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Abstract
Robotic supernumerary limbs (SLs) can enable humans to perform alone tasks requiring more than two hands. By
increasing the number of effective degrees of freedom of the human body, SLs could have a major impact for industrial
and medical applications, and profoundly change the way humans interact with their environment. However, the current
use of SLs is limited, with applications focused on specific use cases and lacking a comprehensive framework for versatile
and ubiquitous use. This limitation stems primarily from the intertwined challenges of ensuring safety and coordination
between the natural limbs and SLs. This paper presents a novel control framework for sensorimotor augmentation with
SLs based on predictive coding, a process rooted in the hierarchical neural structures that enable the brain to seamlessly
manage coordinated and complex actions. Our framework comprises three levels where each level generates predictions
for and receives prediction errors from the level below. Theα-layer detects the humanmovement intent and ensures safety
through generated constraints. The β-layer controls action and related sensory feedback. For this layer, we propose a novel
general voluntary control mechanism that offers a continuum between fully autonomous SLs behaviors and direct control,
thereby allowing a user to control SLs in complex tasks with minimal cognitive effort. Finally, the γ-layer executes the SLs
control and handles their interaction with the human body and the environment. For each component of our framework,
we review the relevant literature and illustrate implementation strategies that can pave the way for safe and versatile SLs
control.

Keywords
Sensorimotor augmentation, multilimb coordination, supernumerary robotic limbs, predictive coding, human intent
prediction, human-robot interactive control

1 Introduction

Science fiction has long envisioned humans augmented
with artificial limbs, such as Spiderman’s Dr. Octopus, who
can seamlessly control robotic supernumerary limbs (SLs)
independently of or in coordination with their natural limbs
(NLs). The potential of SLs is supported by the superior
motor capabilities observed in individuals with natural
augmentation, such as polydactyly individuals born with
more than five fingers by hand (Mehring et al. 2019). In
the past two decades, various SL prototypes have emerged
(Prattichizzo et al. 2021; Yang et al. 2021), designed to
enable users to perform tasks alone that typically require
collaboration with others, such as complex and skillful
assembly (Parietti and Asada 2016), assistance of individuals
with impaired motor function to carry out activities of
daily living (Hussain et al. 2016; Wu and Asada 2016), or
multi-handed surgery (Huang et al. 2021c) (Fig. 1). However,
despite many devices being built, usage has been limited due
to issues in interfacing the human and SLs (Eden et al. 2022).
Our goal is to create a safe, versatile, intuitive, and

efficient control for SLs, enabling robotic augmentation
far beyond the limited abilities of current systems. Safety
in human-SL-environment interaction has received little
attention, resulting in simplistic and overconservative
solutions that restrict functionality (Khoramshahi et al.

2023). Regarding versatility — the ability to perform a
wide range of tasks with the same controller — SL control
has primarily relied on direct control supported by visual
feedback, or on a restricted set of autonomous behaviors,
which may not always align with user intentions. Finally,
achieving intuitive and efficient SL control requires an
augmentation mechanism that seamlessly integrates SLs
into the user’s natural motion planning, enabling them to
function as extensions of the user’s body with minimal
additional cognitive effort.
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Figure 1. Illustration of possible augmentation with SLs. A. Four-handed assembly task with SLs worn by the user. B. SLs
moving with one’s wheelchair to assist in carrying out activities of daily living. C. Solo microsurgery using SLs attached to an
independent mechanical structure. D. Example of the MUlti-limb Virtual Environment (MUVE) as a possible implementation platform.

How can these challenges be addressed? Considering
animal behavior, we observe that many species can
seamlessly perform complex tasks requiring high levels
of coordination, using sensory inputs affected by large
temporal delays and noise. These advanced control abilities
are believed to stem from the inherently predictive nature
of the perception and control mechanisms employed by
the mammal brain (Bar 2011). This idea traces back to
Hermann von Helmholtz’s insight that perception functions
as a process of unconscious inference (von Helmholtz
1866). Here, it is widely accepted that the animal brain
continuously relies on predictions about the evolution of
its actions and environment, using statistical regularities in
sensory information and minimizing prediction errors by
integrating current sensory input.
We argue that, similar to biological systems, a framework

enabling safe, intuitive, and versatile control of SLs
through rich sensory feedback must incorporate robust
predictive capabilities at its core. To this end, we propose
a hierarchical control framework inspired by the predictive
coding mechanism, wherein the mammalian brain predicts
future sensory information and leverages these predictions
for control (Huang and Rao 2011; Friston 2018; Millidge
et al. 2021; Parr et al. 2022). In our framework, each layer
generates predictions and receives error signals from the
layer below, mirroring the organization hypothesized in
sensory areas of animal brains (Rao and Ballard 1999; Blank
and Davis 2016; Marques et al. 2018; Lao-Rodríguez et al.
2023). Specifically, we aim to implement hierarchical control
that integrates automatic reflexes — ensuring safety with
minimal cognitive effort — with higher-level motor skills
under voluntary control. While the conceptual framework
proposed by (Seminara et al. 2023) focuses on prosthetics,
we extend its scope by considering the implementation
of general movement augmentation, and discussing each
mechanism from the safety of working with SLs, to their
control, and how human users can interact with them.
Developing a predictive coding framework requires a

reciprocal understanding between the human and robot, so
that the human user is able to decode and predict their SLs’
behavior, and is able to translate their desired control to
them. For this purpose it is important to establish reciprocal
legibility (i.e., the ability to infer the movement goal) and
predictability (i.e., the ability to anticipate upcoming steps
of the movement by observing previous ones) between the
SLs and their human user (Dragan and Srinivasa 2014).
For humans to effectively understand the SLs’ action,

it is essential to provide feedback about their state

concerning the task at hand and their interactions
with the environment. However, experiments in human
augmentation have shown that current strategies for
encoding artificial sensory feedback related to SLs are not
easily interpretable and do not consistently improve control
performance (Pino et al. 2014; Pinardi et al. 2021). A critical
component of the predictive coding framework is, therefore,
the design of sensory feedback that enables the brain to
accurately predict task-relevant parameters, allowing the
central nervous system (CNS) to establish sensorimotor
loops for efficient and intuitive SL control.

To understand human intent effectively, a detailed
description of the task and its constraints is crucial for
SLs. Over the past decades, optimal control (OC) techniques
have been applied to model human motor control (Scott
2012) and design robotic control (Mainprice et al. 2015),
incorporating sensory feedback to compute appropriate
motor commands. OC offers a practical framework to
precisely define task and constraints without imposing
a fixed motor plan. To implement OC for SL control, a
broader framework is required, that considers the specific
sensorimotor interactions with the human user. This can be
achieved by leveraging (i) the sensory exchanges observed
and modeled between collaborating humans over the last
decade (Ganesh et al. 2014; Takagi et al. 2017, 2019;
Sebanz and Knoblich 2021; Dockendorff et al. 2023), and
(ii) advancements in optimal control for human-robot
interaction, using differential game theory as developed in
(Jarrassé et al. 2012; Li et al. 2019; Hafs et al. 2024) to specify
the roles adopted by the human and robot agents.

In this paper to develop the framework’s implementation
methods, we review existing movement prediction and
control techniques in robotics, human motor control and
human-robot interaction. Section 2 describes the novel
framework and Section 3 illustrates its potential through
representative examples. Section 4 then explains how the
framework can enable users to control SLs dynamically and
safely, independently of or in coordinationwithNLs. Finally,
Section 5 outlines how flexible action planning and the
associated artificial sensory feedback can be implemented.

