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Highlights

A bottom-up model of electricity demand response with a stochastic dynamic pro-
gramming approach: application to system value of demand response in the European
energy crisis.

Julien Ancel, Olivier Massol, Antoine Verrier

• A model of electricity demand response’s operations under uncertainty is proposed.

• The problem is cast as a multistage stochastic program.

• An analogy with hydropower allows using stochastic dual dynamic programming for efficient
solving.

• Inclusion of uncertainty and appliance-related constrained brings new insights on demand
response’s value.

• The modeling framework sustains multiple policy-relevant extensions.
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Abstract

Demand response is anticipated as a key feature of flexibility in renewables-dominated power sys-
tems even though high-scale aggregation and integration of demand response have never been im-
plemented. This paper proposes a model of hourly operations during a full year of power systems
integrating significant shares of demand response. Attention is given to a bottom-up description of
demand response as a flexibility resource. The representation is brought up to a large-scale model
of power systems through a hydropower analogy, compatible with a stochastic dual dynamic pro-
gramming framework. This framework surpasses traditional stochastic dynamic programming ones
as it enables the capture of intertemporal arbitrage and the effect of stochastic inputs on different
timescales inherent to the operation of demand response affected by social and technical limitations.
Yet, such a modeling paradigm has not permeated the study of demand response. Notably, various
sources of demand response from all sectors are represented. The model is used to quantify the
hypothetical economic and environmental impacts of demand response on day-ahead markets in
Western Europe during 2022, a particularly tense year for this power system. Apart from the model
itself, a key result is the possible misalignment between a system’s need for more flexibility sources
and the private interest of an operator of demand response potentials. A cannibalization effect of
demand response from the tertiary and the residential sector is also found due to the size of these
potentials.

Keywords: OR in Energy, Stochastic Dual Dynamic Programming, Demand response, Flexibility

1. Introduction

In line with climate change mitigation efforts, future power systems will rely increasingly on
renewable energy sources. The intermittent and random nature of most renewables brings about
decreased flexibility on the supply side of power systems i.e., reduced capability to modify at each
relevant time scale the output or consumption of energy resources controllable at this time scale.
Commonly suggested solutions to manage such flexibility issues include increased interconnections,
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various forms of storage (such as batteries, pumped hydro storage, or power-to-gas), and demand
response (DR).

Among these options, several reports highlighted that DR may a the key provider of flexibility
in the coming decade (RTE (2023); IEA (2022)). However, DR requires the roll-out of enabling
technologies, especially for residential and tertiary sector DR (Gils (2014)), and the adaptation of
power markets to this new resource (Kerscher and Arboleya (2022)). To make this deployment fea-
sible, new insights are needed on the impacts of this type of DR and on its possible remunerations
in power systems facing growing uncertainty (Ringkjøb et al. (2018)).

This study focuses on modeling DR operations in power markets to contribute to these research
efforts. Specifically, we assess the main attributes of DR potential – namely, specific power use
in a given sector – and accommodate this bottom-up representation of each flexible power use in
a wholesale energy-only power market in perfect competition. Accurately representing demand
response as a flexibility provider requires handling stochasticity and stock management on different
time scales (from the hours to the year). Hence, an innovative analogy with hydropower and its
subsequent solving in a stochastic dual dynamic programming framework has been developed here.
As a primary example, a day-ahead hourly market is represented during a whole year of operations.
The contributions of this paper are twofold.

Firstly, we develop a bottom-up model of DR that leverages an analogy with the operation of
hydropower resources. This model addresses the availability and social limitations of DR poten-
tials across different timescales (annual and hourly), which implies both a fine temporal granular-
ity (hourly), a large modeling horizon (a year), and imperfect foresight, i.e., numerous modeling
timesteps in a dynamic setting. Yet, our model remains numerically tractable because it fits the
framework of an efficient solution strategy for such stochastic programs, namely stochastic dual
dynamic programming. The model enables assessing the sensibility of DR revenue to differences in
technical or social characteristics.

Secondly, we present an application on the 2022-2023 European case. This period is marked
by a rapid shift in the merit order that occurred due to rising gas prices and more stable coal
prices: the comparative effects of DR can be studied in these different merit orders. We analyze
the impacts of increased access to residential and tertiary sector flexible loads on the performance
of the interconnected power systems in Western Europe. The focus is on the interactions between
different DR potentials and with other flexibility sources such as interconnections, peak fossil-fueled
generation, or pumped-hydro storage.

The case study yields several interesting results. DR has multifaceted impacts on power sys-
tems: while always leading to decreased total operation costs, technical or social constraints of DR
potentials may lead to equivocal effects on system emissions or imbalances depending on the spe-
cific pre-existing merit order. Additionally, we observe a cannibalization effect where the benefits
obtained by industrial DR decrease as the availability of residential and tertiary DR increases. For
higher penetration levels of diffuse DR in the system, a similar saturation is faced by diffuse DR
itself: from this high level, each new MW of residential or tertiary sector DR generates less revenues
than the previous ones and decreases the revenues of previously existing ones.

In the simulated scenarios, a single DR potential may not systematically be beneficial, whether
it is industrial DR or not. On the contrary the system benefits systematically of the operations of
this potential in terms of total operation cost reductions. Therefore a misalignment between system
operators and market revenues of operators of a single DR potential may arise in the present case
study.

Demand response involves interactions between different types of agents and different layers
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within a power system. In the DR literature, these layers have been studied with diverse intensities.

First, some studies (Gils (2014), Müller and Möst (2018)) focus on flexible electricity use to
assess current and future potentials. They highlight the main technical features of specific flexible
power uses, notably their availability when the system needs flexibility (Müller and Möst (2018)).
A common finding is that power-intensive industrial appliances are already valued in DR schemes
(Kerscher and Arboleya (2022)), even though the highest potentials and availability are in the
residential and tertiary sector (Gils (2014)). These potentials remain largely untapped by power
systems due to their diffuse nature.

Secondly, another line of literature focuses on connecting these diffuse flexible loads and larger
power systems. In a top-down approach, numerous studies focus on the optimal operation of one
flexible load in response to exogenous signals from the power system. These studies employ different
approaches from operation research, often involving a representation of uncertainty and a focus on
short-term operations (e.g., household-level operations by Remani et al. (2019) or Ferreira et al.
(2012)). However, few operation models (a notable exception is Roos et al. (2014)) manage to keep
the same technical description of flexible loads displayed in potential studies.

As to bridge power markets and individual consumers, the literature proposed multiple designs
for DR triggering signals sent by networks or retailers (Silvestre Freitas Gomes et al. (2024), Astier
and Léautier (2021),Lima et al. (2017),Muratori and Rizzoni (2016)), or by intermediaries called
DR aggregators (Aïd et al. (2022),Chapman et al. (2016)). This requires efforts in both metering
technology deployment and signal design under imperfect information. The key challenge is to find
appropriate individual signals to be sent to diffuse loads to obtain a desired aggregated effect at the
system level.

Then, the literature closed the business model of this intermediary layer by modeling both strate-
gic interactions between individual consumers and the aggregator/retail level and operations of the
latter on wholesale power markets (Crampes and Leautier (2012),Campaigne and Oren (2016),Okur
et al. (2019)).

The previous literature ensures both the existence of flexible uses of electricity and the possi-
bility of passing this flexibility to the system level, provided some technological (Chapman et al.
(2016)), social (Verrier (2018)) or regulatory (Kerscher and Arboleya (2022)) barriers are brought
down. Building on this, numerous models were proposed focusing on giving a system value to de-
mand response or one of its characteristics (Bruninx et al. (2018)) and on studying its introduction
on various power markets (Biegel et al. (2014)). Ringkjøb et al. (2018) provides an extensive liter-
ature review on demand response models at the system level. These studies mainly take the form
of short-term (few hours or a single day) operations of load-shedding or shifting (Fatouros et al.
(2017),Papavasiliou et al. (2018)) or very long-term (decades) expansion studies focusing on invest-
ments in DR potentials compared to networks improvements (Marañón-Ledesma and Tomasgard
(2019)). As underlined by Ringkjøb et al. (2018), a research gap exists in the study of intra-year
operations of DR, thus overlooking eventual intertemporal aspects of their interaction with power
systems. More recently, Motta et al. (2024) points towards similar conclusions after reviewing
optimization models used in operation and expansion studies dealing with demand response, ac-
knowledging both the necessity to include stochasticity in such models and the current relative lack
of literature relying on state-of-the-art stochastic programming methods at scale for DR.

