Abbreviations: an, annulation; cf, cuticular folds at the VNC
695	location; cp, caudal part; dt, digestive gut; ex, exuvia; in, introvert; vnc, ventral
696	nerve cord.

Fig. 4. Ventral nerve cord (VNC) in living priapulids. (A), Priapulopsis australis, posterior part showing annulated body and longitudinal VNC. (B–K), Priapulus caudatus. (B), general morphology of Priapulus caudatus (live specimen from Sweden). (C–K), Priapulus caudatus from Russia (White Sea), light and SEM images of the same newly molted specimen (thin folded cuticle). (C), general view of VNC and body annulation (in 7% ethanol). (D and E), Transverse section through VNC, general view and details. (F–H), External view of the cuticle on both sides of the underlying VNC and details of micro-folded cuticle; note bilobed deformation over VNC. (I–K), Exuvia of Priapulus caudatus (Priapulida; extant, White Sea, Russia) showing cuticular annulations and longitudinal traces (white arrowheads) where the VNC was (compare with Figure 3B–E), in transmitted light (brown lines represent the areas where the cuticle is relatively thicker) and under the SEM (boundary between annulations). Abbreviations: an, annulation; cf, cuticular folds at the VNC location; cm, circular muscle; es, external surface; fu,

PHOSPHATIZATION

Fig. 5. Taphonomic scenario to explain the preservation of the VNC in Cambrian scalidophorans, in the case of preservation via secondary phosphatization (left) or compression (right). (A), body wall of living scalidophoran (exemplified by priapulids) showing cuticular, epidermal and muscular (circular, longitudinal) layers in transverse section. (B), post-mortem modification including possible shrinkage and cuticular micro-folding. (C), rapid decay of muscles tissues and epidermal cells (VNC might decay less rapidly, but eventually disappeared). (**D**), phosphatization of the cuticle that replicates the relief of the VNC (as seen in Kuanchuanpu specimens). (E), compression in sediment. (F), VNC preserved as a carbon film and/or pyrite (as seen in Chengjiang fossils). (G), exuvia (as seen in Ottoia); the only organic remains are cuticular micro-folds between annuli and along the VNC resulting in ladder-like features. Not to scale. Abbreviations: an,

annulus; bv, bilobate VNC; cm, circular muscles; cu, cuticle; ep, epidermal layer;
fu, furrow; lm, longitudinal muscles; mf, cuticular microfolds, st, strip; vnc, ventral
nerve cord.

- **Fig. 6. Early evolution of the ventral nerve cord (VNC) in ecdysozoan worms** (Nematoida and Scalidophora). Tree showing the relation between ecdysozoan ingroups (including key species of Cambrian scalidophorans) and their neural organization (upper row of the diagram) with the ventral nerve cord (VNC) and associated features in blue and the peripheral system in red. Nervous system of Cambrian scalidophorans (only VNC known in fossils) is extrapolated from that of extant priapulids. The peripheral system of Cambrian scalidophorans is hypothetical. Key derived and ancestral characters of the nervous system are indicated along the branches of the tree. Reconstruction of VNC in Kinorhyncha, Nematoda, Priapulida, and Onychophora adapted from (*13, 21, 32*).

792 703	
793	Supplementary Materials for
795	Supplementary Materials for
796	• Preservation and early evolution of cycloneuralian ventral nerve cord
797	
798	Deng Wang <i>et al.</i>
799	
800	*Corresponding author. Email: <u>wangdeng_12@outlook.com</u>
801	
802 803	
803	
805	
806	This PDF file includes:
807	
808	Figs. S1 to S2
809	Table S1
810	Data S1
811	References (79 to 84)
812	
813	

-

814

Fig. S1. *Eopriapulites* from the early Cambrian of the Kuanchuanpu Formation, China, showing the trace

of its VNC. A–C, UMCU 14CHD0816-008. A, general view of the specimen preserved in 3D. B,

- 818 close-ups of cuticular micro-wrinkles on VNC's imprint. C, VNC's relief best seen in posterior
- part near bursa. White arrows indicate VNC's boundaries. Abbreviation: wr, wrinkle.
- 820 821

823

Full phylogenetic trees based on parsimony inference under TNT showing Eokinorhvnchus. 824 825 Eopriapulites, Mafangscolex, and Ottoia as stem members of Scalidophora, and Xiaoheiqingella as stem members of Priapulida. A, New technology search under equal weight, showing a strict 826 consensus of six most parsimonious trees, with nodal supports above 50% shown from Jack-knife 827 resampling under default settings. **B**, New technology search under implied weight (concavity 828 constant k=3), showing a strict consensus of two most parsimonious trees, with nodal supports 829 above 50% shown from symmetric resampling under default settings. The position of Acosmia 830 831 maotiania, which is a separate branch within Ecdysozoa, is not well resolved in both analyses. Nematoida and Panarthropoda is constrained based on recent molecular evidence (see Method 832 833 and material in main text).