2 Augmentation concepts and framework
We conceive an augmented human with N SLs as 1 +N

agents each equipped with sensing, motion planning and
motor skills, which communicate with each other to carry
out a common task (see Fig. 2). This task will be represented
as a set of goals G ∈ R6+1, that are 6D poses to reach with

https://www.imperial.ac.uk/human-robotics/dr-octopus-/
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Figure 2. General concept of human-SLs interaction. Each
task corresponds to a set of goals G, which is understood as
subtasks corresponding to both the human NLs and the SLs. For
instance, if two hands are needed to manipulate an object, we
describe the task as comprising two goals. SLs have to comply
with the safety standards of robots working closely with humans,
as well as to human goals, motions and control strategies to
select their goals, and plan and execute associated actions.
Conversely, the behaviors of SLs and artificial sensory feedback
can impact human behaviors, leading to a co-adaptation process.

the endeffector of a NL or SL in the task space, and one
time constraint, as certain goals are necessarily performed
before others, e.g. when carrying an object from an initial
to a final location. Each of these goals is accomplished
by one limb, either a NL or a SL, so that they can be
subdivided into human and robots goals as follows: G =
Gh ∪ Gr , Gh ∩ Gr = ∅. Note that in this representation,
human and SLs goals are necessarily different at a given
instant to avoid collisions. However, they are sometimes
mechanically coupled such aswhen collaboratively carrying
an object. Finally, each human or SL goal is associated with
a subtask, that allows for the generation of goal-directed
limb trajectories, which we represent by concatenating the
evolution of the NLs states xh(t) and SLs states xr(t) in
a single global state x(t) ≡ [xh(t),xr(t)]. Note that this
state variable can be of varying dimensions and contain
different information (e.g. limb joints angular positions,
speeds, torques) depending on the representation chosen for
the control variable of SLs and NLs, u(t) ≡ [uh(t),ur(t)].
For instance, in a controlled torque change framework, as is
often used in human motor control (Burdet et al. 2013), the
control variable is u(t) ≡ [τ̇h(t), τ̇r(t)], and the state x(t)
will contain information relative to the joints torques of the
NLs τh(t) and SLs τr(t).
To illustrate these definitions, let us consider an

augmented microsurgical operation as depicted in Fig. 1C.
In this scenario, the human’s goals Gh identified by the SLs
agents, using sensing as detailed throughout the paper, can
be represented as a set of poses through time required to
complete a suture. The robots’ goals Gr , which typically
correspond to tasks that would be carried out by a human
assistant, may be a set of poses to suction blood and clear
the surgeon’s view, or to hold a retractor steady to prevent
soft tissue from interfering with the surgeon’s goals.
Achieving goals requires planning compatible SL and NL

trajectories. To fulfill their goals, the augmented human
needs appropriate sensory stimulation, usually referred to
as sensory feedback yr(t) conveying information regarding
the SLs’ movement, represented by its state evolution xr(t).

This sensory feedback enables humans to evaluate the
relevance of the chosen NL-SL coordination strategy. The
SLs aim to achieve the goals directly or indirectly assigned
to them by the human. To do so, they rely on contextual
information on the task, the human, the environment, and
the assigned control strategy. We note that the SLs are not
necessarily under the direct control of the human as they
may execute an autonomous behavior.
How to determine the SLs’ control? Over the past three

decades, optimal control methods have been developed to
model human motor control (Todorov and Jordan 2002;
Berret et al. 2021), providing insight into how the CNS
may generate motor commands and coordinate limbs and
muscles in the redundant musculoskeletal system (Berret
et al. 2024). These methods typically use a cost function that
captures task constraints and plant dynamics to compute
motor commands. Recently, we have leveraged differential
game theory (GT), which allows for optimal control in
interactions with another agent, to enhance human-robot
interaction (Jarrassé et al. 2012; Li et al. 2019; Hafs et al.
2024). By combining optimal control and GT, we can design
a novel SL control that coordinates seamlessly with NLs,
which we will refer to as general voluntary control (GVC),
as will be discussed in Section 5.3.
To handle the complex problem of controlling SLs in

an efficient and intuitive way, we propose a framework
for regulating the information exchange between the
human and their SLs inspired by the predictive coding
process identified in the animal brain. Our hierarchical
predictive coding framework comprises three levels as
shown in Figure 3. Higher layers in the hierarchy manage
broad aspects of the task and the interaction with the
environment, while lower layers focus on local control
aspects, with the following roles:
– Coordination α-layer generates safety constraints

in both space and time, encompassing the entire
environment, tasks, and predictions about their future
evolution. Implementation-wise, this layer should be
central, common to all SLs and aggregate all the available
information with regard to the environment, SLs and
the human user. It is composed of three main blocks
to: (i) encode static and normative safety constraints,
(ii) infer human intent and trajectories, and (iii) assign
(optimal) tasks to each SL and coordinate limbs to avoid
inter-SLs collisions and handle balance issues. The α-
layer sends to the β-layer predictions of the human
goals and trajectories with associated predicted motion
constraints due to the human (ĉh(t)), the environment
and safety standards (ĉe(t)), and the planned behavior
of other SLs (ĉc(t)). It receives prediction errors between
the observed and the predicted constraints for high-level
safety monitoring (δ(t)) from the β-layer.

– Action planning β-layer plans SL motions and
artificial sensory feedback based on knowledge at the
level of each SL, and applies the most relevant control
method. Three of the four blocks are used to control the
SLs under different paradigms, continuously regulating
the human and robot task contributions. The remaining
block computes sensory feedback specific to the control
mode in order to provide the user with sensory stimuli
conveying information relevant to the interaction. The
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Figure 3. Proposed hierarchical framework controlling one SL, composed of three layers that generate descending predictions
and ascending errors. In the common highest layer, the framework receives information describing the human state xh and the other
SLs statesXr .

planned SL control and associated sensory feedback
are concatenated in a planned sensorimotor command
u∗
r(t), corresponding to a planned state trajectory x∗

r(t),
which is sent to the γ-layer. In parallel, the β-layer
receives the tracking error (e(t)) between the SL state
and the planned trajectory for possible motion re-
planning. One can also envision the β-layer as receiving
measures of expected error in the human brain to detect
discrepancies between the observed SL behavior and the
expected SL behavior encoded in their internal model,
which would allow optimizing both trajectories and
sensory feedback strategies.

– Interaction γ-layer executes the planned SL motion
and delivers sensory feedback according to a selected
strategy, using local knowledge of the SLs and real-
time sensor signals. This layer is composed of (i) a
trajectory tracking block enabling the SLs to accurately
follow planned motions and to modulate impedance, for
instance to maximize safety during physical interaction,
and (ii) a sensory feedback execution block, conveying
the planned sensory stimulation to the human. The
resulting motor and sensory feedback commands are
sent by the γ-layer to each SL and relevant sensory
feedback devices are activated. Finally, the γ-layer
receives the current measures from each SL and feedback
device under the form of a current general state (xr(t)).

This framework contains two important features by
design. First, the α-layer is designed to ensure that the
human-SLs-environment interaction is safe and free from
harmful collisions. These functions, which are mainly
produced by unconscious processes in humanmotor control
(Blakemore et al. 2002), are incorporated as constraints
in the α-layer. To illustrate such processes, consider the
stabilization of a human-SL system. When performing
a task, humans naturally and automatically adjust their
posture and muscle activity to ensure balance. For SLs, such
an automatic adjustment would prevent the destabilization
of the human stance and can be implemented as a
minimization of gravity related torques which results in a SL
being used as a counterweight (see Section 4.3 and Fig. 4A).

The second feature is that the β-layer enables the
generation of a variety of SL behaviors by implementing
three main types of SLs control: direct control, autonomous
behavior, and a novel general voluntary control to combine
them. This can significantly enhance the versatility of SLs
and their adaptive capacity compared to current uni-modal
approaches. Simultaneously, planning the sensory feedback
conveyed to the user over the movement duration allows for
implementing optimized strategies that convey predictive
information with regard to the task at hand, such as the
future grip strength of the SL. This could significantly
improve the predictability and legibility of SL behaviors
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compared to simple mappings between SLs state and the
sensory feedback currently implemented.

