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Abstract.

•Objective: In this study, we explore positron emission tomography

(PET)/magnetic resonance imaging (MRI) joint reconstruction within a deep

learning (DL) framework, introducing a novel synergistic method.

•Approach: We propose a new approach based on a variational autoencoder

(VAE) constraint combined with the alternating direction method of multipliers

(ADMM) optimization technique. We explore three VAE architectures, joint VAE

(JVAE), product of experts (PoE)-VAE and multimodal JS divergence (MMJSD),

to determine the optimal latent representation for the two modalities. We then

trained and evaluated the architectures on a brain PET/MRI dataset.

•Main results: We showed that our approach takes advantage of each modality

sharing information to each other, which results in improved peak signal-to-noise

ratio (PSNR) and structural similarity (SSIM) as compared with traditional

reconstruction, particularly for short acquisition times. We find that the one

particular architecture, MMJSD, is the most effective for our methodology.

•Significance: The proposed method outperforms conventional approaches

especially in noisy and undersampled conditions by making use of the two

modalities together to compensate for the missing information.

1. Introduction

Medical imaging plays a pivotal role in modern healthcare, enabling non-invasive

visualization and assessment of internal anatomical structures and physiological processes.

Among the various imaging modalities, positron emission tomography (PET) and

magnetic resonance imaging (MRI) are powerful tools that provide complementary

information. On one hand, PET is a functional medical imaging method that uses

radioactive tracers to observe and monitor various bodily processes, providing crucial

information for cancer detection and benefiting fields like cardiology and neurology. On

the other hand, MRI is a technique that creates detailed images of the body’s anatomy
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and physiological processes using powerful magnetic fields, magnetic field gradients, and

radio waves. PET systems can be accompanied by an MRI system, providing anatomical

information as well as gamma-rays attenuation correction (Catana 2020).

Image reconstruction is an ill-posed inverse problem. Analytical reconstruction

methods such as filtered backprojection (Natterer 2001) can be used for PET but the

resulting images often suffer from noise amplification, making them impractical for low-

statistics acquisitions. Similarly, MRI reconstruction can be performed using an inverse

fast Fourier Transform (IFFT); however, this method is ineffective for undersampled

acquisitions. To remedy this, model-based iterative reconstruction techniques have been

deployed, namely the maximum-likelihood expectation-maximization (MLEM) algorithm

(Shepp and Vardi 1982) and its regularized versions (De Pierro 1995; Ahn and Fessler

2003) in PET as well as compressed sensing approaches for undersampled MRI (Fessler

2020).

Furthermore, PET and MRI provide different perspectives of the same object and

therefore share some mutual information. This has led to an entire field of research focused

on multimodal synergistic reconstruction. The paradigm of synergistic reconstruction is

that leveraging mutual information can yield improved reconstruction results with less

data, which in turn means lower patient dose from the PET acquisition and faster MRI

acquisition. Variational methods have shown that using a combination of modalities

can improve the quality of reconstructions (Ehrhardt et al. 2015; Mehranian et al. 2018;

Arridge et al. 2021). These methods aim at representing the prior knowledge of the

target images with regularization terms that promote structural similarity between the

two modalities. However, they often create “artificial similarities” between the PET

and the MRI, which is undesirable as these imaging systems have significantly different

intrinsic resolutions and specific information.

The use of machine learning (ML) can tackle this issue by training a model that

can learn dependencies between several images. Examples from the literature include

dictionary learning for PET/MRI (Sudarshan et al. 2020) as well as convolutional

dictionary learning in dual-energy computed tomography (Perelli et al. 2022). Dictionary

learning techniques are limited to sparse representation using linear mappings, while

deep learning (DL) architectures with nonlinear mappings offer more flexibility for more

complex manifolds. The obtained compact representation acts as a regularization in

inverse problems that outperforms traditional ML methods. For instance convolutional

neural network-based magnetic resonance (MR)-guided PET reconstruction (Xie et al.

2021; Schramm et al. 2021) and post-processing (Chen, Gong, et al. 2019; Chen, Toueg,

et al. 2021; Da Costa-Luis and Reader 2020; Bousse et al. 2024) deliver promising results.

Among DL methods, variational autoencoders (VAEs) have gained significant

attention as powerful generative models capable of learning data encodings and capturing

complex relationships within the data. VAEs have been successfully applied in various

imaging tasks, facilitating the generation of high-fidelity images and enabling feature

disentanglement. In multimodal imaging, accurately representing features that are

both common and unique to each modality in a low-dimensional latent space is an
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important challenge, necessitating exploration of novel methodologies. Multimodal VAEs

achieve this through their loss function which builds a latent space that encodes both

the mutual and specific information of each modality (see Suzuki and Matsuo (2022) for

a comprehensive review).

We propose in this paper a novel approach to PET/MRI synergistic reconstruction by

leveraging the potential of VAEs as a constraint within the alternating direction method

of multipliers (ADMM) framework. ADMM is an optimization technique that iteratively

decomposes complex problems into simpler subproblems, enabling the incorporation

of prior knowledge and constraints. By integrating the VAE as a regularization term,

we exploit its ability to learn meaningful latent representations and encourage the

reconstruction process to adhere to the underlying data distribution, resulting in more

accurate and physiologically plausible reconstructions. Our method can be interpreted

as a synthesis method that constrains the solution to be in the range of the decoder of a

VAE.

The main contributions of this work are as follows:

• We developed a standard VAE-based model that combines PET and MRI to exploit

inter-modality information.

• We propose an ADMM-based synergistic reconstruction algorithm that incorporates

our VAE-based model.

• We compare the results obtained using several multimodal VAE architectures and

loss functions.

• We evaluate the proposed framework using extensive experiments on data simulated

from real clinical brain PET/MRI acquisitions.

The remainder of this paper is organized as follows: Section 2 provides a presentation

of the classical VAE and of the multimodal VAE architectures we investigated.

Section 3 presents the new reconstruction methodology, detailing the VAE-based ADMM

framework, namely deep latent reconstruction (DLR), and its implementation. Section 4

gives the experimental setup and section 5 presents the results, followed by a thorough

discussion in Section 6. Finally, Section 7 concludes the paper, summarizing our

contributions and outlining future research directions.

2. Variational Autoencoders

We first present the monomodal VAEs and then their multimodal extension. In the

following, for some k ∈ N, 0k denotes the k-dimensional null vector and Ik ∈ Rk×k is the

identity matrix in Rk.

2.1. Mono-modal VAE

The VAE is a probabilistic deep latent-variable model (DLVM) that tries to learn the

distribution of the data under the assumption that it is generated from an unobserved
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latent variable while regularizing the latent space to give it a smooth shape (Diederik P.