Fig. S2.

Taxa	Specimen	Preservation	Locality	W _{tr} ^(a)	Wvnc	W _{sl}	NI
	ELIXX42-269	2D; phosphatized		800	36-39	9-13	2
E	ELIXX118-96	3D; phosphatized		400	33-50	10-14	2/A
Eopriapulites	ELIXX139-256	3D; phosphatized	Cambrian, Fortunian	970	42-48	9-13	2/A
spninx	UMCU 14CHD0816-007	2D; phosphatized	Kuanchuanpu	620	62-67	Α	Ν
	UMCU 14CHD0816-008	3D; phosphatized	Formation	430	43-48	4-5	2/A
Eokinorhynchus rarus	ELIXX140-23	3D; phosphatized		730	75-85	А	Ν
Xiaoheiqingella peculiaris	ELIJS1260	compression	Cambrian Stage 3,	1355	40-49	А	Ν
Mafangscolex yunnanensis	ELIJS0055	compression	Lagerstätte	1800	42-58	А	N
Ottoia prolifica	USNM188635	compression exuvia	Cambrian, Wuliuan Burgess Shale Lagerstätte	1700	46-58	10-15 ^(b)	3
Priapulopsis australis	Accession 162937	three-dimension	extant	5230	320-350	А	Ν
Priapulus caudatus	No collection number	three-dimension	extant	8650	125-178	13-17 ^(b)	3
Priapulus caudatus	No collection number	exuvia	extant	N	390	90-100	3-4

835 **Table S1.**

VNC measurements (in μ m) in stem and extant scalidophorans. W_{tr} , width of the trunk; W_{vnc} ,

837 width of VNC; W_{sl}, width of lobe (if present). Nl, number of lobes. A, absence. N, inapplicable.

^(a), in 3D-preserved and compressed specimens Wtr corresponds to the trunk diameter and

839 maximum trunk width, respectively. ^(b), data from imprint of cuticle.

840 841

842 Data S1. Notes on character coding

843 List of morphological characters used in phylogenetic analysis.

844 Head, anterior trunk, proboscis etc.

- 845 **1. Cephalization:**
- 846 (0) Proboscis
- 847 (1) Distinct head region clearly discriminated
- 848 Character 1 in Shi et al. (35)

849	2.	Proboscis invaginable (introvert):
850		(0) Absent

(1) Present

Modified from character 1 in Harvey et al. (70)

3. Degree to which the introvert can be invaginated:

- (0) Partially invaginable (i.e., part of Zone I)
- 855 (1) Completely invaginable into the trunk (i.e., to the base of Zone I)
- 856 Modified from character 2 in Harvey et al. (70)

857	4.	Introvert representing 30-50%	of body	length:
-----	----	-------------------------------	---------	---------

- (0) Absent
- (1) Present
- 860 Modified from character 71 in Harvey et al. (70)
- 861

