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ABSTRACT
This article investigates the use of the block low rank (BLR) factorization, recently proposed in the MUMPS solver, to define
efficient and cheap preconditioners for primal domain decomposition methods, such as the Balancing Domain Decomposition
method (BDD) and its adaptive multipreconditioned variant. To be scalable, these methods are equipped with an augmentation
projector built from the local preconditioners nullspaces. The determination of these nullspaces is a complex task in the case of ill
conditioned system, the use of block low rank compression makes this task even more complex as MUMPS’ automatic detection
no longer works properly. Two alternatives based on incomplete factorization with a well-chosen Schur complement are proposed.
Also, the first massively parallel implementation of the adaptive multipreconditioned BDD solver (AMPBDD) is introduced. The
performance of the methods is assessed with two weak scalability studies on problems up to 24,576 cores and about 790 millions
of unknowns, on the Sator and Topaze supercomputers. BLR preconditioning proves to be an interesting strategy both in terms of
memory usage and time to solution for reasonably conditioned problems.

1 | Introduction

In the last decade, non-overlapping domain decomposition meth-
ods have reached a high level of maturity, with sophisticated
robustification techniques, and high performance implementa-
tions. Even though these questions are still the object of intense
research, another question of interest is the ability to derive less
numerically demanding variants of the methods which result in
better performance in practice on sufficiently regular problems.

Considering a linear elasticity problem to fix the ideas,
non-overlapping domain decomposition methods consist
in solving independent problems on the subdomains, for a
given boundary value imposed on the interface. Dual meth-
ods (FETI [1], AMPFETI [2–4]) search for the balanced traction
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condition on the interface that nullify the displacement gap. They
provide a zoology of preconditioners with variable quality and
computational cost, allowing them to adapt to the conditioning
of the system to be solved.

However, they are less suited for the simulation of fracture prob-
lems, such as damage and crack propagation, due to their high
sensitivity to the computation of the nullspace of local stiffness
operators. A wrong estimation of these kernels leads to the diver-
gence of the Krylov solver and/or the FETI system not being
equivalent to the initial one anymore. The FETI-DP method [5]
only partially solves this issue. Indeed, this approach enforces the
continuity between subdomains of certain (generalized) degrees
of freedom (like corner nodes or averages on faces/edges), lead-
ing to all Neumann problems being well-posed, without local
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nullspaces. But in the presence of propagating cracks, subdo-
mains may split into several pieces which may generate internal
mechanism not eliminated by the kinematic constraints.

Regarding this point, primal methods (BDD [6], BDDC [7])
which search for the continuous displacement condition on the
interface which balances the reactions, exhibit greater robust-
ness because their operator is based on a Dirichlet interface
condition. Initially, they only propose a Neumann precondi-
tioner that in general uses the full factorization of local Schur
complements. The memory footprint of these factorizations can
be a limiting factor to exploit modern supercomputers since
the memory-per-core tends to decrease. For instance, the Milan
nodes of the new supercomputer, “Topaze”, at TGCC (one French
very large computational center), provide only 2GB of RAM
per core.

In recent years, direct solvers such as MUMPS and Pastix have
introduced compression techniques to reduce the memory foot-
print of factorization. For example, MUMPS utilizes low-rank
blocks (BLR) to perform approximate solutions, thereby expe-
diting the factorization and substitution steps. Efficient precon-
ditioners for iterative methods like GMRES have been derived
using the BLR factorization. In many practical applications, they
outperform the point ILU factorization [8, 9]. These new fea-
tures offer the possibility of creating cost-effective precondition-
ers for the BDD method. However, a balance must be found
between the compression ratio and the convergence speed of
the iterative solver. The question of inexact preconditioners for
domain decomposition methods has been investigated for a long
time [10–13], in particular in the BDDC context [14, 15]. As
Dohrmann showed [14], inexact solves, made at the subdomain
level or at the coarse grid level, must preserve the local operator
nullspace to remain scalable.

The coarse problem of the BDD method is based on the nullspace
of the local Neumann operator. The exact estimation of the
nullspace is not mandatory for BDD since it comes into play at
the preconditioner level. Nevertheless, the approximation caused
by the compression process may remove the local nullspace and
thus prevent scalability. Alternative coarse grid mechanisms have
to be proposed in order to compensate for this loss such as multi-
preconditioning and/or low energy modes.

The paper is structured as follows: the block low rank factoriza-
tion is briefly introduced in Section 2. The primal domain decom-
position is recalled in Section 3 and the use of BLR factorization
to build the preconditioner is emphasized. The specific point of
nullspace and generalized inverse computation is discussed in
Section 4, then Section 5 provides scalability results on academic
examples. Section 6 concludes the paper.

2 | Block Low-Rank Methods in a Nutshell

This section briefly introduces multifrontal sparse direct solvers
[16] and block low-rank factorization [8] (BLR). In the con-
text of domain decomposition methods, sparse direct solvers are
used to solve local linear systems, i.e. linear systems defined at
the subdomain level. The BLR factorization is only used for the

preconditioner, in order to reduce the memory footprint of these
local factorizations (see section 3.2).

For simplicity, we will consider the Cholesky factorization 𝑳⊤𝑳

of a symmetric positive definite matrix 𝑨 =
(
𝑎𝑖𝑗

)
. The general

method is illustrated on the small matrix proposed by Liu [16]:

𝑨 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑎11

𝑎22

𝑎33

𝑎42 𝑎44 𝑠𝑦𝑚.

𝑎53 𝑎55

𝑎62 𝑎65𝑎66

𝑎71 𝑎77

𝑎81 𝑎83𝑎84 𝑎85 𝑎87𝑎88

𝑎91 𝑎94 𝑎96 𝑎97 𝑎99

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

𝑳 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝓁11

𝓁22

𝓁33

𝓁42 𝓁44

𝓁53 𝓁55

𝓁62 𝓁64 𝓁65 𝓁66

𝓁71 𝓁77

𝓁81 𝓁83 𝓁84 𝓁85 𝓁86 𝓁87 𝓁88

𝓁91 𝓁94 𝓁96 𝓁97 𝓁98 𝓁99

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
First, a symbolic Gaussian elimination is performed to obtain the
structure of 𝑳 accounting for the fill-in but not the lucky cancel-
lations (filled-in entries appeared in red in the matrix 𝑳). This
structure is then used to build the Elimination Tree whose ver-
tices are pivots to be eliminated (grouped together in practice but
not in Figure 1 for simplicity). To each node 𝑛 of the elimination
tree is associated a dense Frontal Matrix or Front 𝑭 𝑛 constructed
by assembling the entries of 𝑨 corresponding to the future non
zero-entries of 𝑳 for the rows of the current pivots with the con-
tributions of the previously eliminated pivots thanks to Update
Matrices (𝑼𝑚) of the children (𝑚) of 𝑛 and an add-extension oper-
ation. Then a partial factorization is realized to obtain the final
entries of 𝑳 =

(
𝓁𝑖𝑗

)
corresponding to the pivots of the current

node and their contribution as an Update Matrix to the Frontal
Matrices in the upper nodes. The tree is parsed from bottom to top
and the factorization is complete once the root has been reached
and treated.

These multifrontal methods have several advantages:

• Different branches of a tree are independent, making it pos-
sible to handle computations in parallel.

• Frontal Matrices are dense which allows optimized dense
factorization kernels.

• Update Matrix can be stored and applied at different steps
allowing various strategies to manage memory.
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FIGURE 1 | Following Liu [16], a case of a 𝑳⊤𝑳 factorization denoting 𝑳 = (𝓁𝑖𝑗 ), the tree is explored in parallel from bottom to top.

• Sparsity of data can be further exploited by compressing the
Front in low-rank format as explained below.