3 Use cases
To illustrate the framework’s function and versatility, we

describe how it can be used to implement the three use cases
of Fig. 1. Here we illustrate the different control strategies
rather than listing all possible strategies for each case.

Industrial assembly. A large number of common assembly
tasks, such as fixing a tube to a structure as illustrated
in Fig. 1A, usually requires two people, one holding the
tube while the other assembles it. However, this may be
impractical in narrow spaces and the collaboration may lead
to a number of misunderstandings and errors. Ideally, this
type of four-handed task could be performed alone with
worn SLs that would understand their user’s intent and
adopt a complementary (e.g. follower) role, which defines
the sequence of subtasks it has to perform and avoid errors.
The SLs would provide sensory feedback of the interaction
with the body and the environment.
The main challenges of this task are in accurate

positioning and the stabilization of the tube during
assembly. In our framework, the α-layer, based on human
intent classification (see Section 4.2), detects the role of
the SLs and the associated subtasks and goals. A possible
output sequence may consist of: (i) grabbing the tube, (ii)
co-manipulating it to position it for assembly, (iii) stabilizing
it while the human grabs tools and performs the assembly,
and (iv) moving back to a home position for the next task.
Then, human motion prediction could be used to flexibly
adjust the goals and assist the user during each subtask.
Subtask (ii) may be completed using GVC (see Section
5.3) to optimally assist the user during tube positioning,
while all other subtasks may use autonomous behaviors
(see Section 5.2.2). During these different phases, sensory
feedback would first include haptic feedback at the body-SL
interface from the interaction force with the environment,
as well as feedback at the interaction of the hands with the
tube. Artificial sensory feedback could provide functional
information such as SL-tube interaction forces.

Carrying out daily living activities from a wheelchair In
this use case illustrated in Fig. 1B, SLs are fixed on a
wheelchair, allowing them to extend the user’s workspace,
augment their manipulation capabilities to multimanual
operations, and assist an impairedNL. As in the previous use
case, intention detection is critical to estimate the human
user’s targets and to constrain SL behaviors. Moreover,
the different control modes available are used for different
situations ranging from co-manipulation to collaborative
pick-and-place. In this case ensuring the balance of the
human-wheelchair-SLs system is easier than with worn
SLs, although it is still critical to avoid destabilizing the
wheelchair as the user may be unable to compensate for
instability. Additionally, natural feedback of the interaction
force with the environment is strongly reduced as the SLs
are not in direct contact with the body, which could be
even more pronounced for users with sensory impairments.
Therefore, artificial sensory feedback becomes necessary for
successful object manipulation.

Micro-surgery assistance. SLs fixed to an independent
platform can be used for instance to augment the abilities
of a microsurgeon as illustrated in Fig. 1C. In this case,
the SLs complement the surgeon for tasks that today
would be carried out by a human assistant. The SLs
coordinate with the NLs, for instance to safely grab
tools and manipulate fragile biological tissues to perform
interventions in a manner that may be different from the
typical human surgeon-assistant collaboration. The vessel
suturing operation may be broken down in (Villavisanis
et al. 2023) (i) vessel visualization, (ii) vessel stabilization,
i.e. moving to and grabbing the vessel, (iii) holding the
suture that may require minor position adjustments based
on surgeon behavior, (iv) cutting the suture, (v) irrigating,
and (vi) back wall suturing. In this scheme, the α-layer
would detect the ongoing sub-task and the role taken by
the surgeon, thus determining appropriate sub-tasks for
the SLs to plan their movements accordingly. Specifically,
(i) could be performed entirely by the surgeon, (ii) in
direct control, (iii) with GVC to optimally adapt to the
surgeon’s movements, (iv) and (v) could be carried out
autonomously, and (vi) using GVC. In this case, ensuring
the wearer’s balance is no longer necessary, and as for
the previous example, there is no inherent haptic feedback,
which requires developing artificial sensory feedback.

4 Dynamic safety and coordination
The α-layer ensures dynamic safety and coordination

in human-SL interactions by extracting predictive, time-
dependent motion constraints to guide SL behaviors.
A similar approach has been developed for controlling
humanoid robots (Mainprice and Berenson 2013; Mainprice
et al. 2015), but the multilimb control of SLs in contact with
the user’s body imposes significantly more stringent safety
and coordination requirements.

4.1 Static constraints
Theα-layer should first implement normative constraints

to mitigate the risks of workspace sharing between
humans and SLs. In particular, Annex 1 of the Machinery
Directive 2006/42/EC incorporates standards ISO 10218-
1:2011 & -2:2011 and ISO 13849-1:2015, and describes the
basic safety measures that should be implemented in
robots including those working alongside humans. These
safety standards necessitate the automatic stopping of the
system if communication is defective. Furthermore, the ISO
12100:2010 and ISO 13855:2010 standards mandate safeguard
positioning and speed limits based on the part of the
human body being approached, the robot’s power limits,
maximum velocity, distance to the human user, and the
energy exchanged during contact. Such information may be
estimated using anthropometric models of the user Winter
(1990), proximity detection skins (e.g. inductance skins),
body and limbs states estimated using inertial measurement
units (IMUs), or a combination of all to mitigate their
respective limits, e.g. the drift due to integration in IMU-
based estimation.

A basic implementation of these safety standards can be
achieved using hardware and software limits to saturate
velocity and power. Further basic requirements include (i)
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Table 1. Summary of non-invasive human intent classification techniques. Neurophysiological signals used for human intent
decoding are classified into proactive (PA) or reactive (RA) depending on whether they are available before or after movement onset.
The success rates ranges correspond to the lower and higher performances reported in the referenced papers.

Signal type Sensors Classifier / algorithm used Performance

Pr
oa

ct
iv
e
(P
A
)

Brain activity /
Error potential

Electroencephalographic (EEG)

Shrinkage linear discriminant
analysis Blankertz et al. (2011);

Multivariate statistics Bai et al. (2007)
Wang and Makeig (2009); Lew et al. (2012);

Wavelet signal decomposition
Kevric and Subasi (2017);

Artificial neural networks (ANN) Bai et al. (2007)
Maksimenko et al. (2018); Huang et al. (2021a);
Sparse logistic regression Ganesh et al. (2018);
Cross-association / Coherence Kim et al. (2017)

Success
70%–90%

Low frequency
(< 10Hz)

Eye kinematics Eye tracker

Deep learning Festor et al. (2022);
Nearest neighborhood Jang et al. (2014)

Support vector machine (SVM) Jang et al. (2014)
Huang and Mutlu (2016);

Markov processes Javdani et al. (2015);
Direct modeling Chadalavada et al. (2020)

Krausz et al. (2020)

Success
70%–95%

Low frequency
(< 10Hz)

Muscle
activity

Electromyographic (EMG) /
Mechanomyographic (MMG)

Deep learning Yang et al. (2023);
SVM Krausz et al. (2020);
Extreme learning machine
Cene and Balbinot (2020);

Markov processes Trigili et al. (2019);
ANN Lin and Lukodono (2021); Yang et al. (2023);
Hodges detector Balasubramanian et al. (2018);
Cross-association / Coherence Kim et al. (2017)

Success
70%–99%
Real-time

R
ea

ct
iv
e
(R

A
) Limbs

kinematics
Motion capture (markers) /

Cameras (markerless)

Classification and regression tree
Cavallo et al. (2016);

SVM and others Hemeren et al. (2021);
Deep learning

Yu and Lee (2015); Vondrick et al. (2016)
Jain et al. (2016); Kong et al. (2017);

ANN Fermüller et al. (2017);
Subject-adversarial Zunino et al. (2019)
Probabilistic suffix tree Li et al. (2012)

Success
65%–95%
Real-time

Interaction
forces Force-torque sensors

Direct modeling Kucukyilmaz et al. (2013);
SVM Madan et al. (2015)

Linear discriminant analysis Lanini et al. (2018)

Success
60%–85%
Real-time to
low frequency

the implementation of static constraints to prevent SLs from
entering certain zones (Khoramshahi et al. 2023); and (ii)
the avoidance of self-collisions along a path, which can
be guaranteed using general path validation algorithms
(Bury et al. 2023; Wen and Pagilla 2023). Note that in
the case of multiple SLs, self-collision avoidance should
also be implemented as multilimb coordination (see Section
4.3). More advanced strategies that have been employed
include collision detection and classification to limit the
exchanged energy in case of contact with a human or with
the environment (Haddadin et al. 2009; Lippi and Marino
2020), and using passivity theory and energy budgets to
ensure stable and efficient performance depending on the
task at hand (Lachner et al. 2021; Michel et al. 2024).