864

865

858

859

851

- 862 <u>Sensory structures</u>
- 863 **5. Eyes:**
 - (0) Absent
 - (1) Present

866	Character 29 in Yang et al. (79)
867	6. Lateral amphids:
868	(0) Absent
809 870	Character 17 in Shi et al. (35)
871	7. Trunk tumuli:
872	(0) Absent
873 874	(1) Present Character 25 in Harvey et al. (70)
875	8 Trunk tubuli
876	(0) Absent
877	(1) Present
878	Character 26 in Harvey et al. (70)
879	9. Flosculi, N-flosculi or sensory spots:
880 881	(0) Absent (1) Present
882	Character 27 in Harvey et al. (70)
883	
884	Oral, circumoral and pharyngeal morphology
885	10. Mouth opening orientation:
886 887	(0) Terminal (1) Ventral
007	
888	Character 21 in Shi et al. (35)
888 889	Character 21 in Shi et al. (35)11. One or more pairs of appendages located anteriorly relative to the mouth opening:
888 889 890	Character 21 in Shi et al. (35) 11. One or more pairs of appendages located anteriorly relative to the mouth opening: (0) Absent
888 889 890 891 892	Character 21 in Shi et al. (35) 11. One or more pairs of appendages located anteriorly relative to the mouth opening: (0) Absent (1) Present Character 24 in Yang et al. (79)
888 889 890 891 892 893	 Character 21 in Shi et al. (35) 11. One or more pairs of appendages located anteriorly relative to the mouth opening: (0) Absent (1) Present Character 24 in Yang et al. (79) 12. Mouth cone:
888 889 890 891 892 893 894	Character 21 in Shi et al. (35) 11. One or more pairs of appendages located anteriorly relative to the mouth opening: (0) Absent (1) Present Character 24 in Yang et al. (79) 12. Mouth cone: (0) Absent
888 889 890 891 892 893 893 894 895	Character 21 in Shi et al. (35) 11. One or more pairs of appendages located anteriorly relative to the mouth opening: (0) Absent (1) Present Character 24 in Yang et al. (79) 12. Mouth cone: (0) Absent (1) Present Character 42 in Harvey et al. (70)
 888 889 890 891 892 893 894 895 896 807 	Character 21 in Shi et al. (35) 11. One or more pairs of appendages located anteriorly relative to the mouth opening: (0) Absent (1) Present Character 24 in Yang et al. (79) 12. Mouth cone: (0) Absent (1) Present Character 42 in Harvey et al. (70) 42. Mouth tube:
888 889 890 891 892 893 894 895 896 897 898	Character 21 in Shi et al. (35) 11. One or more pairs of appendages located anteriorly relative to the mouth opening: (0) Absent (1) Present Character 24 in Yang et al. (79) 12. Mouth cone: (0) Absent (1) Present Character 42 in Harvey et al. (70) 13. Mouth tube: (0) Absent
888 889 890 891 892 893 894 895 896 897 898 899	Character 21 in Shi et al. (35) 11. One or more pairs of appendages located anteriorly relative to the mouth opening: (0) Absent (1) Present Character 24 in Yang et al. (79) 12. Mouth cone: (0) Absent (1) Present Character 42 in Harvey et al. (70) 13. Mouth tube: (0) Absent (1) Present
888 889 890 891 892 893 893 894 895 896 897 898 899 900	Character 21 in Shi et al. (35) 11. One or more pairs of appendages located anteriorly relative to the mouth opening: (0) Absent (1) Present Character 24 in Yang et al. (79) 12. Mouth cone: (0) Absent (1) Present Character 42 in Harvey et al. (70) 13. Mouth tube: (0) Absent (1) Present Character 24 in Shi et al. (35)
 888 889 890 891 892 893 894 895 896 897 898 899 900 901 222 	Character 21 in Shi et al. (35) 11. One or more pairs of appendages located anteriorly relative to the mouth opening: (0) Absent (1) Present Character 24 in Yang et al. (79) 12. Mouth cone: (0) Absent (1) Present Character 42 in Harvey et al. (70) 13. Mouth tube: (0) Absent (1) Present Character 24 in Shi et al. (35) 14. Subdivided pharyngostome:
 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 	Character 21 in Shi et al. (35) 11. One or more pairs of appendages located anteriorly relative to the mouth opening: (0) Absent (1) Present Character 24 in Yang et al. (79) 12. Mouth cone: (0) Absent (1) Present Character 42 in Harvey et al. (70) 13. Mouth tube: (0) Absent (1) Present Character 24 in Shi et al. (35) 14. Subdivided pharyngostome: (0) Absent (1) Present
888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904	Character 21 in Shi et al. (35) 11. One or more pairs of appendages located anteriorly relative to the mouth opening: (0) Absent (1) Present Character 24 in Yang et al. (79) 12. Mouth cone: (0) Absent (1) Present Character 42 in Harvey et al. (70) 13. Mouth tube: (0) Absent (1) Present Character 24 in Shi et al. (35) 14. Subdivided pharyngostome: (0) Absent (1) Present Character 25 in Shi et al. (35)
888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905	Character 21 in Shi et al. (<i>35</i>) 11. One or more pairs of appendages located anteriorly relative to the mouth opening: (0) Absent (1) Present Character 24 in Yang et al. (<i>79</i>) 12. Mouth cone: (0) Absent (1) Present Character 42 in Harvey et al. (<i>70</i>) 13. Mouth tube: (0) Absent (1) Present Character 24 in Shi et al. (<i>35</i>) 14. Subdivided pharyngostome: (1) Present Character 25 in Shi et al. (<i>35</i>) 15. Metastegosomal teeth:
 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 	Character 21 in Shi et al. (35) 11. One or more pairs of appendages located anteriorly relative to the mouth opening: (0) Absent (1) Present Character 24 in Yang et al. (79) 12. Mouth cone: (0) Absent (1) Present Character 42 in Harvey et al. (70) 13. Mouth tube: (0) Absent (1) Present Character 24 in Shi et al. (35) 14. Subdivided pharyngostome: (0) Absent (1) Present Character 25 in Shi et al. (35) 15. Metastegosomal teeth: (0) Absent (1) Present
 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 	Character 21 in Shi et al. (35) 11. One or more pairs of appendages located anteriorly relative to the mouth opening: (0) Absent (1) Present Character 24 in Yang et al. (79) 12. Mouth cone: (0) Absent (1) Present Character 42 in Harvey et al. (70) 13. Mouth tube: (0) Absent (1) Present Character 24 in Shi et al. (35) 14. Subdivided pharyngostome: (0) Absent (1) Present Character 25 in Shi et al. (35) 15. Metastegosomal teeth: (0) Absent (1) Present Character 26 in Shi et al. (35)
 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 	Character 21 in Shi et al. (35) 11. One or more pairs of appendages located anteriorly relative to the mouth opening: (0) Absent (1) Present Character 24 in Yang et al. (79) 12. Mouth cone: (0) Absent (1) Present Character 42 in Harvey et al. (70) 13. Mouth tube: (0) Absent (1) Present Character 24 in Shi et al. (35) 14. Subdivided pharyngostome: (0) Absent (1) Present Character 25 in Shi et al. (35) 15. Metastegosomal teeth: (0) Absent (1) Present Character 26 in Shi et al. (35) 16. Odontostyle:
 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 	Character 21 in Shi et al. (35) 11. One or more pairs of appendages located anteriorly relative to the mouth opening: (0) Absent (1) Present Character 24 in Yang et al. (79) 12. Mouth cone: (0) Absent (1) Present Character 42 in Harvey et al. (70) 13. Mouth tube: (0) Absent (1) Present Character 24 in Shi et al. (35) 14. Subdivided pharyngostome: (0) Absent (1) Present Character 25 in Shi et al. (35) 15. Metastegosomal teeth: (0) Absent (1) Present Character 26 in Shi et al. (35) 16. Odontostyle: (0) Absent (1) Absent (1) Present Character 26 in Shi et al. (35)

