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Highlights

System and Private Values of Demand Response: Insights for Mass Deployment

Julien Ancel, Olivier Massol

• Demand response resources provide multiple services to different power systems’ actors with
diverse objectives, so have multiple values.

• Comparing the values of the same demand response resource gives insight into the actors’
incentives to invest and operate them.

• Some flexible appliances have all-around positive values, some benefit private players but not
the system, and some the opposite.

• The last two cases require different types of interventions to be deployed in a welfare-enhancing
manner.
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Abstract

Demand response is advertised by regulators, system planners, and the industry as a crucial flex-
ibility resource for the next decade in increasingly renewable-based power systems. As of today,
most demand response potentials remain untapped, notably in the diffuse residential and tertiary
sectors. A massive deployment effort seems bound to happen. This paper provides insights into
the values of numerous demand response potentials from the different perspectives of system plan-
ners and operators, private market actors, and consumers. To do so, a large-scale SDDP-solved
bottom-up demand response model is developed and calibrated on a plausible 2035 French power
system. This unique yet agile valuation framework provides insights into operation-related values
of demand response, such as the system’s cost or emissions reductions, and investment-related ones,
such as peak generation investment deferral or mitigated renewable capacity increase. Evaluated
demand response potentials originate from all types of appliances, primarily focusing on residential
and tertiary sectors. Thus, multiple merit orders for demand response are obtained, depending on
the merit criterion. Divergences and convergences between these merit orders enrich stakeholders’
vision on which potentials should be invested first, which are riskier, and where to target eventual
supports.

Keywords: Demand response, Uncertainty, Electricity markets, Stochastic Dual Dynamic
Programming
JEL: C61, L94, Q41, Q42, Q48

1. Introduction

Facing the double challenge of increasing demand for electricity and massive integration of
variable renewable energy sources, the power sector seeks new flexibility sources. These trends
hinder the ability of power systems to follow variations of supply and demand to balance them at
all relevant time scales and controlled costs. Among new flexibility sources, demand-side flexibility,
also called demand response, is seen as crucial in the following decade. Regulators and system
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operators foster this flexibility option due to its lower costs compared with high-scale deployment
of batteries, power-hydro storage, or with interconnections development (IEA (2022),RTE (2023)).

Even though it implies lower infrastructure costs, demand response necessitates regulatory, eco-
nomic, and social efforts to be implemented significantly. In Europe, many channels are available to
incentivize the development of demand-side flexibility, and numerous actors might find an interest in
it (e.g.Bureau et al. (2023), recommendations 4 and 5). Therefore, an industrial plan to coordinate
these efforts seems required for stakeholders to deploy demand response at the system scale (see
RTE (2023) in France, DENA (2016) in Germany, DoE (2006) in the US or IEA (2022)) and benefit
from this source of flexibility.

However, such coordination requires stakeholders to answer the genuine question: what is the
value of a newly installed MW of demand-side flexibility from a specific power use? A relevant
answer should assess simultaneously and quantitatively the specifics of the considered power use,
the type of service(s) for which its flexibility is intended, but also the interest of all actors of
the power system for this flexibility. Hence, large-scale deployment of demand response implies
disaggregating the notion of demand response value and measuring these values. These indicators
are the only way stakeholders would have access to the multifaceted impacts of demand response
in both power systems and markets.

The purpose of this paper is to contribute to bridging such a gap by providing a methodology
for assessing such multifaceted impacts in a unique framework. Hence, this study not only derives
indicators of various impacts of unlocking some demand response from different power uses into a
low-carbon power system but also ensures the comparability between the indicators. As the diverse
actors of power systems are not interested by the same values of demand response, such comparabil-
ity, which can not be found in the current state of the art, provides crucial insights on the difference
of incentives perceived by those actors vis-à-vis the same demand response asset. To demonstrate
how to use the methodology and the relevance of the resulting comparative insights, an application
to a prospective 2035 French power system is provided in the paper.

The literature has extensively studied demand response. Nevertheless, it remains fragmented
between studies of power use characteristics as flexibility sources, demand response revenue streams,
the challenges of its integration in electricity markets, and its effects on power systems. Such state
of the art is detrimental to usable policy insights as all of these aspects have to be considered in
system planning. System effects are closely related to the characteristics of introduced resources
and systemic flexibility needs. Resources are, in turn, only actually introduced and operated if their
revenue is sufficient. Finally, such revenues depend directly on market designs, public aids, and the
correspondence between the features they value and the specifics of the considered demand response
potential.

Numerous academic studies or reports from the gray literature focus on inventorying flexible
power uses. They describe their technical or social features as a flexibility resource (Gils (2014),
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Verrier (2018)), and eventually, the cost of turning these uses flexible (ADEME (2017),IEA (2022)).
Another fruitful line of research seeks to value demand response. Such studies may take the point

of view of any stakeholder: System operator (e.g., Verrier (2018),Müller and Möst (2018),Marañón-
Ledesma and Tomasgard (2019)), Network operator (e.g., Nouicer et al. (2023) for the distribution
level), DR aggregator (e.g., Campaigne and Oren (2016),Okur et al. (2019),Roos et al. (2014)),
Supplier (e.g., Astier and Léautier (2021),Silvestre Freitas Gomes et al. (2024)), Consumer (e.g.,
Muratori and Rizzoni (2016),Remani et al. (2019),Siano and Sarno (2016)). These studies omit, in
particular, the diversity of flexible consumptions and their characteristics, often settling for a specific
use of electricity or simple "before the meter" demand reduction. Moreover, they all maximize
monetary payments to the modeled actor. Thus, even if they consider several revenue streams (e.g.,
Roos et al. (2014)) or technical characteristics (Siano and Sarno (2016)), they only consider one
type of value of demand response, its purely economic value created by operation costs reductions
or savings in bills. As underlined by Kerscher and Arboleya (2022) in their literature review, only
a minority of studies focus on other values of demand-side flexibility, expressed in terms of security
of supply or greenhouse gas emission reduction. Recent efforts tend to recognize the need for such
a multifaceted assessment of demand response value. Hence, Misconel et al. (2021) mentions the
different types of values of DR. Yet, the authors only derive quantified demand response values from
a system operator perspective, assessing total operation cost reductions and CO2 emissions with
different fixed levels of renewables.

Some works explicitly tackle this diversity issue but still focus on economic value by assessing
revenues of demand response from different markets (Biegel et al. (2014)) or by valuing one attribute
of specific electricity uses as flexibility resources (Bruninx et al. (2018)). Similar to the previous
research line, they only partially inform on the values of a flexible demand. Their approach also
suggests that a specific attribute of this demand may be modified to increase the measured value
of this flexibility. This may not necessarily be the case for demand response, which derives directly
from the concrete choices of consumption of physical persons, e.g., load-shedding from heating
appliances will never be entirely available during winter because of the finiteness of the willingness
to receive monetary compensation for erased heating demand.

Finally, some authors inventory in parallel the attributes of a flexible resource, the possible uses
of this resource, and the properties that are valued by the different electricity markets (Bradley et al.
(2013),Vicente-Pastor et al. (2018), Villar et al. (2018),Ramos et al. (2016)). However, their analysis,
intended to give insights on market designs, remains mainly qualitative. Thus, the adequacy of these
three aspects, sought by such insights, is not quantitatively assessed nor measured for concrete
flexibility sources in actual or projected power systems.

To the best extent of our knowledge, Bradley et al. (2013) formulates the closest contribution to
the present study. Yet, it is based on old data (pre-2010), not accounting for the increased uncer-
tainty present in renewables-based power systems, and builds on exterior and different methodologies
to assess DR values, thus inducing comparability issues between the resulting values. Therefore, a
research gap exists (and has been underlined, e.g. in Motta et al. (2024) or Ringkjøb et al. (2018))
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for a methodology to assess multifaceted demand response impacts on power systems which accounts
for DR characteristics as a flexible resource and the variability of renewable generation, and allows
stakeholders to compare the resulting incentives for the different actors of modern power systems.

The present study seeks to follow the ambition of the last mentioned branch of the literature
while adopting a more quantitative approach. Here, the types of flexible demand, the different
values and services of demand response, and, above all, measurement methods for these values
are encompassed in a common framework. Hence, such measures are given for specific, flexible
electricity uses with their own technical or social constraints. The main contribution of this study
lies in its holistic and quantitative approach to demand response. It synthesizes possible paths for
valuing making a specific power demand flexible.

Policy-wise, this study proposes methods for evaluating demand response and insights on some
flexible demands to decision-makers, whatever the dimension of demand response they are interested
in. The proposed framework also evaluates potential conflicts occurring in the development of DR,
as some actors might have opposed valuations of the same DR potential. In other words, we build
a dashboard of indicators relative to demand-side flexibilities, providing guidance on deploying
demand response capacities according to stakeholders’ interests.

In the EU, unlocking the potential of active consumption constitutes a focus of the current
discussions on electricity market design.3 It is notably discussed to alleviate barriers and allow de-
mand response access to support mechanisms, such as national capacity remuneration mechanisms.
Moreover, EU member states shall be allowed to create a new peak shaving product in case of an
energy crisis to unlock supplementary demand-side flexibility. The sizing of such products procured
by TSOs depends on assessing the potentials of demand response and their values for the system
and private actors so that the new instruments target potentials that are truly additional for the
system without creating windfall effects for already economical potentials. Thus, the results of the
present paper may contribute to the current discussion by giving such valuations of the demand
response potential in France, with a replicable methodology for other countries.

The remainder of this paper is structured as follows. Section 2.1 presents the background and
reviews the attributes of a generic flexible resource. Section 2.2 recalls the main services provided
by demand response to power systems and the actors responsible. We highlight how the literature
focused on valuing these services rather than the resources that provide them. In Section 2.3,
perspectives stemming from the meeting of services, actors, and DR resources are linked with as
many DR values. For each, quantitative measurement methods with a prospective approach are
proposed in Section 3. A sensitivity to the main modelling assumptions regarding DR is provided in
Appendix B. Finally, in Section 4, this dashboard of values is computed for several DR appliances
from all sectors in possible future French power systems with high levels of renewables.

3Both the general approach agreed in the Council at the end of 2023 (of the European Union (2023)) and the
texts adopted at first lecture by the Parliament in April 2024 (Parliament (2024a),Parliament (2024b)) mention it.
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2. From flexible uses of electricity to valued demand response

The section aims at disaggregating the notion of demand response value. From a literature
review, we derive a series of indicators of DR values by bridging flexible electrical appliances, generic
flexibility resources, flexibility needs of a power system, and the actors responsible for procuring
these services.