The implementation of these standards and collision
avoidance and detection algorithms is a necessary step for
all human-SL interaction scenarios, whether the SLs are
worn or fixed to an external support.

4.2 Detection of human intention

Efficient algorithms are needed to (i) identify the
planned human task, intent, and role (corresponding to
legibility from the SLs perspective) and (ii) predict the NLs
trajectories (i.e., predictability), as described in the next
two sections. These areas, which have been extensively
studied in recent years, still pose numerous implementation
challenges due to the complexities of neurophysiological
signals recording and analysis, as well as fundamental
limitations in understanding human user behavior.

4.2.1 Intent identification The robot’s objective is to infer
the human legible goals i.e. (i) the general task at hand
and associated sequence of sub-tasks, and (ii) the current
goal and role of the human in the task. Such information
is usually extracted by using classifiers based on statistical
and machine-learning techniques and trained on human
physiological recordings during specific tasks. General
considerations can be found in survey papers (Losey et al.
2018; Luo et al. 2024), including kinematics- and interaction
effort-based classification.
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Table 2. Summary of human trajectory prediction techniques. Neurophysiological signals used to predict trajectories are
classified into proactive (PA) and reactive (RA) depending on whether they are available before or after movement onset.

Signal type Sensors Prediction method

PA Muscle
activity

Electromyographic (EMG) /
Mechanomyographic (MMG)

Learning from demonstration Siu et al. (2018);
Artificial neural networks (ANN) Siu et al. (2020);

Direct modelingQuesada et al. (2024b,a)

RA

Limbs
kinematics

Motion capture (markers) /
Cameras (markerless) /

Robotic interfaces

Learning from demonstration Burdet et al. (2000); Calinon et al. (2010a,b)
Mainprice and Berenson (2013); Ijspeert et al. (2013); Luo et al. (2017)

Jamsek et al. (2021); Davchev et al. (2022)
Saveriano et al. (2023); Orhan et al. (2024);
Optimal control Mainprice et al. (2015)

Interaction
forces Force-torque sensors

Interaction primitives Medina et al. (2015);
ANN Li and Ge (2014); Yu et al. (2020);

Gaussian mixtures Johannsmeier and Haddadin (2017);
Optimal control Noohi et al. (2016);

Kalman filtering Takagi et al. (2017, 2018, 2019, 2021)

Neurophysiological signals exploited to classify human
intent includemuscle activity (Ahsan et al. 2009; Nazmi et al.
2016; Mohd Khairuddin et al. 2021), eye gaze (Belardinelli
2023), and brain activity (Shakeel et al. 2015), which can
provide information prior to the motion onset (Wong
et al. 2014) thereby allowing proactive control of SLs. The
extracted information can be an actual goal as previously
defined or other information, depending on the signal
used. For instance, brain activity can be used to extract
movement intention such as moving left or right (Ganesh
et al. 2018), muscle activity can provide the upcoming
movement direction of a limb (Trigili et al. 2019), and eye
gaze can be used to determine a goal in a scene (Admoni
and Srinivasa 2016).
Limb kinematics and the interaction force for contacts

provide information after movement onset, which can be
used for reactive SL control and the correction of outputs
from the previous proactive classifiers. Table 1 provides
a summary of usual proactive and reactive signals and
classification techniques. In the case of our framework,
outputs obtained with classifiers using both information
prior to and during movement would facilitate prediction
error correction, mitigate the risk of inappropriate decision
for SLs roles, and enable the extraction of human goals
through multimodal classification(i.e. with multiple input
signals). Note that the displayed performances are averaged
across populations of participants and thus do not account
for inter-individual variability. Furthermore, the accuracy
of these classification techniques is highly impacted by the
task at hand, which means that one cannot extrapolate
easily on their potential performance during human-SLs
interaction. Consequently, multimodal recordings and the
validation of the exposed classification techniques during
varied NLs-SLs coordination scenarios will be a critical step
towards their effective integration in SLs control.

4.2.2 Trajectory prediction The other aim of the intention
component of the α-layer is to predict the human limb’s
trajectory over a horizon, extending to the next goal or
sequence of goals represented as a series of poses over time,
forming the predictable human trajectory. This process does
not necessarily have to be informed about the motion goal,
however when available it can be used for conditioning
for the prediction, which strongly increase its robustness

by limiting the possible outcomes. Kinematic and force
data, along with muscle activity, are typically employed for
this purpose. Time-dependent volumetric constraints are
then computed and used to plan SL motion based on this
prediction. These constraints are time-dependent in two
ways: explicitly, as the predicted trajectories are time series;
and implicitly, as predictions are iteratively updated and
corrected at a specified frequency based on errors arising
from the β-layer. The constraints are volumetric to reflect
the volume occupied by the human user’s NLs over time,
serving to restrict SL motion planning. Table 2 summarizes
common techniques to predict human movement.

4.3 Limb coordination

Ensuring dynamic safety requires enforcing further
constraints, some specific to the type of human-SL
interfacing. In all cases, it is necessary to complete the
human-SLs collision avoidance system described in Sections
4.1 and using predictions from Section 4.2 by ensuring that
SLs do not collide with each other. A possible solution to
guarantee this is to consider a generalized state accounting
for multiple SLs and employing the same tools as for
avoiding self-collisions mentioned in Section 4.1, see (Bury
et al. 2023; Wen and Pagilla 2023). It is also possible to
consider simple solutions like completely separating the
workspaces of the two robots using task-based constraints,
which can be implemented for instance using bounding
boxes (Khoramshahi et al. 2023).

Furthermore, for all types of human-SLs interfacing, we
can specify the choice of tasks to perform by each SL
through using strategies found in human motor control. For
instance, when multiple SLs are available, the one closer to
the target can be used to reach it, as humans do with their
NLs (Bryden et al. 2000), or predefined working areas could
be defined, as humans tend to assign to directly controlled
SLs (Huang et al. 2022). To reduce possible ambiguities, the
user can further define a dominant SL.

Importantly, for wearable or co-moving SLs, it is
necessary to guarantee the balance of the augmented
human with SLs as exemplified in Fig. 4A,B. For instance,
using multiple SLs for tasks in the same region of space
could jeopardize balance. Several strategies have been
tested to balance a human with worn SLs, and dedicated
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Figure 4. Coordination behaviors between SLs. A. Balance augmentation with SLs, also demonstrated in this simulation video
and in this illustration video. The left panel illustrates lateral stabilization by increasing inertia in the frontal plane. The right panel
shows compensatory movements provided by the SL when the human loses balance. B. Stabilization of the human-SL system during
a collaborative task. One SL retrieves an item from the box while the other acts as a counterweight. C. If the human collides with the
box (indicated by the red arrow), the right SL can counteract this disturbance (indicated by the green arrow). The GVC (described in
Section 5.3) would interpret such a change in interaction effort as volitional and filter it out until the collision ceases.