Moreover, these studies consider demand-side flexibility "before the meter," meaning that they
ditch bottom-up modeling of demand-side flexible resources, even though previously mentioned
streams of literature highlighted how much their technical characteristics affect the whole accessible
DR potential. To the best extent of our knowledge, the only bottom-up model for DR operations
at the system level to be found is Verrier (2018), which integrates some technical features of DR in
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its operation model - but not all relevant ones (see Section 2.1). In a review of flexibility studies,
Villar et al. (2018) points out the need to better model the aftermaths of a demand response event
in terms of load increases to assess the interseasonal aspect of demand response in a similar call as
(Ringkjøb et al. (2018)) and to provide new insights on possible remunerations of demand response
operations accounting for growing uncertainty in power systems.

The paper is organized as follows. The next section provides an overview of the relevant features
for modeling demand response operating in renewable-based power systems. Section 3 first details
an extended hydropower analogy (Section 3.1) and then develops a bottom-up SDDP model of an
energy-only market with demand response (Section 3.2). The solution strategy, stochastic dual
dynamic programming, is presented in Section 3.3. Section 4 presents our case study calibrated on
North Western Europe during the recent energy crisis. Concluding remarks are made in Section 5.

2. Demand response in power systems models

The present section selects the main features to be implemented in a demand response model
operating in power systems with variable renewables. A focus is first given on the modeled type of
demand response and on its representation as a flexibility resource. Then, assessment strategies for
stochasticity in large models are reviewed in order to set the framework prevailing in Section 3.

2.1. Describing demand response
Demand response. . DR may be defined as the action for some consumers to shed or shift their
power demand in response to an exogenous signal. The signal could be a market price they observe,
in which case we talk about implicit demand response or direct information or order sent by another
actor to the consumer, in which case we talk about explicit demand response.

Demand response is also divided into two classes depending on the destiny of the flexible load:
load-shedding when the demand is purely erased and load-shifting when it is only pre- or postponed
and still has to be balanced at one point.

Load-shedding is mainly found in the industrial sector with its centralized big consumers. It
represents a pure loss for the consumer (e.g., steel that was not produced during the shedding event)
and thus has a very high activation cost. Therefore, load-shedding is a peak mean of negative load,
and recourse to it can only be limited in time and infrequent.

Load-shifting appears more frequently in temperature-related usage (cooling, heating, air condi-
tioning) and tertiary or residential sectors. As underlined by Gils (2014) or Müller and Möst (2018),
it represents a massive potential of flexible loads that remains largely untapped. With a limited
duration of events, load-shifting implies less discomfort than load-shedding and is, therefore, at a
quite low activation cost, so it may be activated a greater number of times.

A DR potential or deposit refers to a specific flexible use of electricity and, more specifically, to
the accessible share of installed capacity associated with this use, which may be reduced or increased
on a certain date. It encompasses both technically available load reduction/increase and socially
acceptable ones. If activations or installation costs are accounted for, only a smaller part of a DR
potential may be economically available, i.e., profitable.

In this work, we focus on modeling DR potentials, the economic relevance of which is computed
ex-post. Moreover, only explicit demand response is considered. We focus on system impacts and
maximum revenues gained through DR operations. With such a point of view, implicit DR appears
as an imperfectly controlled explicit DR, which translates into reduced equivalent capacities of DR
potentials. Thus, this choice is not too restrictive.
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Negative load vs price elasticity.. In recent works such as that of Chapman et al. (2016), it has been
highlighted that demand response requires new types of infrastructure both in technical terms (de-
ployment of power-related information technologies) and in terms of economic actors, particularly
if it is to be expanded to the highly decentralized residential and tertiary sectors. DR programs
relying on real-time pricing have only yielded mild results in these sectors as the ability of ordinary
end-users to catch up with the market is limited, and so is social acceptance of such programs.
Other programs relying on price signals such as time-of-use or tariff flags such as in Lima et al.
(2017) can’t yield as much short-term DR and flexibility as real-time pricing. Thus, the literature
has also explored direct load control for flexible end-uses. A new economic actor would then emerge
with demand response, a DR aggregator. A contractual relationship would link the aggregator
and end-users. Designs of such contracts and optimal architecture of the control system have been
studied by Chapman et al. (2016) and Aïd et al. (2022). Provided some installation efforts, this
new actor seems technically realistic. That is why, in this paper, we suppose that all DR deposits
evoked are controllable by such DR aggregator which interfaces the market and end-users.

A first set of studies (e.g., Muratori and Rizzoni (2016) or Lima et al. (2017)) describes DR with
the help of price elasticities in a demand function. These parameters are supposed to summarize all
technical and behavioral characteristics of the flexible load. They are hard to estimate because not
directly observable and may vary significantly even with a slight change in technology. Conversely,
we propose a common model for all types of flexible loads, referring directly to their flexibility
attributes as defined in Table 1.

A second body of work sees demand response as a negative load technology (e.g., Fatouros
et al. (2017) or Marañón-Ledesma and Tomasgard (2019)). This approach is particularly adapted
to models of electricity markets where the supply/demand balance constraint is written explicitly,
as is the case in the present study. In such a framework, it is indeed similar to subtracting a term
on the demand side of the power balance equation and adding a new power of the same amount on
the production side.

This second modeling framework of DR is kept as it enables a unified representation of demand
response and ordinary generation means, is adapted to explicit DR, and may be refined in order to
integrate technical specifics of each DR potential.

DR as a flexibility resource. . A flexible energy resource is a resource that is able to start up
and ramp sufficiently quickly in order to follow and adapt to varying market/system conditions
(Goutte and Vassilopoulos (2019)). This technical description does not suffice for a power system
to benefit from this flexible resource. This flexibility shall indeed be valued and remunerated in
order to participate in the system. Thus, a flexible resource may also be seen as a market product
and described as such. The two visions exist in the literature, from which we extract the main
attributes of a DR potential (Table 1), seen as a subgroup of flexible resources.

These attributes form a way of modeling quantitatively DR: a particular DR potential is char-
acterized by a particular combination of the attributes. Depending on the modeling point of view,
some attributes may become less relevant. In a system scale model of a day-ahead dispatch, the lead
time for performing a DR event may neglected as this dispatch is settled far from real-time. From
a market perspective in Europe, location is irrelevant as no local flexibility market exists (Ramos
et al. (2016)). Ramping rates are crucial for supply-side flexibilities (Goutte and Vassilopoulos

4See Villar et al. (2018); Kerscher and Arboleya (2022) for most of the technical constraints and also Ramos et al.
(2016) for market ones.
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Attribute Type Description4

Capacity Technical Installed capacity of modulation (MW)
Duration bounds Technical Minimum/Maximum time of activation once the resource is triggered
Ramping rate Technical Time required to reach a targeted level after activation
Lead time Technical Duration between sending a triggering signal to the resource and its effective activation
Location Technical Grid with which the resource is connected (distribution or transport)
Availability Socio-tech. Temporal variations of the available share of installed capacity (Müller and Möst (2018);

Verrier (2018))
Number of acti-
vation

Social Maximum number of activation over a predefined period, often the period of a contract. Re-
flects technical constraints (battery deterioration, nuclear flexibility) or social constraints
(DR)

Recovery Technical Maximum time between a load reduction and the recovery of the shifted load for load-
shifting (mainly for DR, eventually storage)

Cool down Technical Minimum time gap between the end of an event and the triggering of the following one
(social constraint for DR, technical for supply-side flexibilities)

Delivery time Market Time gap between contractualization and the sending of an activation signal
Predictability Market If the temporal availability at a date is quantified by a random variable, predictability

refers to the ability of a market player to know the distribution of this variable
Controllability Market Risk level of a flexible resource not following an activation signal. With predictability,

it may form a unique attribute of flexibility product risk or quality (Chao et al. (2022);
Schittekatte and Meeus (2020))

Objective Market Service for which it is sold or market on which it is exchanged
Contract Market The contract type through which the flexible resource is engaged (long-term, exchange-

able...)
Remuneration Market Type of settlement (pay-as-bid, pay-as-clear...)

Table 1: Attributes of a DR resource

(2019)), but less relevant for DR as the load can be dropped virtually instantaneously in residential
or tertiary appliances and in the considered industrial uses of electricity. Since we model explicit
demand response, predictability and controllability are also assumed to be perfect here. All other
attributes will be modeled in our bottom-up representation of each DR potential.

