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Abstract—Measuring the complexity of arbitrary data has been
of interest to many scientific domains, including machine learning
and particularly unsupervised learning. In this paper, we cover
relevant concepts including Kolmogorov complexity, entropy and
minimum description length. We argue that these measures alone
are failing to distinguish noise from meaningful complexity. We
push for the concept sophistication which measures the complex-
ity of the structured part of the data, ignoring unstructured noise.
This concept is reified in two manners: using image compression
algorithms and using autoencoders.

Index Terms—complexity, entropy, sophistication, autoencoder,
two-part code, MDL

I. INTRODUCTION

Complexity can be regarded as a dimension, akin to length,
mass, or time. Measuring complexity is important because
it provides essential tools and insights for understanding,
analyzing, and managing diverse systems and phenomena
across multiple scientific disciplines [1]–[6]. Unlike other
dimensions, there is no consensus on how to measure the
complexity of an arbitrary system [7]. In machine learning
and data mining, the minimum description length (MDL)
principle [8] builds on complexity theory to provide a formal
formulation of Occam’s razor, especially for model selection
and unsupervised learning. In unsupervised learning the MDL
principle can guide the discovery of patterns [9]. Following
the MDL principle, the goal is a model M that captures the
regularities of the data. This is achieved by minimizing the size
of the so called two-part code: the description (code) length
of the model and of the length of the data given this model.

While complexity theories are providing robust tools and
formalisms to manipulate complexities, they are, by design,
not directly aiming at measuring the intuitive notion of com-
plexity. This is exemplified in Fig. 1 with images and entropy
(which is often used in physics). Our goal is to study and
propose a measure of complexity that aligns with this intuition.
The contributions of this short paper consists of • compactly
covering concepts around complexity, their links and limi-
tations (Section II), • motivating and defining the concept
of sophistication (Section III), • providing some preliminary
instantiation of the concept with compression algorithms and
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17-EURE-0026.

Fig. 1: Our problem: can we find a good measure of interest-
ingness of objects (here images). The Shannon entropy in itself
is not directly suited: it quantifies the quantity of information
to encode the image without loss. As such, noise is included
in the measure and a noise image has maximum entropy while
being not considered interesting.

versatile unsupervised learning methods (Section IV). We
group discussions and future work in a concluding Section V.

II. COMPLEXITY, MDL AND INFORMATION THEORY

In this paper, we focus on grayscale images but most
concepts apply to any kind of object/data. We also use uniform
notations and orient them towards the minimum description
length formulation. As such, we consider an object of interest
D (data) and any possible model M . The “model” can be
anything from an empty model (M = ∅) to a part of the data,
to a simplified version of the data, to the data itself (M = D)
or even something unrelated to the data.

A major notion of complexity is Kolmogorov complex-
ity [10]–[12]. It roots in the domain of algorithmic information
theory and is defined as the length of the shortest program
that produces as output the object of interest. A first question
that arise is the one of the choice of programming language
used to express the program. We call this choice the context
but set this question aside here. Indeed, it is inherent to any
information modeling approach (e.g., often using the universal
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turing machine) and yields measures that only differ by a
limited additive term. We will denote the generic concept of
Kolmogorov complexity as K, namely K(D) for some data
D is the minimal size necessary to encode D.

In the domain of Minimum Description Length (MDL)
the Kolmogorov complexity K is usually substituted with L
(for code length). In our analysis, setting aside the question of
the context, MDL and Kolmogorov complexity are equivalent.

The genericity of Kolmogorov complexity allows to con-
sider two-part codes or two-part MDL: one way to encode
D is to use an intermediate model M and encode both
M and D|M (D given M ). Generally an inequality holds
K(D) ≤ K(M) + K(D|M): indeed, if describing M then
D|M were strictly shorter than describing D directly, this
would become a (more compact) way to describe D (which is
impossible by definition of K(D)). If the model M contains
only information that is meaningful to describe D, then the
equality holds K(D) = K(M) +K(D|M) (up to the choice
of contexts).

Complexity also relates to compressibility: a good algo-
rithm to compress some data D becomes a way to measure
Kolmogorov complexity. More generally, as Kolmogorov com-
plexity is uncomputable, compression algorithms adapted to
the type of data of interest can provide a practical way of
estimating the Kolmogorov complexity. More precisely, the
size of the compressed data is an upper bound of the Kolmorov
complexity (up to context), with the equality holding in case
of a perfect compression algorithm (for this kind of data).