SLs have been developed to improve balance. Pioneering
works used two 3-DoFs SLs as anchors to keep balance
in industrial environments, e.g. during aircraft assembly
(Parietti and Asada 2014; Parietti et al. 2015; Parietti and
Asada 2016). It has been recently proposed to equip humans
with a tail that reduces the risk of falls by actively
compensating for the loss of balance in the sagittal plane
(Abeywardena and Farkhatdinov 2023; Abeywardena et al.
2023). Another approach to enhancing human balance is
to use supernumerary legs (Gonzalez and Asada 2019;
Hao et al. 2020; Khazoom et al. 2020). Moreover, balance
improvement can also be achieved using devices that
work alongside supernumerary legs, such as a stabilizing
backpack with rotating elements that utilize Coriolis forces
(Romtrairat et al. 2019; Lemus et al. 2020).
In contrast to these specific developments, we would like

to have a general method for balance augmentation, based
on the use of multiple SLs. For this purpose, we propose to
minimize the center of mass (CoM) shift using the following
cost function under other constraints from the α-layer

(1)

q1

...
qN

 = argmin
q1,...,qN


∫ tf

t0

(
N∑
i=1

τg,i(qi(t))

)2

dt︸ ︷︷ ︸
CoM shift

+

N∑
i=1

∥gi(qi(tf ))− gi(qi(t0))∥2︸ ︷︷ ︸
start-end distance (solve redundancy)


where tf = max{tf,1...tf,N} is the final time of the
working SLs trajectory, [q′

1, ...,q
′
N ]

′ is the vector of planned
joints positions of the SLi, i ∈ {1, ..., N}, τg,i the torque
due to gravity imposed by the planned joints positions qi

of the SLi, computed at the human-SLs interface, and gi the
position of the CoM of the SLi. This solution is sufficient
for co-moving SLs as sketched in Fig. 1B and demonstrated
in this simulation video and in this illustration video. For
wearable SLs the cost function has to integrate the NLs, as
illustrated in Fig. 4A. As the balance problem has in general
multiple solutions, we suggest including an optimization
criterion minimizing the SLs intervention used the sum of
the squared norms of the total displacement of the center of

mass of each SL. Other solutions include using a dynamic
cost instead of the geometric proposed here.

This optimal motion planning problem should be solved
under the safety constraints imposed by the human
movement prediction and the environment, and the task
constraints. Under this criterion, the different solutions
presented above, such as using the environment or adjusting
the pose of the SLs, can be envisioned and the most
appropriate selected for each task as illustrated in Fig. 4.

5 Flexible action planning
5.1 Predictive sensory feedback to human user

Human motor control exploits instantaneous multisen-
sory feedback whichmonitors the current state of the motor
system, and predicted sensory feedback to anticipate the
result of an action and compensate for delays in feedback
control. For the NLs, this incorporates a multitude of sen-
sors distributed across the skin and muscles that provide
touch and proprioceptive inputs. In contrast, current SLs
are typically monitored only through natural visual and
auditory feedback. The resulting audio-visual multisensory
integration requires constant monitoring of the SL activity,
mainly through vision, which can result in large cognitive
load and fatigue. Furthermore, both sensory modalities can
be obstructed by environmental factors.

SL feedback is critically lacking the contribution of the
somatosensory modality (i.e., touch and proprioception),
which is known to impact motor control and outperform
other modalities (Crevecoeur et al. 2016) while being unob-
trusive and discreet. Drawing from the neurophysiological
mechanisms underpinning NL control, we propose that a
supplementary afferent stream that exploits somatosensory
afferent pathways should be introduced for SL users to (i)
convey current SL state and task-related information that
cannot be easily assessed with vision or hearing (e.g., grip
force or distance to a target), and (ii) provide predicted
sensory feedback (e.g., targets or required interaction types)
to support human predictive coding behaviors. Both of these
developments aim at improving the SLs’ agency, the aware-
ness of controlling them, and their ownership, the perception
of them as ones’ own limbs (Blanke et al. 2015).

Any provided supplemental feedback should convey
the necessary information with which to understand the
task as well as the SL’s behavior, which might imply

https://youtu.be/0M6VNwbzaQQ
https://youtu.be/p3YAe0JtCdk
https://youtu.be/0M6VNwbzaQQ
https://youtu.be/p3YAe0JtCdk
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the need of a dynamic feedback signal, that changes in
content, encoding algorithm and possibly modality, as
the goal and behavior of the SL change. This requires
that the SL’s goal is legible and its trajectory predictable.
Relying on visual feedback, predictable trajectories can
be computed by using human motor control models
to generate human-like behaviors, from which legibility
can then be enhanced through gradient descent methods
to maximize a predefined legibility score (Dragan and
Srinivasa 2014). Such techniques can also be applied to
feedback related to SLs in our framework (Fig. 3), to extend
(Dragan and Srinivasa 2014) from audio-visual integration
tomultisensory integration that includes the somatosensory
modality. For instance, using vibrotactile devices, one
could augment current state feedback with a mapping
between the frequency and amplitude of vibrations and
the planned states of the SLs. This would likely require
a method to distinguish actual feedback from predictive
feedback, potentially using different encoding strategies
— for example, conveying the actual state via vibrotactile
feedback and the planned state via electrotactile feedback.
Decoding supplementary feedback can impose a signif-

icant cognitive load. In human-SL interaction, the CNS is
challenged with processing sensory streams for both NLs
and SLs, creating a risk of information overload (Domini-
janni et al. 2021). Therefore, artificial sensory feedback
must be carefully optimized to convey only essential in-
stantaneous, functional, and predictive information with a
minimal number of modalities or actuators. This requires
selecting the most effective stimulation patterns and body
locations. To date, there has been limited systematic re-
search into identifying optimal sensory feedback strategies
and developing models for their interpretation by users
(Pinardi et al. 2023a). However, recent studies have started
to address these issues. For instance, it has been found that
providing SL end-effector Cartesian position information is
more effective early in the learning process, while joint-
related information (e.g., joint angles) may become more
beneficial over time (Pinardi et al. 2021, 2023b).

5.2 Control modes

5.2.1 Direct control. Most augmentation applications to
date have relied on direct control of SLs (Eden et al. 2022),
using some of the physiological signals listed in Table 1.
Movements of limbs or motor functions not used in a
task, such as feet movement for a seated surgeon, or ear
movements (Schmalfuss et al. 2018), can be picked up by
a suitable body interface and exploited to control SLs. This
augmentation by transfer (Eden et al. 2022) based on natural
sensorimotor functions enables successful SL operations,
such as controlling a soft endoscope via a foot-controlled
robotic interface (Huang et al. 2021c).
Efforts to create more flexible solutions include utilizing

the tasks’ nullspace with kinematic or muscle activation
signals (Salvietti et al. 2016; Gurgone et al. 2022; Lisini Baldi
et al. 2024), although the number of degrees-of-freedom
(DoF) gained this way may be limited (Kutch and Valero-
Cuevas 2011; Lee et al. 2024) and will vary with the task. In
general, direct and continuous control, using neural, muscle
(Gurgone et al. 2022; Farina et al. 2023) and body (Koike

et al. 2016; Huang et al. 2021b; Kieliba et al. 2021; Huang
et al. 2022; Dominijanni et al. 2023) interfaces, is cognitively
costly, and constrained by the control limits of the human
brain (Dominijanni et al. (2021); Eden et al. (2022); Makin
et al. (2022) and answer to Penaloza and Nishio (2018)),
peripheral neural signals (Bräcklein et al. 2022), and body
coordination (Huang et al. 2023).

On the other hand, studies using invasive (Bashford et al.
2018) and non-invasive (Ibáñez et al. 2024; Ofner et al. 2024)
neural signals suggest the potential for augmentation by
extension (Eden et al. 2022), providing extra DoF without
interfering with other sensorimotor functions. However,
these initial works lack associated proprioceptive feedback
and have demonstrated augmentation with only a limited
number of DoF, very far from matching the natural
augmentation observed in polydactyly individuals (Mehring
et al. 2019). Furthermore, to our knowledge no non-invasive
augmentation by extension has yet been demonstrated,
which prevents their practical use in able body humans.
This is partly due to challenges in decoding intent and
reliably predicting desired SL trajectories in real time using
physiological signals (see Tables 1 and 2).

