N
N

N

HAL

open science

On the Use of Block Low Rank Preconditioners for
Primal Domain Decomposition Methods
Christophe Bovet, Théodore Gauthier, Pierre Gosselet

» To cite this version:

Christophe Bovet, Théodore Gauthier, Pierre Gosselet. On the Use of Block Low Rank Precondi-
tioners for Primal Domain Decomposition Methods. International Journal for Numerical Methods in

Engineering, 2024, pp.e7623. 10.1002/nme.7623 . hal-04830430

HAL Id: hal-04830430
https://hal.science/hal-04830430v1

Submitted on 11 Dec 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0
International License

https://hal.science/hal-04830430v1
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://hal.archives-ouvertes.fr

International Journal for Numerical Methods in Engineering

| RESEARCH ARTICLE CEIEED

'.) Check for updates

WILEY

On the Use of Block Low Rank Preconditioners for Primal
Domain Decomposition Methods

Christophe Bovet! (2 | Théodore Gauthier:? | Pierre Gosselet?

'Université Paris-Saclay, ONERA, Matériaux et Structures, Chatillon, France | 2LaMcube, Univ. Lille/CNRS/Centrale Lille, Lille, France

Correspondence: Christophe Bovet (christophe.bovet@onera.fr)

Received: 29 July 2024 | Revised: 24 October 2024 | Accepted: 29 October 2024

Funding: The authors received no specific funding for this work.

Keywords: adaptive multipreconditioning | block low rank factorizations | domain decomposition

ABSTRACT

This article investigates the use of the block low rank (BLR) factorization, recently proposed in the MUMPS solver, to define

efficient and cheap preconditioners for primal domain decomposition methods, such as the Balancing Domain Decomposition
method (BDD) and its adaptive multipreconditioned variant. To be scalable, these methods are equipped with an augmentation
projector built from the local preconditioners nullspaces. The determination of these nullspaces is a complex task in the case of ill
conditioned system, the use of block low rank compression makes this task even more complex as MUMPS’ automatic detection

no longer works properly. Two alternatives based on incomplete factorization with a well-chosen Schur complement are proposed.

Also, the first massively parallel implementation of the adaptive multipreconditioned BDD solver (AMPBDD) is introduced. The

performance of the methods is assessed with two weak scalability studies on problems up to 24,576 cores and about 790 millions
of unknowns, on the Sator and Topaze supercomputers. BLR preconditioning proves to be an interesting strategy both in terms of
memory usage and time to solution for reasonably conditioned problems.

1 | Introduction

In the last decade, non-overlapping domain decomposition meth-
ods have reached a high level of maturity, with sophisticated
robustification techniques, and high performance implementa-
tions. Even though these questions are still the object of intense
research, another question of interest is the ability to derive less
numerically demanding variants of the methods which result in
better performance in practice on sufficiently regular problems.

Considering a linear elasticity problem to fix the ideas,
non-overlapping domain decomposition methods consist
in solving independent problems on the subdomains, for a
given boundary value imposed on the interface. Dual meth-
ods (FETI [1], AMPFETI [2-4]) search for the balanced traction

condition on the interface that nullify the displacement gap. They
provide a zoology of preconditioners with variable quality and
computational cost, allowing them to adapt to the conditioning
of the system to be solved.

However, they are less suited for the simulation of fracture prob-
lems, such as damage and crack propagation, due to their high
sensitivity to the computation of the nullspace of local stiffness
operators. A wrong estimation of these kernels leads to the diver-
gence of the Krylov solver and/or the FETI system not being
equivalent to the initial one anymore. The FETI-DP method [5]
only partially solves this issue. Indeed, this approach enforces the
continuity between subdomains of certain (generalized) degrees
of freedom (like corner nodes or averages on faces/edges), lead-
ing to all Neumann problems being well-posed, without local

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work

is properly cited, the use is non-commercial and no modifications or adaptations are made.

© 2024 The Author(s). International Journal for Numerical Methods in Engineering published by John Wiley & Sons Ltd.

International Journal for Numerical Methods in Engineering, 2024; 0:e7623
https://doi.org/10.1002/nme.7623

1of 21

https://doi.org/10.1002/nme.7623
https://orcid.org/0000-0003-2390-0717
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1002/nme.7623
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fnme.7623&domain=pdf&date_stamp=2024-12-10

nullspaces. But in the presence of propagating cracks, subdo-
mains may split into several pieces which may generate internal
mechanism not eliminated by the kinematic constraints.

Regarding this point, primal methods (BDD [6], BDDC [7])
which search for the continuous displacement condition on the
interface which balances the reactions, exhibit greater robust-
ness because their operator is based on a Dirichlet interface
condition. Initially, they only propose a Neumann precondi-
tioner that in general uses the full factorization of local Schur
complements. The memory footprint of these factorizations can
be a limiting factor to exploit modern supercomputers since
the memory-per-core tends to decrease. For instance, the Milan
nodes of the new supercomputer, “Topaze”, at TGCC (one French
very large computational center), provide only 2GB of RAM
per core.

In recent years, direct solvers such as MUMPS and Pastix have
introduced compression techniques to reduce the memory foot-
print of factorization. For example, MUMPS utilizes low-rank
blocks (BLR) to perform approximate solutions, thereby expe-
diting the factorization and substitution steps. Efficient precon-
ditioners for iterative methods like GMRES have been derived
using the BLR factorization. In many practical applications, they
outperform the point ILU factorization [8, 9]. These new fea-
tures offer the possibility of creating cost-effective precondition-
ers for the BDD method. However, a balance must be found
between the compression ratio and the convergence speed of
the iterative solver. The question of inexact preconditioners for
domain decomposition methods has been investigated for a long
time [10-13], in particular in the BDDC context [14, 15]. As
Dohrmann showed [14], inexact solves, made at the subdomain
level or at the coarse grid level, must preserve the local operator
nullspace to remain scalable.

The coarse problem of the BDD method is based on the nullspace
of the local Neumann operator. The exact estimation of the
nullspace is not mandatory for BDD since it comes into play at
the preconditioner level. Nevertheless, the approximation caused
by the compression process may remove the local nullspace and
thus prevent scalability. Alternative coarse grid mechanisms have
to be proposed in order to compensate for this loss such as multi-
preconditioning and/or low energy modes.

The paper is structured as follows: the block low rank factoriza-
tion is briefly introduced in Section 2. The primal domain decom-
position is recalled in Section 3 and the use of BLR factorization
to build the preconditioner is emphasized. The specific point of
nullspace and generalized inverse computation is discussed in
Section 4, then Section 5 provides scalability results on academic
examples. Section 6 concludes the paper.

2 | Block Low-Rank Methods in a Nutshell

This section briefly introduces multifrontal sparse direct solvers
[16] and block low-rank factorization [8] (BLR). In the con-
text of domain decomposition methods, sparse direct solvers are
used to solve local linear systems, i.e. linear systems defined at
the subdomain level. The BLR factorization is only used for the

preconditioner, in order to reduce the memory footprint of these
local factorizations (see section 3.2).

For simplicity, we will consider the Cholesky factorization LT L
of a symmetric positive definite matrix A = (a,. j). The general
method is illustrated on the small matrix proposed by Liu [16]:

_ s _
ay
a3
Ay Ayq sym.
A= ds3 ass >
de Q65966
az az;
dgy dgzdgy dgs dg70dgg
| do1 Aoy Ags Qg7 g9
1
‘n
2%
C I
L= Cs3 ss
25 Cos Cos Ces
‘n 27
L1 Ca3 Csy Css Lo Cs7 Css
f91 Lo Cos Lo7 Cog ’fﬂ99

First, a symbolic Gaussian elimination is performed to obtain the
structure of L accounting for the fill-in but not the lucky cancel-
lations (filled-in entries appeared in red in the matrix L). This
structure is then used to build the Elimination Tree whose ver-
tices are pivots to be eliminated (grouped together in practice but
not in Figure 1 for simplicity). To each node » of the elimination
tree is associated a dense Frontal Matrix or Front F, constructed
by assembling the entries of A corresponding to the future non
zero-entries of L for the rows of the current pivots with the con-
tributions of the previously eliminated pivots thanks to Update
Matrices (U ,,) of the children (m) of n and an add-extension oper-
ation. Then a partial factorization is realized to obtain the final
entries of L = (¢, j) corresponding to the pivots of the current
node and their contribution as an Update Matrix to the Frontal
Matrices in the upper nodes. The tree is parsed from bottom to top
and the factorization is complete once the root has been reached
and treated.

These multifrontal methods have several advantages:
« Different branches of a tree are independent, making it pos-

sible to handle computations in parallel.

« Frontal Matrices are dense which allows optimized dense
factorization kernels.

« Update Matrix can be stored and applied at different steps
allowing various strategies to manage memory.

20f 21

International Journal for Numerical Methods in Engineering, 2024

25UB0 17 SUOLLILIOD BAER.D) 3|t fdce aL) Ag PoLBA0B @12 SIRILE VO ‘38N J0 SaIN 10} AReiq 7 8UIIUO AB]IA O (SUOIPUOO-pUE-SLULBILI0D" B |1 ARe1q 1Bu! |uo//Sdy) SUONIPUOD PUE SULB | aU1 89S *[1Z20Z/ZT/TT] U ARiqiTaulluo AB|IA * 0L SUBILI0D - PESSOD aidid AQ £29/BULU/Z00T OT/I0p/W00" A8 M AIqIpUIIUO// STy WO} PAPeojuMoq ‘0 *2020260T

aga
ag4

a44

asg a49 lya lag lag lag
0 0 facto. | fea

0 0 s ls4 Ua

0 0 loa

FIGURE1 | Following Liu [16], a case of a LT L factorization denoting L = (¢,), the tree is explored in parallel from bottom to top.

« Sparsity of data can be further exploited by compressing the
Front in low-rank format as explained below.

Before explaining block low-rank formats, low-rank matrices are
defined. Let €, be a strictly positive threshold. Let n and k be
non-negative integers such that k < n. Let M be a n X n matrix.
The numerical rank of M at precision ¢, is k if and only if k is the
lowest integer such that there exist X, and Y 5, n X k rectangle
matrices, such that:

- xuri] <o

with || - ||, the matrix norm induced by the Euclidean norm. The
matrix M is said to be low-rank for a given accuracy €, when stor-
ing X, and Y, requires less memory rather than M. Thus, M
is low-rank whenever the following inequality holds:

2kn < n?

If so, the low-rank approximation M=X MYL of M is stored as
(X 5, Y o). In practice X », and Y ,, are obtained directly through
Singular Values Decomposition or Rank Revealing QR (RRQR)
factorization of M in which case X is orthogonal. As well as
reducing memory requirements, the low-rank format reduces
the complexity of algebraic operations. Indeed, operations on
and between two low-rank matrices M and N can be achieved
directly - exactly or approximately — on X ,,, Y,,, Xy and Y
with reduced complexities. These operations include multiplica-
tion, addition, row or column swap, etc. Further explanations and
computations of complexities regarding these operations can be
readily found in the introduction of Bebendorf[17] or in Mary [8].