Kingma and Welling 2019). This enables controlled generation of images from the latent

space.

2.1.1. Decoder and Encoder In this paper, x ∈ Rm plays the role of a 2-dimensional

(2-D) (or 3-dimensional) image with m pixels (or voxels). The goal is to estimate the real

probability distribution function (PDF) p∗:Rm → R+ of x, based on observations from a

training dataset with PDF pdata. The conventional approach consists in approximating p∗

with a parametrized PDF pθ, θ being a trainable finite-dimensional parameter. DLVMs

change the paradigm by incorporating a generative model pθ(·|z) conditioned by a latent

variable z ∈ Rd, d≪ m, such that pθ(x) is obtained by marginalizing out z:

pθ(x) =

∫
Rd

pθ(x, z) dz (1)

pθ(x, z) ≜ pθ(x | z) · p0(z) (2)

where p0(z) is a known prior distribution on the latent space chosen to be a standard

Gaussian distribution in our case, i.e.,

z ∼ p0

∼ N (0d, Id) ,

and where the conditional PDF pθ(·|z) is assumed to be isotropic Gaussian with known

standard deviation η and mean Gθ(z) ∈ Rm, i.e.,

x | z ∼ pθ(· | z) (3)

∼ N (Gθ(z), η
2Im) . (4)

The mapping Gθ is often referred to as the generator, or decoder. Later in the paper

(Section 3.3) we will assume that the model is deterministic, i.e., x = Gθ(z).

The integral in Equation (1) does not have a closed-form and cannot be differentiated

with respect to θ. The maximum likelihood estimation is thus intractable (Diederik P

Kingma and Welling 2013). Furthermore, the intractability of pθ(x) is related to the

intractability of the posterior PDF pθ(z|x) through the Bayes’ rule:

pθ(z | x) =
pθ(x, z)

pθ(x)
. (5)

Thus, a parametric inference model qϕ(z|x) is introduced to approximate pθ(z|x), ϕ being

a new trainable parameter, which makes the whole problem tractable. This distribution

is chosen to be Gaussian, i.e.,

z | x ∼ qϕ(· | x) (6)

∼ N
(
µϕ(x), σ

2
ϕ(x)Id

)
(7)

where µϕ(x) ∈ Rd and σϕ(x) ∈ R∗
+. We introduce the encoder Eϕ defined as

Eϕ(x) = (µϕ(x), σϕ(x)) , (8)
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where µϕ and σϕ are respectively referred to as the encoder mean and the encoder

standard deviation (STD).

Finally, Gθ and Eϕ are represented by two neural networks (NNs) with trainable

weights θ and ϕ.

2.1.2. Training The training should be performed by maximum likelihood, i.e., by

maximizing log pθ(x) over a training dataset. Denoting by KL the Kullback-Leibler (KL)

divergence, it can be shown using Jensen’s inequality that the function

Lθ,ϕ(x) = E
z∼qϕ(·|x)

[log pθ(x | z)]︸ ︷︷ ︸
(i)

−KL (qϕ(· | x) ∥ p0)︸ ︷︷ ︸
(ii)

(9)

is a lower bound for the log-likelihood of the data log pθ(x). Therefore, maximizing the

evidence lower bound (ELBO) approximately maximizes log pθ(x) (Diederik P. Kingma

and Welling 2019). This function is refereed to as the ELBO, and its negative is used as

a loss function. We can distinguish two terms in the ELBO (9):

(i) A data fidelity term that aims at generating data according to the distribution pθ(x);

the expectation is computed by sampling z following qϕ(·|x).
(ii) A regularization term that acts on the latent space encouraging the encoder to

generate latent variables according to the prior distribution p0.

Finally, the best parameters θ̂ and ϕ̂ are learned by maximizing Lθ,ϕ for x drawn

from an empirical PDF pdata that corresponds to the training dataset:

(θ̂, ϕ̂) ∈ argmax
θ,ϕ

E
x∼pdata

[Lθ,ϕ(x)] . (10)

Solving (10) is generally achieved with a stochastic gradient ascent where the gradients

are obtained by back-propagation through the NNs Gθ and Eϕ. The resulting PDF pθ̂ is

then used as an approximation for the true PDF p∗.

VAEs have the following properties:

• Continuity: if two points are close within the latent space, their decoded

representations should also be close to each other. More specifically, for any sequence

(zp) such that zp → z, we have Gθ(zp) → Gθ(z).

• Completeness: selecting a random point from the latent space distribution should

yield a result that aligns with the distribution pdata of the data.

The KL regularization term in the ELBO (9) helps to smooth and compact the VAE’s

latent space. Figure 1 illustrates this aspect on a 2-D latent space example. The images

(triangle, square and circle) are represented in the latent space by Gaussian PDFs given

by the encoder mean and the encoder STD. Without regularization, the PDFs are

isolated and decoding an image from a random z will produce an image that is not useful

(i.e., the purple spiral). The regularization term brings these PDFs together. As a result,

moving z around the centers of these Gaussian PDFs generates small variations of the

originally encoded figures (cf. the gray shape that is a “mixture” of the three images).
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Figure 1: Illustration of the VAE’s regularized latent space.

Figure 2: Illustration of the continuity and completeness on an MNIST example. The

images were generated from latent variables on the segment {(1− t) · z1+ t · z2 ; t ∈ [0, 1]}
where z1 and z2 were obtained by encoding x1 and x2 respectively. Shifting t from 0 to 1

progressively transitions from x1 to x2.

We further illustrate these properties in Figure 2 with images from the Modified

National Institute of Standards and Technology (MNIST) dataset (Deng 2012). Two

MNIST images x1 and x2 were encoded with the encoder mean µϕ as z1 = µϕ(x1) and

z2 = µϕ(x2), and we displayed the decoded images Gθ((1 − t) · z1 + t · z2), t ∈ [0, 1].

We observe that by progressively shifting t from 0 to 1 the resulting decoded image

progressively transitions from x1 to x2, which illustrates the smoothness of the decoder.