Before explaining block low-rank formats, low-rank matrices are
defined. Let 𝜖𝑝 be a strictly positive threshold. Let 𝑛 and 𝑘 be
non-negative integers such that 𝑘 ⩽ 𝑛. Let 𝑴 be a 𝑛 × 𝑛 matrix.
The numerical rank of 𝑴 at precision 𝜖𝑝 is 𝑘 if and only if 𝑘 is the
lowest integer such that there exist 𝑿𝑴 and 𝒀 𝑴 , 𝑛 × 𝑘 rectangle
matrices, such that:

‖‖‖𝑴 −𝑿𝑴𝒀 ⊤
𝑴

‖‖‖2
≤ 𝜖𝑝

with || ⋅ ||2 the matrix norm induced by the Euclidean norm. The
matrix 𝑴 is said to be low-rank for a given accuracy 𝜖𝑝 when stor-
ing 𝑿𝑴 and 𝒀 𝑴 requires less memory rather than 𝑴 . Thus, 𝑴
is low-rank whenever the following inequality holds:

2𝑘𝑛 ≤ 𝑛2

If so, the low-rank approximation 𝑴 = 𝑿𝑴𝒀 ⊤
𝑴

of 𝑴 is stored as
(𝑿𝑴 , 𝒀 𝑴 ). In practice 𝑿𝑴 and 𝒀 𝑴 are obtained directly through
Singular Values Decomposition or Rank Revealing QR (RRQR)
factorization of 𝑴 in which case 𝑿 is orthogonal. As well as
reducing memory requirements, the low-rank format reduces
the complexity of algebraic operations. Indeed, operations on
and between two low-rank matrices 𝑴 and �̃� can be achieved
directly – exactly or approximately – on 𝑿𝑴 , 𝒀 𝑴 , 𝑿𝑵 and 𝒀 𝑵

with reduced complexities. These operations include multiplica-
tion, addition, row or column swap, etc. Further explanations and
computations of complexities regarding these operations can be
readily found in the introduction of Bebendorf [17] or in Mary [8].

Obviously, global finite element matrices are not low-rank, but
some extradiagonal subblocks representing long-range interac-
tions may be. Thus, a block low-rank (BLR) factorization of 𝑨
is obtained by putting some of these off-diagonal blocks into
low-rank format or “compressing” them whenever the expected
gains are greater than the overhead of doing so. In practice, a
graph based analysis is done as to decide which blocks will be
compressed or not, rather than doing unnecessary RRQR fac-
torizations to obtain the numerical rank. It permits assessing
with a purely algebraic criterion the geometric distance between
the nodes considered (see admissibility condition in Mary [8])

as one should expect the rank to decrease exponentially with
reasonable hypothesis made and on elliptical partial differential
equations [17].

Low-rank factorization consists in compressing the Frontal
Matrices in block low-rank format to carry on the partial factor-
ization with reduced complexity and memory footprint. For this
work, we have chosen to use the MUMPS library. The user has
control on several parameters:

• the precision 𝜖𝐵𝐿𝑅 which differs from 𝜖𝑝 previously men-
tioned only to a scaling;

• the ordering of some operations, leading to two variants:
UCFS and UFSC.

Let us explain the last two denominations. During the factoriza-
tion of a given Front 𝑭 , a loop is done on its blocks. Data are
accessed as late as possible within the Front 𝑭 , and its blocks are
Updated (that is, the contribution from pivots within the front are
applied, step (U)) just before we start to treat them. Step (F) corre-
sponds to the Factorization of the diagonal block before carrying
out division by the unitary lower triangular matrix obtained on
blocks below-the Solve step (S). To make numerical pivoting pos-
sible, it is needed to merge the Factor and Solve steps together,
which requires Compression (C) to take place either before or
after the Factor+Solve (FS) step. In either case, UCFS and UFSC
make pivoting possible. The variant UCFS should reduce even
more the complexity but at the cost of degraded numerical pivot-
ing because it is done in low-rank, whereas UFSC should be more
precise but will not benefit from early compression. It is stated
in Mary [8] that the downside of UCFS is barely noticeable as a
degraded solution could quickly be improved through cheap iter-
ative refinement steps. We have used both variants in the current
work to investigate if any differences could be highlighted either
way. Regarding the iterative refinement process, our numerical
tests have shown little interest in our case, it will not be used in
the following.

Finally, one should note that there are other methods exploiting
numerical ranks in the literature. One might be interested in the
brief review of some of these methods in Mary [8], which states
for instance that BLR factorization should be preferred for solving
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systems repeatedly while Hierarchically Semi-Separable matrices
(HSS) [17] should be used for aggressive preconditioning. Since
our goal is to build a cheap preconditioner which approximates
precisely enough the action of some generalized inverse repeat-
edly, this advocates for the use of BLR factorization.

3 | Primal Domain Decomposition Methods

This section briefly recalls the Balancing domain decomposition
method (BDD [6]), its coupling with Adaptive Multiprecondition-
ing (AMP [18]), and the use of inexact solvers.

3.1 | Balancing Domain Decomposition
Method in a Nutshell

We consider a linear(ized) elasticity problem set on a domain
Ω and discretized with the finite element method. This results
in a large sparse linear system of equations of the form 𝑲𝒖 = 𝒇

where 𝒖 is the vector of unknowns and 𝒇 the right-hand side. The
operator 𝑲 (stiffness matrix) is assumed to be symmetric positive
definite.

Let
(
Ω𝑠

)
1⩽𝑠⩽𝑁𝑑

be a non overlapping partition of Ω such that:

Ω =
⋃𝑁𝑑

𝑠=1Ω
𝑠

and Ω𝑠 ⋂Ω𝑝 = ∅,∀𝑠 ≠ 𝑝. The interface between the
subdomains Ω𝑠 and Ω𝑝 is denoted by Υ𝑠𝑝 = Ω

𝑠 ⋂
Ω

𝑝
, the union of

all the interfaces of the subdomain Ω𝑠 is denoted by Υ𝑠, and the
union of the interfaces of all subdomains is denoted by Υ. In the
substructured formulations, only local quantities (e.g. restricted
to one subdomain) are assembled such as the matrices 𝑲𝑠 and
the right-hand-side𝒇 𝑠. The global system is equivalent to the sub-
structured formulation:

𝑲𝑠𝒖𝑠 = 𝒇 𝑠 + 𝑻 𝑠⊤𝝀𝑠
𝑏 ∀ 1 ⩽ 𝑠 ⩽ 𝑁𝑑 (1)

𝑁𝑑∑
𝑠=1

𝑩𝑠𝑻 𝑠𝒖𝑠 = 𝟎 (2)

𝑁𝑑∑
𝑠=1

𝑨𝑠𝝀𝑠
𝑏 = 𝟎 (3)

where 𝑻 𝑠 ∶ Ω𝑠 → Υ𝑠 is the trace operator, 𝑨𝑠 and 𝑩𝑠 are pri-
mal and dual assembly operators respectively (see [19] for their
definition). The Lagrange multiplier field 𝝀𝑠

𝑏 enforces the conti-
nuity of the primal unknown across the subdomains interfaces.
From a mechanical point of view, Equation (1) are the equilib-
rium of all subdomains, (2) corresponds to the continuity of the
displacement across interfaces and (3) expresses the equilibrium
of the interface (action-reaction principle).

All unknowns can be separated between internal unknowns
(denoted with subscript 𝑖) and boundary ones (denoted with sub-
script 𝑏). Internal degrees of freedom can be eliminated in order
to express (1)–(3) only in terms of boundary unknowns

𝑺𝑠𝒖𝑠
𝑏 = �̂�

𝑠

𝑏 + 𝝀𝑠
𝑏 ∀ 1 ⩽ 𝑠 ⩽ 𝑁𝑑 (4)

𝑁𝑑∑
𝑠=1

𝑩𝑠𝒖𝑠
𝑏 = 𝟎 (5)

𝑁𝑑∑
𝑠=1

𝑨𝑠𝝀𝑠
𝑏 = 𝟎 (6)

where 𝑺𝑠 and �̂�
𝑠

𝑏 are primal Schur complements and condensed
right-hand sides. The vector 𝒖𝑠

𝑏
is the trace of the displacement at

the boundary.
𝑺𝑠 = 𝑲𝑠

𝑏𝑏 −𝑲𝑠
𝑏𝑖𝑲

𝑠−1

𝑖𝑖 𝑲𝑠
𝑖𝑏

(7)

�̂�
𝑠

𝑏 = 𝒇 𝑠
𝑏 −𝑲𝑠

𝑏𝑖𝑲
𝑠−1

𝑖𝑖 𝒇 𝑠
𝑖

(8)

Finally, we would like to point out that assembly operators are
orthogonal in the following sense:

𝑁𝑑∑
𝑠=1

𝑩𝑠𝑨𝑠⊤ = 𝟎 (9)

which means that any local interface vector 𝒖𝑠
𝑏

can be uniquely
defined as a combination of a balanced vector and a continuous
one 𝒖𝑠

𝑏
= 𝑩𝑠⊤𝒖𝑑 +𝑨𝑠⊤𝒖𝑝.