2.2. Accounting for stochasticity
Including uncertainty in the power system model is inevitable with the rise of renewables. How-

ever, when combined with multistage programming, the basis of power system models implies a
heavy computational burden. Thus, it requires particular frameworks in order to provide analysis
with both wealthy system descriptions and effects of uncertainty. Wu et al. (2016) and Weber et al.
(2021) review these possible frameworks outside of any consideration regarding DR - but all are
used in DR studies.

Most simplistic methods consist of point-wise replacement of random variables by associated
deterministic values such as their expectation or some drawn value. These models yield deterministic
fixed policies, which are optimal only for the chosen realization of the noise term. Deterministic
equivalent methods remain widely used in academia and the industry (Weber et al. (2021)).

Robust optimization replaces uncertainty with an uncertainty set so that the derived solution
is optimal, considering the worst possible cases of noise realizations. This approach is, therefore,
conservative. Dealing with demand response, it is used in (Ferreira et al. (2012)) with the idea to
protect the studied individual household of power imbalances from even the worst possible hazard.
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Distributionally robust optimization extends this method by optimizing on a so-called ambiguity
set of probability distributions for the random variables, thus leading to less conservative policies.

Chance-constrained programming formulates optimization problems with inequality constraints
imposing minimum chosen levels for the probabilities of some modeling constraints (e.g., a power
balance constraint) to hold. This approach ensures a given level of reliability in the overall satisfac-
tion of a constraint by the derived optimal policy. Regarding DR, chance-constrained programming
is used in (Bruninx et al. (2018)) in order to derive a value for the controllability of DR potentials.
However, this method requires assumptions on the allowed level of uncertainty.

Stochastic dynamic programming accounts for all possible realization of noise terms on a scenario
tree. Thus, it yields an optimal policy (and not a single optimal solution) that adapts to the incoming
state of the system and particular realizations of noise. This framework does not limit the solution
by a priori statements on noise values or acceptable risk levels. Therefore, it is prioritized in the
present work.

However, stochastic dynamic programming becomes intractable when the number of scenarios
for the random variables and the state space size grows. Stochastic dual dynamic programming is a
method published in (Pereira and Pinto (1991)) that bypasses this issue. It was primarily developed
for hydropower scheduling under inflows uncertainty (Pereira and Pinto (1985) or more recently
Guan et al. (2018)). But it has become a reference method in the study of power systems facing
uncertain renewable production either in operations models (Fatouros et al. (2017),Papavasiliou
et al. (2018),Verrier (2018)) or system expansion models (Wu et al. (2016),Lu et al. (2020),Stüber
and Odersky (2020)), yet without accounting for demand response (Motta et al. (2024)). After
being essentially confined to hydropower-related problems, SDDP is emerging as a relevant solving
strategy in more diverse contexts, such as operation planning for dairy farms (Dowson et al. (2019)).

Recourse to SDDP imposes a relatively strict framework (see Section 3.3). It is relevant when
dealing with the management of stocks directly affected by uncertainty, thus facing intertemporal
opportunity costs. Following the analogy developed in Section 2.2, DR faces such challenges due to
the yearly maximum energy limit for load shedding and shifting (stock limitation only captured by
a temporal horizon greater than a season), daily residual demand uncertainty and hourly operations
(large number of time-steps). Therefore, the choice of SDDP for our DR operation model is relevant.
Yet, a SDDP compatible bottom-up description of DR potentials has not been published to the best
extent of our knowledge.5

3. Model

The modeling framework is detailed, beginning with insights on converting the DR attributes of
Section 2.1 into a tractable model. Then, the general model of the power system dispatch is given,
and the solution strategy is mentioned.

3.1. Hydropower analogy for demand response
A negative load model of DR underlines the specific technical and social characteristics of the

considered DR potential. Since these characteristics exhibit limitations on both the size and the
number of load-shedding or shifting events, Verrier (2018) pointed out that DR behaves like hy-
dropower stations and tried to represent some DR attributes through a hydropower analogy. Load-
shedding is related to conventional hydropower, whereas load-shifting implies some intertemporal

5See also Motta et al. (2024) for a methodological survey on DR modeling and relevance yet lack of implementation
of decomposition approaches
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aspects, such as shifted load being recovered, making it closer to power-hydro storage.

Regarding load-shedding, a conventional dam with a reservoir of a size reflecting the maximum
duration of an event (D), the shedding capacity (K), and the maximum number of events per year
(N) seems to suffice. Each load-shedding potential is modeled by one conventional dam in the
simple way of Figure 1a. A limited quantity of energy can be removed from demand throughout the
year during shedding events. The shed load can’t exceed the flexible part At of the power demanded
by the consumer in a normal situation at time t. The level of this reservoir represents the quantity
of energy that can still be shed during the remaining part of the year. It can only decrease as water
(i.e., energy) is turbined (i.e., removed from demand or negatively generated).

(a) Model of a load-shedding technology (b) Model of a load-shifting technology

Figure 1: Initial hydropower analogy for demand response

The same analogy with a conventional dam would not be satisfactory as it can’t memorize the
postponed load that must be balanced. Load-shifting behaves indeed more similarly to hydropower
stations equipped with pumping capacity (Figure 1b). Hence, a limited quantity of energy (water)
can be postponed (turbined), thus negatively generating this energy from a system perspective. It
is afterward balanced (pumped), thus increasing demand. A direct load-shifting / PHS analogy was
proposed by Verrier (2018). A reservoir disconnected from the system is also considered to be bigger
and serves as a non-binary counter of the shed energy. Once the contractual reservoir is emptied,
the technology becomes unavailable for the remainder of the year. It encompasses the attributes
of duration, number of events, and equivalent capacity, leaving aside maximum time before the
recovery of the shifted energy and the minimum time between two events (downtime).6

The model of DR technologies presented here treats them similarly to hydropower stations.
This means that the equations describing them are all linear and that the negative load from DR
is naturally integrated into the production side of the power balance equation as a linear term.
The inclusions in the design of reservoirs of integer parameters, such as the maximum number of
activations or the memory of a postponed load to balance in the future, are crucial features of our
model. It avoids integer variables in the optimization problem modeling operations of the system
while keeping the constraints and objective linear. Moreover, this model explicitly represents DR
deposits as stocks of flexibility that can be given a usage value in link with the abundant literature

6Such parameters can still be included by extending the hydropower analogy to have several downstream rolling
reservoirs of size corresponding to one hour of turbining at full capacity and rolling upstream reservoirs for minimum
downtime. See Appendix A for a graphical presentation of this extended hydropower analogy for DR. For clarity, as
it does not fundamentally change the modeling spirit of the present paper, these refinements are left out here.
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dealing with the so-called water value in hydro-thermal scheduling (e.g., Pereira and Pinto (1991),
Guan et al. (2018) or Diniz et al. (2020)).

3.2. Energy-only market model
3.2.1. Overview

We model a wholesale energy-only market for electricity with DR potentials aggregated by
power use in perfect competition. As an energy-only market, resources are not paid for reservation
or installed capacity. The market has to be balanced, and generation is limited by energy and
capacity constraints for traditional supply means and by DR constraints derived from the analogy
of the previous section.
We are dealing with DR in power markets. Therefore, we make the hypothesis that all DRs partic-
ipating in markets do it directly or through an aggregator, which has no controllability issue with
its DR pool. Namely, the DR market actor does not face uncertainty in the availability of DR
potentials once it bids.
The model is copperplate. We aggregate all generations and loads as representative units. We
account for interconnections, with major interconnections being endogenous to the model, whereas
small capacity/less-used ones are incorporated as exogenous parameters.