2.1. A variety of power demands as flexibility resources

A flexible energy resource is an available asset that can start up and ramp sufficiently quickly
to follow and adapt to varying grid or market conditions (Goutte and Vassilopoulos (2019)). This
technical description does not suffice for a power system to benefit from this flexible resource. As
with any energy resource, this flexibility shall be valued and paid to participate in the system.
Thus, a flexible resource may also be seen as a market product and described as such. A specific
electrical appliance enrolled in any demand response program is a flexibility resource and, thus,
both a technical object and a market product. Each aspect assesses a resource through some of
its characteristics or attributes. Villar et al. (2018) and Kerscher and Arboleya (2022) review
attributes linked with technical constraints. Ramos et al. (2016) builds a list of crucial features
for market products of flexibility. Their combination induces a portfolio of attributes with which a
flexible resource is completely described. We extract the main attributes of a DR potential seen as
a subgroup of flexible resources in Table 1.
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Attribute Description
Capacity Installed capacity of modulation
Duration bounds Minimum/Maximum time of activation once the resource is triggered
Ramping rate Time required to reach a targeted level after activation. Generally infinite for DR.
Lead time Duration between sending a triggering signal to the resource and its effective activation
Location Grid with which the resource is connected (distribution or transport)
Availability Temporal variations of the available share of installed capacity (Müller and Möst (2018);

Verrier (2018))
Number of activa-
tions

Maximum number of activations over a predefined period, often the contract period. Re-
flects technical constraints (battery deterioration, nuclear flexibility) or social constraints
(DR)

Recovery Maximum time between a load reduction and the recovery of the shifted load for load-
shifting (mainly for DR, eventually storage)

Cool down Minimum time gap between the end of an event and the triggering of the following one
(social constraint for DR, technical for supply-side flexibilities)

Delivery time Time gap between contractualization and the sending of an activation signal
Predictability If a random variable quantifies the temporal availability at a date, predictability refers to

the ability of a market player to know the distribution of this variable
Controllability Risk level of a flexible resource not following an activation signal. With predictability,

it may form a unique attribute of flexibility product risk or quality (Chao et al. (2022);
Schittekatte and Meeus (2020))

Objective Service for which it is sold or market on which it is exchanged
Contract The contract type through which the flexible resource is engaged (long-term, exchange-

able...)
Remuneration Type of settlement (pay-as-bid, pay-as-clear...)

Table 1: Attributes of a DR resource

These flexibility attributes do not possess intrinsic values, while their combination has. Here, our
approach differs from that of, for example, Bruninx et al. (2018) that claims to assess the value of
the controllability of demand resource. However, this study measures, in fact, this value for specific
uses of electricity, which also displays a portfolio of characteristics such as installed capacities, time
availability, or bounds on event duration. A fully controllable asset is irrelevant if its maximum
shedding time is not over a few seconds or is never contracted.

Therefore, to assess demand response value, the focus should be placed on specific real electrical
appliances seen through their unique combination of flexibility attributes. Such combinations are
presented in Table (2) for the different appliances considered in this study: residential and ter-
tiary space heating, residential and tertiary water heating, residential and tertiary air conditioning,
tertiary cold storage, cement mills, paper production, pulp production, steel-making with electric
furnaces, aluminum electrolysis and chlor-alkali process with membrane cell. The latter three in-
dustrial appliances are solely dedicated to load-shedding, while the others take part in load-shifting.

Installed capacity, ramping rates and availability are directly observable through these appli-
ances’ load profiles and specifications. For this study, installed capacity will be a controlled, exoge-
nous parameter. Limits on the number or frequency of activation, duration, recovery, and minimum
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downtime may depend on physical properties of the main objective of the appliance (e.g., thermal
inertia in cold storage, damages to electric vehicles’ battery) or on social acceptance reasons (e.g.,
discomfort limitation). They are derived notably from Gils (2014), Müller and Möst (2018), Al-
stone et al. (2017) and sectoral literature. Costs are based on Table D.1 of Bradley et al. (2013)
for residential and tertiary sector appliances and on Verrier (2018) for industrial loads. Availability
profiles for temperature-dependent appliances are conditioned by meteorology, which is reduced
here by temperature. Profiles are adapted from Müller and Möst (2018). Hence, a DR valuation is
geographically dependent, as expressed by Alstone et al. (2017). In this paper, heating and cooling
demand days profiles are aggregated at the country level for France and taken from Demand.ninja
(Staffell et al. (2023)) for 2022, and cooling degree days are set 5% higher in 2035. Lead time
depends on the enabling technology (see Alstone et al. (2017) appendixes for a complete overview).
Predictability depends on the particular chosen actor’s point of view and on the installed enabling
technology.

As we focus on the values of flexibility from a specific power use, controllability and predictability
are supposed to be perfect. Controllability may be derived from consumer surveys. It could be
expressed as a probability of failure at each hour of the year, giving the probability of a DR
appliance not responding to its triggering signal at this hour. This attribute is hard to calibrate
without comprehensive data on the effective consumptions at the individual scale. Even then, an
estimation of this probability for a specific appliance using past consumption data may no longer be
relevant in the future. For example, during the 2022-2023 winter energy crisis, France experienced a
reduction in power consumption of 8-10% (see RTE or Doumèche et al. (2023)) with contributions
from all sectors and a modification of consumption behavior lasting for at least six months, following
intense advertising for energy savings from the government and energy suppliers. Such modification
would impact our controllability attribute, and hence, for prospective studies, relying on past data
to calibrate this attribute may not be relevant. That is why the parameter is supposed to be perfect
in this study4. As a consequence, the values that are derived here are, in fact, upper bounds for the
values of the considered DR potentials.

4Another justification could be that a DR aggregator could manage to achieve 1 MW from some appliance with
near-perfect confidence by recruiting sufficiently many consumers from this appliance with independent probabilities
of failures.
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Technology Availability Duration Nb of activation Recovery time Min. downtime Cost (e/MWh)

Res. SH 1 1095 2 10 50.9

Res. WH 12 365 12 20 50.9

Res. AC 1 1095 2 10 50.9

Ter. SH 2 1095 4 10 26.45

Ter. WH 12 365 12 10 26.45

Ter. AC 1 1095 2 10 26.45

Ter. c. stor. 2 1095 2 23 26.45

Cement mills 3 365 20 12 10

Paper prod. 3 365 20 12 10

Pulp prod. 3 365 20 12 10

Steel-making 4 40 - - 411

Al electrolysis 4 40 - - 164

Chloralkali proc. 4 40 - - 96

Table 2: Flexibility attributes of DR compatible appliances

2.2. Different flexibility services and their procurers

Flexible resources are included in power systems to provide specific services sought by precise
actors. The variety of services reflects the array of flexibility needs, which are accounted for in the
many definitions available for flexibility. The flexibility of a power system may refer to characteristics
of the power system, to energy resources, or even to market products.

From a system point of view, flexibility relates to the ability to change production or consumption
of dispatchable units at all relevant timescales. Ramos et al. (2016) specifies this definition as the
ability of a system to maintain a continuous service while facing massive and rapid variations of
supply or demand. Thus, flexibility is also the ability to dispatch adequate resources and to keep
them available when such variations are bound to occur. The literature defines three main types
of flexible resources (Villar et al. (2018) or Goutte and Vassilopoulos (2019) for the first two): up
and down ramping resources that follow the rapid evolutions of balancing needs, energy-shifting
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resources that smooth the meeting demand and production intertemporally, and capacity resources
which are dispatchable and reservable.

References to "continuous service" or "adequate" resources link system flexibility and system
performance or quality. Goutte and Vassilopoulos (2019) provide a definition of flexibility, which
tends towards this perspective as it is the ability to integrate increasing uncertainty levels while
keeping a satisfactory level of performance. The authors intentionally don’t provide metrics of this
performance reflecting the many services and points of view a stakeholder may have to define it.

From a market perspective, flexibility is defined as the ability to efficiently cover a variable
demand (Ramos et al. (2016)). Some authors also see it as the modification of production or
consumption in response to an exogenous signal (price or not) to supply balancing services or
transmission constraints management services (Villar et al. (2018)). The link between resources,
services, markets, and actors is made through the previous definitions of flexibility: a signal sent
by responsible parties of different services links, through markets, these services to resources that
could provide them. Each service’s delivery may be a metric of the system’s performance.

Flexibility is therefore also defined by the willingness to pay for the services of TSO, DSO,
balancing responsible parties, producers, consumers, or aggregators (Ramos et al. (2016)). Among
these services, Ramos et al. (2016) and Vicente-Pastor et al. (2018) highlight in particular:

- balancing, procured by TSOs, DSOs or Balance Responsible Parties,

- grid constraints mitigation (congestion, phase or voltage adjustment...), procured by TSOs
and DSOs,

- portfolio optimization/imbalance penalty minimization, procured by market actors such as
aggregators, BRPs, or producers,

- investment deferral, in peak capacities or the grid, procured by ISOs and TSOs but above all
DSOs.

Such services may induce a categorization of demand response, as expressed in Alstone et al.
(2017). This extensive assessment of DR in California divides DR into four types, reflecting the dif-
ferent timescales of the services for which DR resources are called. Shape DR is linked to structural
changes in load profiles due to pricing schemes. It is close to the so-called implicit DR. Shift DR
designates day-ahead to hourly or quarter-hourly shifts in demand but with constant total energy
extracted from the grid. Shed DR acts on the same timescale as shift DR but is a load shedding
that has not been recovered. Finally, Shimmy DR encompasses ancillary services that are much
closer to real-time (quarter-hourly to seconds before real-time).

A limit for the value of a resource providing a flexibility service exists for each service: it is
the cost of other resources able to provide the same service. That is one of the approaches used in
Alstone et al. (2017) to assess the value of DR as a particular service provider for the Californian
power system. For example, DR competes for congestion management with grid development and
peak production units.

Moreover, as the authors state themselves (Section 5.7, second paragraph), Alstone et al. (2017)
takes a system perspective that is not that of a market player or a consumer: "Our results do not
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intend to prescribe the level of compensation for participants in any way; rather, we have described
the market value to the grid- the dollar value that is cost competitive for this service type resources
as compared to alternative resources in the wholesale market.". At the core of numerous bi-level
studies (Okur et al. (2019), Silvestre Freitas Gomes et al. (2024)), lies the same observation that
different market values may be computed for a system operator and a private asset operator for
the provision of the same service. For example, Okur et al. (2019) finds that aggregators have
no economic interest in balancing their own bids using some of their DR resources while system
operators do.

In other words, a single resource may have different values for different services and different
total values in the eyes of various actors, who have their own perceptions of the relative importance
of these services.

2.3. Multiple values of a DR resource

Valuing DR by valuing services provided by DR suggests two problematic implicit assumptions.
First, it supposes that all services that DR may provide and their impacts are translated into market
products and prices. As Ramos et al. (2016) and Vicente-Pastor et al. (2018) underline, local grid
management thanks to DR from small consumers and the associated cost of coordination between
the transmission and distribution levels are yet to be explicitly accounted for in market designs.
Moreover, Kerscher and Arboleya (2022) points to several market barriers preventing DR from
entering traditional power markets, especially for balancing services. So, this first assumption of
perfect translation from a DR resource to the valued services it provides seems optimistic.

Secondly, a higher value given to a specific flexibility service does not necessarily modify the
behavior of a DR resource towards offering more of this service. As mentioned in Section 2.1, an
electrical appliance enrolled in DR appears as a particular - and to some extent fixed - portfolio of
attributes. These attributes may not (or should not) vary even if the offered revenues for providing
a particular service increase: a household may not install a second water heater to gain more with
its DR activities, so the total installed capacity for DR from residential water heating is capped.