The BDD method writes the interface problem in terms of one
unique primal global unknown 𝒖𝑝 such that local interface vec-
tors are given by 𝒖𝑠

𝑏
= 𝑨𝑠⊤𝒖𝑝 and (5) is satisfied by construction

thanks to the orthogonality property of assembly operators (9).
Few algebraic manipulations lead to the primal formulation:

𝑁𝑑∑
𝑠=1

𝑨𝑠𝑺𝑠𝑨𝑠⊤

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
𝑺

𝒖𝑝 −
𝑁𝑑∑
𝑠=1

𝑨𝑠�̂�
𝑠

𝑏

⏟⏟⏟
𝒇 𝑝

=
𝑁𝑑∑
𝑠=1

𝑨𝑠𝝀𝑠
𝑏 = 𝟎

(10)

The global primal Schur complement𝑺 =
∑𝑁𝑑

𝑠=1𝑨
𝑠𝑺𝑠𝑨𝑠⊤ is never

built explicitly. Since this system is solved using a Krylov iterative
solver, only the result of a multiplication by 𝑺 is needed. This
computation is well suited to parallel computers since 𝑺 is a sum
of local contributions. Since Schur complements 𝑺𝑠 are dense
matrices, they are not computed explicitly. The action of these
Schur operators is evaluated implicitly with two sparse matrix
vector products and one local solve with fixed boundary. Direct
solvers without compression are used for these local solutions.

3.1.1 | First Level Preconditioner

The BDD preconditioner is the composition of the Neumann
Neumann preconditioner𝑴−1

𝑁𝑁 with the coarse projector defined
in the next subsection. The Neumann Neumann preconditioner
mimics the additive structure of 𝑺, it is chosen as a scaled sum of
generalized inverse of primal Schur complements defined by

𝑴−1
𝑁𝑁 =

𝑁𝑑∑
𝑠=1

�̃�
𝑠
𝑺𝑠†�̃�

𝑠⊤ (11)

where �̃�
𝑠 are scaled primal assembly operators such that∑

𝑠 𝑨
𝑠�̃�

𝑠⊤ = 𝑰Υ, and the superscript 𝑺𝑠† denotes for a gener-
alized inverse of 𝑺𝑠. Classical scaling operators are multiplicity
scaling and stiffness scaling (often called k-scaling) [20].

The action of𝑺𝑠† is obtained by solving a local problem with Neu-
mann boundary conditions. Depending on the natural boundary
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conditions of the problem, 𝑺𝑠 may be singular. Corresponding
subdomains are commonly qualified as “floating subdomains”.

3.1.2 | Second Level Preconditioner: Coarse Problem

The Neumann Neumann preconditioner is applied to the residual
of the Krylov solver 𝒛 = 𝑴−1

𝑁𝑁𝒓. For floating subdomains, local
right-hand-sides must lie inside the image of 𝑺𝑠 which leads to
the solvability conditions:

𝑹𝑠⊤
𝒃
�̃�

𝑠⊤
𝒓 = 𝟎, ∀𝑠 (12)

where 𝑹𝑠
𝒃

is the nullspace of 𝑺𝑠. We rewrite this condition as
𝑪⊤𝒓 = 𝟎 with

𝑪 =
(
�̃�

1
𝑹1

𝒃
| . . . | �̃�𝑁𝑑𝑹

𝑁𝑑

𝒃

)
(13)

These conditions provide the BDD coarse problem which is
enforced using an augmented Krylov solver. An augmentation
projector 𝚷𝐶 such that 𝑪⊤𝑺𝚷𝐶 = 𝟎 is defined, and the solution
is sought as:

𝒖𝑝 = 𝒖0 +𝚷𝐶 �̃� (14)

with 𝒖0 = 𝑪(𝑪⊤𝑺𝑪)−1𝑪⊤𝒇 𝑝 (15)

𝚷𝐶 = 𝑰 − 𝑪(𝑪⊤𝑺𝑪)−1𝑪⊤𝑺 (16)

The system to be solved by the Krylov solver is finally:

𝑺𝚷𝐶 �̃� =
(
𝒇 𝑝 − 𝑺𝒖0

)
, preconditioned by 𝑴−1

𝑁𝑁 (17)

This coarse problem provides a mechanism for rapidly propagat-
ing the mechanical load information to all the subdomains which
is essential to build a scalable method.

3.2 | Block Low Rank BDD Preconditioner

In order to build a cheap preconditioner with a small memory
footprint for the BDD method, the basic idea is to replace the
full-rank resolution of local problems with a compressed resolu-
tion. The BLR BDD Preconditioner 𝑴−1

𝐵𝐿𝑅 can be written as:

𝑴−1
𝐵𝐿𝑅 =

𝑁𝑑∑
𝑠=1

�̃�
𝑠
𝑺

𝑠†
𝐵𝐿𝑅

�̃�
𝑠⊤ (18)

where 𝑺
𝑠†
𝐵𝐿𝑅

stands for a resolution with a BLR factorization.
Available choices for the scaling remain unchanged. The com-
pression threshold 𝜖𝐵𝐿𝑅 and the variants (UCFS, UFSC) are
parameters of the preconditioner. The former offers real flexi-
bility in terms of the cost and quality of the preconditioner. For
simplicity, all subdomains use the same threshold and variant.
Mumps proposes an iterative refinement process when using
compressed factorization. This iterative refinement is not used in
the following since it represents a significant additional cost and
there is no guarantee that the solution will be improved.

The main disadvantage of the compressed preconditioner con-
cerns the floating subdomains and the coarse problem. Indeed,

depending on the compression level, the nullspace of local oper-
ator of floating subdomains may be lost or Mumps may be not
able to compute it correctly, thus leading to a degraded scalability.
To overcome this problem, other ways of constructing the coarse
problem are examined in Section 4. Another possibility to recover
a coarse grid mechanism is to rely on multipreconditioning and
not on local operators nullspace.

3.3 | Adaptive Multipreconditioning

Multipreconditioning was proposed for iterative solvers [21] and
adapted to domain decomposition methods [2]. It is a strategy
which exploits the additive structure of the preconditioner in
order to generate as many search directions as subdomains. In the
preconditioning step of conjugate gradient, instead of computing
the preconditioned residual as 𝒛𝑖 =

∑𝑁𝑑

𝑠=1�̃�
𝑠
𝑺𝑠†�̃�

𝑠⊤
𝒓𝑖, the follow-

ing block of vectors is generated:𝒁 𝑖 =
(
. . . �̃�

𝑠
𝑺𝑠†�̃�

𝑠⊤
𝒓𝑖 . . .

)
. Of

course the classical direction writes 𝒛𝑖 = 𝒁 𝑖𝟏, where 𝟏 is the vec-
tor filled with ones. The idea of multipreconditioning is to let the
algorithm find the optimal combination of directions under the
form 𝒛𝑖 = 𝒁 𝑖𝜶𝑖, where 𝜶𝑖 is the unknown vector of subdomains’
magnitude of contribution.

Multipreconditioning must be used in conjunction with full
reorthogonalization, and it is a numerically expensive option.
Nevertheless, it proved to be an efficient cure to FETI and BDD’s
bad conditioning situations. Indeed, it was proved [22] that mul-
tipreconditioning is a technique to approximate on the fly the bad
modes that would be detected and eliminated by GENEO coarse
spaces [23].

In order to limit the numerical costs of multipreconditioning, a
clever adaptation strategy was proposed by Spillane [18] where
the effectiveness of each direction is predicted based on a cost-
less criterion, making it possible to accumulate directions which
contribute weakly to the decrease of the error and limit the mem-
ory and CPU footprint. A large-scale assessment of this approach
has been carried out for the FETI method [3]. The method was
further improved with more sophisticated aggregation of search
directions depending on the subdomains’ connectivity [4].