Obviously, global finite element matrices are not low-rank, but
some extradiagonal subblocks representing long-range interac-
tions may be. Thus, a block low-rank (BLR) factorization of A
is obtained by putting some of these off-diagonal blocks into
low-rank format or “compressing” them whenever the expected
gains are greater than the overhead of doing so. In practice, a
graph based analysis is done as to decide which blocks will be
compressed or not, rather than doing unnecessary RRQR fac-
torizations to obtain the numerical rank. It permits assessing
with a purely algebraic criterion the geometric distance between
the nodes considered (see admissibility condition in Mary [8])

as one should expect the rank to decrease exponentially with
reasonable hypothesis made and on elliptical partial differential
equations [17].

Low-rank factorization consists in compressing the Frontal
Matrices in block low-rank format to carry on the partial factor-
ization with reduced complexity and memory footprint. For this
work, we have chosen to use the MUMPS library. The user has
control on several parameters:

« the precision €,z which differs from ¢, previously men-
tioned only to a scaling;

 the ordering of some operations, leading to two variants:
UCFS and UFSC.

Let us explain the last two denominations. During the factoriza-
tion of a given Front F, a loop is done on its blocks. Data are
accessed as late as possible within the Front F, and its blocks are
Updated (that is, the contribution from pivots within the front are
applied, step (U)) just before we start to treat them. Step (F) corre-
sponds to the Factorization of the diagonal block before carrying
out division by the unitary lower triangular matrix obtained on
blocks below-the Solve step (S). To make numerical pivoting pos-
sible, it is needed to merge the Factor and Solve steps together,
which requires Compression (C) to take place either before or
after the Factor+Solve (FS) step. In either case, UCFS and UFSC
make pivoting possible. The variant UCFS should reduce even
more the complexity but at the cost of degraded numerical pivot-
ing because it is done in low-rank, whereas UFSC should be more
precise but will not benefit from early compression. It is stated
in Mary [8] that the downside of UCFS is barely noticeable as a
degraded solution could quickly be improved through cheap iter-
ative refinement steps. We have used both variants in the current
work to investigate if any differences could be highlighted either
way. Regarding the iterative refinement process, our numerical
tests have shown little interest in our case, it will not be used in
the following.

Finally, one should note that there are other methods exploiting
numerical ranks in the literature. One might be interested in the
brief review of some of these methods in Mary [8], which states
for instance that BLR factorization should be preferred for solving

30f 21

25UB0 17 SUOLLILIOD BAER.D) 3|t fdce aL) Ag PoLBA0B @12 SIRILE VO ‘38N J0 SaIN 10} AReiq 7 8UIIUO AB]IA O (SUOIPUOO-pUE-SLULBILI0D" B |1 ARe1q 1Bu! |uo//Sdy) SUONIPUOD PUE SULB | aU1 89S *[1Z20Z/ZT/TT] U ARiqiTaulluo AB|IA * 0L SUBILI0D - PESSOD aidid AQ £29/BULU/Z00T OT/I0p/W00" A8 M AIqIpUIIUO// STy WO} PAPeojuMoq ‘0 *2020260T

systems repeatedly while Hierarchically Semi-Separable matrices
(HSS) [17] should be used for aggressive preconditioning. Since
our goal is to build a cheap preconditioner which approximates
precisely enough the action of some generalized inverse repeat-
edly, this advocates for the use of BLR factorization.

3 | Primal Domain Decomposition Methods

This section briefly recalls the Balancing domain decomposition
method (BDD [6]), its coupling with Adaptive Multiprecondition-
ing (AMP [18]), and the use of inexact solvers.

3.1 | Balancing Domain Decomposition
Method in a Nutshell

We consider a linear(ized) elasticity problem set on a domain
Q and discretized with the finite element method. This results
in a large sparse linear system of equations of the form Ku = f
where u is the vector of unknowns and f the right-hand side. The
operator K (stiffness matrix) is assumed to be symmetric positive
definite.

Let (Q“)1 <<V, be a non overlapping partition of Q such that:

Q= Uf;‘lﬁs and Q° (| QP = @, Vs # p. The interface between the
subdomains Q° and 7 is denoted by Y*? = Q N ﬁp, the union of
all the interfaces of the subdomain Q’ is denoted by Y*, and the
union of the interfaces of all subdomains is denoted by Y. In the
substructured formulations, only local quantities (e.g. restricted
to one subdomain) are assembled such as the matrices K* and
the right-hand-side f*. The global system is equivalent to the sub-
structured formulation:

K'uw'=f+T72 V1<s<N, €3]
Na
ZBSTSMX — (2)
s=1
Nd
Y AL =0 ®3)
s=1

where T° : Q' — Y* is the trace operator, A* and B® are pri-
mal and dual assembly operators respectively (see [19] for their
definition). The Lagrange multiplier field 4; enforces the conti-
nuity of the primal unknown across the subdomains interfaces.
From a mechanical point of view, Equation (1) are the equilib-
rium of all subdomains, (2) corresponds to the continuity of the
displacement across interfaces and (3) expresses the equilibrium
of the interface (action-reaction principle).

All unknowns can be separated between internal unknowns
(denoted with subscript i) and boundary ones (denoted with sub-
script b). Internal degrees of freedom can be eliminated in order
to express (1)-(3) only in terms of boundary unknowns

S'w=f,+1 Y1<s<N,)
Nd
D Buy=0 ©)
s=1

Ny
Y AL =0 (©
s=1

where $° and f‘; are primal Schur complements and condensed
right-hand sides. The vector u; is the trace of the displacement at
the boundary.

§' =Ky, - KZin;l K3, ™)

Fo= 1 - KK S ®

Finally, we would like to point out that assembly operators are
orthogonal in the following sense:

N,
YBAT=0 ©)
s=1

which means that any local interface vector u; can be uniquely

defined as a combination of a balanced vector and a continuous
s — psT sT

oneu, =B u;,+ A u,.

The BDD method writes the interface problem in terms of one
unique primal global unknown u, such that local interface vec-
tors are given by u; = ASTup and (5) is satisfied by construction
thanks to the orthogonality property of assembly operators (9).
Few algebraic manipulations lead to the primal formulation:

N, N, N,
Z;A;\'SASASTup _ Z;As}'; — ;Aslz =0

——— ——
s £y

(10)

The global primal Schur complement .S = Zﬁi"l ASS* A*T isnever
built explicitly. Since this system is solved using a Krylov iterative
solver, only the result of a multiplication by S is needed. This
computation is well suited to parallel computers since .S is a sum
of local contributions. Since Schur complements S* are dense
matrices, they are not computed explicitly. The action of these
Schur operators is evaluated implicitly with two sparse matrix
vector products and one local solve with fixed boundary. Direct
solvers without compression are used for these local solutions.

3.1.1 | FirstLevel Preconditioner

The BDD preconditioner is the composition of the Neumann
Neumann preconditioner M ;N with the coarse projector defined
in the next subsection. The Neumann Neumann preconditioner
mimics the additive structure of S, it is chosen as a scaled sum of
generalized inverse of primal Schur complements defined by

Ny

My =Y A tAT (11)

N
s=1

where A’ are scaled primal assembly operators such that
> AR =1 Y, and the superscript S°* denotes for a gener-
alized inverse of S*. Classical scaling operators are multiplicity
scaling and stiffness scaling (often called k-scaling) [20].

The action of $*" is obtained by solving a local problem with Neu-
mann boundary conditions. Depending on the natural boundary

40f21

International Journal for Numerical Methods in Engineering, 2024

85U8017 SUOWILIOD BAIER.D 8|qed!|dde 8Ly Aq pausenob ae sspie YO ‘88N JO Sa|ni 1o} Ariq1]8UlUO AB|IAA UO (SUORIPUOD-PUR-SWBI W00 A8 |IM AeIq U1 UO//:SANY) SUORIPUOD Pue SWe | 3U88S " [,202/2T/TT] uo Ariqi]auljuo 8|1 * 8oueld 8LRIYO0D - BRSSO 8.8 id A €29/ 8UIU/ZO0T OT/I0p/L00 A8 | Areiq1jeuljuo//sdny wouy pepeojumod ‘0 ‘2020.60T

conditions of the problem, S° may be singular. Corresponding
subdomains are commonly qualified as “floating subdomains”.

3.1.2 | Second Level Preconditioner: Coarse Problem

The Neumann Neumann preconditioner is applied to the residual
of the Krylov solver z = M 1_le r. For floating subdomains, local
right-hand-sides must lie inside the image of §* which leads to

the solvability conditions:
r=0, Vs 12)

where R; is the nullspace of S°. We rewrite this condition as
C'r =0 with

~1 ~ N,
c=<AR,1,|...|Ade,Vd) (13)

These conditions provide the BDD coarse problem which is
enforced using an augmented Krylov solver. An augmentation
projector I such that CT ST = 0 is defined, and the solution
is sought as:

u, =uy+ i (14)
with u,=C(CTSC)'CTf, (15)
O.=1-C(C'sC)'C's (16)

The system to be solved by the Krylov solver is finally:
SH.i = (f,— Suy), preconditionedby My, (17)

This coarse problem provides a mechanism for rapidly propagat-
ing the mechanical load information to all the subdomains which
is essential to build a scalable method.

3.2 | Block Low Rank BDD Preconditioner

In order to build a cheap preconditioner with a small memory
footprint for the BDD method, the basic idea is to replace the
full-rank resolution of local problems with a compressed resolu-
tion. The BLR BDD Preconditioner M ;! , can be written as:

BLR
Nd
-1 _ %28 ast 35T
M), =Y A'Sy A (18)
s=1
where S;:L r Stands for a resolution with a BLR factorization.

Available choices for the scaling remain unchanged. The com-
pression threshold ep; . and the variants (UCFS, UFSC) are
parameters of the preconditioner. The former offers real flexi-
bility in terms of the cost and quality of the preconditioner. For
simplicity, all subdomains use the same threshold and variant.
Mumps proposes an iterative refinement process when using
compressed factorization. This iterative refinement is not used in
the following since it represents a significant additional cost and
there is no guarantee that the solution will be improved.

The main disadvantage of the compressed preconditioner con-
cerns the floating subdomains and the coarse problem. Indeed,

depending on the compression level, the nullspace of local oper-
ator of floating subdomains may be lost or Mumps may be not
able to compute it correctly, thus leading to a degraded scalability.
To overcome this problem, other ways of constructing the coarse
problem are examined in Section 4. Another possibility to recover
a coarse grid mechanism is to rely on multipreconditioning and
not on local operators nullspace.

3.3 | Adaptive Multipreconditioning

Multipreconditioning was proposed for iterative solvers [21] and
adapted to domain decomposition methods [2]. It is a strategy
which exploits the additive structure of the preconditioner in
order to generate as many search directions as subdomains. In the
preconditioning step of conjugate gradient, instead of computing
the preconditioned residual as z, = Y%, 4°S** 4" r,, the follow-
ing block of vectors is generated: Z, = (LLASTAT) of
course the classical direction writes z; = Z,;1, where 1 is the vec-
tor filled with ones. The idea of multipreconditioning is to let the
algorithm find the optimal combination of directions under the
form z; = Z,a;, where a; is the unknown vector of subdomains’

[t &

magnitude of contribution.

Multipreconditioning must be used in conjunction with full
reorthogonalization, and it is a numerically expensive option.
Nevertheless, it proved to be an efficient cure to FETI and BDD’s
bad conditioning situations. Indeed, it was proved [22] that mul-
tipreconditioning is a technique to approximate on the fly the bad
modes that would be detected and eliminated by GENEO coarse
spaces [23].