Therefore, we depart from the service valuation and focus on the perceived valuation of the
resources by a particular actor of the power system. For a single resource, multiple values are to
be considered in order to reflect the different types of services they provide, whether this service is
valued in a market or not. Conversely, all attributes of DR resources may contribute to all types
of values. Hence, from our perspective, the value of DR doesn’t come from services but from the
system characteristics that the presence of DR enables.

We retain seven values of a DR resource: operation value, flexibility-investment value, private
value, price-smoothing value, energy transition value, emission value, and security value.

Operation value refers to the variation in total system cost of operation during a determined
period when a given DR resource is introduced. It stems from the point of view of a system operator.
It should aggregate all the costs of running production or demand-side management necessary to
balance load and supply at each moment of the period. Operation value is the most calculated in
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the literature (e.g., 100% of the studies reviewed by Kerscher and Arboleya (2022), also Alstone
et al. (2017)).

From the same system perspective, flexibility-investment value is its natural and usual counter-
part accounting for the variation in grid, storage, or production investments caused by the intro-
duction of DR at a fixed level of supply security. Numerous expansion planning studies accounting
for DR exist and focus on this investment value, such as Marañón-Ledesma and Tomasgard (2019)
or Misconel et al. (2021) for perfect system planners or Nouicer et al. (2023) including strategic
decisions. System planners and network operators are the primarily interested actors.

As operation and investment values, private value is strongly related to market activities but now
reflects the private monetary gains from the operations of a DR resource. It should account for value
stacking as this resource may create different revenue streams from various markets or contracts
at the same time. It represents the evaluability of the DR resource’s features, i.e., converting its
technical attributes into monetary revenues. It has been the concern of numerous studies with
various methodologies (e.g., Goutte and Vassilopoulos (2019), Feuerriegel and Neumann (2014) or
Campaigne and Oren (2016)) but has not been compared to other types of DR value in a unified
framework.

Price-smoothing value focuses on the effects of introducing a DR resource on prices, their level,
and their volatility. With its ability to shift load in time, DR creates an opportunity for consumers to
buy low and sell high, resulting in a potential intertemporal arbitrage in power markets. This value
interests primarily the intermediary layer formed by suppliers and aggregators5 between wholesale
markets and end-users. Aggregators, namely the operators of DR, generally benefit from price
volatility as any flexibility resource operators (Goutte and Vassilopoulos (2019)). Suppliers have to
hedge against it, above all, if retail tariffs are fixed. Depending on the level of exposure of small
consumers to real-time price, i.e., depending on power tariff designs, final consumers are also directly
interested in this value of DR resources.

Energy transition value accounts for the variation of the share of renewable production at fixed
service quality and quantity levels when a DR resource is included. It represents the contribu-
tion of DR in mitigating renewables variability, thus fostering the energy transition without other
investments. As such, it interests system operators as a proxy for public stakeholders, the whole re-
newables industry, and final consumers, whether they are concerned citizens or simply beneficiaries
of environmental improvements.

Emission value forms with the former the environmental value of a DR resource. Emission value
reflects the variations in emissions due to the operations of the power system as DR is introduced.
The power mix here is kept unchanged, the emission value being like an environmental operation
value, whereas the energy transition value is closer to an environmental investment value. This
value is often computed as a side note from operation studies (Misconel et al. (2021),Alstone et al.

5As underlined by Bureau et al. (2023), the actions of suppliers and aggregators are reciprocal: the firsts buy
consumption blocks at the wholesale level and sell fractions of these blocks to end-users, while the latter buy negative
generation from end-users and pack it to bid at the wholesale level.
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(2017)).
Finally, security value controls the variation in supply security at a fixed power mix when a DR

resource is included. It highlights the balancing properties of a DR resource and the short-term
effect of DR on supply security. Balance responsible parties, network, and system operators are
economically and legally interested actors, but consumers might be those who value supply security
the most.

All DR attributes of a specific resource contribute at least partially to each value. For example,
its availability impacts the allowed operations of the resource and directly affects its operation,
private, and emission values. If the resource is never available in times of stress for the system,
it hinders its security and price-smoothing values. Finally, its investment and transition values
depend on the correlation between its availability profile and renewable production. A similar
analysis can be conducted for its event duration, bounds on activation, minimum up and down
time, recovery time limit, and location. Controllability primarily affects investment-related values
(investment and transition), while predictability relates more to operation-type values (operation,
private, price-smoothing, emission, and security). Table 3 links the proposed set of values to power
system actors and types of flexibility services as mentioned in Section 2.2.

DR values Interested actors Related services
Operation System operator Intra-bid balancing, grid con-

straint mitigation, system bal-
ancing

Investment System operator, network operators Investment deferral, system
balancing

Private Retailers, aggregators Intra-bid balancing
Price-
smoothing

Consumers, retailers, aggregators Intra-bid balancing

Transition System operator, consumers System balancing, investment
deferral

Emission System operator and consumers System and intra-bid balanc-
ing

Security Consumers, network operators, sys-
tem operator

System balancing

Table 3: Different values of a DR resource, interested actors who could bring about this value, and services provided
by demand response contributing to this value.

3. Methodologies of DR valuation

This section provides measurement methods for the values proposed in the previous section. The
prospective approach implies that valuation methods rely not solely on historical market, generation,
and demand data analysis but more on simulation models. This choice results from the low current
deployment of DR, especially in distributed sectors, and from our motivation to provide insights on
future, called-for, and large-scale development of DR in renewable-based power systems.
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3.1. Operation value

Operation value is estimated with the system levelized value approach of Alstone et al. (2017):
the DR resource is introduced at a given level and operates at zero marginal cost in a given power
mix. As the operation value reflects the point of view of a system operator, it equates to the
difference in total operation costs with and without DR. It aggregates all operation expenditures
from energy-only markets to meeting reserve requirements. Thus, the value is estimated from
classical dispatch models with a day-ahead power balance, a balancing market power balance, and
reserve constraints such as that proposed in Bruninx et al. (2018). Frequency restoration reserve
and rapid reserve are considered as a whole. Reserve requirements are computed according to the
French rules for calculating FRR and RR procurement levels (RTE (2018)).

This model should also account for a bottom-up description of the DR resource, displaying its
particular portfolio of attributes. Thus, the previous model is completed by a module for modeling
DR resources through the framework of Section 2.1, developed in Ancel and Massol (2022). The
latter model also accounts for the stochasticity of renewable generation and inflexible demand.
So, to derive an operation value of DR, a multistage stochastic program is considered, with reserve
requirement and a linear bottom-up model of the DR resource. This paper leverages this copperplate
model without transmission lines to focus on production variations and alleviate computational
constraints.

For operation value, controllability and predictability of the DR resource may be considered
perfect by reducing the available capacity attribute to account for such limitations: a perfect MW
of the resource corresponding to several installed MW. As investment issues are not considered for
this value, the operation value of a DR resource is measured by the variation in total system costs
given by the SDDP bottom-up model of Ancel and Massol (2022) adapted to account for reserve
requirements. The model’s equations are given in Appendix A.2. A sensitivity analysis to the
constraints modeling DR and activation costs’ assumption is provided in Appendix B. It justifies
how flexible behavior is overestimated by an order of magnitude by models not taking into account
all flexibility attributes mentioned in Section 2.1.

3.2. Flexibility-investment value

For a risk-neutral system operator, the flexibility-investment value may be quantified by a simple
expansion model complemented by a bottom-up module for DR for the operation phase. Such
studies are numerous; refer, for example, to Marañón-Ledesma and Tomasgard (2019), Misconel
et al. (2021) or Bruninx et al. (2018). The latter points out that this flexibility-investment value
is null for all DR resources as soon as controllability is imperfect and the system operator is risk
averse. DR competes there with costly but riskless grid investment.6

6Grid investment deferral may also be a relevant indicator of the value of a DR potential. It would be measured
by adding power flow constraints - at least at the transmission level - in the operation model presented. Yet, its
complete calibration would require the localization of flexible loads in the grid. Moreover, this value would physically
depend, if not economically, on the location of the added flexibility on the grid. Finally, due to the absence of local
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Nevertheless, we propose an estimation method for the investment value of DR resources in the
common framework of this paper. Now, the model for operation value becomes the second stage
of a two-stage expansion model. The first stage corresponds to investment decisions on fast peak
generations at annualized investment costs. Namely, investment can be made in OCGT, representing
a standard, always available but costly, fast thermal generation. The two-stage model is detailed in
Appendix A.3.

The value of DR in terms of peak capacity investment is measured by the variation in investment
for flexible peak thermal generations (here, OCGT) while targeting an exogenous level of supply
security. The latter makes the systems with and without DR comparable. The level is chosen to
match the proposed criterion for France by RTE. It imposes the expected cumulative imbalances
over a year to be smaller than 10 GWh7.

These DR investment values are finally benchmarked against that obtained by a new MW of
CCGT capacity since both are candidate options for dispatchable flexibility.

3.3. Private value

To measure the private value of a DR resource, we consider a private operator of the resource,
which is the price taker in a given power system, as what is done in Goutte and Vassilopoulos (2019)
for a perfect MW of CCGT. The private value of the resource equates to the total benefits gained
from the resource operation over a year.

A simple multistage stochastic program of profit maximization for this resource is solved under
the operation constraints of the resource. The constraints are similar to the DR module in Appendix
A.2. Operating costs of the DR resource are adapted from Gils (2014) and Alstone et al. (2017)
to reflect various enabling technologies. The crux of this method lies in deriving market prices
to be integrated into profit maximization as parameters. The operation model of Appendix A.2
is leveraged to do so. It produces price series for an energy-only day-ahead market and for daily
reserves procurement, the system being considered here without DR.

Another approach would be to model the price series directly and exogenously control its fea-
tures, such as its volatility. This is retained in Goutte and Vassilopoulos (2019) to assess the effect
of increased volatility of market prices on the revenues of a flexible resource. However, it supposes
a prior knowledge of how the volatility evolves, which we do not possess even though we know that
price volatility varies due to the introduction of renewables. On the contrary, the present approach
simulates directly the effect of introducing renewables on prices without explicitly controlling the

markets for flexibility, such local values are not easily revealed to system actors other than the T/DSOs. Thus, to
contrast how different actors are incentivized, we would have to compare the economic incentive, which is non-local
and permeates through the markets, with the physical and local but private incentive of system operators, making
such comparison unsummarizable at the national scale. Hence, the grid-investment-related value of DR is beyond
the scope of this paper, which focuses on values all actors could simply appreciate.

7Note that this criterion is not the currently legally enforced one, which provides that the expected number of
hours with imbalances over a year should not exceed 3 hours. This new energy criterion is presented by the French
TSO as more adapted to account for different depths of imbalances.
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price series’ volatility. That is why it is preferred. Appendix A.4 summarizes the method for DR
private valuation.