The Shannon entropy of a random variable X (on X ) is
defined as H(X) = −

∑
x∈X p(X = x) log2(p(X = x)),

measured in bits [13]. A uniform (or equiprobable) distribution
has maximum entropy, while a distribution putting all mass
on one outcome has a minimal entropy of 0. Entropy (with
a factor named the Boltzmann constant) is used in physics
as a measure of complexity with the notion of microstate
and macrostate. A typical example is a set of particles each
possibly being on the left or on the right of a boundary.
Let us consider a macrostate, e.g. the distribution (2/3, 1/3),
where there is 2/3 of the particle on the left and 1/3 on the
right. The entropy on this macrostate is 0.918 and (up to
the boltzmann constant) it corresponds to the combinatorial
number of microstates (for each individual particle whether it
is on the left or on the right) corresponding to this macrostate.
Shannon entropy directly relates to compression. If one con-
sider a sequence of independent values to be compressed
(following a distribution p(X = x)), the Shannon entropy
of X corresponds to the minimal average number of bits that
are required to encode a value in a sequence. A sequence of
length N with 2/3 of zeros will thus require 0.918N bits to
be encoded.

While Kolmogorov complexity, description length, and en-
tropy are well defined and interesting measures, they fail at
measuring complexity because they measure randomness and
not structure, as hinted in Figure 1. There is an agreement on
characterizing maximum complexity as located between order
and disorder [14], [15]. The notion of sophistication, presented

in the following section is an answer to this issue.

III. SOPHISTICATION AND VARIATIONS

The notion of sophistication has been introduced to capture
the concept of interestingness of an object, disregarding its
noise component. We can list different terms to equivalently
refer to sophistication: effective complexity [16], amount of
structure, description length of the structured part, interest-
ingness, etc. Specifically, sophistication is defined as the
length, in bits, of the shortest program capable of reproducing
the meaningful/structured part of an object [17], [18]. More
concisely, sophistication is the complexity of the meaningful
part of an object. This brings the question of how to identify
the meaningful / structured / compressible part of an object.

Previous work [17], [18] propose to use MDL (with two-
part code, minimizing K(M)+K(D|M)) to select a model M
and then to define sophistication as K(M) (while K(D|M)
the irrelevant/noise part). We show in this section that this
choice of the MDL criteria is conceptually inadequate and we
propose a better criteria to select the model for which K(M)
will be the sophistication.

A. MDL cannot lead to sophistication

Figure 2 is used as a support for the following explanations.
We first focus on the top of the figure that sets up our example.
For compactness, we refer to Kolmogorov complexity as KC.
We consider a particular object, an image im made of 4
quadrants: a cat, some shapes and two quadrants of noise.
We suppose that the cat (A) and the shapes (B) have the
same KC and use this value as our unit, as such K(A) =
K(B) = 1. The noise quadrants, C and D, are supposed totally
random and thus have a maximal entropy H(C) denoted as
N (units). It also correspond to their KC as pure noise is non-
compressible/unstructured. As the cat contains a non uniform
distribution of pixel values, its entropy H(A) denoted as N ′

is lesser than N (the one of noise), still being greater than
1 (the complexity of the cat). As the total image is made of
four largely independent quadrants, its entropy and KC is the
sum of its parts (up to a small additive term, depending on
context).

We now focus on the orange parts of Figure 2 to illustrate
the limitations of the MDL criteria. We show that using MDL
for choosing a model M to define the sophistication K(M)
is inadequate, because it selects a family of models, and this
family cover a wide range of K(M). On the plot, with K(M)
(size of the model) on the horizontal axis and K(D|M) (size
of the residual, the data given the model) vertically, exploring
all possible models will cover the filled region. As discussed
in Section II, no model can yield a value lower than K(im)
the KC of the image, i.e. below the shown 45° segment that
we name the MDL segment. Similarly, whatever the content
of the model is, the worse case is that one need to encode
the original image in D|M (so K(D|M) ≤ K(im)). MDL
minimizes the sum of the two coordinates (and thus “slides”
a 45° line until it reaches some feasible models) and will thus
equally select all points on the shown MDL segment.
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Fig. 2: Behavior of MDL (K + K) and sophistication (K + H), for an image im made of 4 independent parts, two with
some structured information and two with noise. The points correspond to different possible “models” M. K denotes the
complexity/description-length/optimal-compressed-size and H the Shannon entropy. See Section III for details.