In order to limit the numerical costs of multipreconditioning, a
clever adaptation strategy was proposed by Spillane [18] where
the effectiveness of each direction is predicted based on a cost-
less criterion, making it possible to accumulate directions which
contribute weakly to the decrease of the error and limit the mem-
ory and CPU footprint. A large-scale assessment of this approach
has been carried out for the FETI method [3]. The method was
further improved with more sophisticated aggregation of search
directions depending on the subdomains’ connectivity [4].

As mentioned in previous subsection, BLR-preconditioning may
cause the disappearance of nullspace modes and BDD-coarse
space may not be a numerical necessity to preserve the
well-posedness of Neumann problems. Even though there is a
mechanical urge to preserve rigid body motions coarse space in
order to comply with Saint-Venant’s principle, we wish to evalu-
ate the ability of multipreconditioning to naturally bring out this
information and ensure scalability.

4 | Coarse Problem Computation: Nullspace
and Generalized Inverses

The coarse problem of the BDD method relies on the computa-
tion local preconditioner nullspace and generalized inverses. The
exact computation of these kernels is not mandatory since it plays
at the preconditioning level. However, it still impacts the rate of
convergence. In this section we propose three different methods
to evaluate the defect k*, the nullspace of K* and its generalized

50f 21

85U8017 SUOWILIOD BAIER.D 8|qed!|dde 8Ly Aq pausenob ae sspie YO ‘88N JO Sa|ni 1o} Ariq1]8UlUO AB|IAA UO (SUORIPUOD-PUR-SWBI W00 A8 |IM AeIq U1 UO//:SANY) SUORIPUOD Pue SWe | 3U88S " [,202/2T/TT] uo Ariqi]auljuo 8|1 * 8oueld 8LRIYO0D - BRSSO 8.8 id A €29/ 8UIU/ZO0T OT/I0p/L00 A8 | Areiq1jeuljuo//sdny wouy pepeojumod ‘0 ‘2020.60T

(a) Checkerboard cube. Red and blue areas (b) Automatic decomposition. Each color rep-

correspond to the two different materials.

resents a different subdomain.

FIGURE2 | Heterogeneous cube (configuration with N, = 216, n, = 6). (a) Checkerboard cube. Red and blue areas correspond to the two different

materials. (b) Automatic decomposition. Each color represents a different subdomain.

TABLE1 | Checkerboard cube, weak parallel scalability:
configurations.

n, N, #DOFs total #cores

4 64 12.52M 384

6 216 41.99M 1,296

8 512 99.22M 3,072

10 1000 193.44M 6,000

16 4096 790.12M 24,576

inverse. For readability, we drop the exponent s of the local
operator K*.

41 | Mumps Automatic Nullspace
Detection (M)

The first method is simply to use Mumps’ capabilities to eval-
uate the operator nullspace and null pivots. There are two user
defined parameters for the detection of the kernel dimension in
Mumps, CNTL(1) and CNTL(3). The control parameter CNTL(1)
is a relative threshold for numerical pivoting. The default value
CNTL(1) = 1072 is used in this work. The second control param-
eter CNTL(3) is a threshold to detect null pivots. According to
the documentation, a pivot is considered to be null if the infinite
norm of its row/column is smaller than a threshold thres. The
default value of CNTL(3) = 0 provides an automatic process to
determines this threshold, thres = € X 107> x || A, || where A,
is the preprocessed matrix to be factorized and ¢ is machine preci-
sion. A positive value of CNTL(3) leads to the user defined thresh-
old thres = CNTL(3) X [|A,,]l-

As shown in a previous work [24], the automatic kernel detec-
tion can be put on severe test when dealing with ill-conditioned
systems. Often, the automatic threshold does not detect the right
kernel size. It is however possible to recover the right kernel with
a user defined threshold, but the admissible range for CNTL(3)
becomes narrow. If Mumps allows both BLR compression and

nullspace calculation to be enabled, we expect the estima-
tion of the correct nullspace to be even more complex in
those cases.

4.2 | Incomplete Factorization
and Fixing-Nodes Framework

The other two methods reuse the graph based approach proposed
in a previous work [24]. This framework is briefly recalled here,
we refer to the original paper and the references therein for more
details. The overall methodology relies on the partial factoriza-
tion of the operator and on the analysis of a well-chosen Schur
complement. Let ¢ be a nonempty subset of {1, ...n}, called fix-
ing variables, the incomplete LL" factorization is:

K K, L 0| |LL LT
K = P cc cc (19)
K: K L;I||[o0 s,

cc ce

The construction of ¢ in the paper [24], based on graph centrality
measures, not only ensures that K remain full-rank, but it min-
imizes its condition number, which is an important feature when
dealing with large ill conditioned systems. A generalized inverse
K* of K is given by

[L‘T _L—TLTS“'] [-1
K+ = ce cce cc cc cce

(20)
0 ST -L L2 I
cc

Since the Schur complement S, is a small dense matrix, the use
of the Moore-Penrose generalized inverse, obtained by SVD, is
reliable and affordable here. From a practical point of view, once
the fixing variables have been selected, the partial factorization
is performed with the Mumps library. The fact that Mumps can
activate both BLR compression and partial factorization is a very
interesting opportunity here.

What remains to be done is to choose a criterion to determine
Moore-Penrose generalized inverse of S ., and a way to compute
a basis of the nullspace.

ceo

6 of 21

International Journal for Numerical Methods in Engineering, 2024

85US0| SUOLULIOD BAIERID 8|qed | [dde aLy Aq pousenoh ae e YO ‘38N JO SaJnI o} Arelq 1 8UlIUO AB|IA UO (SUORIPLOD-PUE-SWBH WD A8 1M Ae1q 1 PUIUO//SURY) SUORIPUOD Pue WS L 38Ul 39S *[7202/2T/TT] uo AriqiTauliuo AB|IM * 8oueld 8LRIUO0D - BRSSO 81R1d AQ €29/ 3LU/Z00T OT/10p/wod Ao | Areiq1utjuo//sdny wouy papeojumod ‘0 ‘L020.60T

TABLE2 | Small checkerboard cube, summary of the results with E,/ E, = 10° (homogeneous case).
Heterogeneity E,/ E, = 10° Solver CG Solver AMPCG
BLR €BIR Kernel #C #iter t(s) S**(GB) #iter t(s) S**(GB) #s.dir.
M 192 65 72 2.5 59 71 2.5 90
UCFS 107! M 0 169 109 1.4 168 112 14 199
UCFS 1073 M 0 120 90 1.8 115 93 1.7 146
UCFS 1073 M 0 257 165 2.1 58 77 2.1 358
UFSC 107! M 0 168 108 1.4 168 112 1.4 199
UFSC 1073 M 0 115 89 1.8 120 94 1.7 151
UFSC 1073 M 0 257 167 2.1 62 79 2.1 347
G 192 65 79 2.5 59 77 2.5 90
UCFS 107! G 192 98 89 1.4 97 90 1.4 128
UCFS 1073 G 192 61 72 1.8 58 72 1.8 89
UCFS 1073 G 192 65 77 2.1 59 76 2.1 90
UFSC 107! G 192 98 88 1.4 97 91 1.4 128
UFSC 1073 G 192 61 72 1.8 59 73 1.7 90
UFSC 1073 G 192 65 77 2.2 59 75 2.1 90
E 192 65 81 2.4 59 78 2.4 90
UCFS 107! E 192 165 125 1.3 151 122 1.3 182
UCFS 1073 E 192 66 75 1.6 63 76 1.6 94
UCFS 1073 E 192 65 77 2.0 59 76 2.0 90
UFSC 1071 E 192 151 119 1.3 151 121 1.3 182
UFSC 1073 E 192 66 75 1.7 63 76 1.6 94
UFSC 1073 E 192 65 78 2.0 59 76 2.0 90
421 | Low Energy Modes (E) is made of the six rigid body modes (3 translations and 3 rota-

Let (0;);¢ <. be the singular values of S, such thato; > 0, -- 2
o, 2 0. With this method, a relative criterion o; < ¢ o, is used to
estimate the “null” singular values. The singular value decompo-
sition of .S, also provides the nullspace of the Schur complement

R, and the nullspace of the full matrix is deduced from R :

R = |:_ Kc_cchcRc:|

c

(1)

where Kclcl makes use of the BLR compression. Here both the
coarse space C and the coarse projector Il take into account the
BLR compression.

4.2.2 | Hybrid Geometric-Algebraic Detection (G)

In our experiments, it appeared that BLR compression may
have a strong impact on the estimation of the defect (size of
the nullspace) and on the basis input in the coarse problem,
while Saint-Venant’s principle urges us to preserve actual rigid
body motions for the coarse problem. Thus, we propose another
strategy inspired by the hybrid geometric-algebraic approach of
Farhat and Géradin [25].

The method requires knowing the nullspace in the case of a
totally floating subdomain. Let R, be a basis of this totally unre-
strained nullspace. In 3D elastostatics on connected domains, R,

tions). The method of Farhat and Géradin [25] permits to calcu-
late the combinations of rigid body motions which are not pre-
cluded by the Dirichlet conditions. These combination form the
actual nullspace R of the subdomain.

Once the dimension k of the nullspace is known, the gen-
eralized inverse is computed using Equation (20) where the
Moore-Penrose generalized inverse SIC considers that the
k-smallest singular values are zero. This treatment differs from
the original paper of Farhat and Géradin [25] where exactly k fix-
ing nodes were deduced from the knowledge of the nullspace.

The hybrid geometric—algebraic method leads to coarse space
C and projector II- being the same as those constructed with-
out compression. Only the generalized inverse is impacted by the
BLR compression.

5 | Numerical Experiments
5.1 | Remarks on the Implementation
and Dependencies

The proposed methods have been implemented in the finite
element suite Z-Set 9.1%. In all configurations, the local direct
solves are performed with the MUMPS library (version 5.5.1) [26].
MUMPS is linked with the BLAS library provided by Intel MKL.

7 of 21

85U8017 SUOWILIOD BAIER.D 8|qed!|dde 8Ly Aq pausenob ae sspie YO ‘88N JO Sa|ni 1o} Ariq1]8UlUO AB|IAA UO (SUORIPUOD-PUR-SWBI W00 A8 |IM AeIq U1 UO//:SANY) SUORIPUOD Pue SWe | 3U88S " [,202/2T/TT] uo Ariqi]auljuo 8|1 * 8oueld 8LRIYO0D - BRSSO 8.8 id A €29/ 8UIU/ZO0T OT/I0p/L00 A8 | Areiq1jeuljuo//sdny wouy pepeojumod ‘0 ‘2020.60T

TABLE3 | Small checkerboard cube, summary of the results with E,/E, = 10? (moderate heterogeneity).