912	Character 27 in Shi et al. (35)
913	17. Radially symmetrical circumoral structures:
914 015	(0) Absent
915 916	Character 25 in Yang et al. (79), and character 28 in Shi et al. (35)
917	
918	18. General form of radial circumoral structures:
919	(0) Scalids – hollow spines with apical pore and sensory cells surrounded by a thin layer of cuticle
920 921	(scalidophorans) (1) Hooks composed exclusively of cuticle (nematomorphs, some nematodes)
922	(2) Oral papillae or lamellae (some tardigrades)
923 924	 (3) "Lips" (some nematodes, possibly Acosmia and Shergoldana) (4) Cenhalic setae (some nematodes)
925	(5) Oral elements (onychophorans)
926	Modified from character 26 in Yang et al. (79), and character 40 in Harvey et al. (70)
927	19. Zone I armature comprises:
928 020	 (0) Fewer than 3 rings (1) Many rings (i.e. more than 3)
929 930	(1) Many rings (i.e. more than 5) (2) 3 rings
931	Character 30 in Shi et al. (35)
932	20. Arrangement of Zone I armature into discrete parallel longitudinal rows:
933 034	(0) Absent (1) Breagnt
934 935	Modified from character 4 in Harvey et al. (70)
936	21. Unarmed proximal introvert:
937	(0) Absent
938 939	(1) Present "-" inapplicable if character 19 is coded "0" or "2".
940	Modified from character 32 in Shi et al. (35)
941	22. Symmetry of circumoral structures:
942	(0) Hexaradial
943 944	(1) Pentaradial (2) Octaradial
945	(3) 28-fold
946	Modified from character 5 in Harvey et al. (70)
947	23. Anterior ring of anteriorly directed jointed, broad appendages:
948 949	(0) Absent (1) Present
950	Character 34 in Shi et al. (35)
951	24. Sexual dimorphism of clavoscalids:
952 053	 (0) Clavoscalids all the same (1) Branched alayassadids in malas
955 954	Character 35 in Shi et al. (35)
955	25. Rings of segmented, elongated spinose appendages:
956	(0) Absent
957	(1) Present

958	Character 36 in Shi et al. (35)
959	26. Double organ:
960 961 962	 (0) Absent (1) Present Character 37 in Shi et al. (35)
963	27. Trichoscalids:
964	(0) Absent
965 066	(1) Present Character 28 in Shi et al. (25)
900	$\begin{array}{c} \text{Character 56 in 5in et al. (55)} \\ Ch$
967	28. Number of trichoscalids on proximal part of Zone I
968 969	(0) (1) (1) (1)
970	(2) 14
971	Character 18 in Wang et al. $(/2)$
972 973	29. The number of longitudinal rows of elements in Zone 1 formed by the fourth and following circles:
974	(0) = 20</td
975	(1) 25
976	(2) >25
977	Modified from character 7 in Harvey et al. (70)
978	30. Zone II:
979	(0) Unarmed
980 981	(1) Armed Modified from character 10 in Harvey et al. (70)
982	31. Number of elements in the first circle of Zone I:
983	(0) Numerous (>8)
984	$(1)_{8}$
985 986	(2)<8 Modified from character 11 in Harvey et al. (70)
987	32. Coronal spines at boundary of Zones I and II:
988	(0) Absent
989 000	(1) Present, undifferentiated
990 991	Modified from character 13 in Wills et al. (71)
992	33. Zone III:
993	(0) Unarmed
994 005	(1) Armed Character 12 in Hervey et al. (70)
995	34 Zone III comprises sclerotized pharwageal teeth circlets:
990 997	(0) Absent
998 000	(1) Present Madified from character 12 in Smith and Coron et al. (80)
999 1000	25 Number of sizelets of Zono III armsture:
1000	(0) 1-4
1002	(1) 6-8
1003	(2) 16 or more