In practice however, the β-VAE (Higgins et al. 2017) is preferred over the classical

VAE to control the regularization in latent space. With this model, the ELBO is rewritten

as :

Lβθ,ϕ(x) = E
z∼qϕ(·|x)

[log pθ(x | z)]− βKL (qϕ(· | x) ∥ p0) . (11)

The introduction of the hyperparameter β allows to control the regularization the latent

space and to favor the disentanglement of the latent variable (Higgins et al. 2017). If β

is too large, the model will collapse into one general distribution while z will be decoded

into a mean blurry image. Conversely if β is too small, we fall back to the classical

autoencoder with no regularization over the latent space. We tuned this parameter

manually so that the KL divergence and the data fidelity term are about the same

magnitude at the end of the training.
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2.2. Multimodal VAE

VAEs are well-suited to handling multimodal data as they are able to compress multiple

modalities into one shared latent variable that can extract the mutual information in a

lower-dimensional common space. This latent space is often utilized for feature extraction

or classification (Cheng et al. 2021). The framework used for monomodal imaging can be

extended to N -modal imaging considering a collection X = (x1, . . . , xN) of N random

vectors in Rm. We assume that X follows a true distribution p∗:Rm×N → R+. The

goal is to train a mutimodal generative model Gmult
θ = (G1

θ, . . . , G
N
θ ):Rd → Rm×N with

a single latent variable z ∈ Rd that represents the common information from the N

modalities while still being able to represent each modality xn individually. The model

assumes that the xks are independent conditionally to z:

pθ(X | z) =
N∏
k=1

pθ(xk | z) (12)

with

xk | z ∼ N (Gk
θ(z), η

2Im) . (13)

Again, the conditional PDF pθ(z|xk) is approximated with a variational distribution

qϕ(z | xk) with ϕ being a trainable parameter.

In the following we introduce several multimodal VAEs. These models encode the

multimodal image X into a single latent variable z from which a multimodal image is

generated. Two encoding strategies can be considered: (i) using a single encoder to

process all modalities together (Section 2.2.1) or (ii) using one encoder per modality

(Section 2.2.2 and Section 2.2.3), thus providing more flexibility at the expense of an

increased number of parameters.

2.2.1. Joint Variational Autoencoder (JVAE) The most straightforward approach is the

joint VAE (JVAE) which consists of training the parameters with the following ELBO:

Lθ,ϕ(X) = E
z∼qϕ(·|X)

[
N∑
k=1

log pθ(xk | z)

]
−KL (qϕ(· | X) ∥ p0) (14)

where qϕ(z|X) is a multichannel encoder distribution, which can be implemented using

a multimodal encoder Emult
ϕ (X) = (µϕ(X), σϕ(X)) such that

z | X ∼ qϕ(· | X)

∼ N
(
µϕ(X), σ2

ϕ(X)Id
)
.

In practice, this can be implemented using one encoder that will encode the different

modalities together. This approach, which was utilized by Pinton et al. (2024), is memory

efficient since it needs only one encoder but may result in a loss of modality-specific

features.
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2.2.2. Product of Experts (PoE) and Mixture of Experts (MoE) Another approach

proposed by Wu and Goodman (2018) consists in defining one encoder distribution

pθ(z|xk) per modality k and to define the multichannel encoder distribution using the

product of experts (PoE):

qϕ (z | X) ∝ p0(z) ·
N∏
k=1

q̃ϕ (z | xk) , (15)

where the functions q̃ϕ(z | xk) are the unimodal inference distributions, referred to as the

experts. With this formulation, each encoder predicts a modality specific distribution. The

PoE is then computed from the experts’ distributions, usually defined as Gaussian PDFs,

and the joint latent variable z is sampled from (15). This formulation is numerically

convenient as the product of Gaussian PDFs is still a Gaussian (up to a normalization

constant) and the mean µϕ(X) and STD σϕ(X) are computed from the mean µϕ(xk)

and STD σϕ(xk) of q̃ϕ (· | xk), k = 1, . . . , K. One issue is that, due to the multiplicative

nature of this model, a single expert can overshadow all others. This can be an issue

since the goal of synergistic reconstruction is to obtain balanced influence of the various

modalities. The training is also achieved by maximizing the ELBO (14).

Another way to make use of those experts is by using a mixture of experts (MoE)

instead of a product (Shi et al. 2019):

qϕ (z | X) =
N∑
k=1

πkq̃ϕ(z | xk) (16)

where πk ∈ [0, 1],
∑
πk = 1. Sampling z is achieved by drawing an integer in

{1, . . . , N} with probabilities πk, k = 1, . . . , N , then by sampling a Gaussian of parameter

(µϕ(xk), σϕ(xk)) . The resulting VAE allows to better learn each expert individually,

leading to better performances in case of missing modalities compared to the PoE.

2.2.3. Mixture of Expert Multimodal Jensen-Shannon Divergence (MMJSD) To get the

best of both PoE and MoE, Sutter et al. (2020) proposed to replace the KL divergence

in the ELBO (14) with a Jensen-Shannon (JS) divergence. The ELBO then becomes:

Lθ,ϕ(X) = E
z∼qϕ(·|X)

[log pθ(X | z)]− JSN+1
Π

({
{q̃ϕ(· | xk)}Nk=1 , p0

})
(17)

where:

• Π = {πk}N+1
k=1 ∈ RN+1

+ ,
∑

k πk = 1, is a (N + 1)-tuple of weights;

• JSN+1
Π

(
{qk}N+1

k=1

)
=
∑N+1

k=1 πkKL
(
qk

∥∥∥ fM ({qν}N+1
ν=1

))
(in our case qν = q̃ϕ(· | xν)

for ν = 1, . . . , N and qN+1 = p0);

• fM is an abstract mean function that maps a collection of N + 1 PDFs to a single

PDF;

• qϕ (z | X) ∝
∏N

k=1 q̃ϕ (z | xk).
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Using the PoE as the abstract mean function fM corresponds to computing KL

divergences between Gaussian distributions. In the following we will also add a weighting

factor β on the JS divergence to balance it with the data fidelity term in the same way

we do with the β-VAE. This architecture is referred to as multimodal JS divergence

(MMJSD).

3. Deep Latent Reconstruction

In this subsection we detail the bimodal inverse problem formulation for PET/MRI.

The reconstruction problem is formulated as an optimization problem under constraints

implemented by the decoder. A DLR method is proposed for the numerical resolution.

We denote X = (xpet, xmr) ∈ Rm×2 the bimodal image to reconstruct, where we assumed

both images have m pixels (or voxels).

3.1. PET Model

The PET system matrix P ∈ Rn×m, n denoting the number of detector pairs, is defined

such that each entry [P ]i,j is the probability that a positron emission at the jth pixel (or

voxel) is detected at the ith detector pair, taking into account physical factors such as

the attenuation. The expected counts vector is

ȳpet = α · (Pxpet + r + s), (18)

where r ∈ Rn and s ∈ Rn are the expected number of randoms and scatters respectively.

[xpet]j is the mean number of pairs produced at voxel j and α > 0 is a scaling factor that

encompasses the acquisition time and/or detector sensitivity. The observed PET counts

are stored in a vector ypet ∈ Rn.