Heterogeneity E,/ E, = 10* Solver CG Solver AMPCG

BLR €BIR Kernel #C #iter t(s) S**(GB) #iter t(s) S**(GB) #s.dir.
M 192 142 115 2.5 102 102 2.5 288

UCFS 107! M 0 > 500 14 > 500 14

UCFS 1073 M 0 345 204 1.8 232 168 1.8 515

UCFS 1073 M 0 335 209 2.2 124 120 2.1 572

UFSC 107! M 0 > 500 1.4 > 500 1.4

UFSC 1073 M 0 353 206 1.7 240 173 1.8 537

UFSC 1073 M 0 335 210 2.1 158 137 2.2 548
G 192 142 125 2.5 102 110 2.5 288

UCFS 107! G 192 320 209 1.4 308 211 1.4 370

UCFS 1073 G 192 208 153 1.7 138 125 1.8 324

UCEFS 1073 G 192 142 120 2.1 106 108 2.1 261

UFSC 107! G 192 323 211 1.4 319 215 1.4 350

UFSC 1073 G 192 221 160 1.7 147 129 1.8 333

UFSC 1073 G 192 142 120 2.1 107 110 2.1 262
E 192 142 126 2.4 102 112 24 288

UCFS 107! E 192 > 500 1.3 > 500 1.3

UCFS 1073 E 192 297 206 1.6 215 174 1.6 399

UCFS 1073 E 192 142 122 2.0 106 109 2.0 261

UFSC 107! E 192 > 500 1.3 > 500 1.3

UFSC 1073 E 192 259 186 1.7 216 175 1.7 433

UFSC 1073 E 192 142 123 2.0 106 110 2.0 261

The coarse problem is solved with the Pardiso direct solver. The
Eigen library? is used for dense linear algebra. Communication
are handled by the MPI protocol. The MPI library depends on the
supercomputer used.

5.2 | Description of the Weak Scaling Test Case
Forn, € {4, ...,16}, we consider a set of three-dimensional het-
erogeneous cubes made of nf identical sub-cubes (see Figure 2).
Each sub-cube is discretized with the same ruled mesh made of
64,000 eight-node brick elements (c3d8), leading to a total num-
ber of 3 X (40 x n, + 1)* degrees of freedom. With this setup, the
H /hratio equals 40 where h is the diameter of the finite elements
and H that of the subdomains.

The cube is clamped on one face and subjected to a prescribed
unitary displacement in the three space directions on the oppo-
site face, all other faces being traction-free. The material behav-
ior is isotropic linear elastic, with a Poisson’s coefficient of 0.3
and two values of Young’s modulus assigned following a checker-
board pattern in order to obtain a coefficient jump E,/ E, between
two adjacent sub-cubes. Three ratios of Young’s modulus are
used: 10°, 10% and 10*. Finally, an unstructured decomposition
in N, = n? subdomains is obtained with a graph partitioning
software which leads to interfaces not aligned with the hetero-
geneity. For a given number of subdomains, the partitioning is
computed once and reused for all solvers configurations and for

both coefficient jumps. The choice N, = n?, combined with the
use of an automatic graph partitioning software leads to a lot of
traversing heterogeneities that are known to strongly deteriorate
the convergence of domain decomposition methods. Such a con-
figuration is represented in Figure 2 for n, = 6.

All preconditioners make use of the stiffness scaling, they dif-
fer by the local operator S* (with or without BLR compression)
and the way to construct the coarse space C. To make it easier
to identify the method used to build the coarse problem, each
method is assigned a letter (see the column Kernel in Table 2 for
instance):

e M refers to the Mumps automatic nullspace detection
(Section 4.1),

« G stands for the detection

(Section 4.2.2),

geometric-algebraic

« E corresponds to the low energy modes (Section 4.2.1).

The convergence is triggered when ||r;||/||ro]| < € = 1075. When
AMPCG is used, the number of aggregates is 32 and the z-test
threshold is set to 1072.

Six cores are allocated to each subdomain, a shared memory par-
allelism is used at several steps including (but not limited to)
local operators and coarse problem factorization. The study starts

8 of 21

International Journal for Numerical Methods in Engineering, 2024

85U8017 SUOWILIOD BAIER.D 8|qed!|dde 8Ly Aq pausenob ae sspie YO ‘88N JO Sa|ni 1o} Ariq1]8UlUO AB|IAA UO (SUORIPUOD-PUR-SWBI W00 A8 |IM AeIq U1 UO//:SANY) SUORIPUOD Pue SWe | 3U88S " [,202/2T/TT] uo Ariqi]auljuo 8|1 * 8oueld 8LRIYO0D - BRSSO 8.8 id A €29/ 8UIU/ZO0T OT/I0p/L00 A8 | Areiq1jeuljuo//sdny wouy pepeojumod ‘0 ‘2020.60T

TABLE4 | Small checkerboard cube, summary of the results with E,/E, = 10* (high heterogeneity).
Heterogeneity E,/E, = 10* Solver CG Solver AMPCG
BLR €pIR Kernel #C #iter t(s) S**(GB) #iter t(s) S**(GB) #s.dir.
M 149 > 500 2.5 > 500 2.5
UCFS 107! M 0 > 500 14 > 500 1.4
UCFS 1073 M 0 > 500 1.7 313 267 1.7 1189
UCFS 1073 M 0 > 500 2.1 183 186 2.1 1122
UFSC 107! M 0 > 500 1.4 > 500 1.4
UFSC 1073 M 0 > 500 1.7 286 254 1.8 1198
UFSC 1073 M 0 > 500 21 > 500 21
G 192 393 291 2.5 108 141 2.5 851
UCFS 107! G 192 > 500 1.4 393 308 1.4 877
UCFS 1073 G 192 > 500 1.8 275 256 1.8 1046
UCFS 1073 G 192 393 276 2.1 108 140 2.1 895
UFSC 107! G 192 > 500 14 335 276 1.4 904
UFSC 1073 G 192 > 500 1.8 229 222 1.7 1034
UFSC 1073 G 192 393 273 2.1 108 140 2.1 922
E 192 393 288 2.4 108 143 2.4 851
UCFS 107! E 192 > 500 1.3 > 500 1.3
UCFS 1073 E 192 > 500 1.6 327 301 1.6 1097
UCFS 1073 E 192 > 500 2.0 223 232 2.0 1036
UFSC 107! E 192 > 500 1.3 > 500 1.3
UFSC 1073 E 192 > 500 1.6 377 351 1.6 1213
UFSC 1073 E 192 > 500 2.0 208 221 2.0 1056

from 64 subdomains and goes up to 4096 subdomains which cor-
responds to a total number of 24,576 cores and 790.12 millions
unknowns. Table 1 summarizes the different configurations.

5.3 | Weak Scalability Study on the Sator
Supercomputer

5.3.1 | Presentation of the Hardware

Sator is Onera’s in-house supercomputer. It is a parallel scalar
cluster with 43,600 cores supplied by NEC. Thanks to three
groups of computing nodes (Broadwell, Skylake and Cascade
Lake), the Linpack performance of Sator is 1.8 PFlop/s. In this
work, only the Cascade Lake partition has been used. It is made
of 400 compute nodes with Intel Xeon “Cascade Lake 6240R”
bi-processors (19,200 cores). Each node has 2 x 24 cores at 2.4
GHz and 192 GB of RAM (4GB RAM per core). The intercon-
nection network is based on an Intel Omnipath 100Gbps fabric,
in a Fat-tree topology. Communications are handled with Intel
MPI 22.2.0. Since the largest queue in Sator is limited, the weak
scalability only goes up to 3,072 cores in this section.

5.3.2 | Focuson a Small Test Case (N, = 64)

In order to reduce the number of calculations and select only the
most promising configurations, the focus is made on the smallest

test case with 64 subdomains and 384 cores. Several counters and
timers are provided to compare the results:

The size of the coarse problem is shown in column #C.

The column t(s) represents the total time of the simulation,
including the construction and the factorization of the local
operators, the computation of the coarse problem and the
time spent in the iterations.

« The column S*"(GB) shows the memory footprint of the
local preconditioner.

« For AMPCG, the number of search directions is given in
column #s.dir. (for CG it equals the number of iterations
since we use full reorthogonalization).

5.3.2.1 | Homogeneous Probem. The results of the homo-
geneous test case are summarized in Table 2. This test case being
well conditioned, all variants converge in less than 500 iterations.
As expected, the convergence is strongly degraded when Mumps
looses the nullspace due to the BLR compression. AMPCG is able
to compensate for this loss for e, = 1075, at the cost of a much
larger search space. However, the multipreconditioning does not
improve the convergence for moderate and large compression.

The geometric-algebraic (G) and the low energy mode (E)
provide similar and much better convergence rates. They
differ only for the highest level of compression where the

9 of 21

85U8017 SUOWILIOD BAIER.D 8|qed!|dde 8Ly Aq pausenob ae sspie YO ‘88N JO Sa|ni 1o} Ariq1]8UlUO AB|IAA UO (SUORIPUOD-PUR-SWBI W00 A8 |IM AeIq U1 UO//:SANY) SUORIPUOD Pue SWe | 3U88S " [,202/2T/TT] uo Ariqi]auljuo 8|1 * 8oueld 8LRIYO0D - BRSSO 8.8 id A €29/ 8UIU/ZO0T OT/I0p/L00 A8 | Areiq1jeuljuo//sdny wouy pepeojumod ‘0 ‘2020.60T

Number of cores

384 1296 3072
1 1 1
CG G UCFS 1071 CG E UCFS 1073
—— CG G UCFS 10~2 —%— CG E UCFS 10~°
120 ce ™
o,
Q
e
X 100 A
<
S
=
80
T T T
4 6 8
N3
(a) Total wall time.
Number of cores
384 1296 3072
1 1 1
140 1 CG G UCFS 10~ 1 CG E UCFS 10-3
—— CG G UCFS 1072 —»— CG E UCFS 107°
cG M
120 +
0w
=
g
= 100 A £V,
-
[}
=
80 1
60
T T T
4 6 8
Ny/3
(b) Number of iterations.
FIGURE3 | Checkerboard cube, weak parallel scalability (homogeneous case E,/E, = 10°): total time and number of iterations (the minimization

space size is equal to the number of iterations for CG). Sator supercomputer. (a) Total wall time. (b) Number of iterations.

geometric—algebraic method performs better. The low energy
modes probably drift away from the original operator’s nullspace
for the highest compression. A degraded convergence is expected
in this situation as shown by Dohrmann [14].

The BLR compression significantly reduces the memory footprint
of the local preconditioner. The gain is about 40% for e, r = 1071,
27% for a moderate compression (e, x = 1073) and 20% for a
small one (e, x = 107°). Interestingly, moderate and low com-
pression improve both resolution time and memory footprint
here (for both CG and AMPCG). Also, the geometric-algebraic
method with high compression leads to the same total time than
the uncompressed results while reducing the memory footprint
of the preconditioner of 40%. Finally, the two BLR variants UCFS
and UFSC lead to very similar results.

5.3.2.2 | Moderate Heterogeneity. The results obtained
with E,/E, = 10? are summarized in Table 3. Again, the con-
vergence is strongly degraded when Mumps does not detect the
correct nullspace. The (G) method performs better, especially for
moderate and high compression. It is the only one that reaches

convergence with CG for a high BLR compression. The multi-
preconditioning clearly improves the convergence and time to
solution. However, both (M) and (E) do not reach convergence
with a high compression. Regarding the difference between the
two BLR variants, no clear trend can be identified. Finally, the
memory gain provided by the compression seems not affected by
the material heterogeneity.

5.3.23 | High Heterogeneity. The results obtained
with E,/E, =10* are summarized in Table 4. The system is
ill-conditioned due to the high heterogeneity. Mumps does not
compute the correct coarse space even without BLR compression
and very few configurations with the CG converge in less than
500 iterations. In this case, only the (G) handling of rigid body
motion and classical CG supports a small compression factor,
resulting in a maximum time gain of 6%.