3.2.2. Model
The objective is to minimize the expected system’s total operation cost over a year without

perfect foresight, accounting for possible supply-demand disequilibrium through slack variables (de-
noted µ) valued at a value of lost load (V oLL). Apart from the demand response part, the model is
a classic dispatch problem with pg. defining traditional generations, dj., uj. demand response deci-
sions to curtail and recover flexible loads, imp., exp. the interconnections’ decisions and C. denoting
the constant variable costs. The slack variables µs

j represent the lost load in the recovery process
for load-shifting assets.

min
p1,d1,u1,imp1,exp1

IC1 + Eξ2

[
min

p2,d2,u2,imp2,exp2
IC2 + Eξ3

[
· · ·+ EξT

[
min

pT ,dT ,uT ,impT ,expT
ICT

]]]
(1)

with non-anticipativity only denoted through the element of the stochastic process (ξ)t revealed
at the corresponding stage and with the immediate cost

ICt =
T∑
t=1

G∑
g=1

Cgpgt + Cchd
ch
t + Cph(d

ph
t + upht ) +

E∑
e=1

Ceimpet +
I∑

i=1

Cidit +
J∑

j=1

Cjdjt

+ V oLL

µt +

J∑
j=1

µs
jt

+ αjt

From a DR aggregator’s point of view, these costs account for both actual technical costs and com-
pensation for curtailed final consumers. Hence, they are modeled as volumetric and depending on
the potential - compensation for the curtailment of an industrial process is related to the prevented
production, while compensation for residential appliances should be more linked with comfort or
basic needs. Choosing these costs to be positive can be justified by empirical studies finding a
negative willingness to pay for the control of electrical usage, such asRichter and Pollitt (2018) or
Broberg and Persson (2016).
This optimization is made under several classical constraints on generation and loads. First, a power
balance should be maintained at all times, which is expressed through Constraint (2).
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∀t,
G∑

g=1

pgt + dcht + dpht +

E∑
e=1

impet +NEt +

I∑
i=1

dit +

J∑
j=1

djt + µt = Lt(ξq) +

J∑
j=1

ujt +

E∑
e=1

expet + upht

(2)

Random variable.. Stochasticity is accounted for in the model through residual demand Lt(ξq), the
total demand before any DR event minus the output of non-dispatchable renewables - wind, solar
and run-of-water. The residual demand at all 24 hours of a day is observed at the beginning of this
day, meaning decisions for this day are made with perfect information on this day but no knowledge
of future days.

Two major assumptions are taken on the random variable. On the one hand, it is supposed
independent between stages. This is not true for real residual demand. However, some tricks exist
to model the time dependency of residual demand while keeping time independence of the noise
term: scenarios or linear models describing residual demand such as AR(n) ones (Fatouros et al.
(2017)). Here, we rely on the first option, drawing scenarios that convey themselves the necessary
time dependency of residual demand, while the picking of one scenario may remain time indepen-
dent, following Verrier (2018) for example. Thus, the second assumption is that the space of possible
values for our random variable is supposed to be finite, with only several scenarios of residual de-
mand being allowed. This number may, however, be extremely big as it grows exponentially with
the number of scenarios at each stage.

Capacity limits K. are imposed on all productions and interconnections, traditional generations’
capacity being affected by an exogenous availability factor Ag.. Water balance constraints are
provided for hydropower stations with reservoir levels denoted by Xch, Xph. for reservoir hydropower
and pumped hydro storages (which possess an upstream and a downstream reservoir), respectively.

∀g, t, 0 ≤ pgt ≤ AgtKg (3)
∀e, t, 0 ≤ impet, expe, t ≤ Ke (4)

∀t, 0 ≤ dcht ≤ ηKch (5)

∀t,Xch
t = Xch

t−1 − dcht with Xch
0 given (6)

∀t, 0 ≤ dpht ≤ ηKph (7)

∀t, 0 ≤ upht ≤ Kph/η (8)

∀t,Xphu
t = Xphu

t−1 − dpht + upht with Xphu
0 given (9)

∀t,Xphd
t = Xphd

t−1 + dpht − upht with Xphd
0 = 0. (10)

Demand response.. Finally, constraints on DR are built according to modeling choices mentioned
in Section 2.1. Making profit of the hydropower analogy of Section 3.1, we model capacity limits
on shedding/shifting decisions (11,12,13), availability of the flexibility of each power use (11,12),
maximum duration of a DR event (14), and a maximum amount of shifted/shed energy per year
contracted with end users (15,16). Thus, we give a detailed bottom-up description of each flexible
power use. Notations are directly related to that for hydropower according to the analogy developed
in the previous section.
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∀i, t, 0 ≤ dit ≤ AitKi (11)
∀j, t, 0 ≤ djt ≤ AjtKj (12)
∀j, t, 0 ≤ ujt ≤ Kj (13)

∀j, t, 0 ≤ Xshift
jt = Xshift

jt−1 − djt + ujt ≤ KjDj = Xshift
j0 (14)

∀j, t, 0 ≤ Xcontr
jt = Xcontr

jt−1 − djt with Xcontr
j0 = NjKjDj (15)

∀i, t, 0 ≤ Xcontr
it = Xcontr

it−1 − dit with Xshed
j0 = NiKiDi (16)

Note that the double inequality around Xshift
jt in Constraint (14) means that a load reduction event

may not concern more energy than what can be reduced at maximum capacity during Dj hours
and that a load increase event may not concern more energy than what can be increased at max-
imum capacity during Dj hours. Hence, taking up the fruitful power-hydro storage analogy for
load-shifting developed in Verrier (2018), Constraint (14) models both an upstream reservoir with
storage KjDj through the positivity inequality and a downstream reservoir with similar storage
through the maximum size inequality.

The present model describes the operations of DR potentials in a wholesale energy-only perfect
market. The potentials are described in a bottom-up manner. Constraints (11) to (16) are indeed
directly linked with the most crucial DR attributes listed in Section 2.2.

Yet, we do not forget that the potentials and individual consumptions of one type are aggregated
to enter the market: aggregator has access to multiple end-users with the same power use. Conse-
quently, the aggregator can activate simultaneously a load reduction and a load increase for a given
load shifting potential, which is also possible in our model. Practically, a non-convex constraint of
type u× d = 0 is avoided.

3.3. Solution strategy
3.3.1. Dynamic programming expression and resolution

Problem (1) under constraints (2) to (16) belongs to the class of stochastic dynamic programming
as the noise term ξ is supposed to be independent between each period P . This multistage stochastic
linear program with linear constraints may thus be represented as a stochastic dynamic program
with T/P stages and each stage k being described as

min
yk∈U(xk−1,ξk),xk=Fk(xk−1)

ICk(yk, xk) + Vk+1 (xk, (ξ)l≥k+1) (17)

with U(xk−1, ξk) a convex, non-empty7 set defined by aforementioned constraints on decision
variables, Fk a transition function defined by the above state transition equations, ICk an immediate
cost corresponding to the sum in the objective function (1) truncated for t ∈ {k, ..., k + P − 1}.
The function Vk+1 is our Bellman function, representing the cost-to-go to temporal horizon T/P
beginning a trajectory at state xk.

Problem (1) under Constraints (2) to (16) fits the assumptions of SDDP. Notably, it guarantees
relatively complete recourse by adding slack variables to Constraint (2), penalized at the value of
lost load.

7This property means that there always exist possible decisions whatever the in-coming state of the system or the
realization of the stochastic variable may be. It is also called relatively complete recourse.
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Note that Vk+1 is the expected cost-to-go as it accounts for all possible future values of the
random variable ξ. A coherent risk measure other than the expectation could have been chosen in
order to model, e.g., a risk-averse planificator. Our choice means that all residual demand scenarios
are weighted the same in the eyes of market players.

The wholesale energy-only market model encompasses numerous state variables and time steps.
Hence, as a dynamic program, its resolution is computationally tedious. Fortunately, the convexity
and time-independence of the stochastic variable hypothesis enables recourse to the efficient SDDP
class of solving methods, provided that the stochastic variable is realized in a finite space.

3.3.2. SDDP
A succinct description of the class of algorithms coined SDDP is given here, with more details

on the algorithm termination in Appendix B. More technical material may be found in Shapiro
(2011), or for a more practical approach in the documentation Dowson and Kapelevich (2021). This
section relies also on Leclère (2017). The employed implementation for our application is based on
Dowson and Kapelevich (2021).

SDDP solves large-scale multistage stochastic optimization problems under a specific hypothesis:
state and control variables are continuous (actually, SDDP also works with integer variables but
requires some type of convex relaxation, which is costly and will be avoided here); these variables
must belong to convex compact sets of finite dimensional spaces, the stage objective functions must
be convex, and dynamics linear. Most of all, the noise must take values in a finite set and be a
white noise, i.e., noises of two distinct stages are independent. The latter hypothesis enables it to
fit into a dynamic programming framework. Note that, it can always be obtained at the cost of
expanding the dimension of the state variable (Shapiro (2011)).

Under these hypotheses, SDDP yields an optimal solution of a dynamic programming problem
with piece-wise linear Bellman functions approximating the Bellman functions of the true problem.
Estimating these linear forms at some stage and some state relies on the computation of the dual
variable associated with a slightly modified subproblem, determining the true Bellman function at
this stage.

Convergence towards the optimal policy is guaranteed (Shapiro (2011)), yet the convergence
rate remains an open question. Hence, a termination criterion has to be designed from the natural
bounds of the optimal policy yielded by the procedure. We use the criterion developed by Shapiro
(2011). Details on this rule and how it compares with others are given in Appendix B.