Assuming the counts are independent and follow a Poisson distribution, denoted

ppet(ypet|xpet), the PET data fidelity term is related to the negative log-likelihood by

Dpet(xpet) = − log ppet(ypet | xpet) + C (19)

=
n∑
i=1

([ȳpet]i − [ypet]i log([ȳpet]i)) (20)

(with the convention 0 · log 0 = 0) where C is a constant independent of xpet. PET

reconstruction is then achieved by minimizing Dpet(xpet), for example by MLEM (Shepp

and Vardi 1982) or modified versions to incorporate a convex penalty (De Pierro 1995).

3.2. MRI Model

The MRI model is

ȳmr = Exmr, (21)

where ȳmr ∈ Rp are the expected K-space data and E ∈ Cp×m is the MR forward

operator defined as

E = UF, (22)
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where F ∈ Cm×m is the discrete Fourier transform matrix and U ∈ Rp×m performs a

radial subsampling of factor R = m/p.

Assuming the MR measurement ymr ∈ Rp follows an isotropic Gaussian distribution

pmr(ymr|xmr) with variance σ2
mr and centered on ȳmr, the data fidelity loss is

Dmr(xmr) = − log pmr(ymr | xmr) + C ′ (23)

=
1

2σ2
mr

∥Exmr − ymr∥22 , (24)

where C ′ is a constant independent of xmr. Similarly to PET, Dmr(xmr) can be minimized

with iterative techniques (Fessler 2020).

3.3. Proposed Joint PET/MRI Reconstruction Framework

To solve the joint PET/MRI reconstruction inverse problem, we proceed using a maximum

a posteriori (MAP) framework with a learned prior approximating the distribution p∗ of

X = (xpet, xmr). The multimodal generator produces N = 2 images (PET and MR); we

introduce the notations Gpet
θ = G1

θ, G
mr
θ = G2

θ and G
mult
θ ≜ (Gpet

θ , Gmr
θ ):Rd → Rm × Rm.

Instead of directly maximizing the joint posterior p(X|Y ) with X = (xpet, xmr) and

Y = (ypet, ymr), the maximization will be performed through the latent space of a VAE,

as proposed previously by Bora et al. (2017). We thus maximize the posterior p(X, z | Y ).

By the Bayes’ law we have:

p(X, z | Y ) = p(Y | X)pθ(X | z)p0(z)/p(Y ) (25)

(when X is known, z do not provide any additional information for Y so that

p(Y |X) = p(Y |X, z)). Moreover, the noise realizations on the PET and MR acquisitions

being independent and we obtain:

− log p(X, z | Y ) = Dpet(xpet) + Dmr(xmr)− log pθ(X | z) (26)

+
1

2
∥z∥22 + log p(Y ) . (27)

Now, letting η → 0 in the generative model (13), pθ(X | z) becomes a Dirac distribution

centered on Gmult
θ (z). Let C be the set defined as

C = {(xpet, xmr, z) | (xpet, xmr) = Gmult
θ (z)}. (28)

The MAP optimization problem can be now rewritten as a constrained optimization

problem on C ,

(x̂pet, x̂mr, ẑ) = argmin
(xpet,xmr,z)∈C

Dpet(xpet) + Dmr(xmr) +
1

2
∥z∥22. (29)

In our case, the regularization term 1
2
∥z∥22 has no real impact on the results. For the sake

of simplicity, it was not considered in the following. Solving (29) can be achieved using

the ADMM framework (Boyd et al. 2010). Denoting by µ = (µpet, µmr) the Lagrange

multiplier, the bimodal DLR algorithm for iteration q is:

x
(q+1)
pet = argmin

xpet

(
Dpet(xpet) +

ρpet
2

∥∥∥xpet −Gpet
θ

(
z(q)
)
+ µ

(q)
pet

∥∥∥2
2

)
(30)
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Initialization DLR

Figure 3: Representation of the DLR algorithm. Solid blue arrows represent the currently

reconstructed PET image and solid red arrows represent the currently reconstructed MRI.

Dashed arrows represent the current prediction of the decoder for the corresponding

modality. The grey arrows represent the current latent variable.

x(q+1)
mr = argmin

xmr

(
Dmr(xmr) +

ρmr

2

∥∥xmr −Gmr
θ

(
z(q)
)
+ µ(q)

mr

∥∥2
2

)
(31)

z(q+1) = argmin
z

∥∥Gmult
θ (z)−

(
X(q+1) + µ(q)

)∥∥2
2

(32)

µ(q+1) = µ(q) +X(q+1) −Gmult
θ

(
z(q+1)

)
(33)

where we denoted X(q) =
(
x
(q)
pet, x

(q)
mr

)
, µ(q) =

(
µ
(q)
pet, µ

(q)
mr

)
. We used a surrogate function

for optimization transfer to solve (30) (De Pierro 1995), while we used a conjugate

gradient algorithm to solve the quadratic problem (31) (details in Appendix A). The

inner iteration number in (31) was chosen to achieve a residual error below 10−5. The

latent variable update (32) is performed with gradient descent. We use the Adam

algorithm (Diederik P. Kingma and Ba 2017) that includes tuning of the step size. The

initialization is performed with first-guess images obtained with 10 iterations of MLEM

for x
(0)
pet and IFFT for x

(0)
mr while z(0) is obtained by applying the encoder to x

(0)
pet and x

(0)
mr .

The workflow of the DLR algorithm is represented in Figure 3.

A practical issue that needs to be addressed is the scaling of the decoder Gmult
θ . It

is common practice to train the decoder on standardized data (with a mean of 0 and

STD of 1 across the pixel values). We standardized the images for training as follows:

xstandardmod =
1

std(xmod)
(xmod −mean(xmod)) , mod ∈ {pet,mr} , (34)

where the mean and the STD are computed separately for each image xmod. However,

the reconstructed images are not necessarily standardized. Thus, we have to rescale

independently the decoded images during the iterations to match with the current

reconstructions. To do so, we unstandardize the output of Gmult
θ to match the current

reconstruction of PET and MR images at each iteration q as follows::

Gmod
θ

(
z(q)
)
= G̃mod

θ

(
z(q)
)
· std

(
x
(q)
mod

)
+mean

(
x
(q)
mod

)
, (35)

with mod ∈ {pet,mr} (36)
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where G̃mod
θ

(
z(q)
)
is the actual output of the decoder and Gmod

θ

(
z(q)
)
is the rescaled

output Other methods to tackle this include histogram equalization (Gonzalez et al.

2009).

The ADMM penalty parameters ρpet and ρmr have a strong influence on the

optimization and are often empirically tuned based on validation data. In this work,

we implemented the adaptive update scheme proposed in (Wohlberg 2017) for linear

constraints. This scheme consists in balancing the relative primal and dual residuals

while computing the residuals separately then updating ρpet and ρmr. We have also

implemented the stopping criterion proposed in the same work with ϵ = 0.02.