As mentioned in previous subsection, BLR-preconditioning may
cause the disappearance of nullspace modes and BDD-coarse
space may not be a numerical necessity to preserve the
well-posedness of Neumann problems. Even though there is a
mechanical urge to preserve rigid body motions coarse space in
order to comply with Saint-Venant’s principle, we wish to evalu-
ate the ability of multipreconditioning to naturally bring out this
information and ensure scalability.

4 | Coarse Problem Computation: Nullspace
and Generalized Inverses

The coarse problem of the BDD method relies on the computa-
tion local preconditioner nullspace and generalized inverses. The
exact computation of these kernels is not mandatory since it plays
at the preconditioning level. However, it still impacts the rate of
convergence. In this section we propose three different methods
to evaluate the defect 𝑘𝑠, the nullspace of 𝑲𝑠 and its generalized
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FIGURE 2 | Heterogeneous cube (configuration with 𝑁𝑑 = 216, 𝑛𝑐 = 6). (a) Checkerboard cube. Red and blue areas correspond to the two different
materials. (b) Automatic decomposition. Each color represents a different subdomain.

TABLE 1 | Checkerboard cube, weak parallel scalability:
configurations.

𝒏𝒄 𝑵𝒅 #DOFs total #cores

4 64 12.52M 384
6 216 41.99M 1,296
8 512 99.22M 3,072
10 1000 193.44M 6,000
16 4096 790.12M 24,576

inverse. For readability, we drop the exponent 𝑠 of the local
operator 𝑲𝑠.

4.1 | Mumps Automatic Nullspace
Detection (M)

The first method is simply to use Mumps’ capabilities to eval-
uate the operator nullspace and null pivots. There are two user
defined parameters for the detection of the kernel dimension in
Mumps, CNTL(1) and CNTL(3). The control parameter CNTL(1)
is a relative threshold for numerical pivoting. The default value
CNTL(1) = 10−2 is used in this work. The second control param-
eter CNTL(3) is a threshold to detect null pivots. According to
the documentation, a pivot is considered to be null if the infinite
norm of its row/column is smaller than a threshold 𝑡ℎ𝑟𝑒𝑠. The
default value of CNTL(3) = 0 provides an automatic process to
determines this threshold, 𝑡ℎ𝑟𝑒𝑠 = 𝜀 × 10−5 × ||𝐴𝑝𝑟𝑒|| where 𝐴𝑝𝑟𝑒

is the preprocessed matrix to be factorized and 𝜀 is machine preci-
sion. A positive value of CNTL(3) leads to the user defined thresh-
old 𝑡ℎ𝑟𝑒𝑠 = 𝐶𝑁𝑇𝐿(3) × ||𝐴𝑝𝑟𝑒||.
As shown in a previous work [24], the automatic kernel detec-
tion can be put on severe test when dealing with ill-conditioned
systems. Often, the automatic threshold does not detect the right
kernel size. It is however possible to recover the right kernel with
a user defined threshold, but the admissible range for CNTL(3)
becomes narrow. If Mumps allows both BLR compression and

nullspace calculation to be enabled, we expect the estima-
tion of the correct nullspace to be even more complex in
those cases.

4.2 | Incomplete Factorization
and Fixing-Nodes Framework

The other two methods reuse the graph based approach proposed
in a previous work [24]. This framework is briefly recalled here,
we refer to the original paper and the references therein for more
details. The overall methodology relies on the partial factoriza-
tion of the operator and on the analysis of a well-chosen Schur
complement. Let 𝑐 be a nonempty subset of {1, . . . 𝑛}, called fix-
ing variables, the incomplete 𝑳𝑳⊤ factorization is:

𝑲 =

[
𝑲𝑐𝑐 𝑲𝑐𝑐

𝑲𝑐𝑐 𝑲𝑐𝑐

]
=

[
𝑳𝑐𝑐 𝟎
𝑳𝑐𝑐 𝑰

][
𝑳⊤

𝑐𝑐
𝑳⊤

𝑐𝑐

𝟎 𝑺𝑐𝑐

]
(19)

The construction of 𝑐 in the paper [24], based on graph centrality
measures, not only ensures that 𝑲𝑐𝑐 remain full-rank, but it min-
imizes its condition number, which is an important feature when
dealing with large ill conditioned systems. A generalized inverse
𝑲+ of 𝑲 is given by

𝑲+ =

[
𝑳−⊤

𝑐𝑐
−𝑳−⊤

𝑐𝑐
𝑳⊤

𝑐𝑐
𝑺†

𝑐𝑐

𝟎 𝑺†
𝑐𝑐

][
𝑳−1

𝑐𝑐
𝟎

−𝑳𝑐𝑐𝑳
−1
𝑐𝑐

𝑰

]
(20)

Since the Schur complement 𝑺𝑐𝑐 is a small dense matrix, the use
of the Moore-Penrose generalized inverse, obtained by SVD, is
reliable and affordable here. From a practical point of view, once
the fixing variables have been selected, the partial factorization
is performed with the Mumps library. The fact that Mumps can
activate both BLR compression and partial factorization is a very
interesting opportunity here.

What remains to be done is to choose a criterion to determine
Moore-Penrose generalized inverse of 𝑺𝑐𝑐 , and a way to compute
a basis of the nullspace.
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TABLE 2 | Small checkerboard cube, summary of the results with 𝐸𝑟∕𝐸𝑏 = 100 (homogeneous case).

Heterogeneity 𝑬𝒓∕𝑬𝒃 = 100 Solver CG Solver AMPCG

BLR 𝝐𝑩𝑳𝑹 Kernel #𝑪 #iter t(s) 𝑺𝒔+(GB) #iter t(s) 𝑺𝒔+(GB) #s.dir.

M 192 65 72 2.5 59 71 2.5 90
UCFS 10−1 M 0 169 109 1.4 168 112 1.4 199
UCFS 10−3 M 0 120 90 1.8 115 93 1.7 146
UCFS 10−5 M 0 257 165 2.1 58 77 2.1 358
UFSC 10−1 M 0 168 108 1.4 168 112 1.4 199
UFSC 10−3 M 0 115 89 1.8 120 94 1.7 151
UFSC 10−5 M 0 257 167 2.1 62 79 2.1 347

G 192 65 79 2.5 59 77 2.5 90
UCFS 10−1 G 192 98 89 1.4 97 90 1.4 128
UCFS 10−3 G 192 61 72 1.8 58 72 1.8 89
UCFS 10−5 G 192 65 77 2.1 59 76 2.1 90
UFSC 10−1 G 192 98 88 1.4 97 91 1.4 128
UFSC 10−3 G 192 61 72 1.8 59 73 1.7 90
UFSC 10−5 G 192 65 77 2.2 59 75 2.1 90

E 192 65 81 2.4 59 78 2.4 90
UCFS 10−1 E 192 165 125 1.3 151 122 1.3 182
UCFS 10−3 E 192 66 75 1.6 63 76 1.6 94
UCFS 10−5 E 192 65 77 2.0 59 76 2.0 90
UFSC 10−1 E 192 151 119 1.3 151 121 1.3 182
UFSC 10−3 E 192 66 75 1.7 63 76 1.6 94
UFSC 10−5 E 192 65 78 2.0 59 76 2.0 90

4.2.1 | Low Energy Modes (E)

Let (𝜎𝑗)1⩽𝑗⩽𝑐 be the singular values of 𝑺𝑐𝑐 such that 𝜎1 ⩾ 𝜎2 · · · ⩾
𝜎𝑐 ⩾ 0. With this method, a relative criterion 𝜎𝑗 ⩽ 𝜖 𝜎1 is used to
estimate the “null” singular values. The singular value decompo-
sition of 𝑺𝑐𝑐 also provides the nullspace of the Schur complement
𝑹𝑐 and the nullspace of the full matrix is deduced from 𝑹𝑐 :

𝑹 =

[
−𝑲−1

𝑐𝑐
𝑲𝑐𝑐𝑹𝑐

𝑹𝑐

]
(21)

where 𝑲−1
𝑐𝑐

makes use of the BLR compression. Here both the
coarse space 𝑪 and the coarse projector 𝚷𝐶 take into account the
BLR compression.

4.2.2 | Hybrid Geometric–Algebraic Detection (G)

In our experiments, it appeared that BLR compression may
have a strong impact on the estimation of the defect (size of
the nullspace) and on the basis input in the coarse problem,
while Saint-Venant’s principle urges us to preserve actual rigid
body motions for the coarse problem. Thus, we propose another
strategy inspired by the hybrid geometric–algebraic approach of
Farhat and Géradin [25].