Multipreconditioning makes it possible to use larger compres-
sion ratio, but the performance is poor in terms of iterations and
time, only memory consumption is improved but the gain for
the storage of the preconditioner is reduced by the large number

10 of 21

International Journal for Numerical Methods in Engineering, 2024

85U8017 SUOWILIOD BAIER.D 8|qed!|dde 8Ly Aq pausenob ae sspie YO ‘88N JO Sa|ni 1o} Ariq1]8UlUO AB|IAA UO (SUORIPUOD-PUR-SWBI W00 A8 |IM AeIq U1 UO//:SANY) SUORIPUOD Pue SWe | 3U88S " [,202/2T/TT] uo Ariqi]auljuo 8|1 * 8oueld 8LRIYO0D - BRSSO 8.8 id A €29/ 8UIU/ZO0T OT/I0p/L00 A8 | Areiq1jeuljuo//sdny wouy pepeojumod ‘0 ‘2020.60T

Number of cores

384 1296 3072
1 1 1
250 CcG G -¥-- MPCG G UCFS 10~°
—¥— CG G UCFS 10~° - fll-- MPCG E UCFS 10~°
—— CG E UCFS 10~ ° ,/-
=,
o 200 1
e
-
=
ks
= 150 4
T T T
4 6 8
1
N3
(a) Total wall time.
Number of cores
384 1296 3072
1 1 1
200 - CG G -¥-- MPCG G UCFS 10~°
—¥— CG G UCFS 10~° -fl-- MPCG E UCFS 10~°
—>— CG E UCFS 10~°
180 -
wn
g
= 160 1
<
fany
D
&= 140 A
120 A e ——=——Z—Z= ::::::=:=====-———
.____---s ————
T T T
4 6 8
1/3
Nd
(b) Number of iterations.
Number of cores
384 1296 3072
1 1 1
600 ca a -¥-- MPCG G UCFS 10~° -
—¥— CG G UCFS 10~° -~ MPCG E UCFS 10~° P rCtias
° —— CG E UCFS 10~° e
-2 500 1 ===’__,—
g S
2 400 -
7] O ety
S ozz===T
Cse 300] _——-s====——
3 |
200 A v, —
e
T T T
4 6 8
1/:
N3
(c) Minimization space size.
FIGURE4 | Checkerboard cube, weak parallel scalability (moderate heterogeneity E,/ E, = 10%): total time, number of iterations and minimization

space size. Sator supercomputer. (a) Total wall time. (b) Number of iterations. (c) Minimization space size.

11 of 21

85U8017 SUOWILIOD BAIER.D 8|qed!|dde 8Ly Aq pausenob ae sspie YO ‘88N JO Sa|ni 1o} Ariq1]8UlUO AB|IAA UO (SUORIPUOD-PUR-SWBI W00 A8 |IM AeIq U1 UO//:SANY) SUORIPUOD Pue SWe | 3U88S " [,202/2T/TT] uo Ariqi]auljuo 8|1 * 8oueld 8LRIYO0D - BRSSO 8.8 id A €29/ 8UIU/ZO0T OT/I0p/L00 A8 | Areiq1jeuljuo//sdny wouy pepeojumod ‘0 ‘2020.60T

FIGURE 5

Number of cores

384 1296 3072
1 1 1
———- MPCG G -¥-- MPCG G UCFS 10~° et
ot
-z
400 1 L2
-
—_— o
@ _z=
2, _.z®
o 2%
g L2*°
R=| e
£ 300 1 PrLags
— L d
Jav] ,‘
s -==""
= POt g
-
200 4 e
\anl
T T T
4 6 8
1/3
Ny
(a) Total wall time.
Number of cores
384 1296 3072
1 1 1
——=- MPCG G -¥-- MPCG G UCFS 10™° Y
200 A =
P -
/’ f’
N -
-~ ’,”
180 A P
0 - ’,,’
g PgPtte
-
= 160 1 —- ===
< -
g o
+— ="
= 140 _,===¥’
—s“gg—
120 A e Line
==
\anll
T T T
4 6 8
1/3
Ny
(b) Number of iterations.
Number of cores
384 1296 3072
1 1 1
———- MPCG G -¥-- MPCG G UCFS 10~° ,z'
rd
¥
;”’
S Prad
= 3000 prid
z
S i
/”
; et
3 2000 A P
z
g ,—::J’
0 _=====7""
1000 - ‘========__
T T T
4 6 8
1/3
NY/

Checkerboard cube, weak parallel scalability (high heterogeneity E,/E, = 10*): total time, number of iterations and minimization

(c) Minimization space size.

space size. Sator supercomputer. (a) Total wall time. (b) Number of iterations. (c) Minimization space size.

12 of 21

International Journal for Numerical Methods in Engineering, 2024

85U8017 SUOWILIOD BAIER.D 8|qed!|dde 8Ly Aq pausenob ae sspie YO ‘88N JO Sa|ni 1o} Ariq1]8UlUO AB|IAA UO (SUORIPUOD-PUR-SWBI W00 A8 |IM AeIq U1 UO//:SANY) SUORIPUOD Pue SWe | 3U88S " [,202/2T/TT] uo Ariqi]auljuo 8|1 * 8oueld 8LRIYO0D - BRSSO 8.8 id A €29/ 8UIU/ZO0T OT/I0p/L00 A8 | Areiq1jeuljuo//sdny wouy pepeojumod ‘0 ‘2020.60T

Number of cores

384 1296 3072 6000 24576
1 1 1 1 1
500 - CG G UCFS 107! cG M
——p— CG G UCFS 103
= 400 A
g
.= 300 +
=
£ 200 1
100 A
T T T T T
4 6 8 10 16
N3
(a) Total wall time.
Number of cores
384 1296 3072 6000 24576
200 A CG G UCFS 10~1 cG M
——— CG G UCFS 10~3
Z 150
.Q
=
g
™ 100 -
4 6 8 10 16

N)/®

(b) Number of iterations.

FIGUREG6 |

Checkerboard cube, weak parallel scalability (homogeneous case E,/E, = 10°): wall time, number of iterations and minimization

space size. Topaze supercomputer. (a) Total wall time. (b) Number of iterations.

of search directions to be kept. The best results with MPCG are
obtained with the (G) handling of rigid body motion and a small
compression where both the memory footprint and the total time
are improved.

5.3.3 | Weak Scalability Results

After analysing the previous results and in order to reduce the
number of data, only the best configurations are shown in the fol-
lowing. Multipreconditioning is only considered for the moderate
and high heterogeneity. The level of BLR compression is adapted
to the heterogeneity of the material, the higher the heterogeneity,
the lower the level of compression. Also, since the two variants
UCFS and UFCS lead to very similar results, only UCFS is used
in the following.

53.3.1 | Homogeneous Problem. The parallel perfor-
mance of the homogeneous test case are shown in Figure 3 and
Table Al. The trends observed in Section 5.3.2 are confirmed.
Moderate and low BLR compression do not significantly penalize
the rate of convergence. As in section 5.3.2, (G) with a moderate

compression ratio (e; x = 1073) converges faster, both in terms
of total time and number of iterations. It sounds surprizing, but
somehow the compressed preconditioner works better than the
classic one. With a high compression ratio e, = 1071, the con-
vergence rate of (G) is slowed down significantly. The purpose of
a such a configuration is mainly to reduce the memory footprint
of the preconditioner. Variants (E) slightly increase the solution
time due to a higher number of iterations and/or due to the
overhead caused by the partial factorization (as observed in a
previous work [24]).

5.3.3.2 | Moderate Heterogeneity. For the moderate het-
erogeneity test case, fives curves are considered: the CG solver
without and with a low compression ratio, and the MPCG solver
with a low compression ratio. Both (G) and (E) are consid-
ered when using compression. The parallel performance with
E,/E, = 10* are shown in Figure 4 and Table A2. As before, a
constant number of iterations is not expected due to the auto-
matic domain decomposition. Also, the larger the problem, the
larger is the condition number due to material heterogeneity.
As expected, multipreconditioned solvers tend to be faster to

13 of 21

85U8017 SUOWILIOD BAIER.D 8|qed!|dde 8Ly Aq pausenob ae sspie YO ‘88N JO Sa|ni 1o} Ariq1]8UlUO AB|IAA UO (SUORIPUOD-PUR-SWBI W00 A8 |IM AeIq U1 UO//:SANY) SUORIPUOD Pue SWe | 3U88S " [,202/2T/TT] uo Ariqi]auljuo 8|1 * 8oueld 8LRIYO0D - BRSSO 8.8 id A €29/ 8UIU/ZO0T OT/I0p/L00 A8 | Areiq1jeuljuo//sdny wouy pepeojumod ‘0 ‘2020.60T

Number of cores

384 1296 3072 6000 24576
lelele! =¥ - MPCG G UCFS 1073 Y
=t CG G UCFS 10~ ° g
800
2
<}
g 600
E
Ho 400
200
4 6 8 10 16
Ny/®
(a) Total wall time.
Number of cores
384 1296 3072 6000 24576
1 1 1 1 1
300 - CG G =¥ = MPCG G UCFS 10~ °
—— CG G UCFS 107°
250
0
g
8
® 200
g
150 [———
I S i e
- -¥- -
100 =" =
T T T T T
4 6 8 10 16
N3
(b) Number of iterations.
Number of cores
384 1296 3072 6000 24576
1 1 1 1 1
2500 caa =¥ - MPCG G UCFS 107° ,zV
=—— CG G UCFS 10~° ’,’
S 2000 - -z
wn ’/
2 -
g 1500 A _ e
wn ’/
< -
£ 1000 1 ¥
o U oo
500 1 T e
-
4 6 8 10 16
N)/?
(c) Minimization space size.
FIGURE7 | Checkerboard cube, weak parallel scalability (moderate heterogeneity E, / E, = 10%): wall time, number of iterations and minimization

space size. Topaze supercomputer. (a) Total wall time. (b) Number of iterations. (c) Minimization space size.

converge thanks to an enlarged search space. The convergence
rate of the CG solver is quite satisfactory and remains compet-
itive in terms of time to solution. Both (G) and (E) give sim-
ilar results in terms of number of iterations and search space

size. However, the time to solution is much shorter for the (G)
method, a closer look at the internal timers suggests that the time
spent in backward and forward substitutions is faster with this
method.

14 of 21

International Journal for Numerical Methods in Engineering, 2024

85U8017 SUOWILIOD BAIER.D 8|qed!|dde 8Ly Aq pausenob ae sspie YO ‘88N JO Sa|ni 1o} Ariq1]8UlUO AB|IAA UO (SUORIPUOD-PUR-SWBI W00 A8 |IM AeIq U1 UO//:SANY) SUORIPUOD Pue SWe | 3U88S " [,202/2T/TT] uo Ariqi]auljuo 8|1 * 8oueld 8LRIYO0D - BRSSO 8.8 id A €29/ 8UIU/ZO0T OT/I0p/L00 A8 | Areiq1jeuljuo//sdny wouy pepeojumod ‘0 ‘2020.60T

Number of cores

384 1296 3072 6000
1 1 1 1
=== MPCG G === MPCG E -
1200 ”:2’¢
ol
“» 1000 A ’,’;’a’
E /”””’
£ Le*
5 600 -
= e
——
400 ="
——
—"“
200 B T T T T
4 6 8 10
N3
d
(a) Total wall time.
Number of cores
384 1296 3072 6000
1 1 1 1
225 4 === MPCG G === MPCG E T
—’————
200 + = ——
n ’/’
=] PR
.2 175 4 -
= -
g e
£ 150 A -
—””
125 -
4 6 8 10
N1/3
d
(b) Number of iterations.
Number of cores
384 1296 3072 6000
5000 1 = . mpcc G ==- MPoG B e
& 4000 1 ///
wn
8 -~
£, 3000 A —e”
= /’
= -7
% 2000 A ,/’
wn _—’
1000 4 pem===""
4 6 8 10
N1/3
d

(c) Minimization space size.