4. Numerical Experiments

This section describes our implementation of the VAEs, DLR as well as the experiments

carried out to evaluate them.

4.1. Dataset and Training

A collection of 48 brain [18F]FDG PET/ T1-weighted MRI volumes acquired on a SIGNA

PET/MRI system (GE Healthcare) at the Service Hospitalier Frédéric Joliot, Orsay,

France, was used in this study. PET and MR volumes were rigidly co-registered using

the DICOM header parameters. Each volume was resized into a stack of 20 256×256

slices, for a total of 960 PET/MRI slice pairs. Each pair xpet, xmr correspond to the same

slice. We used 900 pairs to train the models and 60 for testing. This data partition does

not separate the patients, i.e., some slices from the testing dataset may correspond to a

different slice from a patient already seen in the training dataset. This is a deliberate

choice as our training dataset is not large enough to allow the trained network to fully

generalize. This aspect will be further discussed in Section 6 and in Appendix B.

The models we considered are the following three multimodal VAEs: JVAE, PoE-

VAE and MMJSD. We examined the effect of varying the dimensionality d of the latent

space. To accomplish this, we have trained two versions of each VAE: one with d = 64

and another with d = 32. Additionally, monomodal VAEs, i.e., using either PET or MR

images, were considered in order to assess the benefit of reconstructing two modalities

simultaneously.

The structure of the VAEs is shown in Figure 4 for the JVAE and Figure 5 for

PoE-VAE and MMJSD. The NNs are built as stacks of ConvBlocks and DeconvBlocks. A

ConvBlock consist of a convolution layer, batch normalization layer and activation layer

with the ReLU activation function. The DeconvBlocks are similar and only replace the

convolution layer with a transposed convolution layer. Each convolution and transposed

convolution is described with its format (number of channels, filter size, stride) and the

dense layers are described by their number of neurons. The sampling layer is used to

perform the re-parametrization trick (Diederik P Kingma and Welling 2013) and takes a

mean vector and a standard deviation vector to sample a latent variable z.
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Figure 4: Architecture of the joint VAE.

(training)

(training)

Dense

Dense
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Dense

PoE

PoE

Latent variable

Figure 5: Architecture of the PoE-VAE and MMJSD.

The training was implemented using the open-source library Keras 2.2.5 with

Tensorflow backbone and performed with an NVIDIA RTX A2000 mobile. The network

was trained for 500 epochs using the Adam optimizer with a learning rate of 10−3 and a

batch size of 64.
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4.2. Experiment 1: Image Generation

An important aspect to evaluate is the ability of the trained generative model

Gmult
θ = (Gpet

θ , Gmr
θ ) to generate PET/MR images that consistently represent the same

brain. Given a PET/MR target image pair (x⋆pet, x
⋆
mr) from the testing dataset, a latent

variable zpet is computed by maximizing the posterior conditionally to x⋆pet, and another

latent variable zmr latent variable is computed by maximizing the posterior conditionally

to x⋆mr, i.e

ẑpet ∈ argmax
z

pθ(z | x⋆pet)

= argmin
z

1

2η2
∥∥x⋆pet −Gpet

θ (z)
∥∥2
2
+

1

2
∥z∥22 (37)

and

ẑmr ∈ argmax
z

pθ(z | xmr)

= argmin
z

1

2η2
∥x⋆mr −Gmr

θ (z)∥22 +
1

2
∥z∥22 . (38)

For a deterministic generator, as the one considered in this paper, η tends to zero and

instead we solve

ẑpet ∈ argmin
z

∥∥x⋆pet −Gpet
θ (z)

∥∥2
2

(39)

and

ẑmr ∈ argmin
z

∥x⋆mr −Gmr
θ (z)∥22 . (40)

Thus, the latent variable ẑpet is estimated from the PET image only and ẑmr is estimated

from the MR image only, and images Gpet
θ (ẑpet) and Gmr

θ (ẑmr) are respectively the

PET-fitted image and MR-fitted image, that is to say, they represent the best separate

predictions of x⋆pet and x
⋆
mr by the model Gmult

θ = (Gpet
θ , Gmr

θ ). If Gmult
θ is properly trained

to represent consistent image pairs, we expect to have

Gmr
θ (ẑmr) ≈ x⋆mr and Gpet

θ (ẑmr) ≈ x⋆pet , (41)

where Gmr
θ (ẑpet) is the predicted MR image from the PET image, and conversely Gpet

θ (ẑmr)

is the predicted PET image from the MR image. We performed this test on the three

VAEs with d = 32 and d = 64.

4.3. Experiment 2: Image Reconstruction

We used a collection of PET/MR (x⋆pet, x
⋆
mr) as ground truths (GTs) to generate raw data

for reconstruction. First, the [18F]FDG distributions x⋆pet are normalized, i.e, ∥x⋆pet∥1 = 1.

Then the PET raw data ypet are generated as

ypet ∼ Poisson
(
α(Px⋆pet + r + s)

)
, (42)

for different values of the dose-related parameter α > 0, thus allowing to change the

statistics. The projector P and its transpose were implemented using the ASTRA
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Toolbox (Aarle et al. 2016). Attenuation factors were ignored. While randoms can be

corrected for by real-time subtraction of a delayed coincidence channel (Knoll 2010),

scatter can be estimated by simulations (Watson et al. 1996) or learned with a deep

architecture (Laurent et al. 2023). In this work, we assumed r+ s to be a constant vector

that was adjusted to account for approximately 30% of the counts.

The MR raw data ymr were generated as

ymr = Ex⋆mr + ϵ , ϵ ∼ N (0, σ2
mr) , (43)

where σmr is adjusted to add 5% of the measured data as noise and for different values

of the subsampling factor R = m/p (see 22).

PET and MR images were jointly reconstructed using the bimodal and monomodal

DLR methods described in Section 3.3 with the different settings described in Section 4.1

(JVAE, PoE-VAE and MMJSD, d = 64). The monomodal versions of DLR were

implemented using monomodal VAEs. Additionally, they were individually reconstructed

with (isotropic) total variation (TV) regularization as:

xmod ∈ argmin
x∈Rm

Dmod(x) + γ∥ |∇x| ∥1 , mod ∈ {pet,mr} (44)

where ∇:Rm → R2×m is the 2-D discrete gradient and | · |:R2×m → Rm is the ℓ2-norm

applied on each pixel. We used the MLEM-TV algorithm from (Sawatzky et al. 2008)

for PET and the Chambolle-Pock algorithm for MRI (Chambolle and Pock 2011; Sidky

et al. 2012). These two reconstructions are referred to as maximum-likelihood with

TV regularization (ML-TV). Automatic choice of the regularization parameter is a

challenging task, in particular for low-count Poisson distributed data. We performed

a broad sweep of the regularization parameter γ values to minimize the mean squared

error with the GT while avoiding overfitting.