1004	Modified from character 13 in Harvey et al. (70)
1005	36. General morphology of proximal circlets of Zone III armature (teeth):
1006	(0) Absent
1007	(1) Spines or papillae
1008	(2) Multispinose
1009	(3) Multispinose but massively reduced
1010	(4) Hooks
1011	(5) Conical with a fringe of spines
1012	(6) Sclerotized trabeculae
1013	(7) Pectinate
1014	(8) Conical papillae terminating in a long spine (prickle)
1015	(9) Placoids
1016	Modified from character 14 in Harvey et al. (70)
1017	37. Morphology of middle circlets of Zone III armature (teeth):
1018	(0) Absent
1019	(1) Spines or papillae
1020	(2) Multispinose
1021	(3) Pectinate
1022	(4) Placoids
1023	Modified from character 15 in Harvey et al. (70)
1024	38. Morphology of distal circlets of Zone III armature:
1025	(0) Absent
1026	(1) Spines
1027	(2) Multispinose
1028	(3) Pectinate
1029	(4) Placoids
1030	Modified from character 16 in Harvey et al. (70)
1031	39. Number of elements in the first circlet of pharyngeal armature (base on Zone III):
1032	(0) > 10
1033	$\begin{pmatrix} 1 \end{pmatrix} I 0 \\ \begin{pmatrix} 2 \end{pmatrix} f$
1034	(2) 5 (2) 9
1035	(3) 8
1036	Modified from character 1/ in Harvey et al. $(/0)$
1037	40. Pentaradial symmetry of Zone III armature:
1030	(F) Present
1037	Modified from character 18 in Harvey et al. (70)
1040	44. Number of proving a portogonal singlets in Zone III.
1041	41. Number of proximal pentagonal circlets in Zone III:
1042	(0) None
1043	
1015	(1) Five
1044	$\begin{array}{c} (1) \text{Five} \\ (2) \text{Six} \\ (2) \tilde{\mathbf{x}} \end{array}$
1044 1045	(1) Five (2) Six (3) Seven
1044 1045 1046	(1) Five (2) Six (3) Seven (4) Three
1044 1045 1046 1047	 (1) Five (2) Six (3) Seven (4) Three Modified from character 18 in Harvey et al. (70)
1044 1045 1046 1047 1048	 (1) Five (2) Six (3) Seven (4) Three Modified from character 18 in Harvey et al. (70) 42. Teeth of second circle of the larvae with very small median denticle: (0) Absent
1044 1045 1046 1047 1048 1049	 (1) Five (2) Six (3) Seven (4) Three Modified from character 18 in Harvey et al. (70) 42. Teeth of second circle of the larvae with very small median denticle: (0) Absent (1) Present
1044 1045 1046 1047 1048 1049 1050	 (1) Five (2) Six (3) Seven (4) Three Modified from character 18 in Harvey et al. (70) 42. Teeth of second circle of the larvae with very small median denticle: (0) Absent (1) Present
1045 1045 1046 1047 1048 1049 1050 1051	 (1) Five (2) Six (3) Seven (4) Three Modified from character 18 in Harvey et al. (70) 42. Teeth of second circle of the larvae with very small median denticle: (0) Absent (1) Present Character 72 in Harvey et al. (70)
1044 1045 1046 1047 1048 1049 1050 1051 1052	 (1) Five (2) Six (3) Seven (4) Three Modified from character 18 in Harvey et al. (70) 42. Teeth of second circle of the larvae with very small median denticle: (0) Absent (1) Present Character 72 in Harvey et al. (70) 43. Distal portion of Zone III expanded into a bulb: (0) Absent (0) Absent
1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054	 (1) Five (2) Six (3) Seven (4) Three Modified from character 18 in Harvey et al. (70) 42. Teeth of second circle of the larvae with very small median denticle: (0) Absent (1) Present Character 72 in Harvey et al. (70) 43. Distal portion of Zone III expanded into a bulb: (0) Absent (1) Present