The method requires knowing the nullspace in the case of a
totally floating subdomain. Let 𝑹𝑢 be a basis of this totally unre-
strained nullspace. In 3D elastostatics on connected domains, 𝑹𝑢

is made of the six rigid body modes (3 translations and 3 rota-
tions). The method of Farhat and Géradin [25] permits to calcu-
late the combinations of rigid body motions which are not pre-
cluded by the Dirichlet conditions. These combination form the
actual nullspace 𝑹 of the subdomain.

Once the dimension 𝑘 of the nullspace is known, the gen-
eralized inverse is computed using Equation (20) where the
Moore-Penrose generalized inverse 𝑺†

𝑐𝑐 considers that the
𝑘-smallest singular values are zero. This treatment differs from
the original paper of Farhat and Géradin [25] where exactly 𝑘 fix-
ing nodes were deduced from the knowledge of the nullspace.

The hybrid geometric–algebraic method leads to coarse space
𝑪 and projector 𝚷𝐶 being the same as those constructed with-
out compression. Only the generalized inverse is impacted by the
BLR compression.

5 | Numerical Experiments

5.1 | Remarks on the Implementation
and Dependencies

The proposed methods have been implemented in the finite
element suite Z-Set 9.11. In all configurations, the local direct
solves are performed with the MUMPS library (version 5.5.1) [26].
MUMPS is linked with the BLAS library provided by Intel MKL.
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TABLE 3 | Small checkerboard cube, summary of the results with 𝐸𝑟∕𝐸𝑏 = 102 (moderate heterogeneity).

Heterogeneity 𝑬𝒓∕𝑬𝒃 = 102 Solver CG Solver AMPCG

BLR 𝝐𝑩𝑳𝑹 Kernel #𝑪 #iter t(s) 𝑺𝒔+(GB) #iter t(s) 𝑺𝒔+(GB) #s.dir.

M 192 142 115 2.5 102 102 2.5 288
UCFS 10−1 M 0 > 500 1.4 > 500 1.4
UCFS 10−3 M 0 345 204 1.8 232 168 1.8 515
UCFS 10−5 M 0 335 209 2.2 124 120 2.1 572
UFSC 10−1 M 0 > 500 1.4 > 500 1.4
UFSC 10−3 M 0 353 206 1.7 240 173 1.8 537
UFSC 10−5 M 0 335 210 2.1 158 137 2.2 548

G 192 142 125 2.5 102 110 2.5 288
UCFS 10−1 G 192 320 209 1.4 308 211 1.4 370
UCFS 10−3 G 192 208 153 1.7 138 125 1.8 324
UCFS 10−5 G 192 142 120 2.1 106 108 2.1 261
UFSC 10−1 G 192 323 211 1.4 319 215 1.4 350
UFSC 10−3 G 192 221 160 1.7 147 129 1.8 333
UFSC 10−5 G 192 142 120 2.1 107 110 2.1 262

E 192 142 126 2.4 102 112 2.4 288
UCFS 10−1 E 192 > 500 1.3 > 500 1.3
UCFS 10−3 E 192 297 206 1.6 215 174 1.6 399
UCFS 10−5 E 192 142 122 2.0 106 109 2.0 261
UFSC 10−1 E 192 > 500 1.3 > 500 1.3
UFSC 10−3 E 192 259 186 1.7 216 175 1.7 433
UFSC 10−5 E 192 142 123 2.0 106 110 2.0 261

The coarse problem is solved with the Pardiso direct solver. The
Eigen library2 is used for dense linear algebra. Communication
are handled by the MPI protocol. The MPI library depends on the
supercomputer used.

5.2 | Description of the Weak Scaling Test Case

For 𝑛𝑐 ∈ {4, . . . , 16}, we consider a set of three-dimensional het-
erogeneous cubes made of 𝑛3

𝑐 identical sub-cubes (see Figure 2).
Each sub-cube is discretized with the same ruled mesh made of
64,000 eight-node brick elements (c3d8), leading to a total num-
ber of 3 × (40 × 𝑛𝑐 + 1)3 degrees of freedom. With this setup, the
𝐻∕ℎ ratio equals 40 where ℎ is the diameter of the finite elements
and 𝐻 that of the subdomains.

The cube is clamped on one face and subjected to a prescribed
unitary displacement in the three space directions on the oppo-
site face, all other faces being traction-free. The material behav-
ior is isotropic linear elastic, with a Poisson’s coefficient of 0.3
and two values of Young’s modulus assigned following a checker-
board pattern in order to obtain a coefficient jump𝐸𝑟∕𝐸𝑏 between
two adjacent sub-cubes. Three ratios of Young’s modulus are
used: 100, 102 and 104. Finally, an unstructured decomposition
in 𝑁𝑑 = 𝑛3

𝑐 subdomains is obtained with a graph partitioning
software which leads to interfaces not aligned with the hetero-
geneity. For a given number of subdomains, the partitioning is
computed once and reused for all solvers configurations and for

both coefficient jumps. The choice 𝑁𝑑 = 𝑛3
𝑐 , combined with the

use of an automatic graph partitioning software leads to a lot of
traversing heterogeneities that are known to strongly deteriorate
the convergence of domain decomposition methods. Such a con-
figuration is represented in Figure 2 for 𝑛𝑐 = 6.

All preconditioners make use of the stiffness scaling, they dif-
fer by the local operator 𝑺𝑠† (with or without BLR compression)
and the way to construct the coarse space 𝑪 . To make it easier
to identify the method used to build the coarse problem, each
method is assigned a letter (see the column Kernel in Table 2 for
instance):

• M refers to the Mumps automatic nullspace detection
(Section 4.1),

• G stands for the geometric–algebraic detection
(Section 4.2.2),

• E corresponds to the low energy modes (Section 4.2.1).

The convergence is triggered when ||𝒓𝑖||∕||𝒓0|| ≤ 𝜖 = 10−6. When
AMPCG is used, the number of aggregates is 32 and the 𝜏-test
threshold is set to 10−2.

Six cores are allocated to each subdomain, a shared memory par-
allelism is used at several steps including (but not limited to)
local operators and coarse problem factorization. The study starts
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TABLE 4 | Small checkerboard cube, summary of the results with 𝐸𝑟∕𝐸𝑏 = 104 (high heterogeneity).

Heterogeneity 𝑬𝒓∕𝑬𝒃 = 104 Solver CG Solver AMPCG

BLR 𝝐𝑩𝑳𝑹 Kernel #𝑪 #iter t(s) 𝑺𝒔+(GB) #iter t(s) 𝑺𝒔+(GB) #s.dir.

M 149 > 500 2.5 > 500 2.5
UCFS 10−1 M 0 > 500 1.4 > 500 1.4
UCFS 10−3 M 0 > 500 1.7 313 267 1.7 1189
UCFS 10−5 M 0 > 500 2.1 183 186 2.1 1122
UFSC 10−1 M 0 > 500 1.4 > 500 1.4
UFSC 10−3 M 0 > 500 1.7 286 254 1.8 1198
UFSC 10−5 M 0 > 500 2.1 > 500 2.1

G 192 393 291 2.5 108 141 2.5 851
UCFS 10−1 G 192 > 500 1.4 393 308 1.4 877
UCFS 10−3 G 192 > 500 1.8 275 256 1.8 1046
UCFS 10−5 G 192 393 276 2.1 108 140 2.1 895
UFSC 10−1 G 192 > 500 1.4 335 276 1.4 904
UFSC 10−3 G 192 > 500 1.8 229 222 1.7 1034
UFSC 10−5 G 192 393 273 2.1 108 140 2.1 922

E 192 393 288 2.4 108 143 2.4 851
UCFS 10−1 E 192 > 500 1.3 > 500 1.3
UCFS 10−3 E 192 > 500 1.6 327 301 1.6 1097
UCFS 10−5 E 192 > 500 2.0 223 232 2.0 1036
UFSC 10−1 E 192 > 500 1.3 > 500 1.3
UFSC 10−3 E 192 > 500 1.6 377 351 1.6 1213
UFSC 10−5 E 192 > 500 2.0 208 221 2.0 1056

from 64 subdomains and goes up to 4096 subdomains which cor-
responds to a total number of 24,576 cores and 790.12 millions
unknowns. Table 1 summarizes the different configurations.