5.2.2 Autonomous behaviors Fewer works have used au-
tonomous behaviors for SLs (Bonilla and Asada 2014) than
direct control. Autonomous behaviors could minimize the
mental and physical effort required for control and im-
prove performance by avoiding sensorimotor noise injected
through direct control. They can be defined either in the
world frame, for instance to stabilize an object at a given
position while the human may be moving, or in the human
frame, e.g. to stabilize objects relative to the human user.
Hence in the example of Fig. 1A it is necessary to hold the
tube part steady relative to the wall for assembly by the
human. Conversely, in Fig. 1B, feeding, moving and holding
digital tablets must be performed relative to the human user.

Basic autonomous behaviors applicable across many
tasks include force control, such as applying constant
pressure or maintaining tension on a membrane during
surgery in the example of Fig. 1C. Additional fundamental
behaviors, like autonomous grasping and grip strength
adjustment, allow objects to be safely grasped by adapting
for fragility and friction, which is essential in various
applications. Techniques developed for these tasks include
computer vision methods (Du et al. 2021), deep-learning
approaches for grasp planning (Newbury et al. 2023),
learning-from-demonstration methods (Filippidis et al.
2012), and analytical solutions (Ciocarlie and Allen 2009).

Furthermore, application-specific skills may be either
designed based on task requirements, or learned from data
extracted from expert behavior, such as using data from
surgeons and human assistants to create a robotic surgical
assistant for four-handed surgery (Leblanc et al. 2024).
Autonomous behaviors can also be designed to align with
NLs’ movement characteristics, for example, by matching
motion timing with features of the user’s movements, like
vigor (Shadmehr and Ahmed 2020; Verdel et al. 2023), which
could enhance SL-NL coordination and improve movement
legibility and predictability.

Overall, autonomous SLs behaviors remain underex-
plored compared to direct control methods (as has also been
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Figure 5. Illustration of ξ modulation during mechanically coupled interaction. A. Effect of ξ on the selected target when
moving an object to a location. The curved black arrow shows the transition of the target from ρ̂s

h to ρr as ξ increases, with red
crosses illustrate potential collisions. B. Discrepancy between task-based ρr and the human target ρ̂s

h estimated by the robot. When
both agents have similar information ξ = 1 can be set. C. Same scenario as B, but with an information discrepancy due to a visual
occlusion (shaded area). Here, if the obstacle is known only to the robot, then ξ = 0. D. Target redundancy scenario where both
targets and any intermediary target are acceptable based on the available information. In this case, 0 < ξ < 1 can be chosen based on
additional factors such as the human’s expertise level.

observed in human-computer interfaces (Jain et al. 2020)).
This may be due to concerns over potential safety risks
associated with automatic behaviors, as well as a common
overestimation of human voluntary control capacity and
underestimation of the role of reflexive and automatic be-
haviors (Morsella and Poehlman 2013; Hommel 2017).

5.3 General voluntary control
The effectiveness of automatic behaviors suggests that

they should be used for SL control. However, the safety and
comfort of the SL user requires a mechanism for modifying
or overriding autonomous actions when they deviate from
desired performance. We therefore introduce a general
voluntary control (GVC) that combines the benefits of
autonomous control – such as reduced effort and optimized
performance – with the safety and responsiveness of
voluntary, direct control. To our knowledge the combination
of direct control and autonomous behaviors has been
considered only by Song and Asada (2021); Amanhoud et al.
(2021) who proposed a task specific method, but no general
method is available.
Our GVC (i) infers and accounts for the (potentially

conflicting) goals and trajectories of both the SLs and the
human user, and (ii) allocates effort through a homotopy
between direct human control and autonomous robot
behavior. It is formulated as a differential game between the
SLs and the human user, building on the works of Jarrassé
et al. (2012) and Li et al. (2019). The GVC considers each
SL as an agent with actuation, sensing, intelligence, and
a set of learned task goals Gr interacting with the NLs to
manipulate a common object based on a strategy defined as
a cost function.
The SL first estimates the user’s target for it at the

center of mass of the manipulated object ρ̂s
h from sensory

information on the NLs during the action∗. The SL then
combines ρ̂s

h with its own target ρr arising from the task
definition and incoming sensory information according to:

ρ = ξ ρ̂s
h + (1− ξ)ρr , 0 ≤ ξ ≤ 1 , (2)

where the parameter ξ represents the SL’s trust in
the estimated human plan (Fig. 5A). ξ = 1 denotes full
confidence so that the SL can follow the human user’s plan
unconditionally, while ξ = 0 lets the SL disregard human
intent, for instance to avoid an obstacle invisible to them.

The human target for an SL ρ̂s
h can be estimated from the

interaction force (Medina et al. 2015; Takagi et al. 2021)
or the estimated trajectory of the NLs x̂h(t) (Mainprice
et al. 2015). ξ can also be used to combine the targets in
a stochastically optimal way (similar to what was found in
the interaction between humans collaborating on a common
task (Takagi et al. 2017)).
Fig. 5 illustrates possibilities offered by the combination

of the human and robot targets in Eq. 2. In general, the
setting of ξ depends on inputs from the α-layer, considering
both the task requirements and predictions of the human
state. In the cases illustrated in Fig. 5B,C, choosing ξ is
straightforward — either to maximize flexibility or because
only one option ensures safe task completion. When ξ can
be selected freely, as in the redundant target scenario of
Fig. 5D, other criteria must be considered. This redundancy
can be used to translate an expectation regarding the task.
It may for instance be advantageous to adjust the human
target to simplify future subtasks with ξ < 1, or to follow
human inputs due to the potential for unpredictable future
actions with ξ = 1.
Once the SL target ρ is determined, the GVC can compute

the motor commands to the SLs. Assuming that the NLs and
SLs manipulate a common object, GVC allocates the task
effort, under the coupled dynamics of human-SL interaction,
by minimizing (the integral of) the cost function

V (uh,u1, ...,uN ) = (x− ρ)′Qr(x− ρ) (3)

+ λu′
huh + (1− λ)

N∑
i=1

u′
iui , 0 < λ < 1 ,

where x is the state vector of the center of mass of
the manipulated object, and uh, {ui} represent the motor
commands of the human and the SLs, respectively. The
parameter λ governs the trade-off between the user’s and
SL’s effort. For instance λ → 1 places maximum effort on
the SL, λ = 1/2 is to share the effort with the NLs, and
λ → 0 to minimize the SL effort. When collaboratively
manipulating a rigid object with pose x, target ρ, the
robot state and the NLs state are related through Euclidean
transformations. For a soft object, the model must account

∗Variables representing the SL’s estimation of the human are denoted as
•sh, estimates of human intent for the NLs are denoted as •h, and the
learned task variables for the SL are represented as •r .