We consider an illustrative set of 7 “models” in the table.
Intuitively, to define sophistication, the model we’d like to
select is 2⃝. Indeed, it captures the structured part AB (cat
and shapes) of the data but no noise. Sophistication of this
image is thus the complexity of this model, namely 2 (units).
The residual D|M is made of the two noise quadrants, with
complexity 2N and so the MDL criteria is 2N + 2.

Computations in the table show that the 7 models considered
in the table are all similar for MDL criteria, with a value
2N + 2. At the two extremes, an empty model 0⃝ is “free”
but has a residual that is the image itself and a model 6⃝
equal to the image has an empty residual. Deriving from the
optimal case 2⃝ by either removing information from M as
in 1⃝ or adding part of the noise to M as in 4⃝ also transfers
complexity between M and D|M but the sum remains the
same.

B. Mixing complexity and entropy for sophistication
MDL distinguishes between bad models in the filled area

and good models on the MDL segment. However it fails at
pointing to 2⃝ (Fig.2) in the set of considered models. This
behavior comes from the use of KC (the optimal compressed
size) for both M and D|M , indifferently. We propose to break
this “symmetry” (K(M) + K(H|M)) in the following way.
We keep K(M) as a term in the criteria as it is the quantity of
interest in the end. As the goal is for the selected M to contain
all the structure of the object, there should be no remaining
structure in D|M , it should be noise. If some structure is still
present in D|M then M is not optimal and it thus should be
penalized by the selection criteria. Our proposed solution, and
similar to [16], that fulfills both these viewpoints is to measure
the complexity of the residual D|M as if it was only noise, so
using its entropy H(D|M) thus using K(M) +H(D|M) as
a criteria.

We now focus on the blue parts of Figure 2 to illustrate
the behavior of our new criteria. We see that any model that
includes all the structure AB in M ( 2⃝ 4⃝ 6⃝) remains on the
MDL segment as D|M only contains noise. Conversely, any
model that misses some structure has a higher value for the
criteria (as part of the structured is in D|M and measured
using entropy). The most important of such points are 0⃝ and
1⃝ that are at the boundary of the hatched region, which shows

the feasible models. Indeed, contrary to 4⃝ and 6⃝ that sit on
the MDL segment, any model with a complexity lower that
the actual sophistication (any point on the left of 2⃝) will
be above this segment. The shape of the region between 0⃝
and 2⃝ depends on N ′ (the ratio between the entropy and the
KC of the structure part of the object). While N ′ is generally
unknown, the slope will be greater than 45° (the one of the
MDL segment), except for the case where N ′ = 1, (but then
H(A) = K(A), i.e. the structured part has no structure).

In this idealized representation we can define the procedure
that selects the optimal model (for measuring sophistication)
(here point 2⃝) in several manners. First, the optimal point is
the point with minimal K(M) among the ones minimizing the
criteria K(M) + H(D|M). Alternatively, the optimal is the
point minimizing the altered criteria (1+ϵ)K(M)+H(D|M).
This can be seen as adding a small penalty on K(M) in the
minimized criteria. It can also be seen as sliding a line with
a slope slightly greater than 45° to break the tie between the
points from the MDL segment.

In case of a noiseless image, the expected sophistication
is the KC of the image, which should be mostly equal to the
sophisticaton obtained with in our example that includes noise.
The MDL segment reduces to the dashed segment in Figure 2,
corresponding to the rest of the plot but translated downward.
No 45° segment is present for our criteria and thus the MDL
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model with the highest K(M) is (rightfully) selected.

IV. IMPLEMENTATION OF SOPHISTICATION

While the definition of sophistication introduced in Sec-
tion III has advantages over the MDL based version, it is
also impacted by the choice of the context (K is defined up
to a term depending on the description language used). In
this section, we propose preliminary implementations of the
concept of sophistication: one based on image compression,
another on compression by learning an autoencoder.

A. Jpg-Sophistication

Jpg-Sophistication relies on using JPG compression as a
surrogate for Kolmogorov complexity. More precisely, a jpg
compression algorithm has a quality parameter q that indirectly
controls the size of the output file. We can leverage this q
parameter to generate a family of models, e.g. M1 to M99. For
measuring the complexity of a model, we use the size of the
corresponding jpg file, e.g. K(M42) is the size of the jpg file
obtained by compressing the original image with q = 42. The
second term, H(D|M) is computed by subtracting the original
image and its compressed version, and taking the entropy of
the histogram of the obtained gray level differences.