3.4. Price-smoothing value

The price-smoothing value stems from variation in the volatility of hourly market prices in
systems with and without DR. Hourly price series are simulated with the operation model with and
without DR as in the method for the private value. For each hour of the year, price volatilities
are computed as the unbiased estimator of the standard deviation of the hourly market prices
over the simulations. This results in two time series of volatilities, one with DR and the other
without. We then compute the dynamic time-warping distance between the two time series and
the relative variations of the maximum volatilities. The former value will help compare the DR
resources between them based on the distance to the base no DR case. The latter value informs
on the evolution of the worst case in terms of price volatility when the studied DR resource is
introduced. The dynamic time warping distance metric is chosen because it is insensible to any
linear time transformation between two series. Hence, if DR only transfers volatility from one time
to another or concentrates it in time without modifying its level/pattern, the metric shall not grow.

3.5. Energy transition value

In practice, the energy transition value may refer both to an investment-type value or an
operation-related value. An increase in the share of renewables in consumed electricity can in-
deed happen if new renewable sources are invested in and installed or if existing renewables are less
curtailed.

On the one hand, the energy transition investment value of a DR potential relates to how much
new renewable capacity can be allowed in the system - that is, without increasing imbalances -
thanks to the introduction of this DR potential. Ideally, a two stages expansion model accounting
for investment in renewable capacity, for the stochasticity of renewable generation, and for an acute
technical description of DR operation in a whole year would provide a measure of this transition
investment value of DR. Still, such a model is hardly computationally tractable with sufficient
precision to observe the marginal effect of a new MW of DR. Hence, we focus on this marginal
effect in a French-inspired stylized setting by modeling the operations of 1 MW of nuclear and 1
MW of the studied DR potential against a normalized to 1 MW random demand and a similarly
normalized 1 MW random wind generation. The setting is thus a marginal version of the operation
model of Section Appendix A.2 with only one energy-only market. Nuclear sets the price in most
off-peak hours in France while not being able to ramp up and down to follow all load gradients,
thus leaving room for a complementary, flexible generation or DR.

The energy transition investment value is measured through the variation in cumulative imbal-
ances of this reduced system with and without the DR potential. It can be interpreted as the ability
of an additional MW of a DR potential to handle a supplementary MW of variable wind generation
by flexibly complementing traditional low-carbon generation.

The complete description of the model can be found in Appendix A.5.
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On the other hand, the operation side of the energy transition value of a DR resource is measured
via the relative variation of the yearly average curtailment of existing renewables. The curtailment
decisions are derived from the operation model presented above in our framework. As we only add
a small (1 MW) installed capacity of the tested demand response potential, this operation version
of an energy transition value is expected to be more relevant (and non-null) than the investment
version.

3.6. Emission value

The emission value is measured using the same model as the operation value. Simulated op-
erations of thermal means are converted into CO2eq emissions through publicly available emission
factors, as in Misconel et al. (2021). Emission factors are collected in Table 5. Variations in CO2

emissions are valued according to market prices in the EU-ETS since the European power sector is
included in the mechanism.8

3.7. Security value

Like the emission value, the security value appears to be a byproduct of the operation value
method. The same model is used, but this time, the metric of interest is the volume of imbalances.
Imbalances can then be economically valued at the Value of Lost Load, surveyed in France at
9ke/MWh, 33ke/MWh, and 46ke/MWh depending on the methodology with a preferred value of
33ke/MWh (CRE (2022)).

4. Assessing the multifaceted values of demand response potentials

4.1. Results of the 1 MW valuation

The previous methodology is applied to the demand response potentials identified in Table 2.
A focus is set on residential and tertiary sector appliances which can be considered as load-shifting
potentials. Three industrial load-shifting potentials - cement mills, paper, and pulp production -
are considered for comparison. Finally, three load-shedding potentials are also evaluated because
they are more contractually bounded due to fewer allowed activations but less time-constrained, as
they do not require load recovery, and each activation can last longer.

4.1.1. Operation value

The relative variations in total system operation cost compared to a system without demand
response are displayed for all tested potentials and a new MW of CCGT in the Operation column of
Table 4. On average, all potentials induce a marginal decrease in system costs, except for paper and
pulp production and the tertiary sector’s AC and cold storage. In absolute value, each new MW of
DR brings about an order of magnitude of 106€ in system cost reduction, provided this MW has no

8During the next decade, the EU-ETS price is expected to increase, as part of strengthened climate policies, from
its current station around 80e/tCO2 to prices ranging between 120 and 160e/tCO2 in 2035 (Pahle et al. (2022)).
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activation cost. Hence, a system operator would be interested in activating such potential as long as
the total revenue perceived during the year for its activation by this potential does not exceed this
avoided cost (or welfare gain, as demand not included in a DR potential is supposed inelastic here).
It is noteworthy to compare that a new MW of CCGT induces a slight increase in total system costs
on average. The latter result shall be explained by the poorer performance of the CCGT in reducing
the number of imbalanced hours, notably due to its finite ramping capacity. Moreover, diffuse DR
-e.g., from the residential and tertiary sectors- yields similar operation values to industrial DR, even
though they operate under tighter time constraints for DR event durations and load recovery in
case of load-shifting. This could point that, marginally, either such constraints have no influence on
operations in general or that peak demand from these potentials coincide sufficiently with residual
demand’s peaks and residual demand valleys are close and deep enough so that load recovery and
duration constraints of these potentials are not always binding for a sole MW of DR.

However, these average results have to be nuanced by non-negligible deviations, most of the total
cost distributions being concentrated between ±7.5% of the average total cost without DR. This
variation results from the different years of residual demand faced by the optimal policy derived
by the model for each considered system. Such magnitude of deviations in the result shows that
uncertainty in residual demand far surpasses what a sole MW of DR can bring about for the
system regarding flexibility, thus justifying a massive deployment of new flexibilities, as found in
the literature. Interestingly, this deviation can be interpreted as the risk born by a system operator
that invests in the first MW of a DR potential. DR assets then compare differently if this risk is
taken into account by the system operator/planner as, for example, residential space heating yields
better operation value than tertiary space heating on average but with higher standard deviation.
A more risk-averse planner would then opt for the latter, which is still beneficial for this value on
average with fewer risks, or even ignore DR as a flexibility resource due to this risk. With such
an understanding and since more flexibility (e.g., more DR) would absorb at least a part of the
residual demand variability, the following installed MW would benefit from reduced investment
risks, but probably also suffer from reduced operation average value up to a certain point due to
cannibalization.

4.1.2. Security value

Relative variations in the yearly number of imbalanced hours compared to a system without
demand response are displayed for all tested potentials and for a new MW of CCGT in the Security
column of Table 4. Imbalance results exhibit similar behavior to operation value ones, with a gen-
erally positive contribution of DR potential -except for chlorine and paper production and tertiary
AC - but marked with important standard deviations, i.e., risks. Once again, DR potentials seem
to perform globally better on average than a MW of CCGT: according to the first two indicators,
they provide more flexibility than the latter, which can be explained by their limitations in terms
of ramping rates. Risks in terms of operation cost gains and security seem positively correlated,
as a linear regression highlights that the variability in operation costs risks explains around 84% of
the variability of the security risks (R2), and the risks are linked with a positive coefficient (≃ 4.2)
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Technology Operation Security Emission Curtailment
No DR 3.79 G€ 40.61 h 1.98 MtCO2eq 0.74 TWh
Res. SH -0.26 (8.02) -4.89 (37.86) 1.36 (27.78) 0.95 (27.77)
Res. WH -0.34 (7.56) -1.31 (36.54) 2.64 (27.56) -2.36 (28.18)
Res. AC -0.44 (7.15) -0.26 (36.10) -0.31 (25.35) 2.11 (27.29)
Ter. SH -0.03 (7.73) -2.78 (36.71) 3.67 (29.04) -3.19 (27.14)
Ter. WH -0.16 (7.71) -2.49 (36.48) 1.37 (27.05) 0.32 (27.11)
Ter. C. Stor. 0.48 (8.35) -0.69 (40.95) 1.96 (27.54) 1.43 (27.15)
Ter. AC 0.12 (7.54) 1.66 (38.35) -0.26 (25.08) -0.36 (28.60)
Cement mills -0.34 (7.42) -0.37 (37.46) 1.55 (27.47) 3.04 (30.16)
Pulp prod. 0.05 (8.04) -1.63 (40.15) 2.55 (26.96) 6.76 (30.30)
Paper prod. 1.35 (7.91) 5.39 (38.87) 9.94 (30.64) 3.51 (30.67)
Elec. arc steel -0.25 (7.70) -1.33 (38.52) 1.08 (27.85) -2.89 (28.23)
Al electrolysis -0.40 (7.36) -0.04 (37.31) -2.19 (26.65) 1.15 (29.05)
Chloralkali proc. 0.60 (7.99) 4.14 (39.76) 1.12 (28.96) -1.45 (29.93)
CCGT 0.37 (8.39) 7.98 (42.06) 1.39 (28.84) -2.57 (28.21)

Table 4: Operation related-values of a new MW of a DR potential in a system devoid of any DR. Operation, emissions,
security, and curtailment values are expressed in percentage of relative variation compared to the no DR case. Average
values from the simulation of the same 500 scenarios of demand and renewable generations are reported for each case
with standard deviation in brackets.

which is meaningful (p-value ≃ 0.00012). A similar correlation exists between the average values.
This highlights how gains in total system costs when DR is introduced mostly correlate with a
reduction in imbalances valued at the VoLL. The remainder of the variability in the system’s costs
may be explained by how DR characteristics allow the potential to erase more costly, fast-ramping
thermal production, and not only the backstop generation at the VoLL.

The case of tertiary cold storages is interesting as its average operation and security values have
opposite signs, hence providing contradictory incentives for investors concerned with both values.

4.1.3. Emission value

Relative variations in the yearly GHG emissions of the system compared to a system without
demand response are displayed for all tested potentials and for a new MW of CCGT in the Security
column of Table 4. The emission factors used to compute the emissions from generation are taken
from the French TSO and collected in Table 5.

Technology Emission factor (tCO2eq/MWh)
Biomass/Waste 0.494
Coal 0.986
CCGT 0.352
OCGT 0.486
Other gas 0.583
Fuel oil 0.777

Table 5: Emission factors of thermal plants from RTE’s éCO2mix data.

Results are more contrasted regarding the emission performance of the DR potentials. Their
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average value is mainly in the sense of an increase in the system’s emissions, favorable contributions
only brought about by residential and tertiary AC as well as aluminum production on average.
Mixed results for DR in terms of lowering CO2 emissions are also highlighted in the literature, e.g.,
Sousa and Soares (2023) or Ancel and Massol (2022). These studies underline how the underlying
merit order affects the performance of DR in terms of emissions, notably in the presence of start-
up costs and finite ramping rates. Indeed DR mainly does not contribute by moving out of the
market the last called units for a short period of time, but rather by pricing out the last called units
for which ramping down and eventually being called back after the DR event is less costly than
maintaining a positive generation. Hence depending on the merit order - notably at the end and
the relative order between gas and coal - and the continued level of residual demand after a DR
event, a DR potential may either increase or decrease the production of the most polluting units.
This also explains why even load-shedding may have mixed effects regarding emissions though the
global yearly demand is reduced. A similar result for residential and tertiary AC, which are both
mainly summer potentials, also hints towards such interpretation, as coal is absent during summer
and the only emissive generation is CCGT, which is also more costly and is therefore erased in favor
of the remaining means, which are all clean.