FIGURES8 | Checkerboard cube, weak parallel scalability (high heterogeneity E,/E, = 10*): wall time, number of iterations and minimization
space size. Topaze supercomputer. (a) Total wall time. (b) Number of iterations. (c) Minimization space size.

15 0f 21

85U8017 SUOWILIOD BAIER.D 8|qed!|dde 8Ly Aq pausenob ae sspie YO ‘88N JO Sa|ni 1o} Ariq1]8UlUO AB|IAA UO (SUORIPUOD-PUR-SWBI W00 A8 |IM AeIq U1 UO//:SANY) SUORIPUOD Pue SWe | 3U88S " [,202/2T/TT] uo Ariqi]auljuo 8|1 * 8oueld 8LRIYO0D - BRSSO 8.8 id A €29/ 8UIU/ZO0T OT/I0p/L00 A8 | Areiq1jeuljuo//sdny wouy pepeojumod ‘0 ‘2020.60T

5.3.3.3 | High Heterogeneity. Only two curves are shown
for the highly heterogeneous test case: MPCG solver with
geometric—algebraic nullspace detection, without and with low
compression ratio. The MPCG solver with (E) without compres-
sion leads to the same convergence as with (G). The MPCG with
(E) and BLR compression does not converge in less than 500 itera-
tions for the test case with 3,072 cores. The parallel performance
with E,/E, = 10* are shown in Figure 5 and Table A3. For this
ill-conditioned test case, BLR compression slightly degrades the
convergence rate but the time to solution and the search space
size remain similar.

5.4 | Weak Scalability Study on the Topaze
Supercomputer

This section presents the scalability study carried out on the
Topaze supercomputer. The main interest here is that the avail-
able memory per core is only 2 GB, which initially motivated the
use of BLR compression. Also, the compute nodes use AMD pro-
cessors and it is the first time that our implementation is bench-
marked on such an architecture.

5.4.1 | Presentation of the Topaze Supercomputer

The Topaze supercomputer is managed by the French Computing
Center for Research and Technology (CCRT, http://www-ccrt.cea
r). It is made of 864 nodes, 2.45 GHz AMD Milan bi-socket with
64 cores per socket. With 864 compute nodes (111,592 cores) and
a theoretical Peak performance of 4.34 PFlop/s, Topaze is ranked
238 in the TOP500 (list from Nov. 2023). One specificity of Topaze
is that the RAM per core is only 2 GB which motivates the use of
compression techniques. Compute nodes are connected through
a EDR InfiniBand network in a pruned Fat-tree topology. The
communication are handled with OpenMPI 4.1.4.

5.4.2 | Weak Scaling Results

5.4.21 | Homogeneous Problem. For the homogeneous
test case and in order to reduce the number of simulations, only
the CG solver is used with or without BLR compression. The
weak scaling results are shown in Figure 6. Full results are sum-
marized in Table B1. Whatever the solver is, the number of iter-
ations slightly increases with the size of the problem due to the
automatic subdomain decomposition. Again, the configuration
with a moderate compression provides the best performance,
both in terms of iterations and time to solution. For the largest
test case with 24,576 cores and 790.12M dofs, the time to solu-
tion is about 300s which represents a gain of about 40%. Also, the
configuration with high compression provides the same time to
solution than the uncompressed one, despite a greater number of
iterations.

5.4.2.2 | Moderate Heterogeneity. For the moderate het-
erogeneity test case, only three curves are considered: the CG
solver with (G) nullspace without and with a low compression
ratio, and the MPCG solver with a low compression ratio. The
results are shown in Figure 7 and Table B2. Once again, the CG
solver performs well with low BLR compression, the convergence

rate is the same as without compression and the time to solution
is reduced. Due to the larger search space, the MPCG solver with
low BLR compression gives the best convergence rate. However,
the cost of orthogonalising this search space tends to dominate
the computation time for large problems (> 6,000 cores).

5.4.2.3 | High Heterogeneity. The weak scaling results
obtained with E,/E, = 10* are shown in Figure 8 and Table B3.
Here only MPCG without compression is able to converge in less
than 500 iterations for large problems. The test case with 24,756
cores ran out of memory. Multipreconditioning provides robust-
ness at the cost of a large search space: the number of iterations
is only doubled between 384 and 6,000 cores. For this type of
problem, a restart of the MPCG solver should be implemented, in
the same spirit as, for example, the GMRES-DR algorithm [27].
This is however out of the scope of the present study.

6 | Conclusion and Perspectives

In order to adapt to modern supercomputer designs where the
available memory per core is constantly decreasing, this paper
proposes to use block low-rank factorization methods to equip
primal domain decomposition methods with low memory foot-
print preconditioner. The BLR compression makes it difficult
for the Mumps solver to detect the correct kernel to use. The
nullspace is often not detected and the BDD method falls back to
the Neumann-Neumann method: scalability is lost. Two alterna-
tive strategies have been tested: the hybrid geometric-algebraic
approach and the low energy modes. The former makes the
coarse problem independent of BLR compression, but requires
the knowledge of the nullspace in the case of a completely float-
ing subdomain. The latter is fully algebraic and takes compres-
sion into account, but numerical results suggest that the hybrid
geometric-algebraic approach is preferable whenever available.
Indeed, low energy modes seem to drift away from the original
operator’s nullspace for a high level of compression, which sig-
nificantly degrades the convergence rate [14]. The BLR precondi-
tioner has also been combined with adaptive multiprecondition-
ing in order to increase the robustness of the solver with respect
to material heterogeneity.

Weak scalability studies were presented using two supercomput-
ers (Sator and Topaze) and three heterogeneity ratios. Numeri-
cal results show that BLR compression can improve both mem-
ory and solution time. It is especially interesting for reasonably
well conditioned problems. For the largest homogeneous test case
with 24,576 cores and 790.12M dofs, the time to solution is about
300s, which represents a 40% gain over the uncompressed pre-
conditioner, while the memory footprint of the preconditioner is
reduced by 20%.

The results also show that AMPBDD is robust with respect
to material heterogeneity but generates a large search space.
Unfortunately, multipreconditioning is unable to compensate
for the loss of the correct coarse space in most situations. The
largest ill-conditioned test case has approximately 200 million of
unknowns and runs on 6,000 cores. Block low rank factorization
is not sufficient here, and a GMRES-DR-style restart procedure
will need to be investigated in the near future. However, this is the
first large-scale evaluation of this solver. AMPBDD is particularly

16 of 21

International Journal for Numerical Methods in Engineering, 2024

85U8017 SUOWILIOD BAIER.D 8|qed!|dde 8Ly Aq pausenob ae sspie YO ‘88N JO Sa|ni 1o} Ariq1]8UlUO AB|IAA UO (SUORIPUOD-PUR-SWBI W00 A8 |IM AeIq U1 UO//:SANY) SUORIPUOD Pue SWe | 3U88S " [,202/2T/TT] uo Ariqi]auljuo 8|1 * 8oueld 8LRIYO0D - BRSSO 8.8 id A €29/ 8UIU/ZO0T OT/I0p/L00 A8 | Areiq1jeuljuo//sdny wouy pepeojumod ‘0 ‘2020.60T

http://www-ccrt.cea.fr
http://www-ccrt.cea.fr
http://www-ccrt.cea.fr

useful for simulating crack propagation problems because the
nullspace computation only plays at the preconditioner level.
One prospect of this work is the extension of AMPBDD phase
field fracture [28] to larger scale problems solved on low memory
supercomputers.

Conflicts of Interest

The authors declare no conflicts of interest.

Data Availability Statement

Data will be made available on request for the benchmarks presented in
Section 5. The data that support the findings of this study are available
from the corresponding author upon reasonable request.

The data that support the findings of this study are available from the
corresponding author upon reasonable request.

Endnotes
L http://www.zset-software.com/

2 http://eigen.tuxfamily.org/

References

1. C. Farhat and F. X. Roux, “The Dual Schur Complement Method With
Well-Posed Local Neumann Problems,” Contemporary Mathematics 157
(1994): 193, https://doi.org/10.1137/0914047.

2. P. Gosselet, D. Rixen, F. X. Roux, and N. Spillane, “Simultaneous FETI
and Block FETI: Robust Domain Decomposition With Multiple Search
Directions,” International Journal for Numerical Methods in Engineer-
ing 104, no. 10 (2015): 905-927. nme.4946, https://doi.org/10.1002/nme
.4946.

3.C. Bovet, A. Parret-Fréaud, N. Spillane, and P. Gosselet, “Adaptive
Multipreconditioned FETI: Scalability Results and Robustness Assess-
ment,” Computers and Structures 193 (2017): 1-20, https://doi.org/10
.1016/j.compstruc.2017.07.010.

4. C. Bovet, A. Parret-Fréaud, and P. Gosselet, “Two-Level Adaptation for
Adaptive Multipreconditioned FETL,” Advances in Engineering Software
152 (2021): 102952, https://doi.org/10.1016/j.advengsoft.2020.102952.

5.C. Farhat, M. Lesoinne, P. LeTallec, K. Pierson, and D. Rixen,
“FETI-DP: a Dual-Primal Unified FETI Method - Part I: a Faster Alterna-
tive to the Two-Level FETI Method,” International Journal for Numerical
Methods in Engineering 50, no. 7 (2001): 1523-1544, https://doi.org/10
.1002/nme.76.

6.J. Mandel, “Balancing Domain Decomposition,” Communications in
Numerical Methods in Engineering 9, no. 3 (1993): 233, https://doi.org/10
.1002/cnm.1640090307.

7. C.R. Dohrmann, “A Preconditionner for Substructuring Based on Con-
strained Energy Minimization,” SIAM Journal for Scientific Computing 25
(2003): 246, https://doi.org/10.1137/s1064827502412887.

8. T. Mary, “Block Low-Rank Multifrontal Solvers: Complexity, Perfor-
mance, and Scalability” (PhD diss, Université Paul Sabatier-Toulouse III,
2017).

9.N. J. Higham and T. Mary, “A New Preconditioner that Exploits
Low-Rank Approximations to Factorization Error,” SIAM Journal on
Scientific Computing 41, no. 1 (2019): A59-A82, https://doi.org/10.1137
/18M1182802.

10.J. H. Bramble, J. E. Pasciak, and A. T. Vassilev, “Analysis of
Non-Overlapping Domain Decomposition Algorithms With Inexact
Solves,” Mathematics of Computation 67, no. 221 (1998): 1-19, https://doi
.0rg/10.1090/S0025-5718-98-00879-5.