Verdel et al. 11

Figure 6. Anticipated effect of λ on effort sharing during a
collaborative box-lifting task. A. Collaborative lifting task,
with black arrows indicating the SLs’ movement directions for
automatic counterbalancing and collaboration with the NLs. B.
Contributions of the human and SLs as a function of λ. As
λ → 0, the most of the load is imposed on the human, whereas
as λ → 1, the SL is prepared to expend a large amount of energy
to reduce human effort. When ξ ̸= 1, a discrepancy between
human and SL targets may increase contributions from both the
SL and NL as they use interaction forces to negotiate the target.

for viscoelastic deformation, which also affects human-SL
haptic communication (Takagi et al. 2018).
To formulate the multi-agent problem, a cost function for

the human must also be considered (Li et al. 2019) such as

Vh(uh) = (x− ρ)′Qh(x− ρ) + u′
huh . (4)

The simultaneous optimization of Eqs. 3,4 can then be
carried out by first identifying the human cost function (i.e.
the Qh matrix), which can be done using inverse optimal
control method (Li et al. 2022), and then a set of Riccati
equations as described in (Hafs et al. 2024).
The modulation of effort sharing between agents has

not yet been systematically investigated, either to assess
the effects of varying λ on human motor behavior and
learning or to develop an online method to optimize this
parameter. We propose that λ could be adapted based on
physiological and ergonomic factors, such as muscle fatigue
estimated from EMG signals (Cifrek et al. 2009), ergonomic
assessments using scales like RULA or REBA (McAtamney
and Corlett 1993; Hignett and McAtamney 2000), or
cognitive indicators like pupil dilation and microsaccades
(Krejtz et al. 2018). For instance, in a task requiring the
storage of boxes at various heights (see Fig. 5), locations
above shoulder height that require uncomfortable postures
may demand a high λ. In practice, for a given value of
λ throughout a task — such as collaboratively lifting a
box — the respective contributions of the human and SL
can evolve through λ parameter as shown in Fig. 6. Note
that the contribution of the robot agent when λ → 0 is
not null because the SL still has to correct for human
errors with respect to predicted trajectories, which are
unavoidable. Conversely, when λ → 1, the human may still
try to participate in the task as humans tend to dislike
inactivity when interacting with robots, in particular in case
of not perfectly aligned timings or trajectories (Verdel et al.

2023). Therefore, the contribution of an agent will likely
never be null in GVC, as illustrated in Fig. 6B.
When some SLs are mechanically independent — such

as in a collaborative pick-and-place task where each agent
manipulates a separate object — the effort cannot be shared
as the human’s actions do not directly affect the power
provided by the SLs, thus λ ≡ 0 in Eq. 3. The SL movements
can then be determined independently. However, setting
their timing to match the human’s vigor (Shadmehr and
Ahmed 2020) may facilitate coordination with the NL
movements.
The implementation scheme for GVC is described in

Fig. 7A, detailing the cases of mechanically coupled and
uncoupled limbs. As previously mentioned, even for a
mechanically uncoupled limb, human inputs can still
influence the target as illustrated in Fig. 7C. Note that
in Eq.2, ρ are local mechanical targets in the case of
mechanically coupled interactions (see Fig. 7B). In the case
of uncoupled interactions the targets ρ are similar to
the goals defined in Section 2 and Fig. 2, and the whole
movement of the SL can be planned at once, with inputs
from the human triggering a re-planning (see Fig. 7C).

6 Discussion
Movement augmentation with robotic supernumerary

limbs could profoundly impact industrial and medical ap-
plications and change how humans interact with their envi-
ronment. However, this transformation requires overcom-
ing significant safety and control challenges. To address
these challenges, this paper introduced a hierarchical con-
trol framework that leverages predictive signals in percep-
tion and control, enabling each layer to generate predic-
tions and exchange error feedback with adjacent layers. By
integrating human intent decoding, trajectory prediction,
and safety constraints in the environment and across limbs,
our framework produces reactive behaviors and ensures dy-
namic stability. Additionally, it supports varied applications
through direct and autonomous control, as well as their
seamless integration with novel general voluntary control.
Traditionally, in redundant robotic systems, constraints

are hierarchically enforced based on condition priority, with
each successive constraint applied within the null space of
the preceding one (Khatib et al. 2004). While effective for
complex systems like humanoid robots, this approach can be
computationally intensive, and imposes a strict hierarchy. In
contrast, human actions often require flexible prioritization,
such as when adapting arm movements to accommodate
multiple environmental constraints (Kühn et al. 2021).
The optimization-based approach used in our framework
offers greater flexibility by balancing multiple constraints
simultaneously through cost functions, while still allowing
the implementation of hard constraints through workspace
limitation for safety as in (Khoramshahi et al. 2023).
To create an intuitive and efficient control, the framework

integrates recent insights in sensory augmentation during
human collaboration (Takagi et al. 2017) and optimal
human-robot interaction (Li et al. 2019). By embedding
sensory augmentation within the multi-agent paradigm
of Jarrassé et al. (2012), GVC provides a tool to extend
SLs control beyond its current task-specific specification.
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Figure 7. GVC implementation and examples. A. GVC involves a planning and a control processes, where the planning is
different for mechanically coupled and uncoupled SLs. The planning determines the SL target based on real-time (i.e. at instant tk)
task knowledge and estimation of the human movement. Control shares the effort between SLs and NLs according to the assigned
roles. B. Example of target handling during mechanically coupled interaction with ξ = 1. The task is to place the tablet in one of the
two pink supports, and there is a conflict between the goal learned by the robot and the human goal. The desired human target for
SLs ρ̂s

h can be estimated from the interaction force to move the tablet to the position desired by the human. C. Example of target
handling during mechanically uncoupled interaction with ξ = 1. The human and robot must each grasp a tool for a surgical task, with
the human preferring the robot to grasp the tool at a greater distance. SL trajectories are curved to improve legibility compared to an
optimal straight move. The inset displays human input (HI) via a leg interface equipped with IMUs, enabling adjustments to SL
trajectories and target repositioning.

This is achieved via the real-time adjustment of two meta-
parameters: trust (ξ) in human motion intent estimation
and the distribution of task-related effort (λ). However, a
systematic method for determining these parameters and
understanding their influence on augmentation behavior is
still needed.
How should these parameters be defined? One possibility

is to derive them from collaborative behaviors observed
between humans or multiple limbs (Rozo et al. 2013;
Mainprice et al. 2015; Noohi et al. 2016; Maroger et al. 2022;
Peña-Pérez et al. 2023). While previous studies on haptic
(Ganesh et al. 2014; Takagi et al. 2017, 2019) and non-haptic
(Sebanz and Knoblich 2021) human-human interactions
have used simple tasks, more complex, multi-dimensional
tasks are necessary to develop robust, data-driven methods
across various applications. Alternatively, these parameters
can be learned from tasks performed by a human operator in
direct control. This could enable a gradual transition to GVC
while minimizing the cognitive load in complex operations.
It is unclear how augmentation impacts human senso-

rimotor control and how the human user and their SLs
may co-adapt over time (Eden et al. 2022). Understanding
the effects of our approach, including different methods to
modulate the meta-parameters (ξ, λ), on haptic and non-
haptic human-robot interactions requires experiments with
different paradigms and robotic devices. In parallel to these
technical developments, human augmentation has to be
considered from an ethical perspective. Ethical issues for

the integration of robots with humans include personal
responsibility (Oertelt et al. 2017), potential risks of loss
of autonomy (Dubljević 2019), as well as social issues such
as discrimination (Bloomfield and Dale 2015; Hossain and
Ahmed 2021). These issues, as well as associated legal con-
siderations, need to be evaluated in parallel to future SL
studies to ensure safe and ethical practice.
Finally, we note that the predictive coding framework

and the GVC introduced in this paper can be used with
various collaborative robots including rehabilitation robots,
industrial cobots, sensor-equipped vehicles with shared
driving, teleoperation systems, and surgical robots (Hu et al.
2024). This offers novel opportunities for the development
of safe, intuitive, and efficient augmentation through robots.

Author contributions
• Conceptualization – all authors
• Funding acquisition – EB, CM
• Investigation – DV, HC, EB
• Methodology – DV, EB
• Project administration – EB
• Resources – EB
• Supervision – EB
• Visualization – DV
• Writing, original draft – DV
• Writing, review and editing – all authors



Verdel et al. 13

Acknowledgements
We thank D. Farina for his help in the funding of this study.

Statements and Declarations
Ethical considerations
Ethical approval was not required for this study.

Consent to participate
Not applicable.

Consent for publication
Not applicable.

Declaration of conflicting interests
The authors declared no potential conflicts of interest

with respect to the research, authorship, and/or publication
of this article.

Funding statement
This study was funded by the H2020 NIMA (FETOPEN

899626), and by the ERC Synergy Natural BionicS (810346).