In addition, we trained a collection of U-Nets for image post-processing (Ronneberger

et al. 2015; Pain et al. 2022). For a given PET/MR image pair (x⋆pet, x
⋆
mr) from the

training dataset, let us denote by xmlem
pet (i.e., with γ = 0 in (44)) the MLEM-reconstructed

image from data simulated by (42) (with x⋆pet as GT and with dose parameter α) and

by xifftmr the IFFT-reconstructed image from data simulated by (43) (with x⋆mr as GT

and under-sampling parameter R). We trained a MR-guided PET denoiser U-Net

Fφ:Rm × Rm → Rm with parameter φ as

min
φ

E
[∥∥Fφ (xmlem

pet , x⋆mr

)
− x⋆pet

∥∥2
2

]
, (45)

and an MR post-processing U-Net Hψ:Rm → Rm with parameter ψ as

min
ψ

E
[∥∥Hψ

(
xifftmr

)
− x⋆mr

∥∥2
2

]
, (46)

where both expectations are taken over the training dataset. The trainings (45) and

(46) are performed for each considered values of α and R. We will show the following

U-Net outputs: (i) the post-processed MR Hψ

(
xifftmr

)
, (ii) the MR-guided denoised

PET Fφ
(
xmlem
pet , xifftmr

)
and (iii) the MR-guided denoised PET with post-processed MR

Fφ
(
xmlem
pet , Hψ

(
xifftmr

))
(denoted U-net+PP).

The results will be shown for different values of α and or R.
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4.4. Evaluation metrics

The comparison between the methods was performed on standardized images (see

Equation 34), using peak signal-to-noise ratio (PSNR) and structural similarity (SSIM).

The PSNR between two images x and xref is given by:

PSNR(x, xref) = 20 log

(
range(xref)√
MSE(x, xref)

)
, (47)

where range(xref) = max(xref) −min(xref) is the range of intensities of the image

xref . The SSIM between the two images is given by

SSIM(x, xref) =
(2µxµref + c1)(2σxσref + c2)(cov(x, xref) + c3)

(µ2
x + µ2

ref + c1)(σ2
x + σ2

ref + c2)(σxσref + c3)
, (48)

where

• µx and µref and are the mean of x and xref respectively,

• σx and σref are the STD of x and xref respectively,

• cov(x, xref) is the covariance of x and xref ,

• c1 = (k1range(xref))
2, c2 = (k2range(xref))

2 and c3 =
c2
2
,

• k1 = 0.01 and k2 = 0.03

5. Results

5.1. Experiment 1: Image Generation

The objective of this experiment is to demonstrate that the bimodal generative models

have been adequately trained to generate images pair-wise. Assuming that the latent

variable z represents “the patient”, the generated images Gpet
θ (ẑ) and Gmr

θ (ẑ) must be

consistent with each other. We consider two target images x⋆pet and x
⋆
mr and we fit both

models by solving (39) and (40).

Figure 6 shows the PET-fitted images Gpet
θ (ẑpet) (first row), i.e., the PET images

generated from a latent variable ẑpet of dimension d = 64 that was estimated by fitting

the model to the target PET image x⋆pet only, as well as the predicted MR images

Gmr
θ (ẑpet), for the three considered generative models JVAE, PoE-VAE and MMJSD; the

SSIM and PSNR values were computed with respect to the target PET x⋆pet and MR x⋆mr

which are shown on the left column. First we observe that the PET-fitted images are

similar to the target PET, which shows that x⋆pet is close to the range of the generator.

We also observe that the predicted MR images (second row) are also similar—to a lesser

extend—to the target MR images. This illustrates the “transfer of information” from

the PET image to the MR image of our bimodal generative models.

Figure 7 show the results of the reverse experiment, that is to say the MR-fitted

images Gmr
θ (ẑmr) (second row) and the predicted PET images Gpet

θ (ẑmr) (first row). The

MR-fitted images are also similar to the target x⋆mr and the predicted PET images

Gpet
θ (ẑmr) are somehow similar to the target PET image x⋆pet.
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Figure 6: Experiment 1 (d = 64)—PET-fitted images Gpet
θ (ẑpet) and predicted MR

images Gmr
θ (ẑpet) where ẑpet is given by (39) using the top-left image as the target x⋆pet.
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Figure 7: Experiment 1 (d = 64)—Predicted PET images Gpet
θ (ẑmr) and MR-fitted

images Gmr
θ (ẑmr) where ẑmr is given by (40) using the bottom-left image as the target

x⋆mr.

This experiment shows that our bimodal models are capable of conveying information

between modalities. More precisely, extracting information from one modality (by model

fitting) can provide information on the other modality in both ways.

Figure 8 and Figure 9 show the results of the same experiments, but this time with

d = 32. We observe in both experiments that the results are slightly behind the ones

with d = 64 for both modalities. This highlights the importance of the latent space

dimension to represent the images accurately.
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Figure 8: Experiment 1 (d = 32)—PET-fitted images Gpet
θ (ẑpet) and predicted MR

images Gmr
θ (ẑpet) where ẑpet is given by (37) using the top-left image as the target x⋆pet.
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Figure 9: Experiment 1 (d = 32)—Predicted PET images Gpet
θ (ẑmr) and MR-fitted

images Gmr
θ (ẑmr) where ẑmr is given by (38) using the bottom-left image as the target

x⋆mr.

5.2. Experiment 2: Image Reconstruction

In this section we show the reconstruction results from data simulated with different

settings. We proceeded with showing reconstructing images from data acquired first with

α = 105, R = 20 then with α = 106, R = 40, using the methods described in Section 4.3,

with models trained with a latent space dimension d = 64. These values correspond to

highly-altered projections, as can be seen from the non-regularized reconstructions.
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(a) GT PET (b) GT MR

Figure 10: Experiment 2—GT images (from testing dataset) used to generate the raw

data used for reconstruction (Figure 11 and Figure 12).

First, in terms of computational cost of DLR, most of it comes from the gradient

descent for the z optimization step. For the initialization of the PET image we only

perform a few iterations of MLEM (15 in our case) which is quite fast compared to the

main body of the algorithm. The same goes for the MR image with IFFT. Finally, z

is initialized from these two first approximations but using the encoder after learning

is very fast and is also negligible in time compared to the main algorithm. As a

result, reconstructing one slice takes between 20 and 25 seconds, 3 of which are for the

initialization.

Figure 10 shows one of the GT PET/MR image pairs from the testing dataset that

was used to generate raw data for reconstruction following (42) and (43).