B. Neural-Sophistication

An autoencoder (AE) with a bottleneck can serve as an
effective tool for compressing input data into a compact latent
space representation. In this framework, instead of transmitting
the entire input, it suffices to communicate three components:
the latent space representation, the decoder parameters, and
a correction code for reconstruction errors. This approach
naturally aligns with two-part coding and MDL. Within this
context, M encompasses both the latent space values and the
decoder parameters, while D|M corresponds to the residuals.

The activations from the dense layers in and after the
bottleneck layer are as compact as possible while retaining
essential information. This results in a loss of detail as only the
most salient features are preserved. The goal of the bottleneck
is to reduce complexity, not to maintain detailed information.

In contrast, the decoder weights purpose is to recreate the
detailed structure of the input data from the compact represen-
tation. This requires them to carry more detailed information
about the data, including spatial hierarchies and patterns. In
consequence, we hypothesize that the sophistication L(M) is
more related to the number of nonzero weights in the filters
of the decoder than to the weights or activations in the dense
layers that make the bottleneck.

For an autoencoder to compress meaningfully, we propose
to induce sparsity in the number of parameters of the decoder.
As we try to minimize the number of filters with nonzero
norm, as well as the number of weights with nonzero value.
We thus use group-lasso and lasso to penalize the weights
in the filters of the decoder’s convolutional transposed layers.
Regarding the dense linear layer that connects the bottleneck
with the first convolutional transposed layer of the decoder, we
also apply a lasso regularization. This formulation provides a

measure of sophistication via the number of nonzero weights
in the filters of the decoder.

C. Empirical results

We first consider how well the jpg-sophistication follows
idealized behavior from Figure 2. We thus consider, in Fig-
ure 3, a set of images and their H(D|M) and K(D|M)
plots against K(M), where we obtain a family of models M
by varying the jpg quality parameter. To measure K(D|M),
we use lossless jpg compression (q = 100) of the residual
image (sometimes requiring to clip the very few values that
go beyond the maximum range).
We can observe from the plots that the MDL criteria strongly
deviates from a 45° segment. This means that using jpg puts
a strong (imperfect) inductive bias on the obtained models.
Looking more into the details of the intermediate results, we
observed that lossy jpg tends to create artifacts that are detri-
mental to the measure. For instance, a relatively regular (low
entropy) image such as the “shapes” increases in complexity
after it has been compressed (block artifacts are created around
all edges). Additionally, jpg being (very) bad at compressing
its own artifact, K(D|M) becomes overestimated.
Our criteria using H(D|M) gives better curves. For very
structured images (like the shapes or the cat), the line is mostly
straight as expected. However, the slope is not greater than 45°,
which is due to the fact that jpg is not a perfect measure so
using it as a surrogate of K(M) is an overestimation and so
the slope is reduced. As also predicted, the presence of noise
in an image tends to create an inflection point in the curve,
with an bigger slope for small values of K(M).
These results show that in practice, with this somewhat restric-
tive surrogate complexity (jpg encoding), the behavior of our
criteria tend to follow the analysis developped in Section III
(even if the values and slopes diverge from the idealized case).

We also report experiments using the neural-sophistication,
learning an autoencoder to get a sparse representation of the
image. In Figure 4, we show the MSE reconstruction loss er-
rors, which are around 10%, showing the autoencoder manages
to reproduce the images correctly. The group-lasso and lasso
penalties force a compromise where the reconstruction gives
way for sparsity. We show in Figure 5 the neural-sophistication
measure obtained these same images, as distribution among the
different runs (initialisations and sparsity parameters).
While the autoencoder succeeds at affecting a zeros sophis-
tication to pure noise and to sort properly some images by
sophistication (K(stripes) < K(circles) < K(Grassberger)), it
fails with the two last images. For instance it affects a high
sophistication to a checkerboard. The architecture use is prob-
ably the cause of the issue: there is no very compact manner
to represent the checkerboard with a moderately complicated
deconvolution architecture.
These results show that the neural-sophistication approach is
promising but still require some architectural tuning.
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Fig. 3: Plotting H(D|M) and K(D|M) against K(M) for a variety of example images using JPG as a surrogate of Kolmogorov
complexity, expressed in KB. The 45° dashed line is shown for reference, at K(D) (size of the image losslessly compressed).
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V. CONCLUSIONS AND DISCUSSIONS