11. C. Borgers, “The Neumann-Dirichlet Domain Decomposition Method
With Inexact Solvers on the Subdomains,” Numerische Mathematik 55,
no. 2 (1989): 123-136, https://doi.org/10.1007/BF01406510.

12. G. Haase, U. Langer, and A. Meyer, “The Approximate Dirichlet
Domain Decomposition Method,” Part I: An Algebraic Approach. Com-
puting 47, no. 2 (1991): 137-151, https://doi.org/10.1007/BF02253431.

13. G. Haase, U. Langer, and A. Meyer, “The Approximate Dirichlet
Domain Decomposition Method. Part II: Applications to 2nd-Order Ellip-
tic B.V.P.s,” Computing 47, no. 2 (1991): 153-167, https://doi.org/10.1007
/BF02253432.

14. C. R. Dohrmann, “An Approximate BDDC Preconditioner,” Numeri-
cal Linear Algebra With Applications 14, no. 2 (2007): 149-168, https://doi
.org/10.1002/nla.514.

15.J. Li and O. B. Widlund, “On the use of Inexact Subdomain Solvers for
BDDC Algorithms,” Computer Methods in Applied Mechanics and Engi-
neering 196, no. 8 (2007): 1415-1428, https://doi.org/10.1016/j.cma.2006
.03.011.

16.J. W. Liu, “The Multifrontal Method for Sparse Matrix Solution: The-
ory and Practice,” SIAM Review 34, no. 1 (1992): 82-109.

17. M. Bebendorf, Hierarchical Matrices (Berlin, Heidelberg: Springer,
2008).

18. N. Spillane, “An Adaptive Multipreconditioned Conjugate Gradient
Algorithm,” SIAM Journal on Scientific Computing 38, no. 3 (2016):
A1896-A1918, https://doi.org/10.1137/15M1028534.

19. P. Gosselet and C. Rey, “Non-Overlapping Domain Decomposition
Methods in Structural Mechanics,” Archives of Computational Methods
in Engineering 13, no. 4 (2006): 515-572.

20.D. J. Rixen and C. Farhat, “A Simple and Efficient Extension of a
Class of Substructure Based Preconditioners to Heterogeneous Struc-
tural Mechanics Problems,” International Journal for Numerical Meth-
ods in Engineering 44, no. 4 (1999): 489-516, https://doi.org/10.1002/
(SICI)1097-0207(19990210)44:4{489::AID-NME514;3.0.CO;2-Z.

21. R. Bridson and C. Greif, “A Multipreconditioned Conjugate Gradient
Algorithm,” SIAM Journal on Matrix Analysis and Applications 27, no. 4
(2006): 1056-1068 (electronic), https://doi.org/10.1137/040620047.

22. M. C. Leistner, P. Gosselet, and D. J. Rixen, “Recycling of Solu-
tion Spaces in Multi-Preconditioned FETI Methods Applied to Structural
Dynamics,” International Journal for Numerical Methods in Engineering
116, no. 2 (2018): 141-160, https://doi.org/10.1002/nme.5918.

23.N. Spillane and D. J. Rixen, “Automatic Spectral Coarse spaces for
Robust FETI and BDD Algorithms,” International Journal for Numeri-
cal Methods in Engineering 95, no. 11 (2013): 953-990, https://doi.org/10
.1002/nme.4534.

24. C. Bovet, “On the use of Graph Centralities to Compute Generalized
Inverse of Singular Finite Element Operators: Applications to the Analy-
sis of Floating Substructures,” International Journal for Numerical Meth-
ods in Engineering 124, no. 9 (2022): 1933-1964, https://doi.org/10.1002
/nme.7193.

25. C. Farhat and M. Géradin, “On the General Solution by a Direct
Method of a Large Scale Singular System of Linear Equations:
Application to the Analysis of Floating Structures,” International
Journal for Numerical Methods in Engineering 41, no. 4 (1998): 675-696,
https://doi.org/10.1002/(SICI)1097-0207(19980228)41:4{675::ATD-NME
305;3.0.CO;2-8.

26. P.R. Amestoy, L. S. Duff, J. Koster, and J. Y. L’Excellent, “A Fully Asyn-
chronous Multifrontal Solver Using Distributed Dynamic Scheduling,”
SIAM Journal on Matrix Analysis and Applications 23,no.1(2001): 15-41,
https://doi.org/10.1137/S0895479899358194.

27.R. B. Morgan, “GMRES with Deflated Restarting,” SIAM Journal
on Scientific Computing 24, no. 1 (2002): 20-37, https://doi.org/10.1137
/81064827599364659.

17 of 21

25UB0 17 SUOLLILIOD BAER.D) 3|t fdce aL) Ag PoLBA0B @12 SIRILE VO ‘38N J0 SaIN 10} AReiq 7 8UIIUO AB]IA O (SUOIPUOO-pUE-SLULBILI0D" B |1 ARe1q 1Bu! |uo//Sdy) SUONIPUOD PUE SULB | aU1 89S *[1Z20Z/ZT/TT] U ARiqiTaulluo AB|IA * 0L SUBILI0D - PESSOD aidid AQ £29/BULU/Z00T OT/I0p/W00" A8 M AIqIpUIIUO// STy WO} PAPeojuMoq ‘0 *2020260T

http://www.zset-software.com/
http://eigen.tuxfamily.org/
https://doi.org/10.1137/0914047
https://doi.org/10.1137/0914047
https://doi.org/10.1002/nme.4946
https://doi.org/10.1002/nme.4946
https://doi.org/10.1002/nme.4946
https://doi.org/10.1016/j.compstruc.2017.07.010
https://doi.org/10.1016/j.compstruc.2017.07.010
https://doi.org/10.1016/j.compstruc.2017.07.010
https://doi.org/10.1016/j.advengsoft.2020.102952
https://doi.org/10.1016/j.advengsoft.2020.102952
https://doi.org/10.1002/nme.76
https://doi.org/10.1002/nme.76
https://doi.org/10.1002/nme.76
https://doi.org/10.1002/cnm.1640090307
https://doi.org/10.1002/cnm.1640090307
https://doi.org/10.1002/cnm.1640090307
https://doi.org/10.1137/s1064827502412887
https://doi.org/10.1137/s1064827502412887
https://doi.org/10.1137/18M1182802
https://doi.org/10.1137/18M1182802
https://doi.org/10.1137/18M1182802
https://doi.org/10.1090/S0025-5718-98-00879-5
https://doi.org/10.1090/S0025-5718-98-00879-5
https://doi.org/10.1090/S0025-5718-98-00879-5
https://doi.org/10.1007/BF01406510
https://doi.org/10.1007/BF01406510
https://doi.org/10.1007/BF02253431
https://doi.org/10.1007/BF02253431
https://doi.org/10.1007/BF02253432
https://doi.org/10.1007/BF02253432
https://doi.org/10.1007/BF02253432
https://doi.org/10.1002/nla.514
https://doi.org/10.1002/nla.514
https://doi.org/10.1002/nla.514
https://doi.org/10.1016/j.cma.2006.03.011
https://doi.org/10.1016/j.cma.2006.03.011
https://doi.org/10.1016/j.cma.2006.03.011
https://doi.org/10.1137/15M1028534
https://doi.org/10.1137/15M1028534
https://doi.org/10.1002/(SICI)1097-0207(19990210)44:4%C2%A1489::AID-NME514%C2%BF3.0.CO;2-Z
https://doi.org/10.1002/(SICI)1097-0207(19990210)44:4%C2%A1489::AID-NME514%C2%BF3.0.CO;2-Z
https://doi.org/10.1002/(SICI)1097-0207(19990210)44:4%C2%A1489::AID-NME514%C2%BF3.0.CO;2-Z
https://doi.org/10.1137/040620047
https://doi.org/10.1137/040620047
https://doi.org/10.1002/nme.5918
https://doi.org/10.1002/nme.5918
https://doi.org/10.1002/nme.4534
https://doi.org/10.1002/nme.4534
https://doi.org/10.1002/nme.4534
https://doi.org/10.1002/nme.7193
https://doi.org/10.1002/nme.7193
https://doi.org/10.1002/nme.7193
https://doi.org/10.1002/(SICI)1097-0207(19980228)41:4%C2%A1675::AID-NME305%C2%BF3.0.CO;2-8
https://doi.org/10.1002/(SICI)1097-0207(19980228)41:4%C2%A1675::AID-NME305%C2%BF3.0.CO;2-8
https://doi.org/10.1002/(SICI)1097-0207(19980228)41:4%C2%A1675::AID-NME305%C2%BF3.0.CO;2-8
https://doi.org/10.1137/S0895479899358194
https://doi.org/10.1137/S0895479899358194
https://doi.org/10.1137/S1064827599364659
https://doi.org/10.1137/S1064827599364659
https://doi.org/10.1137/S1064827599364659

28.J. Rannou and C. Bovet, “Domain Decomposition Methods and International Journal for Numerical Methods in Engineering 125 (2024):
Acceleration Techniques for the Phase Field Fracture Staggered Solver,” €7544, https://doi.org/10.1002/nme.7544.
Appendix A

Weak Scalability Results on the Sator Supercomputer

TABLE A1 | Checkerboard cube, weak parallel scalability (homogeneous case E,/E, =10°): total time and number of iterations. Sator
supercomputer.

Heterogeneity E,/ E, = 10°

Solver BLR €BIR Kernel #iter
CG UCFS 107! G 98 126 138
CG UFSC 107! G 98 126 138
CG UCFS 1073 G 61 72 73
CG UFSC 1073 G 61 73 73
CG M 65 96 97
CG UCFS 1073 E 66 92 114
CG UFSC 1073 E 66 97 112
CG UCFS 1073 E 65 96 97
CG UFSC 1073 E 65 96 97
Solver BLR €BLR Kernel Total time [s]
CG UCFS 107! G 88.86 113.3 132.1
CG UFSC 107! G 88.23 113.8 133.2
CG UCFS 1073 G 72.19 85.75 94.12
CG UFSC 1073 G 72.2 86.06 95.24
CG M 72.33 99.24 110.4
CG UCFS 1073 E 75.38 98.37 121.7
CG UFSC 1073 E 75.33 101.0 122.4
CG UCFS 1073 E 77.32 103.6 114.3
CG UFSC 1073 E 77.65 104.4 115.5
Solver BLR €BIR Kernel Search space size
CG UCFS 107! G 98 126 138
CG UFSC 107! G 98 126 138
CG UCFS 1073 G 61 72 73
CG UFSC 1073 G 61 73 73
CG M 65 96 97
CG UCFS 1073 E 66 92 114
CG UFSC 1073 E 66 97 112
CG UCFS 1075 E 65 96 97
CG UFSC 1073 E 65 96 97
Number of subdomains 64 216 512
Number of cores 384 1296 3072
18 of 21 International Journal for Numerical Methods in Engineering, 2024

85U8017 SUOWILIOD BAIER.D 8|qed!|dde 8Ly Aq pausenob ae sspie YO ‘88N JO Sa|ni 1o} Ariq1]8UlUO AB|IAA UO (SUORIPUOD-PUR-SWBI W00 A8 |IM AeIq U1 UO//:SANY) SUORIPUOD Pue SWe | 3U88S " [,202/2T/TT] uo Ariqi]auljuo 8|1 * 8oueld 8LRIYO0D - BRSSO 8.8 id A €29/ 8UIU/ZO0T OT/I0p/L00 A8 | Areiq1jeuljuo//sdny wouy pepeojumod ‘0 ‘2020.60T

https://doi.org/10.1002/nme.7544
https://doi.org/10.1002/nme.7544

TABLE A2 | Checkerboard cube, weak parallel scalability (moderate heterogeneity E,/ E, = 10%): total time, number of iterations and minimization

space size. Sator supercomputer.