4.1.4. Private value

The private value of a new MW of each DR potential is analyzed through three indicators; a
comparison is made with a new MW of CCGT. First, the expected annual revenues drawn from
the operation of the potential are displayed in Table 6. As these revenues are estimated through
Monte-Carlo averages, they are paired with an estimated probability of negative revenues and the
standard deviations in revenues. Both reflect the estimated risk for a profit-maximizing private
actor operating the potential. This risk can be price-related, the asset being non-economic in
the renewable-based system at most hours, or volume-related, the energy-recovery or load-shaving
duration of the DR potentials limiting its output.

Private profits are positive on average for all potentials except tertiary cold storages and sig-
nificantly positive for residential and tertiary space heating, tertiary sector water heating, and all
industrial potentials. Due to price arbitrage being the main source of revenues of load shifting po-
tentials, reported average profits for the first MW introduced of the potential are but upper bounds
for the following MW: notably, tertiary cold storages are in this sense unprofitable whatever the
installed capacity and this is due to tight recovery constraints and availability limitations which
prevent this potential from targetting relevant arbitrage opportunities.

Mixed incentives between system-oriented and private actors can arise for potentials over which
revenues do not go along with system cost reductions. Such a situation may arise in the sense that
a system-wise beneficial potential is not privately profitable, which happens for residential water
heating and to a lesser extent for residential AC accounting for its high risk of deficit, or that a
system-wise detrimental potential is privately profitable, which happens for paper, pulp and chlorine
productions and to a lesser extent for tertiary AC accounting for the private risk of deficit. From a
regulator point of view, the former type of misalignment leaves room for public aids supporting the
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concerned potentials, up to the amount of the operation value created. On the contrary, the latter
type calls for careful monitoring at least and perhaps more stringent inclusion in the markets, such
as imposing coupled investment in more favorable potentials for the system or redistribution of part
of the profit created by these potentials to fund the support to system-wise beneficial ones.

Technology Revenues (k€) Negative revenue
probability

Res. SH 1788.66 (867.93) 0.070
Res. WH 0.99 (25.99) 0.956
Res. AC 605.32 (662.41) 0.000
Ter. SH 3597.13 (1745.00) 0.000
Ter. WH 5023.27 (2745.88) 0.000
Ter. Cold Sto. -0.32 (8.25) 0.934
Ter. AC 593.89 (603.05) 0.000
Cement mills 1798.77 (811.83) 0.000
Pulp prod. 1276.74 (599.83) 0.004
Paper prod. 1492.30 (756.06) 0.000
Elec. arc steel 43.36 (30.73) 0.000
Al electrolysis 11.83 (7.83) 0.000
Chloralkali proc. 33.21 (23.56) 0.000
CCGT 53.04 (34.77) 0.000

Table 6: Private value of a new MW of a DR potential in a system devoid of DR. Average values yielded by the
optimal policy tested on 500 simulated years with standard deviation in brackets.

Finally, in the model, demand response potentials can play on three different stylized markets
(day-ahead, balancing, and reserve services), which differ by the resources contributing to each of
the three power balances (see Appendix A.4). For each potential, Figure 1 displays the share of
each of the three markets in the total activated DR energy and in the total revenues earned by
the potential. Load-shifting potentials tend to contribute more than load-shedding or CCGT to
balancing services and more than load-shedding to upward reserves. However, the balancing market
accounts only for a few percent of the total revenues of the potential, indicating that in the models,
the main arbitrage possibilities for DR are in the day-ahead market, which provides around 80%
of the revenues generated by each potential. This is in line with Bruninx et al. (2018) where it is
found that 70% to 75% of the value is created in the spot market for DR from heat pumps (a part
of residential space heating here) or a supermarket (which contributes to cold storages, tertiary
AC and space heating in our terminology). Our contribution extends such findings to more DR
potentials. Policy-wise this replaces energy-only markets as the main source of revenues for DR
and hence highlights how crucial allowing their participation in this market is for them to prove
economic, while other places of private value creation remain only complementary.
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Figure 1: Average shares of the day-ahead, balancing, and reserve markets in the total load reductions and total
revenues during a year for each DR potential. This share is, however not constant throughout the year.

4.1.5. Price-smoothing value

The effect of new DR potentials on the distribution of wholesale market prices is summarized in
Figure 2 where results are displayed in relative variations from a system devoid of DR. Figure 2 (a)
collects the variations in average and maximum price volatility during the simulated years between
systems with and without DR. It reflects the smoothing of market prices induced by the presence of
the new DR MW in the system. Figure 2 (b) presents the dynamic time wrapping metric between
the price distributions with and without the DR potential. It measures the global resemblance of
the two distributions, which are insensible to simple time shifts. For example, the DR potential
of space heaters in the tertiary sector yields the most similar price distributions among all DR
potentials.

(a) (b)

Figure 2: (a) Relative variation of average -blue- and maximum -orange- price spreads between a system with 1 MW
of the DR potential and no DR. DR potentials are sorted by average price spreads. A price spread is the variation
between simulations of price levels for the same hour of the year. Maximum and average are intended over the 8760
hours of the year. (b) DTW distance between the time series of price spreads with and without a MW of a DR
potential. The larger the metric, the more distorted price spreads are by introducing DR, controlling for simple time
shifts of spreads.
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Price effects of the single MW of each introduced potential make the maximum and average
price spreads observed throughout the year deviate by a handful of percent, only in the direction
of an increase in the maximum price spread but in a mixed direction regarding the average price
spread. Three classes of potentials can be found: those that induce an increase in price volatility
at the most volatile hour of the year and on average over the hours of the year (paper production,
tertiary cold storages, chlorine, and steel productions), those which leaves price volatilities almost
unchanged (residential water and space heaters, pulp production, tertiary AC and space heaters)
and those increasing volatility at the most volatile hour while decreasing it on average over the year
(residential space heaters and AC, tertiary water heaters, cement mills and aluminum production).

These classes are to be compared to the three groups of potentials in terms of induced distance
between price spread distributions over the year with and without DR (Figure 2b). Thus, tertiary
space heating, steel, cement, and chlorine production yield the least modified price spread distribu-
tions, while residential AC and pulp production display more modifications. Since the DTW metric
controls for time-shifts of the realized price-spreads, the latter potentials modify more the structure
of price volatility than the first group. The two indicators provide different insights as a high mod-
ification in price spreads distribution is not equivalent to an increase of price volatility (on average
nor at maximizing hour) - for example, residential AC DR modifies the distribution the most while
also providing the most average spread decrease and no maximum spread modification. Notably,
the indicator provided in Figure 2a interests consumers or suppliers buying on the wholesale market
at each hour, potentially harmed by too high volatility of prices for the same hour of the same day
from one year to the other (provided the generation mix has not evolved and the volatility is created
by different realizations of residual demand). The indicator of Figure 2b may interest owners of
batteries or any asset making revenues by being adapted to the current structure of price spreads,
as higher values of this indicator would motivate changes in operations plans for such assets.

4.1.6. Flexibility-investment value

Induced variations in investment in peaking thermal generation between systems with and with-
out demand response are presented in Figure 3 in front of the total unserved load during the year
compared to the target of maximum unserved load, indicated by the vertical dashed line. The two
figures complement each other as the optimal policy computed by SDDP arbitrages between paying
for more OCGT capacity at its CAPEX and failing to reach the imbalance target by a margin penal-
ized at the VoLL. As this policy is, in fact, only quasi-optimal (and would only be optimal with an
infinite number of iterations of the algorithm), situations may occur where the quasi-optimal policy
results in slightly less OCGT investment against a slightly higher total unserved load. A higher
penalization of the imbalance gap would result in a more conservative policy with more OCGT in
all system cases, yet that would come at the expense of the numerical stability of the model and
would have to be justified since the VoLL is by definition the penalization of unacceptable unserved
load.

Regarding the performance of the considered DR potentials, no one ensures a statistically sig-
nificant reduction in OCGT capacity. Yet, two groups of potentials stand out. On the one hand,
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Figure 3: Investment-related value of a new MW of a DR potential in a system devoid of any DR. Reported values
are average relative variation (%) in new capacity investments in OCGT compared to a system without DR.

chlorine, aluminum, and cement industrial processes, as well as tertiary AC, cold storages and space
heating, and residential water and space heating imply statistically around 0.1% more installed
OCGT than a system without DR but ensure a perfect respect of the imbalance constraints. Such
performances are similar to that of a supplementary MW of CCGT, which has lower ramping ca-
pabilities than OCGT in the model. On the other hand, steel, paper and pulp production, tertiary
water heating, and residential AC induce statistically a lesser need for OCGT investment, but with
less insurance regarding the imbalance target. Apart from the caveat made above linking the imbal-
ance gap and the investment decision in OCGT, this better performance than previous potentials or
even the CCGT MW may stem from more correlation between availability periods of these poten-
tials and peaking residual demand. This is supported, for example, by tertiary water heating being
the best performer while also being the load-shifting potential with the highest event duration and
load recovery limit allowed and the shortest minimum down-time.

4.1.7. Energy transition values

As reported above, the value brought about by a DR potential to the energy transition can be
divided into two aspects: its ability to reduce renewables curtailment at fixed renewables capacity
and its ability to mitigate the added variability by supplementary renewable capacities.

Results for the first aspect are gathered in the column Curtailment of Table 4, expressed in
relative variation from the no DR case and compared with the performance of a new MW of CCGT.
In this sense, residential water heating, tertiary space heating, and AC and steel and chlorine
productions contribute similarly to a new CCGT to reduce the total curtailment on average by
bringing more downward flexibility to the system. This contribution is, however, marked by an
important risk due, as mentioned above, to the operation and security values.

The second aspect is valued according to the procedure described in Appendix A.5. Results
are displayed in Figure 4 where the (average on simulations) cumulated imbalances over a year are
represented for a reduced system with each DR potential. The reduction in the system’s size allows
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Figure 4: Cumulative system imbalances with 1 MW of each DR potential, and for comparison, without DR and
with 1 MW of CCGT generation. Error bars represent the observed standard deviations over 500 simulations.

to focus on the marginal equilibrium between residual demand and supply, thus removing the outside
variability of residual demand that exceeds by several orders of magnitudes the abilities of the 1
MWs introduced. The indicator provided in Figure 4 for a system without DR nor additional CCGT
can be interpreted as the yearly missing supply due to the mean variability of wind generation per
MW installed compared to a perfectly controllable and available MW. The contribution of the DR
potential to the energy transition would be here to complement this missing supply, their capacity
of doing so corresponding to the difference between the green bar in Figure 4 and the grey bars.

Here, all potentials except for tertiary water heating lead to better system balancing than in their
absence. Notably, industrial DR yields similar flexibility in this sense than a new MW of CCGT;
that is, they completely erase imbalances created by the added wind capacity in all scenarios of the
year. Tertiary cold storage, residential and tertiary space heating, and paper production perform less
than the former potentials but still significantly better than without DR, even taking the dispersion
of the distribution of results into account. Finally, tertiary and residential AC, residential water
heating, and cement mills provide, on average, more capability to absorb the new wind capacity
than without DR, but this result may not be significant if accounting for the above-mentioned
dispersion.