1055	Modified from character 20 in Harvey et al. (70)
1056	44. Zone III eversibility:
1057	(0) No degree of eversibility
1058	(1) Eversible (to any degree)
1059	Modified from character 21 in Harvey et al. (70)
1060	45. Eversibility of Zone III:
1061	(0) Completely eversible
1062	(1) Incompletely eversible, eversible beyond the proximal teeth
1063	(2) Eversible only as far as the proximal teeth M_{2} if f_{2} is the proximal teeth M_{2} if f_{2} is the proximal teeth M_{2} is the proximal t
1064	Modified from character 21 in Harvey et al. (70)
1065	46. Eversible pharynx:
1066	(0) Absent
1067	(1) Present (70)
1068	Character 70 in Harvey et al. (70)
1069	47. All Zone III elements:
1070	(0) Of approximately equal size
1071	(1) Decreasing regularly in size from the posterior to the anterior M_{0} difficult from the posterior 22 in Harrison et al. (70)
10/2	Modified from character 22 in Harvey et al. (70)
1073	48. Radial oral stylets in mouth cone:
1074	(0) Absent
1075	(1) Present Character 24 in Wong et al. (72)
10/6	Character 34 in wang et al. (72)
1077	49. Number of radial oral stylets:
1078	(0) 4
1079	(1) 6
1080	(2) 8
1081	(3) 9
1082	Character 35 in Shi et al. (35)
1083	50. Placids:
1084	(0) Absent
1085	(1) Present (70)
1086	Character 43 in Harvey et al. (70)
1087	51. Number of placids
1088	(0) 8
1089	(1) 16
1090	Character 44 in Yang et al. (13)
1091	52. Triradial cuticular thickenings ornamenting pharynx:
1092	(0) Absent
1093	(1) Present $(4 \text{ in Shi at al} (25))$
1094	Character 64 in Shi et al. (33)
1095	53. Pharyngeal lumina:
1096	(0) Round
1097	(1) Triradiate Character 72 in Harrist et z_1 (70)
1098	Character $/3$ in Harvey et al. ($/0$)
1099	

1100	Trunk region
1101	54. Locomotion by peristaltic contraction:
1102	(0) Absent
1103	(1) Present $(2 \text{ in } H)$
1104	Modified from character 68 in Harvey et al. $(/0)$
1105	55. Body musculature:
1106	(0) Circular and longitudinal peripheral musculature
1107	(1) Longitudinal peripheral only (2) Metameric skeletal musculature
1109	Modified from characters 112-114 in Zhang et al. (45)
1110	56. Circular musculature inside longitudinal musculature:
1111	(0) Absent
1112	(1) Present
1113	Character 115 from Zhang et al. (45)
1114	57. Annulations:
1115	(0) Absent
1116	(1) Present Character 26 in Dalay et al. (81)
111/	Character 20 III Daley et al. (81)
1118	58. Papillae on annulations:
1119	(U) Absent (1) Present
1120	Modified from character 41 in Ma et al. (82)
1122	59. Branching of annular rings:
1123	(0) Unbranched
1124	(1) Branched
1125	Character 51 in Zhang et al. (45)
1126	
1127	Serially repeated trunk nodes/sclerites
1128	60. Trunk with serially repeated paired ventral/ventrolateral structures:
1129	(0) Absent
1130	(1) Present (25)
1131	Character 77 in Shi et al. (35)
1132	61. Form of serially repeated paired ventral/ventrolateral trunk structures:
1133	(0) Spines/protuberances
1134	Character 78 in Shi et al. (35)
1126	62 Socially reported enidermal specializations:
1130	(0) Absent
1137	(1) Present
1139	Modified from character 39 in Yang et al. (79)
1140	63. Position of serially repeated epidermal specializations:
1141	(0) Dorsal/lateral/dorsolateral longitudinal rows
1142	(1) Complete transverse rings
1143	Character 80 in Shi et al. (35)
1144	64. Nature of serially repeated epidermal dorsolateral specializations:
1145	(0) Epidermal depressions
1146	(1) Epidermal evaginations

1147	Modified from character 40 in Yang et al. (79), and character 81 in Shi et al. (35).
1148	
1149	Posterior trunk part
1150	65. Posterior ring papillae:
1151	(0) Absent
1152	Character 28 in Harvey et al. (70)
1154	66. Eversible bursa:
1155	(0) Absent
1156	(1) Present
1157	Character 29 in Harvey et al. (70)
1158	67. Caudal appendage(s):
1159	(0) Absent
1160	Character 31 in Harvey et al. (70)
1162	68. Division of caudal appendage(s):
1163	(0) Unpaired
1164	(1) Paired
1165	Modified from character 32 in Harvey et al. (70)
1166	69. Caudal appendage vesiculate:
1167	(U) Absent (1) Present
1169	Character 33 in Harvey et al. (70)
1170	70. Caudal appendage thin and tail-like:
1171	(0) Absent
1172	(1) Present Character 145 in Shi et al. (35)
1174	71. Terminally posterior spines, hooks, or cones of basal diameter >20% of trunk diameter:
1175	(0) Absent
1176	(1) Present Character 93 in Harvey et al. (70)
1178	72 Number of terminally nosterior spines books.
1179	(0) One
1180	(1) One pair
1181	(2) Three (3) Two pairs
1183	Modified from character 94 in Harvey et al. (70)
1184	73. Arc or ring of posterior spines or hooks:
1185	(0) Absent
1186 1187	(1) Present Character 95 in Harvey et al. (70)
1188	
1189	Cuticle:
1190	74. Cuticle surface with ornament of tessellating polygons:
1191	(0) Absent
1192	(1) Present