Figure 11 shows the results of the reconstructions from data acquired with α = 105,

R = 20 and d = 64. The U-Net PET output in Figure 11c was obtained from the

MLEM PET (Figure 11a) and IFFT MR (Figure 11d). The MLEM-reconstructed PET

image suffer from noise while the inverse fast Fourier Transform-reconstructed image

suffer from heavy streak artifacts due to undersampling. TV regularization reduces noise

in PET images and streak artifacts in MR images, however this results in typical patch

artifacts. The DLR method strikes a balance between suppressing noise and artifacts

while still reproducing the structures from the images. The U-Net output MR image

appears similar to the GT, while the U-Net output PET image is slightly blurry.

Figure 12 shows the same reconstructed images for α = 106 and R = 40. Compared

to the previous experiment, PET images are expected to improve, while anatomical

structures in the MR images are expected to be more affected by artifacts. This is

indeed visible in the non-regularized and in the TV-regularized images. The DLR images

are very similar to the previous case although it can be noticed that the MR images

are slightly blurrier while the PET images are slightly sharper. Once again, the U-Net

output MR image is similar to the GT while U-Net output PET image is slightly blurry

and noisy.

Figures 13 and 14 display the PSNR and SSIM metrics for the PET and MR
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(a) MLEM PET (b) ML-TV PET (c) U-Net PET

(d) MR IFFT (e) MR ML-TV (f) U-Net MR

(g) JVAE PET (h) PoE-VAE PET (i) MMJSD PET

(j) JVAE MR (k) PoE-VAE MR (l) MR MMJSD

Figure 11: Experiment 2—Reconstructed images from data simulated with α = 105 and

R = 20 using the GT images in Figure 10. The VAEs used by the DLR methods use a

latent space of dimension d = 64, while the U-Net PET output (c) was obtained from

the MLEM PET (a) and IFFT MR (d).
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(a) MLEM PET (b) ML-TV PET (c) PET U-Net

(d) IFFT MR (e) ML-TV MR (f) U-Net MR

(g) JVAE PET (h) PoE-VAE PET (i) MMJSD PET

(j) JVAE MR (k) PoE-VAE MR (l) MMJSD MR

Figure 12: Experiment 2—Reconstructed images from data simulated with α = 106 and

R = 40 using the GT images in Figure 10. The VAEs used by the DLR methods use a

latent space of dimension d = 64, while the U-Net PET output (c) was obtained from

the MLEM PET (a) and IFFT MR (d)
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reconstructions averaged across the testing dataset. In Figure 13, four values of α

varying from 0.1 · 106 to 106 are considered while R is maintained constant at R = 40.

This corresponds to a high subsampling rate for the MR acquisition coupled with high

to very high levels of noise in the PET acquisition. In Figure 14, four values of the

sub-sampling factor R between 10 and 40 are considered with α = 105. This corresponds

to high Poisson noise level in PET data, coupled to high to very high sub-sampling rates

for the MR acquisition.

Seven reconstruction methods for PET and six for MRI are compared, the mono-

modality VAE reconstructions being added as well as the PET U-Net output with

post-processed MR guidance, while the non-regularized MLEM and IFFT reconstructions

are not shown.

For both scenarios the TV reconstructions outperform DLRs in high-sampling and

high-count settings; an exception is observed for the SSIM metric in the case R = 40 and

α = 106 and for the PET image. However, DLR achieves better results in both SSIM

and PSNR in low-count settings.

For PET reconstruction, monomodal DLR and ML-TV experience significant drops

in PSNR and SSIM when α decreases while these metrics remain fairly similar for the

multimodal DLRs. Unimodal DLR is on par with bimodal DLR with high counts, whereas

bimodal DLRs outperforms it with lower counts. In terms of PSNR, the unimodal DLR

is outperformed by at least 5% by bimodal DLRs with low counts and is on on par for

highest counts. In terms of SSIM, the bimodal DLR is consistently above the unimodal

one with a large gap (up to 3%). Both U-Nets outperform DLRs in terms of PSNR in

the high-count setting, but their performances drop by 7% when α decreases for the one

without processed MR image and by 5% for the one with the denoised MR image. In

particular, the U-Net approach with non-processed MR is significantly outperformed by

the DLRs in terms of PSNR.

For the MR reconstruction, we observe that the results for the unimodal DLR degrade

compared to multimodal DLRs as the subsampling factor R increases . As opposed to

the PET reconstruction, we do not observe a significant increase of the performance gap

between unimodal and bimodal DLRs. The U-Net approach outperforms all methods

for all values of R for both metrics.

The different DLR approaches can be ranked based on their performance for PET

reconstruction. For both PSNR and SSIM, MMJSD performs the best, followed by

multimodal VAE and then JVAE. The difference in SSIM results between the different

models is not significant however, with SSIM varying 1% at the most across all values of

α. For MR, the PSNR results are similar . However, they perform differently in terms of

PSNR with the same ranking as with PET. The performance gap increases significantly

with the subsampling factor, with a difference of approximately 6% in SSIM between

the best and the worst performances.
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(a) PSNR vs α (PET) (b) SSIM vs α (PET)

Figure 13: Experiment 2—PSNR and SSIM values of the reconstructed PET images

with α varying from 105 to 106, R = 40, d = 64.

(a) PSNR vs R (MR) (b) SSIM vs R (MR)

Figure 14: Experiment 2—PSNR and SSIM values of the reconstructed MR images with

R varying from 10 to 40, α = 105, d = 64.

6. Discussion

The use of a generative model trained on reference images within an iterative

reconstruction framework compensates for high noise in PET or undersampling in

MRI. The reconstructed images are free of noise and artifacts, exhibiting enhanced detail

and clarity.

We observe that PET reconstruction using bimodal DLR is less affected by data

deterioration compared to the monomodal version. This indicates that the method’s

performance is not solely due to the use of a VAE for image generation. The PET

reconstruction benefits from the inclusion of MRI data, which helps to control the noise.
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However, the results for MRI are less conclusive. Both monomodal and bimodal versions

of DLR show similar performance trends with varying subsampling factors. Despite

this, the bimodal performance appears to be slightly superior to the monomodal one,

suggesting that the presence of the PET image helps in finding a latent variable that

better represents the target image.

U-Net post-processing approaches deliver good results and outperforms DLRs at

several instances, especially for MRI where it outperforms DLRs for low noise levels and

undersampling rates. This suggests that using VAEs for MR image representation may

be suboptimal. This outcome was somehow expected as VAE are known to produce

blurry images that may not be well-suited for MRI. However, the training of the VAEs

used in DLR are unsupervised and can be performed on any PET/MRI dataset, while

the training of the U-Nets are supervised and depend on α and R, which is not practical

as it requires to train multiple NNs.