Finally, SDDP avoids the complete enumeration of all possible scenarios for the noise, which
alleviates a bounding computational constraint in the scenario-based method. However, note that
it does not prevent the curse of dimensionality arising with high dimensional state variables (which
increases when the state space has been expanded to fit the white noise assumption). This source of
complexity affects the resolution of all subproblems. In a sense, SDDP handles better stochasticity
than its counterpart but is still bounded by curses inherent to a dynamic programming framework.

4. Case study: 2023 North Western Europe

As a short illustration of its usability, the previous general model is applied to 2023 North
Western Europe (NWE) – Belgium, France, Germany, Luxembourg and the Netherlands– marked
by increasing CO2 prices, very high prices of gas and a non-negligible share of variable renewables.
Some details on calibration and the envisioned scenarios are given in the following paragraph. Then
we analyze the results of our simulations.
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The wholesale energy-only market chosen for this case study is the day-ahead hourly market,
which gathers indeed the most players while facing supply uncertainty from renewables and demand
variation at an hourly granularity. Moreover, this market is being made increasingly accessible to
active consumers, aggregated or not, in the European Union.8 This case study seeks to demonstrate
possible uses of the presented DR model. As it has been shown in the literature (e.g., Biegel
et al. (2014)), the day-ahead market is not the sole or even the primary source of revenue for DR
aggregators. Future work is set to analyze various revenue streams for DR and combine them in
the present model.

4.1. Context
The context of 2023 NWE amid a gas crisis, which translated into a power crisis, presents the

unique combination of gas being less competitive than other dirtier fuels such as lignite in systems
still highly relying on carbonized production means, risks of power shortages due to unplanned
outages and increasing share of variable renewables.

Coal and lignite plants are still competitive due to high gas prices, even though the carbon
price tends to move them out of the market. Thermal means are subject to a carbon price set at
80e/tCO2 in this study. Their unitary costs take it into account along with their average carbon
content, their average efficiency9 and their average fuel price.10 The merit order of the thermal
technologies is profoundly modified when going from "low" gas prices pre-dating the current surge
to average 2022 gas prices.

In a context of high gas prices, some of NWE’s neighbors, such as the UK and, to a lesser extent,
Spain, have access to cheaper gas, already saturate their internal use of gas, and may use power
interconnections with NWE to export this cheaper gas transformed into power and benefit from
this price difference. Figure 2 shows the change in power exchange habits between France and the
UK. Scandinavian countries also produce cheap electricity thanks to massive hydropower capacities.
They are also quite well interconnected with NWE.

The price at which power is exchanged in these interconnections - constant in our model - reflects
the 2022/2023 situation where the UK and Spain tend to export gas-based power at a lower price
than that of internal CCGT or GT production, and Scandinavia relies on hydropower surplus.

Austria, Poland, and Switzerland are the three countries most connected to NWE. However,
exchanges are often one-way and no particularity of generation mix or gas prices would justify a
modification of the traditional pattern of exchanges between NWE and these countries. So we chose
to model these exchanges as fixed parameters, not decision variables.

4.2. Calibration and data
Demand.. Residual demand encompasses aggregated non-flexible electricity demand and the pro-
duction of solar panels, wind turbines and run-of-water hydroelectric means. Data is taken from
ENTSO-E for all NWE countries from years 2016 to 2021, excluding 2020 due to the effects of
Covid-19 on power demand. Twenty residual demand scenarios are built for each day of the mod-
eled year as in Verrier (2018) from this historical data, resulting 20365 possible years of residual
demand. Examples of such scenarios are displayed in Appendix C.1 (Figure C.7).

8See Directive 2019/944, Regulation 2019/943 or Commission (2023)
9DIW data

10Average of ARA prices in 2022 T2 for coal and gas.
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Figure 2: French net power imports from the UK during the last year marked by increased gas prices in NWE above
all since the beginning of the Ukraine war and from June 2017 to June 2018, a more representative year. France was
structurally an exporter of power during spring and, since the high gas prices period, has become an importer. Data:
ENTSO-E

Thermal and nuclear means.. Nuclear and thermal productions are aggregated respectively into one
representative nuclear power plant, four representative thermal power plants, a peak gas mean (gas
turbine), a base gas mean (CCGT plant), a lignite plant as it’s still important in Germany and a
traditional coal plant. Their capacities sum up to the installed capacities of the modeled means
in the underlying real system (ENTSO-E data). Installed capacities and marginal costs of each
technology used in the following simulations are displayed in Appendix C.1. Two sets of costs are
chosen, LP and HP, reflecting low and high fossil fuel prices, respectively.

Ramping time is neglected. This means that the modeled system is more responsive than the
real one. This would a priori reduce the recourse to DR technologies but we will see that, even in
this pessimistic context, a need for demand-side flexibility still exists. Thermal means are considered
always available at full capacity, whereas the installed nuclear capacity is weighted by an availability
factor Agt ∈ [0, 1]. It is calibrated on 2022 data from the French TSO to reflect the availability
shortage which occurred at the time and fostered the energy crisis. For example, a lot of maintenance
on nuclear power plants takes place during the summer rendering up to 40% of the installed capacity
unavailable. Note that, in 2023, all German nuclear plants will have been decommissioned.

Hydroelectric production.. Three main types of hydroelectric means exist run-of-water, which is
not controllable and included in the residual demand in our model; conventional hydroelectricity,
which can turbine water from some reservoir in a controlled way; and hydroelectricity with pumping
capacity, which can additionally store energy by pumping water. A representative station is modeled
for each of the last two types. Generation is done at unitary constant costs, pumping is supposed
free.

A traditional focus point of hydroelectric means modeling is to account for the random filling
of water reservoirs by the meteorological water cycle. It requires the construction of representative
inflow scenarios, generally obtained from historical data at the station level and the addition of
supplementary state variables i.e. a significant increase in computational effort. In our copperplate
model, we could not assess the diversity of climates faced by the real hydropower stations since we
only model a representative dam. Moreover, our objective is to model the operations of DR deposits,
not a perfect hydropower scheduling. Therefore, the filling of the reservoir is not modeled explicitly
and our representative stations are given a fixed and finite reservoir size. We choose to set these
sizes to the average energy production of each mean -conventional or PHS- in 2016-2019. As they
are the first two means to be called, this equates to reproducing the last year’s total consumption.
The fact that water in hydropower stations should not know a period of scarcity means that the
marginal cost of turbining water through these stations does not include an opportunity cost and
renders our model rather optimistic about hydroelectricity production. However, this eventual flaw
will be present in our analysis of systems with and without DR, thus not impacting the comparison.
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Demand response.. DR is included according to the framework developed in Section 2.2. Three load-
shedding potentials are considered, all industrial: steel-making with electric furnaces, the electrolysis
step of aluminum production and chlorine electrolysis. Two industrial load-shifting deposits include
cement mills and paper and pulp production. Load-shifting in the tertiary sector is aggregated
in two deposits: tertiary cooling (cold storage, air conditioning) and tertiary heating (space and
water heaters). The same division applies to the residential sector with residential cooling (AC)
and heating (space and water heaters).

Equivalent installed capacities are derived from sectoral/grey sources for industrial loads (At-
maca and Atmaca (2016),CNI (2021),EuroChlor (2023),COPACEL (2023),Chimie and de France
(2023)) and tertiary or residential loads (ADEME (2016),ADEME (2021)). Methods for deriving
availability profiles and heating/cooling days for each country are taken from (Gils (2014)). Maxi-
mum number of DR events and recovery limits are arbitrary decisions from the authors, informed
notably by Gils (2014),RTE (2023) or Leducq et al. (2019). All calibration data for DR is displayed
in Appendix C.2.

4.3. Results
The model calibrated as stated above is run 10 times so that our SDDP model yields optimal

policies when marginal costs of thermal means are high (HP) or low (LP) and when the system has
access to 0, 25, 50, 75 or 100% of the tertiary and residential DR potentials. An optimal policy
in a given setting is then tested against 500 simulations of a full year of operation in this setting.
Results are analyzed from a system point of view and a DR operator perspective.

4.3.1. System effects of DR
Our simulations confirm a property often given to DR in the literature: its ability to reduce

total operation costs of the system by smoothing over time the demand curve and shaving peaks.
The observed distributions of operation costs are indeed drifted left as DR is integrated into the
system in both fuel price scenarios (Figure 3). The reduction is, however, of a few percent and
seems to be non-linearly related to the level of tertiary and residential DR integration in both fuel
price scenarios. In Figure 4 (A), the marginal effect of DR capacity in total cost reduction seems to
decrease with the level of penetration of DR, whatever the gas prices are (i.e., whatever the upper
part of the merit order of generation looks like). Systems costs are reduced in our framework either
by reduced imbalances or by decreased recourse to peak productions.