1193	Character 91 in Harvey et al. (70)
1194	
1195	Soft tissue organisation
1196	75. Polythyridium:
1197	(0) Absent (1) Present
1198	Character 34 in Harvey et al. (70)
1200	76. Ventral nerve cord throughout its length:
1201	(0) Paired
1202	Character 48 from Harvey et al. (70)
1204	77. Ventral nerve cord with paired ganglia:
1205	(0) Absent
1206	(1) Present Character 81 in Vang et al. (70)
1207	78 Brain type:
1200	(0) Condensed dorsal ganglional
1210	(1) Circumpharyngeal
1211	(2) Dorsal commissure Character 57 in Harvey et al. (70)
1213	79. Apical part of the brain composed on perikarva:
1214	(0) Absent
1215	(1) Present Character 59 in Harris et al. (70)
1216	Character 58 in Harvey et al. (70)
1217	(0) Absent
1210	(1) Present
1220	Modified from character 60 in Harvey et al. (70)
1221 1222	81. Pharyngeal nervous system comprised of numerous tooth ganglia connected by a diagonal nerve net:
1223	(0) Absent
1224	(1) Present Character 66 in Harvey et al. (70)
1225	82 Number of neuromeres integrated into the dorsal condensed brain.
1227	(0) 1
1228	(1) 2
1229 1230	(2) 3 Character 83 in Yang et al. (79)
1231	83. Mouth innervation relative to brain neuromeres:
1232	(0) Protocerebral innervation
1233 1234	(1) Innervation from multiple neuromeres Character 84 in Yang et al. (79)
1235	84. Nerve cord lateralised:
1236	(0) Absent
1237 1238	(1) Present Character 85 in Yang et al. (79)
1230	85 Dorsal heart:
1240	(0) Absent

1241 1242	(1) Present Character 86 from Yang et al. (79)
1243	86. Protonephridia:
1244	(0) Absent
1245	(1) Present
1246	Character 52 in Harvey et al. (70)
1247	87. Protonephridia flow into the gonoduct and/or are integrated into the gonad (= urogenital system):
1248	(0) Absent
1249	(1) Present
1250	Modified from character 53 in Harvey et al. (70)
1251	88. Urogenital system attached to the body wall by a ligament:
1252	(U) Absent (1) Present
1255	Modified from character 54 in Harvey et al. (70)
1255	
1256	Development and reproduction:
1257	89. Developmental mode:
1258	(0) Direct
1259	(1) Distinct larval stages
1260	Modified from character 36 in Harvey et al. (70)
1261	90. Loricate stage in life cycle:
1262	(0) Absent
1263	(1) Present Madified from character 27 in Horney et al. (70)
1264	Modified from character 37 in Harvey et al. (70)
1265	91. Lorica present in larva:
1266	(0) Absent (1) Present
1267	Character 166 from Shi et al. (35)
1269	92. Lorica present in adult:
1270	(0) Absent
1271	(1) Present
1272	Character 167 from Shi et al. (35)
1273	93. Lorica of the larvae dorso-ventrally flattened (at least in older stages), with 6 lateral plates in-
1274	folded accordion-like:
1275	(0) Absent
1270	(1) Present Character 63 in Harvey et al. (70)
1277	94 J arvae with six long pharvny retractor muscles:
1270	(0) Absent
1279	(1) Present
1281	Character 67 in Harvey et al. (70)
1282	95. Division of the body into a distinct proboscis and abdomen in the juvenile/larva:
1283	(0) Absent
1284	(1) Present
1285	Modified from character 44 in Harvey et al. (70)
1286	96. Cloaca in both sexes:
1287	(0) Absent
1288	(I) Present