4.2. Sensibility to pre-existing levels of demand response

In the above, we added one megawatt of demand response potential to a system devoid of any
other demand flexibility or from batteries. However, there is no assurance that the values obtained
for this megawatt do not change with the initial level of this potential or others. The purpose of
this section is to assess this cumulative effect. Therefore, we compute the same evaluations first
with an existing level of 1 gigawatt for the evaluated potential only and then with this same level
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fixed for all other potentials as well. In the latter case, the gigawatts of demand response compete
based on their marginal cost (cf Table 2). However, the new megawatt is still considered free so it
has a priority for activation in the merit order. This does not assume that it will be activated as
soon as it is available, as its constraints on the recovery time of the erased load or on the minimal
gap between two load reductions can make it less attractive than another less restrictive flexibility.
Indeed, each of these constraints adds an opportunity cost to the simple activation cost to form the
marginal cost of the potential.

One can consider that the measured values for the lone megawatt represent the upper bounds
of what a new demand response megawatt can capture as value. When active, this megawatt
earns income from the existing variability in prices/availability of other means of production. In
other words, it captures a share of the variability associated with renewables. However, at a fixed
capacity of renewables, the variability "to be filled" remains the same whether this megawatt is alone
or other sources of flexibility are available. Thus, in the second case, the other sources available
simultaneously with the new demand response megawatt compete with it to fill the variability
gap. Consequently, this new megawatt acts, at most, as if it were the only source of flexibility
available and, therefore, is generally less valued. Hence, the values obtained for the lone megawatt
represent the upper bounds for the values of this demand response potential in a system where other
flexibilities available over the same period are implemented.

5. Conclusion

In this paper, a unified methodology for the assessment of demand response multiple values
is proposed. It is based on variations around a stochastic programming approach fitting in the
theoretical framework of stochastic dual dynamic programming, which serves as solution technique.
This tool is adapted to provide indicators for seven values of a DR potential, values selected based
on the coupling of insights from the literature regarding the relevant characteristics of a flexibility
source, the services provided by a flexibility source such as a demand response potential, and the
types of actors interested by such services. Hence, indicators are derived on how the introduction
of a potential affects the total system’s costs, emissions, security, or the structure of wholesale
market prices, generates profit, and contributes to the inclusion of more renewables in the system
with less recourse to thermal speakers. The unity of the framework they are derived from provides
a supplement of comparability between such values, which is necessary to anticipate misaligned
incentives for different actors and a proper regulation and industrial deployment of such assets, but
is generally lacking in the current literature with each study generally focusing on one value, service
or characteristic of the considered resource.

The methodology is then applied to 14 demand response potentials identified in the literature
evolving in the French power system of 2035. Such a case study is motivated by the relatively
good understanding of what will the generation mix at this date, the identified need for additional
flexibilities, and current discussions at the EU level on the design of new support mechanisms
for better inclusion of demand-side flexibilities. As the latter could notably take the form of an

25



additional auction for new DR capacities in case of system tightness, the present study contributes
to understanding which potentials would need supplementary revenues to become economic while
being beneficial for the system, depending on the sought system effect (e.g., cost, emission or
imbalances reduction or price smoothing or decreased need for thermal flexibility). Finally, the
comparison of the different values provided in Section 4 for the same potential underlines eventually
mixed contributions from several potentials to different services (such as DR as a way to reduce the
system’s emissions directly) and even misalignment of incentives which calls for careful regulations.

Public support also manifests through capacity payments, which are increasingly open to demand-
side flexibility. Thus, following the same motivation as in this study, a limit of this work and a
new axis for research could include such capacity payments in DR revenue. This poses, however,
the daunting question of the definition in advance and the guarantee of a DR capacity, notably for
diffuse potentials.
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Appendix A. Appendix - Models specification for valuing DR

Appendix A.1. Generation of scenarios for random demands and renewable production

Wind and solar generation. . Capacity factors for wind and solar generations are derived at the
country level from renewables.ninja (Pfenninger and Staffell (2016) and Staffell and Pfenninger
(2016)). Twenty scenarios of years of capacity factors are sampled directly from 2000 to 2019 in
the datasets. For 2023, offshore and onshore wind are disaggregated. For 2035, the ’long-term
fleet’ dataset is used so that aggregated national capacity factors are provided. Overall, due to the
planned deployment of offshore wind in France, aggregated capacity factors are higher in 2035 than
in 2023. The same dataset is used for solar generation over the two periods.

Demand. . Twenty scenarios of years of demand are derived with a similar method to Verrier (2018)
and data from the ENTSO-E transparency platform. We use seven historical years (2016-2022) of
actual loads. Only 51 weeks of historical data are kept in order to align the beginning of the
scenarios to 1 am on the first Monday of the year. From these seven years, the dataset is tripled
by also considering each year the scenarios where demand is shifted one day forward and backward.
Demand is shifted so that a weekday is shifted to a weekday and a week-end day to a week-end day.
Namely, the demand on Friday in a forward-shifted year amounts to that of the next Monday in
the normal year. Similarly, the demand on Saturday in a backward-shifted year amounts to that of
the previous Sunday in the normal year. This procedure yields 21 different years of demand.
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Then, twenty scenarios of demand are built by the following sampling procedure. For each of the
51 weeks of the year, a tuple formed by a historical year and a shift (forward, null, or backward) is
drawn uniformly with replacement among the 21 choices. The scenario is formed by aligning these
51 sampled weeks. The procedure is repeated twenty times to produce twenty scenarios of demand.

The same sampled tuples of years and shifts are applied on the day-ahead forecast loads. This
yields twenty scenarios of day-ahead forecasts corresponding to the sampled actual loads. Thus,
scenarios of day-ahead forecast errors are produced and used for modeling the balancing market.

Finally, reserve requirements are computed from the twenty day-ahead forecast scenarios. As
in Bruninx et al. (2018), the three types of reserves are aggregated. Upward and downward re-
quirements are derived from the rules established by the French TSO (RTE (2018)). However, we
notably ignore the minimum activation time and minimum up-time requirements. The upward re-
serve should cover the loss of the biggest generation mean at all times, which is a 900 MW nuclear
reactor in France. So, the upward reserve has a fixed component of 1 GW at all hours. Upward
reserve is completed by a dynamic component which writes, in MW,

URdyn =

max(500,
√
10Dh + 22500− 150) if Dh −Dh−1 ≤ 12000

max(500,
Dh−Dh−1

6 ) otherwise.

Downward reserve is less regulated. A mandatory minimum downward reserve of 500 MW is pro-
cured at all times. However, this reserve decreases generation and is procured only from symmetrical
reserve bids. This constraint is applied in this paper as it might limit the revenues gathered by a
flexibility source from reserve auctions.

Run-of-river. . The same method for demand is used to derive twenty scenarios of years of run-of-
river and poundage hydro-power generation from ENTSO-E data (2016-2022).

Appendix A.2. Operation model from system view

The model used for deriving a system operation value for DR is written as a multistage stochastic
programming problem. It fits an SDDP framework: convex costs, linear constraints, independent
noise terms, and a finite number of scenarios. The scenarios and random variables are described in
the previous section.

The model describes hourly operations on day-ahead, reserve, and balancing markets along a
"year" of 357 days (51 complete weeks). Its objective is to minimize the expected total cost of
operations. Random variables representing intermittent renewable generations, day-ahead demand
forecast, forecast errors, and reserve requirements are drawn at the beginning of each day.

At stage t ∈ {1, ..., 357}, the subproblem (in the sense of Pereira and Pinto (1991)) to be solved
minimizes

24∑
h=1

∑
g∈G∪H

Cg(g
DA
h + gBal

h + gUR
h ) + PC(µDA + µBal + µUR + µDR) (A.1)
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where PC denotes the value of lost load/the market price cap, µM the imbalance in market M ,
and gMh the generation of thermal (G) or hydro-power (H) mean g sold in market M at hour h at
marginal cost Cg. In the following, the subscript h for hours is not written for clarity.

The four markets should be balanced for all hours h, even though all means can’t participate in all
markets - day-ahead (Constraint (A.2)), balancing (Constraint (A.3)), upward reserve (Constraint
(A.4)) and downward reserve (Constraint (A.5)),

DDA =
∑
g∈G

gDA + lhDA + 0.8(phsDA
turb − phsDA

pump) + PV (A.2)

+WIND +RoR+ dDA − uDA + µDA

D −DDA =
∑

g∈G\{Nuclear}

gBal + lhBal + 0.8(phsBal
turb − phsBal

pump) + dBal − uBal + µBal (A.3)

DUR =
∑
g∈G

gUR + lhUR + 0.8 ∗ phsUR
turb + dUR + µUR (A.4)

DDR = 0.8 ∗ phsDR
pump + uDR + µDR (A.5)

Namely, in this framework, only pump-hydro storage and load increase can provide a downward
reserve, and nuclear can’t contribute to forecast error balancing. d denotes the decrease of load,
and u its increase thanks to DR. The latter variable disappears if the DR potential under study is
load-shedding. Dh represent the true demand at hour h, DDA

h its day-ahead forecast and DUR
h , DDR

h

the associated upward and downward reserve requirements.

Operating constraints for traditional thermal generations limit their outputs and their ramp
rates,

∀g ∈ G, gDA, gBal, gUR ≥ 0 (A.6)

∀g ∈ G, gDA + gBal + gUR ≤ Ag,hKg (A.7)

∀g ∈ G, ∀h > 1,−rgKg ≤ gDA
h + gBal

h − gDA
h − gBal

h ≤ rgKg (A.8)

where Ag,h is an availability factor of the installed capacity Kg (always one except for nuclear plants,
derived from the historical mean availability of the French nuclear fleet).

Hydro-power productions - lake hydro (Constraints (A.9) to (A.12)) and PHS (Constraints
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(A.13) to (A.18)) - are capacity, ramp and energy-constrained

0 ≤ lhDA, lhBal, lhUR (A.9)

lhDA + lhBal + lhUR ≤ Klh (A.10)

− rlhKlh ≤ lhDA
h + lhBal

h − lhDA
h−1 − lhBal

h−1 ≤ rlhKlh (A.11)

0 ≤ Lh = Lh−1 − lhDA
h − lhBal

h − lhUR
h (A.12)

0 ≤ phsDA
turb, phs

DA
pump, phs

Bal
turb, phs

Bal
pump, phs

UR
turb, phs

DR
pump (A.13)

phsDA
turb + phsBal

turb + phsUR
turb ≤ Kphs (A.14)

phsDA
pump + phsBal

pump + phsDR
pump ≤ Kphs (A.15)

− rphsKphs ≤ phsDA
turb,h + phsBal

turb,h − phsDA
turb,h−1 − phsBal

turb,h−1 ≤ rphsKphs (A.16)

− rphsKphs ≤ phsDA
pump,h + phsBal

pump,h − phsDA
pump,h−1 − phsBal

pump,h−1 ≤ rphsKphs (A.17)

0 ≤ L_phsupstreamh = L_phsupstreamh−1 − phsDA
turb,h − phsBal

turb,h − phsUR
turb,h (A.18)

+ phsDA
pump,h + phsBal

pump,h + phsUR
pump,h

with L0 set to 75% of the energy capacity installed for lake hydro-power and L_phs0 to 50% of the
energy capacity of PHS.