The average (over the simulations) amount of emissions of the system during the year reflects
the use of thermal means. As DR should compete with peak means at lower costs, it should move a
part of these generations out of the market and hence reduce systems costs but also emissions since
polluting thermal means are the most costly.

In Figure 4 (B), it appears that emissions follow such a pattern of decrease but with lesser
intensity than cost decrease, especially in the case of high gas prices. The lower decrease in emissions
in high gas prices should have been expected as, in such a scenario, gas-fueled plants have higher
variable costs than coal-fueled plants and thus form the peak generations. They also have higher
capacity so that the introduction of DR only causes some gas plants to be priced out of the market,
but not all gas plants so that the generation from coal remains largely unaffected by DR operations.
Since gas plants are significantly lesser emitters than their coal counterpart, the decrease in emission
is thus lower when peak plants are gas-fueled. This is in fact simply a merit order effect.

The more general observation of cost decrease being higher than emissions decrease whatever
gas prices may be explainable either by demand response characteristics or by an end-of-merit-order
effect. Regarding DR characteristics, the previous analysis holds indeed in the load reduction phase
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Figure 3: Total operation costs distributions over 500 simulations of systems with and without DR at full capacity,
with low (L) or high (H) fuel prices.

of a DR event, it may hold no more in the mandatory load recovery phase if residual demand during
this phase is still high. Should that happen, peak means would be called back in order to cover this
second phase of DR events. Thus, recovery constraints may be too harsh for DR to bridge between
peak and off-peak hours in certain periods of the year. Therefore a trade-off of emissions/imbalances
may appear when DR is introduced depending on the merit order it integrates.

(A) Average operation costs (B) Emissions (C) Imbalances

Figure 4: Performance of the simulated systems in low fuel prices (first five bars) and high fuel prices case (last five
bars). Average costs are expressed in Ge, emissions in MtCO2eq and imbalances in percentage of hours in a year
that lose load (i.e., slack variables of Section 3.2 are non-null).

An end-of-merit-order effect is also plausible, that is total system costs are also affected by the
number of imbalanced hours as such imbalances are valued at the value of lost load, i.e. 3000 e/MWh
here which is one order of magnitude higher than the most expensive generation. A decrease in
the average number of such hours is found, independently of the gas prices. Figure 4 (C) displays
the percentage of hours of the year experimenting imbalances depending on the gas prices and
residential and tertiary DR integration. If the effect on diffuse demand response on imbalances is
approximated to a linear effect, which seems reasonable according to Figure 4 (C), an increase of
one percent in diffuse DR capacity reduces by 1.1 hour the number of imbalanced hours. With high
gas prices, since emissions variations show that costly coal generation is not priced out of the market
as it is no longer the peak generation, the total system cost reduction may be primarily driven by
the decrease in imbalance rather than the suppression of expensive generations.
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4.3.2. DR usage and revenues
Apart from system performance, the introduction of DR in the simulated power systems can be

analyzed potential by potential, one of the main features of our model. Two aspects are crucial: the
availability (timing constraint) and relevance (economic constraint) of demand response at times of
need for the system and the ability of DR to generate revenues from its operations.

Availability and usage of DR. . The relevance of demand response potential vis-à-vis system status is
indicated by the possibility of activating them in times of particularly high residual demand - for load
reduction - or low residual demand - for load increase. As a metric to evaluate the system relevance of
each demand response potential, we compute the average share of load reductions/increases during
the 20% highest/lowest residual demand hours over the total load reduction/increase (see Figure 5
for the case of low gas prices and maximum DR capacity). Note that such share is considered null
either because there is no activation during the hours of interest (it is the case for chlorine in Figure
5) or because the potential is never activated during the year (aluminum and steel in our example).

PHS provides an interesting benchmark for DR potentials. PHS and load-shifting are indeed
two flexibility means that provide both downward and upward services while being limited by
energy constraints. That is why load-shifting was modeled in Section 3 through a hydropower
analogy. Conversely, PHS could be considered as a load-shifting potential with low variable cost,
high installed capacity and a flat, always available, load profile. From this perspective, a load-
shifting potential outperforming the relevance metric of PHS implies good relevance for the system.

Figure 5: Left: Share of load reduction (resp. turbining) happening during the hours of top 20% residual demand
over all load reductions during the year. Right: Share of load increase (resp. pumping) happening during the hours
of bottom 20% residual demand overall load increases during the year. Average on 500 simulations of the system with
low gas prices and maximum DR capacity. The bottom lines are decisions of turbining/pumping for power-hydro
storage. [Example: On average, around 25% of load reductions from the paper industry happen during the hours
when residual demand is among the 20% highest residual demand of the year. Around 40% of load increases from
paper production happen during the 20% lowest residual demand hours.]

Results among our simulations with different shares of DR and higher gas prices are quite
similar to that of Figure 5: industrial load-shedding appears irrelevant to the system as they are
almost never activated (see also Figure Figure D.8), most load-shifting potentials are outperformed
by PHS in terms of load reduction except tertiary and residential water heating, but most load-
shifting potentials from all sectors are by far more accurately present during valley hours in order to
increase load. A notable result deals with residential and tertiary air conditioning, as these potentials
contribute poorly to the mitigation of peak residual demand but are strong load increaser during
valleys of residual demand. This result is driven not by economic features such as the variable costs
of these potentials but rather by comfort/physical features as AC is primarily used during summer
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making it available only during this period of relatively low residual demand. This can also be seen
on Figures D.11 and D.12 which depict the average operations of these potentials for each hour of
each day of the year: AC is primarily decreased around 7 p.m. and increased around 10 a.m. during
summer weeks.

Moreover, Figures D.8 to D.12 display that there seems to be no strategic timing to activate
demand response at the scale of the year as load reductions are spread quite smoothly among hours
when the potential is available and the system can be expected to experience high prices, meaning
that the calibrated maximal number of activation is not binding in our simulations. This goes
with the notable exception of the load-shedding from chlorine electrolysis, the only load-shedding
potential to be economically relevant, which depletes during the peaking hours of the very end of
the year, while not appearing during the other tense hours.

Finally, the general pattern of PHS operations (Figure D.9) seems to be respected by most
load-shifting potentials provided they are available. This induces competition between PHS and the
available potentials, highlighted by the reduction of total PHS generation between the DR100 and
DR0 cases (Figure D.9). The competition is clear for potentials with high availability such as that
from the paper and pulp industry (see the exact same pattern of operation as PHS in Figure D.10).
However, the competition turns out more as a complementarity for potentials available mostly
during hours when PHS operations would have been less beneficial (i.e., bridging not-so-peaking
hours with not-so-empty hours). They take indeed a part of the production of PHS during these
hours saving PHS energy capacities for more "intense" PHS operations during interesting hours.
Cement mills (Figure D.10)), tertiary and residential AC (Figures D.11, D.12), residential water
and space heating (Figure D.12) belong to such complementary DR potentials.

Operation revenues of DR. Moving from system relevance, each DR potential can also be seen as a
private asset playing on the energy market in order to generate revenues, independently of system
needs for flexibility. Market revenues Rj of a single DR potential j over the whole year may be
computed ex-post from the point of view of an operator of this sole potential as

Rj =

T∑
t=1

(λt − Cj)djt −

{∑T
t=1 λtujt if load-shifting

0 if load-shedding

where λt is the market price at time t, computed as the dual variable of Constraint (2). Distributions
of market revenues for different mixes and DR integration are computed from 500 simulations of the
decisions determined by the optimal policy facing a random residual demand year and are displayed
in Appendix E.

Among industrial load-shedding potentials (Figure E.13), we already saw that only chlorine is
activated, the other having therefore null revenues from energy market operations. Chlorine gen-
erates revenues with a positive distribution. This distribution remains globally unchanged as more
diffuse DR is incorporated in the system suggesting no competition between chlorine electrolysis
load shedding and diffuse DR. Higher gas prices provide slightly higher revenues which is well ex-
plained by the increase in peak prices but not in base prices it entails. Note that private DR actors
would therefore benefit from higher market prices during peak times and from a system with more
greenhouse gas emissions, which goes against more independent/system operator’s interests.