5.3 | Weak Scalability Study on the Sator
Supercomputer

5.3.1 | Presentation of the Hardware

Sator is Onera’s in-house supercomputer. It is a parallel scalar
cluster with 43,600 cores supplied by NEC. Thanks to three
groups of computing nodes (Broadwell, Skylake and Cascade
Lake), the Linpack performance of Sator is 1.8 PFlop/s. In this
work, only the Cascade Lake partition has been used. It is made
of 400 compute nodes with Intel Xeon “Cascade Lake 6240R”
bi-processors (19,200 cores). Each node has 2 × 24 cores at 2.4
GHz and 192 GB of RAM (4GB RAM per core). The intercon-
nection network is based on an Intel Omnipath 100Gbps fabric,
in a Fat-tree topology. Communications are handled with Intel
MPI 22.2.0. Since the largest queue in Sator is limited, the weak
scalability only goes up to 3,072 cores in this section.

5.3.2 | Focus on a Small Test Case (𝑵𝒅 = 64)

In order to reduce the number of calculations and select only the
most promising configurations, the focus is made on the smallest

test case with 64 subdomains and 384 cores. Several counters and
timers are provided to compare the results:

• The size of the coarse problem is shown in column #𝑪 .

• The column t(s) represents the total time of the simulation,
including the construction and the factorization of the local
operators, the computation of the coarse problem and the
time spent in the iterations.

• The column 𝑺𝑠+(GB) shows the memory footprint of the
local preconditioner.

• For AMPCG, the number of search directions is given in
column #𝑠.𝑑𝑖𝑟. (for CG it equals the number of iterations
since we use full reorthogonalization).

5.3.2.1 | Homogeneous Probem. The results of the homo-
geneous test case are summarized in Table 2. This test case being
well conditioned, all variants converge in less than 500 iterations.
As expected, the convergence is strongly degraded when Mumps
looses the nullspace due to the BLR compression. AMPCG is able
to compensate for this loss for 𝜖𝐵𝐿𝑅 = 10−5, at the cost of a much
larger search space. However, the multipreconditioning does not
improve the convergence for moderate and large compression.

The geometric–algebraic (G) and the low energy mode (E)
provide similar and much better convergence rates. They
differ only for the highest level of compression where the
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FIGURE 3 | Checkerboard cube, weak parallel scalability (homogeneous case 𝐸𝑟∕𝐸𝑏 = 100): total time and number of iterations (the minimization
space size is equal to the number of iterations for CG). Sator supercomputer. (a) Total wall time. (b) Number of iterations.

geometric–algebraic method performs better. The low energy
modes probably drift away from the original operator’s nullspace
for the highest compression. A degraded convergence is expected
in this situation as shown by Dohrmann [14].

The BLR compression significantly reduces the memory footprint
of the local preconditioner. The gain is about 40% for 𝜖𝐵𝐿𝑅 = 10−1,
27% for a moderate compression (𝜖𝐵𝐿𝑅 = 10−3) and 20% for a
small one (𝜖𝐵𝐿𝑅 = 10−5). Interestingly, moderate and low com-
pression improve both resolution time and memory footprint
here (for both CG and AMPCG). Also, the geometric–algebraic
method with high compression leads to the same total time than
the uncompressed results while reducing the memory footprint
of the preconditioner of 40%. Finally, the two BLR variants UCFS
and UFSC lead to very similar results.

5.3.2.2 | Moderate Heterogeneity. The results obtained
with 𝐸𝑟∕𝐸𝑏 = 102 are summarized in Table 3. Again, the con-
vergence is strongly degraded when Mumps does not detect the
correct nullspace. The (G) method performs better, especially for
moderate and high compression. It is the only one that reaches

convergence with CG for a high BLR compression. The multi-
preconditioning clearly improves the convergence and time to
solution. However, both (M) and (E) do not reach convergence
with a high compression. Regarding the difference between the
two BLR variants, no clear trend can be identified. Finally, the
memory gain provided by the compression seems not affected by
the material heterogeneity.

5.3.2.3 | High Heterogeneity. The results obtained
with 𝐸𝑟∕𝐸𝑏 = 104 are summarized in Table 4. The system is
ill-conditioned due to the high heterogeneity. Mumps does not
compute the correct coarse space even without BLR compression
and very few configurations with the CG converge in less than
500 iterations. In this case, only the (G) handling of rigid body
motion and classical CG supports a small compression factor,
resulting in a maximum time gain of 6%.

Multipreconditioning makes it possible to use larger compres-
sion ratio, but the performance is poor in terms of iterations and
time, only memory consumption is improved but the gain for
the storage of the preconditioner is reduced by the large number
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FIGURE 4 | Checkerboard cube, weak parallel scalability (moderate heterogeneity 𝐸𝑟∕𝐸𝑏 = 102): total time, number of iterations and minimization
space size. Sator supercomputer. (a) Total wall time. (b) Number of iterations. (c) Minimization space size.
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FIGURE 5 | Checkerboard cube, weak parallel scalability (high heterogeneity 𝐸𝑟∕𝐸𝑏 = 104): total time, number of iterations and minimization
space size. Sator supercomputer. (a) Total wall time. (b) Number of iterations. (c) Minimization space size.
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FIGURE 6 | Checkerboard cube, weak parallel scalability (homogeneous case 𝐸𝑟∕𝐸𝑏 = 100): wall time, number of iterations and minimization
space size. Topaze supercomputer. (a) Total wall time. (b) Number of iterations.

of search directions to be kept. The best results with MPCG are
obtained with the (G) handling of rigid body motion and a small
compression where both the memory footprint and the total time
are improved.

5.3.3 | Weak Scalability Results

After analysing the previous results and in order to reduce the
number of data, only the best configurations are shown in the fol-
lowing. Multipreconditioning is only considered for the moderate
and high heterogeneity. The level of BLR compression is adapted
to the heterogeneity of the material, the higher the heterogeneity,
the lower the level of compression. Also, since the two variants
UCFS and UFCS lead to very similar results, only UCFS is used
in the following.

5.3.3.1 | Homogeneous Problem. The parallel perfor-
mance of the homogeneous test case are shown in Figure 3 and
Table A1. The trends observed in Section 5.3.2 are confirmed.
Moderate and low BLR compression do not significantly penalize
the rate of convergence. As in section 5.3.2, (G) with a moderate

compression ratio (𝜖𝐵𝐿𝑅 = 10−3) converges faster, both in terms
of total time and number of iterations. It sounds surprizing, but
somehow the compressed preconditioner works better than the
classic one. With a high compression ratio 𝜖𝐵𝐿𝑅 = 10−1, the con-
vergence rate of (G) is slowed down significantly. The purpose of
a such a configuration is mainly to reduce the memory footprint
of the preconditioner. Variants (E) slightly increase the solution
time due to a higher number of iterations and/or due to the
overhead caused by the partial factorization (as observed in a
previous work [24]).

5.3.3.2 | Moderate Heterogeneity. For the moderate het-
erogeneity test case, fives curves are considered: the CG solver
without and with a low compression ratio, and the MPCG solver
with a low compression ratio. Both (G) and (E) are consid-
ered when using compression. The parallel performance with
𝐸𝑟∕𝐸𝑏 = 102 are shown in Figure 4 and Table A2. As before, a
constant number of iterations is not expected due to the auto-
matic domain decomposition. Also, the larger the problem, the
larger is the condition number due to material heterogeneity.
As expected, multipreconditioned solvers tend to be faster to
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FIGURE 7 | Checkerboard cube, weak parallel scalability (moderate heterogeneity 𝐸𝑟∕𝐸𝑏 = 102): wall time, number of iterations and minimization
space size. Topaze supercomputer. (a) Total wall time. (b) Number of iterations. (c) Minimization space size.

converge thanks to an enlarged search space. The convergence
rate of the CG solver is quite satisfactory and remains compet-
itive in terms of time to solution. Both (G) and (E) give sim-
ilar results in terms of number of iterations and search space

size. However, the time to solution is much shorter for the (G)
method, a closer look at the internal timers suggests that the time
spent in backward and forward substitutions is faster with this
method.
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FIGURE 8 | Checkerboard cube, weak parallel scalability (high heterogeneity 𝐸𝑟∕𝐸𝑏 = 104): wall time, number of iterations and minimization
space size. Topaze supercomputer. (a) Total wall time. (b) Number of iterations. (c) Minimization space size.