This short paper proposes to use sophistication, namely the
Kolmogorov complexity of the structured part of the object
(ignoring its noisy part), as a intuitive measure of object
complexity. While the minimum description length principle
has been used to identify the structured part of the data,
we show that it is inadequate in this context. We propose a
novel criteria to select a model (among a variety of possible
models) by using a combination of Kolmogorov complexity
(of the model) and entropy (of the residual). We instantiate
sophistication with jpg compression both as a way to produce
a family of models and as a surrogate of complexity. We
also propose neural-sophistication, an approach that learns
sparse autoencoders to compress data. While imperfect, both
approaches show promising results.
Neural-sophistication is especially interesting as the idea of
using autoencoders can be applied to a huge variety of data

types. Indeed, autoencoding architectures have been developed
for many data types (sequences, images, graphs, etc.) and
neural-sophistication can thus be applied to any of these.
Future work involves improving neural-sophistication and ap-
plying it to other types of data, including sequences of images.
Additionally, while the question of context has been deferred,
future research can refine its definition by generalizing two-
part coding to n-part coding, where the model explicitly
incorporates a hierarchy of context.

REFERENCES

[1] D. Byrne and G. Callaghan, Complexity Theory and the Social Sciences:
The State of the Art. Routledge, 2022.

[2] C. O. C. Adami and T. C. Collier, “Evolution of biological complexity,”
Proceedings of the National Academy of Sciences, vol. 97, no. 9, pp.
4463–4468, 2000.

[3] L. d. F. C. T. K. D. M. Peron and F. A. Rodrigues, “Complex networks:
the key to systems biology,” Genetics and Molecular Biology, vol. 35,
no. 4, pp. 681–691, 2012.

[4] E. Brandão, “Complexity methods in physics-guided machine learning,”
Ph.D. dissertation, Université Jean Monnet-Saint-Etienne, 2023.

[5] E. Gibson, “Linguistic complexity: Locality of syntactic dependencies,”
Cognition, vol. 68, no. 1, pp. 1–76, 1998.

[6] B. B. Mandelbrot, Fractals and Scaling in Finance: Discontinuity,
Concentration, Risk. Springer Science & Business Media, 2004.

[7] C. Gershenson and F. Heylighen, “How can we think the complex?” in
[Book Chapter] (Unpublished), C. Gershenson and F. Heylighen, Eds.,
2004.

[8] P. D. Grünwald, The Minimum Description Length Principle. MIT
Press, 2007.

[9] E. Bourrand, L. Galárraga, E. Galbrun, E. Fromont, and A. Termier,
“Discovering useful compact sets of sequential rules in a long sequence,”
in 2021 IEEE 33rd International Conference on Tools with Artificial
Intelligence (ICTAI). IEEE, 2021, pp. 1295–1299.

[10] A. N. Kolmogorov, “Three approaches to the quantitative definition of
information,” Problems of Information Transmission, vol. 1, no. 1, pp.
1–7, 1965.

[11] R. J. Solomonoff, “A formal theory of inductive inference. part i,”
Information and Control, vol. 7, no. 1, pp. 1–22, 1964.

[12] G. J. Chaitin, “On the length of programs for computing finite binary
sequences,” Journal of the ACM (JACM), vol. 13, no. 4, pp. 547–569,
1966.

[13] R. Calderbank and N. J. A. Sloane, “Claude shannon (1916–2001),”
Nature, vol. 410, no. 6830, pp. 768–768, 2001.

[14] E. D. Schneider and J. J. Kay, “Complexity and thermodynamics:
towards a new ecology,” Futures, vol. 26, no. 6, pp. 626–647, 1994.

[15] J. L. J. Ladyman and K. Wiesner, “What is a complex system?”
European Journal for Philosophy of Science, vol. 3, pp. 33–67, 2013.

[16] M. Gell-Mann, “What is complexity?” Complexity, vol. 1, no. 1, pp.
16–19, 1995.

[17] T. M. Cover, “Kolmogorov complexity, data compression, and infer-
ence,” in The Impact of Processing Techniques on Communications.
Springer Netherlands, 1985, pp. 23–33.

[18] M. Koppel, “Structure,” in The Universal Turing Machine: A Half-
Century Survey, R. Herken, Ed. Berlin: Oxford, 1988.

[19] P. Grassberger, “Randomness, information, and complexity,” arXiv
preprint arXiv:1208.3459, 2012.

225