Industrial load-shifting potentials (Figure E.14) display similar features of separation between
high and low gas price regimes. They are all active and profitable in all cases and simulations,
but on different scales as paper and pulp potentials are between 2 and 4 times more profitable on
average than the cement potential (but with higher variance nonetheless) despite relatively similar
installed capacities. The difference hence comes from the differing availabilities of these potentials.
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Tertiary load-shifting potentials (Figure E.15) yields also higher revenues when peak market
prices are higher (high gas prices). With their capacity being increased, in both gas price regimes,
all these potentials show a saturation in revenues as revenues obtained grow then decrease with
capacity, the turning point being somewhere between 75% and 100% of the maximum potential.
Space heating and water heating are significantly more profitable than tertiary AC which is to be
linked to remarks made above on the availability during the summer only of this potential. Tertiary
AC and tertiary cold storage, especially with low gas prices, may even be non-profitable in some
simulated years, even though their revenue distribution belongs mostly to the positive part of the
graph.

Residential load-shifting potentials (Figure E.16) also present a saturation. Residential AC has
a higher chance of being non-profitable than any other DR potential, yet we saw that it played an
important system role in compensating for very low residual demand. Residential water heating
appears as the more profitable DR potential, but it displays saturation for lower levels of integration
(between 25 and 50% of the maximum potential) and greater revenue variance than any other DR
means.

Globally, diffuse demand response may cannibalize itself as some of its potentials are activated
during the same hours, and the same range of prices and create revenues from the same variability
of the residual demand. Once this variability is absorbed, any new MW in a diffuse DR potential
decreases the revenue caught by each MW of DR of the same type. However, as this happens for
massive integration of DR in the system, such an effect can be neglected for the most part of DR
deployment as diffuse DR levels in North Western Europe are low compared to the cannibalization
threshold.

Finally, the difference in revenues among potentials and the decrease in revenue of diffuse DR
in case of significant integration would play against the system relevance of the same potentials.
Hence, the question of economic incentives for investing in and operating diffuse demand response
should be investigated in detail in order to mitigate the possible misalignment of private and system
interests we highlight here.

5. Discussion

Future renewables-based power systems are in great need of flexibility. Demand response is seen
by academia, industrials and regulators as one of the most promising options for providing flexibility
in the next decade. Yet, the effects of demand response on power systems and markets, in terms of
power prices or competition with other flexibility resources, remain insufficiently studied to ensure
that its deployment is safe and swift. Its main features also have to be accounted for in large-scale
models as they greatly influence the impacts of a DR potential on power systems and the revenues
it is able to capture by limiting its possible operations.

In the long run, only the correspondence between market product attributes and technical fea-
tures of a flexible resource guarantees that the latter is properly valued in the different power mar-
kets. This correspondence reflects the power system’s ability to efficiently procure flexible resources
at the right time and on sufficient levels. Establishing adequacy is a hot policy topic (Kerscher
and Arboleya (2022)), notably in Europe through reflections on future market design (Commission
(2023)). The present paper presents a model giving insights on such adequacy as it can be adapted
to various mixes or markets while keeping a relevant description of DR resources.

This paper proposes a bottom-up model for the operations of demand response in power markets
during a full year. Building from flexibility attributes pointed out as crucial by the literature,
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the model bridges demand response as flexibility provider modeling and power system operation
planning under uncertainty, which was still too scarce in the literature yet crucial for the analysis
of demand response’s contributions in modern power systems Motta et al. (2024). As such, it is
designed to be compatible with a powerful method for solving multistage stochastic convex-linear
optimization problems, SDDP. This resolution method is chosen in order to account for stochasticity
in the model while allowing for numerous state variables describing DR attributes.

Model features are explained through a hydropower analogy in reference to previous DR models,
to DR and hydropower’s common nature of flexibility means, and to historical applications of
stochastic programming in power systems. This model’s point is the study of modern and future
power systems encompassing more intermittent renewable energy sources, storage capacities and
demand-side management.

As, to the best extent of our knowledge, no bottom-up model of DR in an SDDP framework
exists, a concise review of the method is provided. We highlight its ability to handle large sets of
accessible values for random variables at each stage because the complexity of the method grows
only with the sum on all stages of the size of these sets. Traditional scenario-based approaches
have growing complexity with the product of these sizes. SDDP has been historically designed for
(water) stock management problems. Opportunity costs11 of depleting these stocks at some stage,
given the state of the system, are natural outputs of the method. As our hydropower analogy
underlines, these outputs are also relevant for other flexibility means, such as DR, and the present
model enables their computation.

A short application of the model is proposed, focusing with crude details on a simplified day-
ahead market for North Western Europe under particular circumstances of high gas prices and
competitive use of power interconnections by neighboring countries. It follows that DR has multi-
faceted impacts on power systems: while always leading to a decrease in total operation costs, system
emissions or imbalances, technical or social constraints of DR potentials may lead to equivocal ef-
fects on the market revenues of DR depending on the specific pre-existing merit order. Moreover,
a cannibalization effect is highlighted, with diffuse DR displaying decreased benefits as its capacity
rises above some (high) threshold.

A single DR potential may not be systematically beneficial in the simulated scenarios. On the
contrary, the system benefits systematically from the operations of this potential in terms of total
operation cost reductions. Therefore, a misalignment between system operators and market rev-
enues of operators with a single DR potential may arise in the present case study.

Finally, a natural extension of the model is its spatial disaggregation at the transmission level or
to account for the location of DR resources in the system. Building from usual linear approximations
of Kirchhoff’s laws, e.g., with power transfer distribution factors, our copper-plate model transforms
easily to an optimal power flow model only through some additional linear constraints and decision
variables. This type of model would be useful when dealing with the value of demand response as
a way to defer network investments.

One of the main limitations of our model, as stated here, is that it captures only one stream of
revenue for demand-side flexibility. Thus not all attributes of DR as a flexibility source are modeled
and valued, hindering our analysis of DR deployment in power systems. Therefore, future research
may seek to integrate additional markets, such as intraday ones or reservation payments in the
model for DR, which may be exchanged in reserve auctions or operated directly on energy markets

11In fact, approximations of these costs with controlled quality.
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if not reserved.
Finally, the modeling framework presented in this paper can be easily adapted to assess other

types of values of demand response, such that from the point of view of a private price-taker
aggregator (here, the stochastic variables would be the market clearing prices) or, even, test the
effect of demand response on investment decisions under uncertainty. For example, one could add
an initial investment stage in supply-side flexibilities and softly set a yearly imbalance target in
energy (e.g., a convex penalization of the gap to target in the last solving step), the whole model
still being in line with the SDDP assumptions - and notably the relatively complete recourse. Such
avenues of modeling are testimonies of the multiple variations our modeling approach allows.
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Appendix A. Extension of the hydropower analogy

Figure A.6: Extended hydropower analogy to include the time limit for load recovery ∆. To include a minimum
downtime ν, a set of ν + 1 rolling upstream reservoirs of size the asset capacity should be added similarly. Note that
the model of DR remains devoid of binary variables and linear; hence, it is in line with our solving strategy for the
system’s scale dispatch problem.

Appendix B. Stochastic Dual Dynamic Programming

Let’s consider an archetypal problem solvable with SDDP, with finite horizon T yielding some
decision rule π :

min
π

s. t. Xt+1=ft(Xt,Ut,Wt)
Ut=πt(Xt,Wt)

E

[
T−1∑
t=0

Ct(Xt, Ut,Wt) +K(XT )

]
(B.1)
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where Ct is an instantaneous convex cost, K a convex final cost, Xt ∈ X a state variable at stage t,
ft the linear state transition dynamic from stage t to t + 1, πt the decision rule at stage t, Ut ∈ U
the decision(s) taken at t and Wt the random variable representing some noise existing between
stage t and stage t+ 1 (excluded) with values in the finite set Wt. Note that, if Wt is not finite, it
may be possible to reduce it to a finite set by methods such as sample average approximation. In
general, it seems reasonable to enumerate Wt – which is done in SDDP– but not the whole scenario
tree W1 × · · · × WT – which is not done in SDDP but would if one wanted to discretize the whole
state space. The process (Wt)t∈{1,...,T} is supposed to be a white noise so that there is stage-wise
independence. Sets X et U are compact. Problem 1 under Constraints (2) to (16) presented in
Section 3.1 is an instance of such a problem.