Heterogeneity E, / E, = 107

Solver BLR €BIR Kernel #iter
CG G 142 177 197
CG UCFS 1073 G 142 177 197
CG UFSC 107° G 142 177 197
CG E 142 177 197
CG UCFS 103 E 142 181 204
CG UFSC 107° E 142 179 206
MPCG UCFS 1073 G 138 283 468
MPCG UFSC 1073 G 147 280 462
MPCG UCFS 10°° G 106 116 131
MPCG UFSC 1073 G 107 116 133
MPCG E 102 120 130
MPCG UFSC 1073 E 216 334 469
MPCG UCFS 1073 E 106 120 128
MPCG UFSC 107° E 106 120 133
Solver BLR €BLR Kernel Total time [s]
CG G 124.8 160.3 189.5
CG UCFS 10°° G 119.7 153.3 180.7
CG UFSC 10°° G 120.5 153.2 181.7
CG E 126.5 160.4 189.3
CG UCFS 10°° E 122.4 158.3 252.2
CG UFSC 1073 E 122.7 156.0 189.3
MPCG UCFS 1073 G 124.8 253.7 488.2
MPCG UFSC 1073 G 129.0 265.0 482.7
MPCG UCFS 107° G 107.9 143.5 169.2
MPCG UFSC 107° G 109.9 142.8 167.5
MPCG E 111.6 147.3 269.5
MPCG UFSC 1073 E 175.3 308.8 636.6
MPCG UCFS 10°° E 109.3 145.7 231.7
MPCG UFSC 1073 E 109.7 144.6 229.9
Solver BLR €BIR Kernel Search space size
CG G 142 177 197
CG UCFS 107° G 142 177 197
CG UFSC 107° G 142 177 197
CG E 142 177 197
CG UCFS 107° E 142 181 204
CG UFSC 10°° E 142 179 206
MPCG UCFS 1073 G 324 562 1057
MPCG UFSC 1073 G 333 652 1051
MPCG UCFS 10°° G 261 426 596
MPCG UFSC 10°° G 262 426 567
MPCG E 288 399 595
MPCG UFSC 1073 E 433 706 1151
MPCG UCFS 107° E 261 399 624
MPCG UFSC 107° E 261 399 567
Number of subdomains 64 216 512
Number of cores 384 1296 3072
19 of 21

85U8017 SUOWILIOD BAIER.D 8|qed!|dde 8Ly Aq pausenob ae sspie YO ‘88N JO Sa|ni 1o} Ariq1]8UlUO AB|IAA UO (SUORIPUOD-PUR-SWBI W00 A8 |IM AeIq U1 UO//:SANY) SUORIPUOD Pue SWe | 3U88S " [,202/2T/TT] uo Ariqi]auljuo 8|1 * 8oueld 8LRIYO0D - BRSSO 8.8 id A €29/ 8UIU/ZO0T OT/I0p/L00 A8 | Areiq1jeuljuo//sdny wouy pepeojumod ‘0 ‘2020.60T

TABLE A3 | Checkerboard cube, weak parallel scalability (high heterogeneity E,/E, = 10*): total time, number of iterations and minimization
space size. Sator supercomputer.

Heterogeneity E,/ E, = 10*

Solver BLR €BIR Kernel #iter
MPCG G 108 139 194
MPCG UCFS 1073 G 108 141 206
MPCG UFSC 1073 G 108 153 202
MPCG E 108 139 194
Solver BLR €BIR Kernel Total time [s]
MPCG G 140.6 260.4 450.4
MPCG UCFS 107 G 139.5 262.8 462.4
MPCG UFSC 107 G 139.7 272.1 449.1
MPCG E 142.8 261.2 448.8
Solver BLR €BLR Kernel Search space size
MPCG G 851 1564 3759
MPCG UCFS 1073 G 895 1620 3771
MPCG UFSC 107 G 922 1610 3612
MPCG E 851 1564 3759
Number of subdomains 64 216 512
Number of cores 384 1296 3072
Appendix B

Weak Scalability Results on the Topaze Supercomputer

TABLE Bl | Checkerboard cube, weak parallel scalability (homogeneous case E,/E, =10%): total time and number of iterations. Topaze
supercomputer.

Heterogeneity E,/ E, = 10°

Solver BLR €BLR Kernel #iter
CG G 65 96 97 119
CG UCFS 1071 G 98 126 138 161 199
CG UFSC 1071 G 98 126 138 161 199
CG UCFS 1073 G 62 72 74 85 93
CG UFSC 1073 G 61 73 74 83 92
CG M 65 96 97 119 143
Solver BLR €BIR Kernel Total time [s]
CG G 87.5 168.8 261.9 315.1
CG UCFS 107! G 89.34 156.3 254.4 305.9 511.7
CG UFSC 1071 G 90.37 153.1 260.8 305.7 505.9
CG UCFS 1073 G 73.5 128.5 184.9 217.8 319.7
CG UFSC 1073 G 74.19 127.9 177.7 211.4 309.7
CG M 84.58 173.1 2554 302.1 497.5
Solver BLR €BLR Kernel Search space size
CG G 65 96 97 119
CG UCFS 107! G 98 126 138 161 199
CG UFSC 107! G 98 126 138 161 199
CG UCFS 1073 G 62 72 74 85 93
CG UFSC 1073 G 61 73 74 83 92
CG M 65 96 97 119 143
Number of subdomains 64 216 512 1000 4096
Number of cores 384 1296 3072 6000 24576
20 of 21 International Journal for Numerical Methods in Engineering, 2024

85U8017 SUOWILIOD BAIER.D 8|qed!|dde 8Ly Aq pausenob ae sspie YO ‘88N JO Sa|ni 1o} Ariq1]8UlUO AB|IAA UO (SUORIPUOD-PUR-SWBI W00 A8 |IM AeIq U1 UO//:SANY) SUORIPUOD Pue SWe | 3U88S " [,202/2T/TT] uo Ariqi]auljuo 8|1 * 8oueld 8LRIYO0D - BRSSO 8.8 id A €29/ 8UIU/ZO0T OT/I0p/L00 A8 | Areiq1jeuljuo//sdny wouy pepeojumod ‘0 ‘2020.60T

TABLE B2 | Checkerboard cube, weak parallel scalability (moderate heterogeneity E, / E, = 10%): total time, number of iterations and minimization

space size. Topaze supercomputer.

Heterogeneity E, / E, = 107

Solver BLR €BIR Kernel #iter

CG G 141 182 210 238 304
CG UCFS 10°° G 141 182 211 239 306
CcG UFSC 10-° G 141 182 211 238 306
MPCG UCFS 107° G 95 117 130 135 154
MPCG UFSC 107° G 95 114 130 139 154
Solver BLR €pIR Kernel Total time [s]

CG G 204.8 251.3 437.2 505.1 867.6
CG UCFS 1073 G 169.2 225.2 385.8 430.8 740.8
CG UFSC 1073 G 162.7 217.1 392.2 458.8 761.1
MPCG UCFS 1073 G 161.3 221.9 353.2 402.1 945.7
MPCG UFSC 107° G 164.4 220.5 355.5 420.9 887.4
Solver BLR €BLR Kernel Search space size

CG G 141 182 210 238 304
CG UCFS 1073 G 141 182 211 239 306
CG UFSC 1073 G 141 182 211 238 306
MPCG UCFS 1073 G 311 458 657 941 2572
MPCG UFSC 1073 G 311 455 657 943 2541
Number of subdomains 64 216 512 1000 4096
Number of cores 384 1296 3072 6000 24576

TABLE B3 | Checkerboard cube, weak parallel scalability (high heterogeneity E,/E, = 10*): total time, number of iterations and minimization

space size. Topaze supercomputer.

Heterogeneity E./E, = 10*

Solver BLR €BLR Kernel #iter

MPCG G 108 139 194 225

MPCG E 108 139 194 226

Solver BLR €BLR Kernel Total time [s]

MPCG G 225.3 497.9 900.2 1299.0

MPCG E 236.1 501.9 850.7 1233.0

Solver BLR €BIR Kernel Search space size

MPCG G 851 1564 3759 4906

MPCG E 851 1564 3759 4907

Number of subdomains 64 216 512 1000 4096
Number of cores 384 1296 3072 6000 24576

21 of21

85U8017 SUOWILIOD BAIER.D 8|qed!|dde 8Ly Aq pausenob ae sspie YO ‘88N JO Sa|ni 1o} Ariq1]8UlUO AB|IAA UO (SUORIPUOD-PUR-SWBI W00 A8 |IM AeIq U1 UO//:SANY) SUORIPUOD Pue SWe | 3U88S " [,202/2T/TT] uo Ariqi]auljuo 8|1 * 8oueld 8LRIYO0D - BRSSO 8.8 id A €29/ 8UIU/ZO0T OT/I0p/L00 A8 | Areiq1jeuljuo//sdny wouy pepeojumod ‘0 ‘2020.60T

	On the Use of Block Low Rank Preconditioners for Primal Domain Decomposition Methods
	ABSTRACT
	1 | Introduction
	2 | Block Low-Rank Methods in a Nutshell
	3 | Primal Domain Decomposition Methods
	3.1 | Balancing Domain Decomposition Method in a Nutshell
	3.1.1 | First Level Preconditioner
	3.1.2 | Second Level Preconditioner: Coarse Problem

	3.2 | Block Low Rank BDD Preconditioner
	3.3 | Adaptive Multipreconditioning

	4 | Coarse Problem Computation: Nullspace and Generalized Inverses
	4.1 | Mumps Automatic Nullspace Detection (M)
	4.2 | Incomplete Factorization and Fixing-Nodes Framework
	4.2.1 | Low Energy Modes (E)
	4.2.2 | Hybrid Geometric--Algebraic Detection (G)

	5 | Numerical Experiments
	5.1 | Remarks on the Implementation and Dependencies
	5.2 | Description of the Weak Scaling Test Case
	5.3 | Weak Scalability Study on the Sator Supercomputer
	5.3.1 | Presentation of the Hardware
	5.3.2 | Focus on a Small Test Case (Nd[[equals]]64)
	5.3.2.1 | Homogeneous Probem

	5.3.2.2 | Moderate Heterogeneity

	5.3.2.3 | High Heterogeneity
	5.3.3 | Weak Scalability Results
	5.3.3.1 | Homogeneous Problem
	5.3.3.2 | Moderate Heterogeneity
	5.3.3.3 | High Heterogeneity
	5.4 | Weak Scalability Study on the Topaze Supercomputer
	5.4.1 | Presentation of the Topaze Supercomputer
	5.4.2 | Weak Scaling Results

	5.4.2.1 | Homogeneous Problem
	5.4.2.2 | Moderate Heterogeneity
	5.4.2.3 | High Heterogeneity
	6 | Conclusion and Perspectives
	Conflicts of Interest
	Data Availability Statement
	Endnotes
	References
	Appendix A Weak Scalability Results on the Sator Supercomputer
	Appendix B Weak Scalability Results on the Topaze Supercomputer