1289	Character 51 from Harvey et al. (70)
1290	97. Spermatozoa without a flagellum:
1291	(0) Absent
1292	Character 55 in Harvey et al. (70)
1294	98. Sclerotized tube:
1295	(0) Absent
1296 1297	(1) Present Character 70 in Wang et al. (72)
1298	99 Zone I has three subdivisions:
1299	(0) Absent
1300	(1) Present $(111 - 11)$
1301	Character 11 in Wang et al. (/2)
1302	100. Intraepidermal VNC: [NEW]
1303	(0) Absent (1) Present
1305	101. Nerve cord with orthogonal organization:
1306	(0) Absent
1307	(1) Present Character 89 in Yang et al. (13)
1309	102 Orthogonal nerve cord with complete ring-commissures:
1310	(0) Absent
1311	(1) Present Character 90 in Vang et al. (12)
1312	Character 90 in Yang et al. (15)
1313	(0) Absent
1315	(1) Present
1316	Character 93 in Yang et al. (13)
1317	104. VNC bifurcates anteriorly or posteriorly: [NEW]
1318 1319	(0) Absent (1) Present
1320	Note: The VNC of Kinorhyncha bifurcates anteriorly and posteriorly (38) and that of nematomorph
1321	Gorduda (only males) bifurcates anteriorly (56).
1322	105. Caudal ganglion: [NEW]
1323	(1) Present
1325	Note: It is only absent in male Gordiida (Nematomorpha) (56).
1326	106. Through-gut
1327 1328	(0) Absent (1) Present
1329	Character 67 from Ou et al. (83)
1330	107. Circum-pharyngeal, collar-shaped brain with anterior and posterior rings of perikarya separated
1331	by a ring-shaped neuropil.
1333	(1) Present
1334	108. Cephalic sensillae:
1335	(0) Absent
1336	(1) Present

1337	Character 147 from Howard et al. (28)
1338 1339	Note: The anterior mechano/chemosensory organs in nematodes, form rings (6 + 6 + 4 pattern) around the anterior region (57)
1340	109. Ciliated epidermis.
1341	(0) Absent
1342	(1) Present
1343	Character 15 from Vinther and Parry (84)
1344	110. Cuticle predominantly containing collagen:
1345	(0) Absent (1) Present
1340	Character 79 from Harvey et al. (70)
1348	111. Cuticle containing chitin at least in life:
1349	(0) Absent
1350	(1) Present
1351	Character 80 from Harvey et al. $(/0)$
1352	112. Distribution of chitin in the cuticle:
1353	(0) predominantly within the middle cuticle layer (exocuticle)
1354	(1) predominantly within the lowermost cuticle layer (endocuticle). Character 81 from Harvey et al. (70)
1256	112 Trilaminate enjoyticle in one repeat unit:
1357	(0) Absent
1358	(1) Present
1359	Characters 77, 78 from Harvey et al. (70)
1360	114. Cuticle with α-chitin:
1361	(0) Absent
1362	(1) Present
1363	Character 72 from Ou et al. (83)
1364	115. Cuticle moult:
1365	(0) Absent
1366	(1) Present Character 73 from Wills et al. (71)
1260	440 De de divide devide distinct inflate de se deve de verdere siere
1368	116. Body divided with distinct inflated head and heck region:
1369	(U) Absent (1) Present
1371	Character 42 from Vinther and Parry (84)
1372	117. Bipartite gut with cuticular pharynx:
1373	(0) Absent
1374	(1) Present
1375	Character 43 from Vinther and Parry (84)
1376	118. Paired lobopods:
1377	(0) Absent (1) Present
1378	Character 75 from Ou et al. (83)
1380	119. Terminal claws on lobopods:
1381	(0) Absent
1382	(1) Present

- 1383 Character 64 in Yang et al. (79)
- 1384 **120. Segmented body:**
- 1385 (0) Absent
- 1386 (1) Present
- 1387
- 1388
- 1389 Supplementary references
- J. Yang, J. Ortega-Hernández, S. Gerber, N. J. Butterfield, J. Hou, T. Lan, X. Zhang, A
 superarmored lobopodian from the Cambrian of China and early disparity in the evolution
 of Onychophora. *Proceedings of the Academy of Natural Sciences of the United States of America* 112, 8678-8683 (2015).
- 1394 80. M. R. Smith, J. B. Caron, *Hallucigenia*'s head and the pharyngeal armature of early 1395 ecdysozoans. *Nature* **523**, 75-78 (2015).
- 1396 81. A. C. Daley, G. E. Budd, J. B. Caron, G. D. Edgecombe, D. Collins, The Burgess Shale
 1397 anomalocaridid Hurdia and its significance for early euarthropod evolution. *Science* 323,
 1398 1597-1600 (2009).
- 1399 82. X. Ma, X. Hou, J. Bergstrom, Morphology of Luolishania longicruris (Lower Cambrian, Chengjiang Lagerstatte, SW China) and the phylogenetic relationships within lobopodians.
 1401 Arthropod Struct Dev 38, 271-291 (2009).
- 1402 83. Q. Ou, J. Han, Z. Zhang, D. Shu, G. Sun, G. Mayer, Three Cambrian fossils assembled into 1403 an extinct body plan of cnidarian affinity. *Proceedings of the National Academy of Science* 1404 **114**, 8835-8840 (2017).
- 1405 84. J. Vinther, L. A. Parry, Bilateral jaw elements in *Amiskwia sagittiformis* bridge the
 1406 morphological gap between gnathiferans and chaetognaths. *Current Biology* 29, 881-888
 1407 e881 (2019).
- 1408