15 of 21

 10970207, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nm

e.7623 by Pierre G
osselet - C

ochrane France , W
iley O

nline L
ibrary on [11/12/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



5.3.3.3 | High Heterogeneity. Only two curves are shown
for the highly heterogeneous test case: MPCG solver with
geometric–algebraic nullspace detection, without and with low
compression ratio. The MPCG solver with (E) without compres-
sion leads to the same convergence as with (G). The MPCG with
(E) and BLR compression does not converge in less than 500 itera-
tions for the test case with 3,072 cores. The parallel performance
with 𝐸𝑟∕𝐸𝑏 = 104 are shown in Figure 5 and Table A3. For this
ill-conditioned test case, BLR compression slightly degrades the
convergence rate but the time to solution and the search space
size remain similar.

5.4 | Weak Scalability Study on the Topaze
Supercomputer

This section presents the scalability study carried out on the
Topaze supercomputer. The main interest here is that the avail-
able memory per core is only 2 GB, which initially motivated the
use of BLR compression. Also, the compute nodes use AMD pro-
cessors and it is the first time that our implementation is bench-
marked on such an architecture.

5.4.1 | Presentation of the Topaze Supercomputer

The Topaze supercomputer is managed by the French Computing
Center for Research and Technology (CCRT, http://www-ccrt.cea
.fr). It is made of 864 nodes, 2.45 GHz AMD Milan bi-socket with
64 cores per socket. With 864 compute nodes (111,592 cores) and
a theoretical Peak performance of 4.34 PFlop/s, Topaze is ranked
238 in the TOP500 (list from Nov. 2023). One specificity of Topaze
is that the RAM per core is only 2 GB which motivates the use of
compression techniques. Compute nodes are connected through
a EDR InfiniBand network in a pruned Fat-tree topology. The
communication are handled with OpenMPI 4.1.4.

5.4.2 | Weak Scaling Results

5.4.2.1 | Homogeneous Problem. For the homogeneous
test case and in order to reduce the number of simulations, only
the CG solver is used with or without BLR compression. The
weak scaling results are shown in Figure 6. Full results are sum-
marized in Table B1. Whatever the solver is, the number of iter-
ations slightly increases with the size of the problem due to the
automatic subdomain decomposition. Again, the configuration
with a moderate compression provides the best performance,
both in terms of iterations and time to solution. For the largest
test case with 24,576 cores and 790.12M dofs, the time to solu-
tion is about 300s which represents a gain of about 40%. Also, the
configuration with high compression provides the same time to
solution than the uncompressed one, despite a greater number of
iterations.

5.4.2.2 | Moderate Heterogeneity. For the moderate het-
erogeneity test case, only three curves are considered: the CG
solver with (G) nullspace without and with a low compression
ratio, and the MPCG solver with a low compression ratio. The
results are shown in Figure 7 and Table B2. Once again, the CG
solver performs well with low BLR compression, the convergence

rate is the same as without compression and the time to solution
is reduced. Due to the larger search space, the MPCG solver with
low BLR compression gives the best convergence rate. However,
the cost of orthogonalising this search space tends to dominate
the computation time for large problems (≥ 6, 000 cores).

5.4.2.3 | High Heterogeneity. The weak scaling results
obtained with 𝐸𝑟∕𝐸𝑏 = 104 are shown in Figure 8 and Table B3.
Here only MPCG without compression is able to converge in less
than 500 iterations for large problems. The test case with 24,756
cores ran out of memory. Multipreconditioning provides robust-
ness at the cost of a large search space: the number of iterations
is only doubled between 384 and 6,000 cores. For this type of
problem, a restart of the MPCG solver should be implemented, in
the same spirit as, for example, the GMRES-DR algorithm [27].
This is however out of the scope of the present study.

6 | Conclusion and Perspectives

In order to adapt to modern supercomputer designs where the
available memory per core is constantly decreasing, this paper
proposes to use block low-rank factorization methods to equip
primal domain decomposition methods with low memory foot-
print preconditioner. The BLR compression makes it difficult
for the Mumps solver to detect the correct kernel to use. The
nullspace is often not detected and the BDD method falls back to
the Neumann-Neumann method: scalability is lost. Two alterna-
tive strategies have been tested: the hybrid geometric–algebraic
approach and the low energy modes. The former makes the
coarse problem independent of BLR compression, but requires
the knowledge of the nullspace in the case of a completely float-
ing subdomain. The latter is fully algebraic and takes compres-
sion into account, but numerical results suggest that the hybrid
geometric–algebraic approach is preferable whenever available.
Indeed, low energy modes seem to drift away from the original
operator’s nullspace for a high level of compression, which sig-
nificantly degrades the convergence rate [14]. The BLR precondi-
tioner has also been combined with adaptive multiprecondition-
ing in order to increase the robustness of the solver with respect
to material heterogeneity.

Weak scalability studies were presented using two supercomput-
ers (Sator and Topaze) and three heterogeneity ratios. Numeri-
cal results show that BLR compression can improve both mem-
ory and solution time. It is especially interesting for reasonably
well conditioned problems. For the largest homogeneous test case
with 24,576 cores and 790.12M dofs, the time to solution is about
300s, which represents a 40% gain over the uncompressed pre-
conditioner, while the memory footprint of the preconditioner is
reduced by 20%.

The results also show that AMPBDD is robust with respect
to material heterogeneity but generates a large search space.
Unfortunately, multipreconditioning is unable to compensate
for the loss of the correct coarse space in most situations. The
largest ill-conditioned test case has approximately 200 million of
unknowns and runs on 6,000 cores. Block low rank factorization
is not sufficient here, and a GMRES-DR-style restart procedure
will need to be investigated in the near future. However, this is the
first large-scale evaluation of this solver. AMPBDD is particularly
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useful for simulating crack propagation problems because the
nullspace computation only plays at the preconditioner level.
One prospect of this work is the extension of AMPBDD phase
field fracture [28] to larger scale problems solved on low memory
supercomputers.
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Appendix A

Weak Scalability Results on the Sator Supercomputer

TABLE A1 | Checkerboard cube, weak parallel scalability (homogeneous case 𝐸𝑟∕𝐸𝑏 = 100): total time and number of iterations. Sator
supercomputer.

Heterogeneity 𝑬𝒓∕𝑬𝒃 = 100

Solver BLR 𝝐𝑩𝑳𝑹 Kernel #iter

CG UCFS 10−1 G 98 126 138
CG UFSC 10−1 G 98 126 138
CG UCFS 10−3 G 61 72 73
CG UFSC 10−3 G 61 73 73
CG M 65 96 97
CG UCFS 10−3 E 66 92 114
CG UFSC 10−3 E 66 97 112
CG UCFS 10−5 E 65 96 97
CG UFSC 10−5 E 65 96 97

Solver BLR 𝝐𝑩𝑳𝑹 Kernel Total time [s]

CG UCFS 10−1 G 88.86 113.3 132.1
CG UFSC 10−1 G 88.23 113.8 133.2
CG UCFS 10−3 G 72.19 85.75 94.12
CG UFSC 10−3 G 72.2 86.06 95.24
CG M 72.33 99.24 110.4
CG UCFS 10−3 E 75.38 98.37 121.7
CG UFSC 10−3 E 75.33 101.0 122.4
CG UCFS 10−5 E 77.32 103.6 114.3
CG UFSC 10−5 E 77.65 104.4 115.5

Solver BLR 𝝐𝑩𝑳𝑹 Kernel Search space size

CG UCFS 10−1 G 98 126 138
CG UFSC 10−1 G 98 126 138
CG UCFS 10−3 G 61 72 73
CG UFSC 10−3 G 61 73 73
CG M 65 96 97
CG UCFS 10−3 E 66 92 114
CG UFSC 10−3 E 66 97 112
CG UCFS 10−5 E 65 96 97
CG UFSC 10−5 E 65 96 97

Number of subdomains 64 216 512

Number of cores 384 1296 3072
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TABLE A2 | Checkerboard cube, weak parallel scalability (moderate heterogeneity 𝐸𝑟∕𝐸𝑏 = 102): total time, number of iterations and minimization
space size. Sator supercomputer.