Finally, the problem accounts for a bottom-up model for the DR technology under scrutiny
(Constraints (A.21), (A.22) and (A.24) only for load-shifting ones)

0 ≤ dDA, dBal, dUR, uDA, uBal, uDR (A.19)

dDA + dBal + dUR ≤ (Adr,hKdr −
ν∑

k=1

∑
m

dmh−k)+ (A.20)

uDA + uBal + uDR ≤ Kdr (A.21)∑
m

dmh−∆ ≤
∆−1∑
k=0

∑
m

umh−k (A.22)

Xcont
h = Xcont

h−1 − dDA − dBal − dUR (A.23)

Xup
h = Xup

h−1 − dDA − dBal − dUR + uDA + uBal + uDR (A.24)

with Xcont
0 = NKdrDdr and Xup

0 = KdrDdr where N is the maximum number of activations per
year, Kdr the installed capacity, and Ddr the maximum duration of a DR event of the studied DR
potential. ∆ is the maximum delay for load recovery. ν is the minimum down time. The markets
are indexed by m.

The two power mixes considered to calibrate the model are summarized in Tables A.7 and A.8.

9Capacity and reservoir sizes are from the French national register of power production units, publicly available
through the Open Data Réseaux Energie platform. Reservoir capacity is set at the maximum stored energy in the
period 2015-2023. Operating costs are adapted from Pietzcker et al. (2021) and account for a carbon price.
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Technology Capacity (GW, GWh) Ramp rate (%) Cost (e/MWh)
Biomass/Waste 2.272 80 67.12
Coal 1.816 55 95.68
CCGT 9.669 60 56.64
OCGT 2.015 75 66.36
Other gas 2.420 80 74.12
Fuel oil 2.566 80 112.68
Nuclear 61.370 30 7.88
Lake hydro-power 8.787, 3100 45 1
Pumped hydro storage 5.051 , 32 85 2
Run-of-river 11.940 - 0
Wind (On-Offshore) 20.842-0.494 - 0
Solar 14.639 - 0

Table A.7: Assumptions on installed capacity and costs for 2023 French power system.9

Technology Capacity (GW, GWh) Ramp rate up-down(%) Cost (e/MWh)
Biomass/Waste 3 80 118.36
CCGT 9.669 60 80.64
OCGT 2.015 75 98.40
Other gas 2.420 80 111.98
Fuel oil 2.566 80 170.82
Nuclear 63 30 9.32
Lake hydropower 9.487 , 3100 45 1
Pumped hydro storage 6.051 , 35 85 2
Run-of-river 12.159 - 0
Wind (On-Offshore) 39-18 - 0
Solar 65 - 0

Table A.8: Assumptions on installed capacity and costs for 2035 French power system.10

This model is solved with SDDP in order to produce a near-optimal policy for dispatching all
the available means during a year. 500 simulations are then computed from this policy facing 500
years of random variables drawn in our sample of 20357 possible years. In the main results section,
these 500 years are the same for all cases to ensure comparability and are drawn randomly from
the sample. The SDDP algorithm used is that implemented by Dowson and Kapelevich (2021),
modified to comprise with the termination rule proposed in Shapiro (2011).

Appendix A.3. Investment model

The investment model is built on the modeling framework of Appendix A.2 and calibrated for
the 2035 French power system (Table A.8, except for OCGT, which is endogenous). A stage is
added before the first day of the year to make investment decisions. Investment is available for one

10Capacity and reservoir sizes are adapted from French official energy planning and prospective studies by the
French TSO (RTE (2023),RTE (2021)). Operating costs are adapted from Pietzcker et al. (2021) and account for a
carbon price.
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flexibility source other than DR, namely fast thermal units, represented here as OCGT. Associated
investment costs in thermal fast generation - a proxy for all fast ramping means - are annualized
with a 4% interest rate and a 30-year lifespan. OCGT data comes from Fraunholz et al. (2021) and
induces an investment cost of 23132 e/MW. The latter decisions set the capacity and energy upper
bounds of these means in the operation phase. The sketch of the investment model is

min ICocgt ∗ kocgt + E [OPEX(kocgt, Imb)] (A.25)

s.t. (A.26)

Demandt = Supplyt + µt (A.27)

Supply ≤ Inst. Capacity(kocgt, kphs,Kg) (A.28)

Hydro-power transition equations (A.12) and (A.18) (A.29)

If DR is present, DR constraints (A.19) to (A.24) (A.30)

where IC designates investment costs and lowercase letter decision variables. In practice, the
problem is reformulated in a dynamic programming framework, and state variables are used to
make investment decisions and percolate through the operation stages. The whole is solved using
SDDP.

Imb represents the cumulative yearly imbalance target constraint serving as security of supply
criterium. This constraint is softly implemented in the model by adding a quadratic term in the
last subproblem’s objective, keeping it convex and thus suitable for the SDDP framework. The
quadratic term penalizes the gap between the cumulative imbalance over the year and the target
level. It is also penalized at two times the level of the VoLL. This term is written with our notations
V oLL(

∑
t µt − Imb)2.

Moreover, the operation phase is simplified compared to Appendix A.2 to alleviate the computa-
tional burden of the algorithm and cope with the supplementary step, which requires more iterations
of SDDP for end-of-the-year decisions to back-propagate on the investment decision. Only one day-
ahead hourly decision is taken by each generation, which means that reserve requirements and
forecast error balancing are not considered. Also, only five representative weeks for the year are
considered for the same reason. The weeks are the same as those selected for the energy transition
investment value and are chosen to reflect each season plus the winter - and thus tight situations
for the system - occurring on both ends of the year. The maximum annual number of activations of
DR potentials and the maximum imbalance criterium are reduced proportionally to the year’s size.

The optimal investment decision is based on the computed expected OPEX for a year. The
latter quantity is a piecewise linear function of the invested OCGT capacity computed by SDDP
according to the visited scenarios of random variables. Hence, it is still random, even though it
accounts for billions of year scenarios. Moreover, the investment stage has a linear objective, so
the investment decision can be very sensitive to the OPEX function’s uncertainty. So, the whole
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problem is run 10 times in order to mitigate this effect, which also motivates the reduction in model
size compared with the operation value model of Appendix A.2. The flexibility investment value is
then given by the variation in the averaged-among-runs invested OCGT capacity with and without
the studied DR potential.

Appendix A.4. Private operation model

The private valuation of a DR resource is done through a multistage stochastic program which
maximizes the expected total revenues of a price-taker operator of the resource acting on all available
markets for DR. Contrarily to the previous models, the power system and its uncertainty are only
displayed through four sets of price series. The prices are obtained by running the operation model
of Appendix A.2 without DR and saving the dual variables of the equilibrium constraints (A.2) to
(A.4).

To keep the intraday structure of the prices, noted λDA, λBal, λUR, λDR, the random variables
are revealed for the whole day at the beginning of each day. Moreover, as for demands in Appendix
A.2, the four prices are drawn from the same scenario - i.e., the simulation result of the operation
model. The scenarios are considered equiprobable.

Then, the private operator problem is solved by SDDP and stated as follows

max
d,u,µ≥0

E [PC1 + E [PC2 + E [...+ E [PCT ]]]]

s.t. (A.31)

dDA
t + dBal

t + dUR
t ≤ AtK (A.32)

uDA
t + uBal

t + uDR
t ≤ K (A.33)

0 ≤ Xcont
t = Xcont

t−1 −
∑
m

dmt , Xcont
0 = NKD (A.34)

0 ≤ Xup
t = Xup

t−1 −
∑
m

dmt +
∑
m

umt ≤ KD, Xcont
0 = KD (A.35)

∑
m

dmt−∆ ≤
∆−1∑
k=0

∑
m

umt−k + µt (A.36)

with

PCt = (λDA
t −AC)dDA

t −λDA
t uDA

t +

T∑
t=1

(λBal
t −AC)dBal

t −λBal
t uBal

t +(λUR
t −AC)dUR

t +λDR
t uDR

t −V oLLµt

(A.37)
where the first four terms in (A.37) reflect the four sources of revenues, a day-ahead market, bal-
ancing market, upward and downward reserves, and the last, the penalty for load recovery failures,
set at the value of lost load.
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Appendix A.5. Energy transition model

The energy transition model is an operation model similar to that of Appendix A.2 but with
normalized yet still random demand and wind generation and without any other generation except 1
MW of nuclear and DR. To increase the number of iterations of the SDDP solving method in order
to ensure confidence intervals for the optimal solution at least two orders of magnitudes smaller
than that of the solution, the year is only represented by five weeks (the 2nd, 14th, 30th, 40th and
last one). Beginning-of-the-year and end-of-the-year winter weeks are present because these periods
are that of higher and more volatile demand with possibly absent wind, making them prompt to
induce imbalances.

Existing assets in the reduced models have similar calibration as in the operation model (Ap-
pendix A.2), except for the maximum number of activations per year of DR potential, which is
proportionally reduced by 35/365 to match with the representative weeks.

The optimal policy is then generated by SDDP and tested against 500 random years scenarios.
We compare cumulative imbalances - i.e., the sum through a year of all slack variables associated
with the supply-demand balance of Appendix A.2.

Appendix B. Sensitivity to the DR modeling constraints

Here, we test the sensitivity of our proposed model for demand response valuations to the
inclusion of constraints limiting the load-shifting time window, the frequency of load-shifting acti-
vations, the modeling of multiple markets (day-ahead, balancing, and tertiary reserve), and the level
of activation cost (energy cost). It highlights that overlooking time constraints -linked to comfort
considerations, thermal properties of buildings, or technical aspects of underlying electricity usages-
leads to almost continuous activations for time arbitrage and profits up to 4 times higher than
when considering such constraints. Considering only the DA markets does not modify the resulting
activation pattern much compared to the full model. Still, it considerably reduces the upper dis-
tribution of annual profits for the flexible demand. Sensitivity to activation costs is less surprising,
with reduced activations and profits as these costs increase to the point of no participation in the
market for energy costs higher than 100€/MWh.

To do so, we consider the model of Appendix A.2 calibrated on a reduced version of the
year based on four representative weeks (the 2nd, 15th, 30th and 49th of the year). Uncertainty
regarding demands and renewable generation is revealed at the beginning of each day, drawn from 20
scenarios built as in the complete year calibration of Appendix A.1. For this sensitivity analysis, we
always consider DR provided by residential heating appliances for which we keep similar flexibility
attributes as in the complete case, except for the total number of allowed activations per year,
which is multiplied by 672/8760 and the installed capacity, which is kept to 1MW . The subsequent
multistage stochastic program is then solved using SDDP (Pereira and Pinto (1991), implemented
with a slightly modified Dowson and Kapelevich (2021)) and Shapiro (2011)’s stopping rule after
2100 iterations of backward and upward phases. Finally, the resulting optimal policy faces 500
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realizations of the four representative weeks, drawn from the 2028 years in the sample and kept
the same for all tested models. Resulting metrics (erased energy, system costs) are displayed scaled
back to a 8760 hours year.