With these hypotheses, Problem B.1 may be formulated in a dynamic programming framework
by introducing a Bellman function Vt at each time step. This approach enables to decompose the
resolution of the complete problem into that of a backward in time series of subproblems associated
with each stage and the system state at this stage. The Bellman function, also called the cost-to-go,
represents the expected future cost when starting from a given state. It is defined for x ∈ X, w ∈ W
by

VT (x) = K(x) (B.2)

V̂t(x,w) = min
ut∈U

Ct(x, ut, w) + Vt+1 ◦ ft(x, ut, w) if t < T (B.3)

Vt(x) = E
[
V̂t(x,Wt)

]
if t < T. (B.4)

The goal of SDDP is to approximate by inferior values the functions Vt with a supremum of
affine functions relying heavily on the convexity of the Vt. These affine functions for stage t are
obtained from the subproblem defining Vt in the classical dynamic programming framework where
Vt+1 is replaced by its approximation Ṽt+1 computed at the previous step (we begin with t = T and
final cost K is supposedly known). For a realization w of Wt and a given state xt at stage t, this
subproblem writes

β̂t(w) = min
x,u

s. t. x=xt [λ̂t(w)]

Ct(x, u, w) + Ṽt+1 ◦ ft(x, u, w) (B.5)

The dual variable λ̂t(w) is associated with the state constraint of the previous subproblem. By
definition of λ̂t(w), we have the following inequalities for all realizations w and all states x

β̂t(w) + ⟨λ̂t(w), x− xt⟩ ≤ β̂t(w) ≤ V̂t(x,w) (B.6)

since Ṽt+1 ≤ V̂t+1(., w). An approximation by inferior values of the function Vt in the neighborhood
of xt is then given by the affine function, also called cut,

βt + ⟨λt, .− xt⟩ := E
[
β̂t(w)

]
+ ⟨E

[
λ̂t(w)

]
, .− xt⟩. (B.7)

Here, only the backward phase of SDDP yielding new cuts for approximating the true value
functions has been described. This phase relies notably on the drawing of relevant trajectories
(xt)t≤T for the state variables. Indeed, the cuts are only good approximations of the value functions
near these points. The choice of relevant state for computation is also encountered in traditional
stochastic dynamic programming and the selected approach is to grid all the state space which
may be extraordinarily costly in high dimensional systems. In SDDP, computations are made only
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at "relevant" states i.e. those taken by the system when it follows an optimal path according to
some drawn trajectory of noises. Actually, to compute this optimal path, knowledge of true value
functions is required. So, these value functions are replaced by their approximates built in a previous
backward phase. This describes the forward phase of SDDP. Backward and forward phases depend
on each other and mutually strengthen their results. Thus SDDP alternates between forward and
backward phases numerous times until some stopping condition is met.

Under the hypothesis taken here, the convergence of the approximate after k iterations of
forward and backward phases Ṽ

(k)
t to Vt is guaranteed when k goes to infinity (see Pereira and

Pinto (1991) or Shapiro (2011)). Thus the resulting policy also converges towards the true opti-
mal policy as the algorithm iterates. At each step (k) (composed of a forward and a backward
phase), an exact inferior bound of the value of the true problem is given by v(k) = Ṽ0

(k)
(x0)

(note that the initial state x0 is supposed to be known and set) and an exact upper bound by
V̄ (k) = E

[∑T−1
t=0 Ct(X

(k)
t , U

(k)
t ,Wt) +K(X

(k)
T )

]
. The latter bound may not exactly be computed

and must be estimated by a Monte-Carlo method: several samples of realizations of W are drawn
which yields as many trajectories for X and U , then the mean on samples of the total cost v̄(k) is
computed. A confidence interval for the value of the upper bound, [v̄(k)l,α , v̄

(k)
h,α], may be derived. Not-

ing v∗ the true optimal value, we have the following inequalities after step (k) with some confidence
level 1− α,

v(k) ≤ v∗ ≤ V̄ (k) ∈ [v̄
(k)
l,α , v̄

(k)
h,α]. (B.8)

Several stopping rules exist and are primarily based on inequalities B.8. As we mentioned,
the inequality gets tighter as k grows so a simple stopping rule is to set a number of iterations
for the algorithm but this gives no guarantee of the quality of the approximation. The original
criterion proposed by Pereira and Pinto (1991) relies on the above inequalities. Setting a priori
some confidence level 1 − α, the algorithm should stop after step (k) if v(k) ≥ v̄

(k)
l,α /. However,

as pointed out by Shapiro (2011), this condition may be met very early if the confidence interval
around the upper bound is very large i.e. the estimation of the upper bound is of poor quality, and
no optimality guarantee may be obtained. He proposes then the following stopping rule, which is
used for the resolution of Section 3 model. It states that algorithm should stop after iteration (k) if
|1− v̄

(k)
h,α/v

(k)| ≤ ϵ with a confidence level 1−α and some precision ϵ > 0 set a priori. This stopping
rule guarantees that the policy yielded by SDDP is ϵ-optimal for the true problem with probability
1− α/2. Note that these results suppose that the distribution of the upper bound is normal.

Appendix C. Case study - Calibration Data

Appendix C.1. Power system

23



Technology Installed capacity (MW) Carbon content
(tCO2/MWh)

Cost (LP-HP)
(e/MWh)

Lignite 6240 0.428 95.1
Anthracite 13731.6 0.342 165.1
CCGT 40109.8 0.202 91.7-171.7
GT 3081.8 0.202 128.3-240.4
Nuclear 77907 0 23
Hydro Conv. 10554.4 0 7.53
PHS 14276 (+) / 12486 (-) 0 9.54
Interco. UK 3780 0 95-150
Interco. Spain 3000 0 96-160
Interco. Scand. 4609 0 15
Run-of-water 29826 0 0
Wind 186274 0 0
PV 173259 0 0

Table C.2: Installed capacity by country (MW), carbon content (tCO2/MWh) and Variable cost (e/MWh) in the
modeled NWE power system. For thermal means, we suppose a carbon price is set at 80e/tCO2 in line with the
2023 EU-ETS projections. Their efficiency is taken into account in installed capacity numbers.

Figure C.7: Ten scenarios of residual demand in NWE for a winter week and a summer week. The structural cyclicality
of demand is affected by intermittent RES production – particularly in Germany due to higher RES integration.

Appendix C.2. Demand response potentials
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Technology Installed
capacity
(GW)

Mean
available
capacity
(GW)

Cost
(e/MWh)

Event
duration
(h)

Nb of
events

Availability
variation

Steel electric furnace 1.6 1.15 411 4 40 No
Aluminum electrolysis 0.35 0.25 164 4 40 No
Chlorine electrolysis 1.4 1.1 96 4 40 No
Cement mills 1.1 0.3 10 3 365 E
Paper 1 0.2 10 3 365 E
Pulp 1.3 1.0 10 3 365 E
Res. space heating 30 7.2 50.9 1 1095 Th E
Res. water heating 40 5.2 50.9 12 365 Th E
Res. AC 15 0.6 50.9 1 1095 Th E
Ter. space heating 15 2.6 26.45 2 1095 Th E
Ter. water heating 5 1.1 26.45 12 365 Th E
Ter. AC 11 0.5 26.45 1 1095 Th E
Ter. cold stor. 10 4.1 26.45 1 1095 Th E

Table C.3: Characteristics of modeled demand response means. Economic availability variations (E) are related to
opening days of businesses, business hours and seasonal variations in business activity. Thermal availability variations
(Th) are linked with the thermal sensitivity of the specific electricity use.
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Appendix D. Case study - Demand response activations

Figure D.8: Load-shedding operations in the DR100 low gas prices case. Left: load reduction. Right: load increase.
[Each row is a day of the year, each column is an hour of the day, and color reflects the energy shed during this hour
of this day.]

Figure D.9: PHS operations in the DR100 (upper line) and DR0 (bottom line) low gas prices case. Left: turbining.
Right: pumping.
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Figure D.10: Industrial load-shifting operations in the DR100 low gas prices case
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Figure D.11: Tertiary load-shifting operations in the DR100 low gas prices case
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Figure D.12: Residential load-shifting operations in the DR100 low gas prices case
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Appendix E. Case study - Demand response market revenues in different power mix

Figure E.13: Distributions of market revenues from the operations of load-shedding potentials in power mix with high
(red) or low (blue) gas prices and 25, 50, 75 and 100% of residential and tertiary DR available capacity (transparency).

Figure E.14: Distributions of market revenues from the operations of industrial load-shifting in power mix with high
or low gas prices and 25, 50, 75 and 100% of residential and tertiary DR available capacity.

Figure E.15: Distributions of market revenues from the operations of tertiary sector load-shifting in power mix with
high or low gas prices and 25, 50, 75 and 100% of residential and tertiary DR available capacity.
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Figure E.16: Distributions of market revenues from the
operations of residential load-shifting potential in power
mix with high or low gas prices and 25, 50, 75 and 100%
of residential and tertiary DR available capacity.
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