Heterogeneity 𝑬𝒓∕𝑬𝒃 = 102

Solver BLR 𝝐𝑩𝑳𝑹 Kernel #iter

CG G 142 177 197
CG UCFS 10−5 G 142 177 197
CG UFSC 10−5 G 142 177 197
CG E 142 177 197
CG UCFS 10−5 E 142 181 204
CG UFSC 10−5 E 142 179 206
MPCG UCFS 10−3 G 138 283 468
MPCG UFSC 10−3 G 147 280 462
MPCG UCFS 10−5 G 106 116 131
MPCG UFSC 10−5 G 107 116 133
MPCG E 102 120 130
MPCG UFSC 10−3 E 216 334 469
MPCG UCFS 10−5 E 106 120 128
MPCG UFSC 10−5 E 106 120 133

Solver BLR 𝝐𝑩𝑳𝑹 Kernel Total time [s]

CG G 124.8 160.3 189.5
CG UCFS 10−5 G 119.7 153.3 180.7
CG UFSC 10−5 G 120.5 153.2 181.7
CG E 126.5 160.4 189.3
CG UCFS 10−5 E 122.4 158.3 252.2
CG UFSC 10−5 E 122.7 156.0 189.3
MPCG UCFS 10−3 G 124.8 253.7 488.2
MPCG UFSC 10−3 G 129.0 265.0 482.7
MPCG UCFS 10−5 G 107.9 143.5 169.2
MPCG UFSC 10−5 G 109.9 142.8 167.5
MPCG E 111.6 147.3 269.5
MPCG UFSC 10−3 E 175.3 308.8 636.6
MPCG UCFS 10−5 E 109.3 145.7 231.7
MPCG UFSC 10−5 E 109.7 144.6 229.9

Solver BLR 𝝐𝑩𝑳𝑹 Kernel Search space size

CG G 142 177 197
CG UCFS 10−5 G 142 177 197
CG UFSC 10−5 G 142 177 197
CG E 142 177 197
CG UCFS 10−5 E 142 181 204
CG UFSC 10−5 E 142 179 206
MPCG UCFS 10−3 G 324 562 1057
MPCG UFSC 10−3 G 333 652 1051
MPCG UCFS 10−5 G 261 426 596
MPCG UFSC 10−5 G 262 426 567
MPCG E 288 399 595
MPCG UFSC 10−3 E 433 706 1151
MPCG UCFS 10−5 E 261 399 624
MPCG UFSC 10−5 E 261 399 567

Number of subdomains 64 216 512

Number of cores 384 1296 3072

19 of 21

 10970207, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nm

e.7623 by Pierre G
osselet - C

ochrane France , W
iley O

nline L
ibrary on [11/12/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



TABLE A3 | Checkerboard cube, weak parallel scalability (high heterogeneity 𝐸𝑟∕𝐸𝑏 = 104): total time, number of iterations and minimization
space size. Sator supercomputer.

Heterogeneity 𝑬𝒓∕𝑬𝒃 = 104

Solver BLR 𝝐𝑩𝑳𝑹 Kernel #iter

MPCG G 108 139 194
MPCG UCFS 10−5 G 108 141 206
MPCG UFSC 10−5 G 108 153 202
MPCG E 108 139 194

Solver BLR 𝝐𝑩𝑳𝑹 Kernel Total time [s]

MPCG G 140.6 260.4 450.4
MPCG UCFS 10−5 G 139.5 262.8 462.4
MPCG UFSC 10−5 G 139.7 272.1 449.1
MPCG E 142.8 261.2 448.8

Solver BLR 𝝐𝑩𝑳𝑹 Kernel Search space size

MPCG G 851 1564 3759
MPCG UCFS 10−5 G 895 1620 3771
MPCG UFSC 10−5 G 922 1610 3612
MPCG E 851 1564 3759

Number of subdomains 64 216 512

Number of cores 384 1296 3072

Appendix B

Weak Scalability Results on the Topaze Supercomputer

TABLE B1 | Checkerboard cube, weak parallel scalability (homogeneous case 𝐸𝑟∕𝐸𝑏 = 100): total time and number of iterations. Topaze
supercomputer.

Heterogeneity 𝑬𝒓∕𝑬𝒃 = 100

Solver BLR 𝝐𝑩𝑳𝑹 Kernel #iter

CG G 65 96 97 119
CG UCFS 10−1 G 98 126 138 161 199
CG UFSC 10−1 G 98 126 138 161 199
CG UCFS 10−3 G 62 72 74 85 93
CG UFSC 10−3 G 61 73 74 83 92
CG M 65 96 97 119 143

Solver BLR 𝝐𝑩𝑳𝑹 Kernel Total time [s]

CG G 87.5 168.8 261.9 315.1
CG UCFS 10−1 G 89.34 156.3 254.4 305.9 511.7
CG UFSC 10−1 G 90.37 153.1 260.8 305.7 505.9
CG UCFS 10−3 G 73.5 128.5 184.9 217.8 319.7
CG UFSC 10−3 G 74.19 127.9 177.7 211.4 309.7
CG M 84.58 173.1 255.4 302.1 497.5

Solver BLR 𝝐𝑩𝑳𝑹 Kernel Search space size

CG G 65 96 97 119
CG UCFS 10−1 G 98 126 138 161 199
CG UFSC 10−1 G 98 126 138 161 199
CG UCFS 10−3 G 62 72 74 85 93
CG UFSC 10−3 G 61 73 74 83 92
CG M 65 96 97 119 143

Number of subdomains 64 216 512 1000 4096

Number of cores 384 1296 3072 6000 24576
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TABLE B2 | Checkerboard cube, weak parallel scalability (moderate heterogeneity 𝐸𝑟∕𝐸𝑏 = 102): total time, number of iterations and minimization
space size. Topaze supercomputer.

Heterogeneity 𝑬𝒓∕𝑬𝒃 = 102

Solver BLR 𝝐𝑩𝑳𝑹 Kernel #iter

CG G 141 182 210 238 304
CG UCFS 10−5 G 141 182 211 239 306
CG UFSC 10−5 G 141 182 211 238 306
MPCG UCFS 10−5 G 95 117 130 135 154
MPCG UFSC 10−5 G 95 114 130 139 154

Solver BLR 𝝐𝑩𝑳𝑹 Kernel Total time [s]

CG G 204.8 251.3 437.2 505.1 867.6
CG UCFS 10−5 G 169.2 225.2 385.8 430.8 740.8
CG UFSC 10−5 G 162.7 217.1 392.2 458.8 761.1
MPCG UCFS 10−5 G 161.3 221.9 353.2 402.1 945.7
MPCG UFSC 10−5 G 164.4 220.5 355.5 420.9 887.4

Solver BLR 𝝐𝑩𝑳𝑹 Kernel Search space size

CG G 141 182 210 238 304
CG UCFS 10−5 G 141 182 211 239 306
CG UFSC 10−5 G 141 182 211 238 306
MPCG UCFS 10−5 G 311 458 657 941 2572
MPCG UFSC 10−5 G 311 455 657 943 2541

Number of subdomains 64 216 512 1000 4096

Number of cores 384 1296 3072 6000 24576

TABLE B3 | Checkerboard cube, weak parallel scalability (high heterogeneity 𝐸𝑟∕𝐸𝑏 = 104): total time, number of iterations and minimization
space size. Topaze supercomputer.

Heterogeneity 𝑬𝒓∕𝑬𝒃 = 104

Solver BLR 𝝐𝑩𝑳𝑹 Kernel #iter

MPCG G 108 139 194 225
MPCG E 108 139 194 226

Solver BLR 𝝐𝑩𝑳𝑹 Kernel Total time [s]

MPCG G 225.3 497.9 900.2 1299.0
MPCG E 236.1 501.9 850.7 1233.0

Solver BLR 𝝐𝑩𝑳𝑹 Kernel Search space size

MPCG G 851 1564 3759 4906
MPCG E 851 1564 3759 4907

Number of subdomains 64 216 512 1000 4096

Number of cores 384 1296 3072 6000 24576
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