On this basis, tested models for sensitivity to load-shifting modeling choices are the full model
as in Appendix A.2 (called hereafter "Full_DR"), the same without load recovery time con-
straint ("No_Delta"), without minimum time between two DR events ("No_Nu"), without both
("No_Nu_No_Delta"), and the full model which would only consider the day-ahead market ("DA_DR"),
thus excluding balancing and reserve procurement. For sensitivity to the activation cost, we consider
the "No_Nu_No_Delta" model because it removes DR activation barriers the most, making clearer
the role of prices in such activation, and set the value for the activation cost AC at 0, 10, 50, 100

and 150 €/MWh, the models being named accordingly.
To measure the sensitivity of the solution, we assess both the effect on the behavior (pattern of

upward and downward movements, cumulated erased energy) and profits (distributions) of the DR
asset under study and the global effect on the system costs and day-ahead prices.

Appendix B.1. Sensitivity to the inclusion of the time-related constraints

Figure B.5 shows that the absence of a minimum downtime ("No_Nu") leads to a total amount
of erased energy increased around 4 times compared to the cases with this downtime, independently
of the presence of a load-recovery time limit. However, the recovery limit induces different behaviors
for depleting the total number of allowed activations per year. With this limit, all activations can
not be used at the end of the year to postpone some load indefinitely and thus implies a flatter
pattern of activation across the year with the choice of using the asset more in the first winter period
while keeping some activations for the end of the year. Moreover, it appears in Figure B.5 that, in
our model, the absence of other markets than the day-ahead one or the absence of recovery time
limit reduce only marginally the total amount of erased energy (see also Table B.9) and do not affect
the cumulative pattern throughout the year. Regarding the time limit, it was expected that this
constraint concerns only recovered energy and not the erased one, so the influence of this constraint
is seen more in the comparison of Figures B.7 and B.8. Regarding the marginal difference in erased
energy when considering multiple markets or only the day-ahead one, it could be explained by the
fact that all markets present similar opportunities of time arbitrage (for the DA and balancing ones)
or modulation needs, so as the marginal cost of DR is supposed null here, there is no (massively11)
new incentive when considering several markets. More realistically, some DR would have a non-zero
marginal cost. Thus, other markets than the DA with a more limited number of service providers
would, in fact, create new activation incentives, but not more than the incentive perceived by the
zero marginal cost DR, here modeled, with equality if and only if the non-zero marginal cost DR is

11The bulk of this incentive comes from the variability brought about in the system by renewable generation and
structural load pattern. Additional incentives could only come from forecasting errors uncorrelated with the above
elements in the balancing market and sudden, similarly uncorrelated load variations in the reserve one as we do not
account for contingencies.
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DA Balancing Reserve Total

Full_DR 248.42 (13.85) 14.99 (5.91) 55.08 (11.76) 318.50 (6.94)
No_Delta 241.40 (13.65) 13.82 (6.62) 52.40 (12.05) 307.62 (2.44)
No_Nu 884.88 (49.32) 37.36 (17.63) 156.17 (35.67) 1078.41 (36.05)
No_Nu_No_Delta 971.77 (38.13) 20.55 (15.01) 102.68 (31.43) 1095.00 (0.00)
DA_DR 307.60 (2.28) - - 307.60 (2.28)

Table B.9: Average annually erased energy (MWh) per market in each model for the 500 simulated years.
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Figure B.5: Cumulative erased energy over the four representative weeks in the different demand response models.
Solid lines are average over the 500 simulations, shades associated with standard deviation.

The distribution of profits realized by operating the MW of DR over the year reflects the above
conclusion regarding its usage patterns, with added information regarding the effect of the recovery
time limit. As displayed in Figure B.6, profits are increased on average by 67% when no recovery
limit applies and by 126% when no minimum downtime applies. Still, those increases do not add
linearly as removing both limits leads to an increase of 128% of the profits on average. These
increases are driven by the new possibility of extremely favorable years more than by a movement
of the bulk of the distribution as shown by the relative constant median (black triangles in Figure
B.6) of profits across cases. Moreover, Figure B.6 highlights that most of the profitability of the load-
shifting appliance and most of the variability of the profits come from participation in balancing and
reserve mechanisms, even though we saw above that most DR volume is dedicated to the day-ahead
market. Notably, with only the day-ahead market revenues, the MW of DR earns 0.72 k€/year on
average and a median of 0.67 €/year which is well below the often cited 20-100k€/MW/year for
demand response costs (RTE (2023), chap. 9), while when considering the full but time constrained
model we get 6.12 k€/year and 1.59 k€/year on average and median respectively for the sole
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modeled MW of DR, still below the cost range and of the same order of magnitude of revenues
found in RTE (2023) (Table B.10).
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Figure B.6: Distributions of the profits realized by the flexible demand in the different models of DR.

Full_DR No_Delta No_Nu No_Nu_No_Delta DA_DR

Avg. profits (k€/MW/y) 6.12 10.29 13.93 14.00 0.72
Median profits (k€/MW/y) 1.59 2.49 5.76 6.13 0.67

Table B.10: Average and median yearly profits in the different models of DR.

Examining the DR asset’s upward and downward activations in each model case clarifies how
more full capacity and consecutive activations are set when no time limits are accounted for. More-
over, it appears that most of the value for upward modulation is found outside the day-ahead
market, as day-ahead upward DR exists almost only in the case "DA_DR" (compare the bottom
left heatmap of Figures B.7 to B.10 and of Figure B.11). Obviously, deleting the recovery time
limit reduces the frequency of upward regulations in total (Figure B.7 vs. Figure B.8) and therefore
results in stronger peaks of upward modulation. This highlights that maximum load recovery time
reduces the opportunities for time arbitrage and forces the DR asset to recover in not necessarily
low-price enough hours, which explains reduced profits, especially in less volatile years.

Removing a minimum downtime also increases the frequency of upward modulations, but simply
due to the massive increase in downward modulations due to the load recovery limit. Therefore,
both constraints are necessary for modeling the possible activations and, hence, the business case of
a specific appliance as a DR resource. If different appliances are aggregated and play as such in the
markets, these constraints can be explicitly translated by combining the flexibility attributes of the
underlying assets to derive an equivalent availability pattern, minimum downtime, and maximum
recovery time for the bundled asset. Or, the difference of activation levels and frequency observed
when comparing the full and "No_Nu_No_Delta" models could be translated into a reduction of
the nameplate capacity of the bundled asset: if an underlying asset with capacity of 1 MW can
be activated only every ν timesteps and has to recover load in ∆ timesteps, then it can provide
downward modulation of 1/ν MW at every timestep and an upward modulation of 1/(∆ν) MW at

36



0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

1
3

5
7

9
11

13
15

17
19

21
23

25
27

Da
ys down

DA

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Total

0.0

0.2

0.4

0.6

0.8

1.0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Hours

1
3

5
7

9
11

13
15

17
19

21
23

25
27

Da
ys up

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Hours

0.0

0.2

0.4

0.6

0.8

1.0

Full_DR

Figure B.7: Average downward (top) and upward (bottom) modulations of the flexible demand in the complete model
("Full_DR").

every timestep+1, so that the 1 MW underlying asset could contribute as a perfect 1/νMW to the
bundled asset in the day-ahead market and as a perfect 1/(∆ν) MW to the bundled asset in the
balancing or reserve markets, the two offers being coupled.
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Figure B.8: Average downward (top) and upward (bottom) modulations of the flexible demand in the model without
maximum recovery time ("No_Delta").
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Figure B.9: Average downward (top) and upward (bottom) modulations of the flexible demand in the model without
minimum downtime ("No_Nu").
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Figure B.10: Average downward (top) and upward (bottom) modulations of the flexible demand in the model without
minimum downtime and maximum recovery time ("No_Nu_No_Delta").
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Figure B.11: Average downward (top) and upward (bottom) modulations of the flexible demand in the model with
only the DA market ("DA_DR").
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Regarding the system’s costs and day-ahead prices, the hypothesis modifying the behavior of
the DR asset has no perceived impact at this system scale due to the small installed DR capacity
(approx. 1/105 of the total system’s capacity). However, the existence of the asset contributes to
reducing the occurrence of high system cost scenarios solely through its role at the margin. This
can be perceived both in total costs (Figure B.13) and in prices where price peaks are mitigated
(Figure B.12). Prices in the day-ahead market remain of the same order of magnitude in all cases
(Figure B.12), but the distribution of system costs is shifted to the left when only the day-ahead
market is considered (Figure B.13). This is because, in the latter case, balancing and reserve are not
considered at all. Keeping those requirements and removing the possibility for DR to participate
in these mechanisms (case "DA_DRout") brings back the system cost distribution close to that of
the full model (Figure B.13).
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Figure B.12: Average day-ahead prices (spreads in shading) during the four representative weeks depending on the
model of demand response
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Figure B.13: Distributions of the system’s costs during the four representative weeks depending on the model of
demand response

Appendix B.2. Sensitivity to the activation cost of DR

The effect of non-zero activation costs on DR bids being accepted in the markets manifests
strongly even at low energy prices. In Figure B.14, the total amount of erased energy over the year
decreases by approx. 78% already when the activation cost of DR goes from 0€/MWh to 10€/MWh.
After this impressive start, additional increases in costs affect erased energy proportionally less up
to activation costs of the order of 100€/MWh, after which DR is almost no longer called. Hence,
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cost hypotheses are increasingly crucial as low or negative prices become more frequent for longer
periods of time (i.e., exceeding load-recovery limits of the DR appliance) in the markets since they
could price out the DR, which could arbitrage on them. In actual systems, this would create a
negative feedback scheme where long periods of negative prices occur due to a lack of flexibility in
the system, preventing additional flexibility from entering the market and being activated for the
system and, in turn, reinforcing the initial flexibility issue.
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Figure B.14: Cumulative erased energy over the course of the four representative weeks for different activation costs

Profits vary as expected once costs are positive: they decrease strictly as activation costs increase.
However, it may seem surprising that average and median profits increase when moving from null
activation costs to positive costs (Table B.11). This may be explained by the nature of the solution
of the multistage stochastic dynamic program of the dispatch, which is that of a policy and not a
usage pattern. Thus, the optimal policy with no activation costs could be to activate as soon as even
the slightest intertemporal arbitrage has a high probability of occurring. In contrast, with low but
positive costs, the optimal policy is more selective and requires a higher probability of positive time
arbitrage to dictate an activation of a DR event. Facing a given realization year, the former policy
may well result in some activations being not profitable, while the latter avoids such traps, hence
the higher profits when activation costs become positive. Usage patterns, as displayed in Figures
B.16 and B.17, support such explanation through more selective activations. Once activation costs
increase again, the DR asset arbitrage opportunities become increasingly rare until the asset is
priced out of the market in most years, hence the approx. 0− median (Table B.11) compensated on
average by disproportionally profitable years (upper distributions in Figure B.15).
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