Comparing the different VAE architectures, we find that the results of each model

are similar for d = 64. However, MMJSD consistently performs slightly better on both

PET and MRI, especially for the shortest acquisition times. The dimension of the latent

space is a crucial hyperparameter. Experiment 1 demonstrates that reducing the latent

space dimension coincides with a loss in terms of generated image quality. There is,

however, a tradeoff to be reached here. Increasing the latent space dimension improves

details retention but also escalates memory requirements and computing time. Moreover,

a larger latent space increases the number of network parameters, necessitating more

training data. However, the availability of medical data is limited, posing a significant

challenge.

Other hyperparameters can be fine-tuned to improve the results. In particular, the

influence of the number of MLEM iterations for the initial image has been tested and

the best results were obtained with 10 iterations.

The dataset we used for training was relatively small, leading to overfitting of

the model. It is important to note that while the test and training sets of slices are

disjoint, the test and training volumes are not separated. When the model is tested on a

separate volume, the results are worse than those presented in the paper, showcasing

the difficulty to generalize to new patients (see Appendix B). To investigate further, we

tested our method on the simpler problem of Gaussian denoising using bimodal MNIST

data (Deng 2012). The MNIST dataset is larger than our medical image dataset and

consists of smaller images. The results we obtained (not shown in the paper) were

significantly better. We also experimented with various data augmentation techniques,

which improved the results somewhat, but not to a satisfactory extent.

Upon close inspection, it is evident that some details in the images are removed, and

features not present in the ground truth image may appear. These ’hallucinations’ are a

result of the constraints. The algorithm’s output closely resembles the VAE’s output

and therefore is impacted by VAE’s performance. This also affects the image resolution,

as VAEs are known to produce blurry images (Dumoulin et al. 2017). To improve the

algorithm, the utilization of more advanced architectures like DiffuseVAE (Pandey et al.
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2022) could be beneficial. However, these architectures typically require even more data.

An alternative approach could be to reformulate the problem with a ’softer’ constraint,

where the output is a combination of the VAE’s output and classical reconstruction

Another limitation of the proposed scheme is its reliance on the selection of several

hyperparameters, particularly the parameter which balances the fidelity terms between

PET and MR data during VAE training.

This work opens interesting directions for future research. Recently, several new

VAE models with more complex generative processes have been proposed. For instance,

segregating the latent representation space into a combination of private and shared

latent spaces, as proposed in Sutter et al. (2021), could enhance both the generative

power of the VAE and the latent space quality.

7. Conclusion

In this work, we introduce DLR, a novel method for synergistic VAE/MRI reconstruction

utilizing VAE constraints. Our approach leverages both data and physical models

to identify optimal latent variables within the VAE’s latent space. These variables,

when decoded, generate results comparable to traditional acquisitions with standard

acquisition times. Although lacking formal theoretical guarantees, empirical experiments

demonstrate that DLR outperforms conventional methods in retrieving missing

data, especially under time-constrained conditions. By integrating information from

complementary modalities, DLR effectively compensates for missing data, thereby

enhancing reconstruction accuracy.

Additionally, we evaluate various VAE architectures, each trained with distinct loss

functions. While achieving comparable results overall, the MMJSD architecture shows

superior performance. However, potential overfitting suggests that performance rankings

may vary with new datasets. Future research should focus on validating these findings

with larger, more diverse datasets to elucidate differences among these models.

Furthermore, improving VAE performance remains crucial. Issues such as

“hallucinations,” where VAEs generate unrealistic outputs unrelated to the physical

model, persist. Moreover, our current VAE models, trained without anomalies like

lesions or tumors, cannot effectively produce such features. Addressing these challenges

requires exploring methods to enhance the generative process of VAEs by incorporating

domain-specific knowledge into model training.

Appendix A. Resolution of the DLR update

We solve the minimization problem (30) by using an optimization transfer approach with

a convex surrogate (Guobao Wang and Jinyi Qi 2012). We define a surrogate function Q

for Dpet as

Q
(
x | x(k)

)
=
∑
j

Qj

(
xj | x(k)

)
(A.1)
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with

Qj

(
xj | x(k)

)
= pj

(
xj − [x

(k)
pet,em]j log xj

)
(A.2)

+
ρpet
2

(
xj −

[
Gpet
θ (z(k))

]
j
+ µj

)2
(A.3)

where pj = α
∑

i Pi,j and x
n+1
pet,em is obtained by doing one MLEM step:

[
x
(k)
pet,em

]
j
=

[
x
(k)
pet

]
j

pj

∑
i

Pi,j
[ypet]i[

Px
(k)
pet

]
i
+ ri + si

(A.4)

The minimization problem in Equation (30) is then transferred to the surrogate

function for every pixel j:[
x
(k+1)
pet

]
j
= argmin

[xpet]j

Qj

(
[xpet]j | x(k)pet

)
(A.5)

By using first-order optimality condition, we end up solving a quadratic equation with

positivity constraint which gives the following update x
(k+1)
pet at each pixel j:[

x
(k+1)
pet

]
j
=

1

2

([
Gpet
θ (z(k))

]
j
−
[
µ
(k)
pet

]
j
− pj
ρpet

+ (A.6)√√√√([
Gpet
θ (z(k))

]
j
−
[
µ
(k)
pet

]
j
− pj
ρpet

)2

+
4pj

[
x
(k+1)
pet,em

]
j

ρpet

)
Equation (31) is a penalized least square problem. This problem can be solved using

first order optimality condition, i.e., by solving:

(ρmrI + EHE)x(k+1)
mr = EHymr + ρmr(Decoder(z

(k))mr − µ(k)
mr) , (A.7)

where EH is the Hermitian adjoint of E. The solution of this equation can be obtained

with a few iterations of the conjugate gradient algorithm (Pruessmann et al. 2001).

Appendix B. Test on a separate patient dataset

We qualitatively assessed the generalization power of MMJSD with an evaluation based

on data simulated from a patient that does not belong to the training dataset. We

tested two models: (i) one trained on the standard dataset and (ii) one trained on the

same dataset completed with data augmentation (DA), including random rotations and

dilations.

Figure B1 shows the results, alongside the GT images used to generate the raw data

following (42) and (43). We observe that the MMJSD-reconstructed images without DA

are somehow noisy and suffer from several artifacts, while the MMJSD-reconstructed

images with DA are significantly closer to the GT images. This experiments shows that

it is possible to improve the performances of DLR by increasing the size of the training

dataset.
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(a) PET GT (b) PET MMJSD, no DA (c) PET MMJSD with DA

(d) MR GT (e) MR MMJSD, no DA (f) MR MMJSD with DA

Figure B1: GT images and MMJSD-reconstructed images using models trained with

and without DA.
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