Bibliography
Abeywardena S, Anwar E, Charles Miller S and Farkhatdinov I

(2023) Mechanical characterization of supernumerary robotic
tails for human balance augmentation. Journal of Mechanisms
and Robotics 16(6). DOI:10.1115/1.4063094.

Abeywardena S and Farkhatdinov I (2023) Towards enhanced
stability of human stance with a supernumerary robotic tail.
IEEE Robotics and Automation Letters 8(9): 5743–5750. DOI:
10.1109/lra.2023.3300280.

Admoni H and Srinivasa S (2016) Predicting user intent through
eye gaze for shared autonomy. In: AAAI Fall Symposium
Series. pp. 298–303.

Ahsan MR, Ibrahimy MI, Khalifa OO et al. (2009) EMG signal
classification for human computer interaction: a review.
European Journal of Scientific Research 33(3): 480–501.

Amanhoud W, Hernandez Sanchez J, Bouri M and Billard A
(2021) Contact-initiated shared control strategies for four-
arm supernumerary manipulation with foot interfaces. The
International Journal of Robotics Research 40(8–9): 986–1014.
DOI:10.1177/02783649211017642.

Bai O, Lin P, Vorbach S, Li J, Furlani S and Hallett M (2007)
Exploration of computational methods for classification of
movement intention during human voluntarymovement from
single trial EEG. Clinical Neurophysiology 118(12): 2637–2655.
DOI:10.1016/j.clinph.2007.08.025.

Balasubramanian S, Garcia-Cossio E, Birbaumer N, Burdet E and
Ramos-Murguialday A (2018) Is EMG a viable alternative to
BCI for detecting movement intention in severe stroke? IEEE
Transactions on Biomedical Engineering 65(12): 2790–2797.
DOI:10.1109/tbme.2018.2817688.

Bar M (2011) Predictions in the brain: Using our past to generate a
future. Oxford University Press.

Bashford L, Wu J, Sarma D, Collins K, Rao RPN, Ojemann JG and
Mehring C (2018) Concurrent control of a brain–computer

interface and natural overt movements. Journal of Neural
Engineering 15(6): 066021. DOI:10.1088/1741-2552/aadf3d.

Belardinelli A (2023) Gaze-based intention estimation: principles,
methodologies, and applications in HRI. arXiv DOI:10.48550/
ARXIV.2302.04530.

Berret B, Conessa A, Schweighofer N and Burdet E (2021)
Stochastic optimal feedforward-feedback control determines
timing and variability of arm movements with or without
vision. PLOS Computational Biology 17(6): e1009047. DOI:
10.1371/journal.pcbi.1009047.

Berret B, Verdel D, Burdet E and Jean F (2024) Co-contraction
embodies uncertainty: an optimal feedforward strategy for
robust motor control. PLOS Computational Biology 20(11):
e1012598. DOI:10.1371/journal.pcbi.1012598.

Blakemore SJ, Wolpert DM and Frith CD (2002) Abnormalities in
the awareness of action. Trends in Cognitive Sciences 6(6):
237–242. DOI:10.1016/s1364-6613(02)01907-1.

Blank H and Davis MH (2016) Prediction errors but not sharpened
signals simulate multivoxel fmri patterns during speech
perception. PLOS Biology 14(11): e1002577. DOI:10.1371/
journal.pbio.1002577.

Blanke O, Slater M and Serino A (2015) Behavioral, neural, and
computational principles of bodily self-consciousness. Neuron
88(1): 145–166. DOI:10.1016/j.neuron.2015.09.029.

Blankertz B, Lemm S, Treder M, Haufe S and Müller KR (2011)
Single-trial analysis and classification of ERP components
– A tutorial. NeuroImage 56(2): 814–825. DOI:10.1016/j.
neuroimage.2010.06.048.

Bloomfield B and Dale K (2015) Fit for work? redefining ‘nor-
mal’and ‘extreme’through human enhancement technologies.
Organization 22(4): 552–569.

Bonilla BL and Asada HH (2014) A robot on the shoulder:
coordinated human-wearable robot control using coloured
petri nets and partial least squares predictions. In: IEEE
International Conference on Robotics andAutomation (ICRA).
pp. 119–125. DOI:10.1109/icra.2014.6906598.

Bryden PJ, Pryde KM and Roy EA (2000) A performance measure
of the degree of hand preference. Brain and Cognition 44(3):
402–414. DOI:10.1006/brcg.1999.1201.

Bräcklein M, Barsakcioglu DY, Ibáñez J, Eden J, Burdet E, Mehring
C and Farina D (2022) The control and training of single motor
units in isometric tasks are constrained by a common input
signal. eLife 11. DOI:10.7554/elife.72871.

Burdet E, Franklin DW and Milner TE (2013) Human robotics:
neuromechanics and motor control. MIT press.

Burdet E, Osu R, Franklin DW, Yoshioka T, Milner TE and Kawato
M (2000) A method for measuring endpoint stiffness during
multi-joint arm movements. Journal of Biomechanics 33(12):
1705–1709. DOI:10.1016/s0021-9290(00)00142-1.

Bury D, Mirabel J, Lamiraux F, Gouttefarde M and Hervé PE (2023)
Exact collision detection along paths: Optimization and proof
of convergence. HAL .

Calinon S, D'halluin F, Sauser E, Caldwell D and Billard A (2010a)
Learning and reproduction of gestures by imitation. IEEE
Robotics & Automation Magazine 17(2): 44–54. DOI:10.1109/
mra.2010.936947.

Calinon S, Sardellitti I and Caldwell DG (2010b) Learning-based
control strategy for safe human-robot interaction exploiting
task and robot redundancies. In: IEEE/RSJ International



14 XX XX(X)

Conference on Intelligent Robots and Systems (IROS). pp. 249–
254. DOI:10.1109/iros.2010.5648931.

Cavallo A, Koul A, Ansuini C, Capozzi F and Becchio C (2016)
Decoding intentions from movement kinematics. Scientific
Reports 6(1). DOI:10.1038/srep37036.

Cene VH and Balbinot A (2020) Resilient EMG classification
to enable reliable upper-limb movement intent detection.
IEEE Transactions on Neural Systems and Rehabilitation
Engineering 28(11): 2507–2514. DOI:10.1109/tnsre.2020.
3024947.

Chadalavada RT, AndreassonH, SchindlerM, PalmR and Lilienthal
AJ (2020) Bi-directional navigation intent communication
using spatial augmented reality and eye-tracking glasses for
improved safety in human–robot interaction. Robotics and
Computer-Integrated Manufacturing 61: 101830. DOI:10.1016/
j.rcim.2019.101830.

Cifrek M, Medved V, Tonković S and Ostojić S (2009) Surface emg
based muscle fatigue evaluation in biomechanics. Clinical
Biomechanics 24(4): 327–340.

Ciocarlie MT and Allen PK (2009) Hand posture subspaces for dex-
terous robotic grasping. The International Journal of Robotics
Research 28(7): 851–867. DOI:10.1177/0278364909105606.

Crevecoeur F, Munoz DP and Scott SH (2016) Dynamic multisen-
sory integration: somatosensory speed trumps visual accuracy
during feedback control. The Journal of Neuroscience 36(33):
8598–8611. DOI:10.1523/jneurosci.0184-16.2016.

Davchev T, Luck KS, Burke M, Meier F, Schaal S and Ramamoorthy
S (2022) Residual learning from demonstration: adapting
DMPs for contact-rich manipulation. IEEE Robotics and
Automation Letters 7(2): 4488–4495. DOI:10.1109/lra.2022.
3150024.

Dockendorff M, Schmitz L, Vesper C and Knoblich G (2023) Un-
derstanding others’ distal goals from proximal communicative
actions. PLOS ONE 18(1): e0280265. DOI:10.1371/journal.
pone.0280265.

Dominijanni G, Pinheiro DL, Pollina L, Orset B, Gini M, Anselmino
E, Pierella C, Olivier J, Shokur S and Micera S (2023) Human
motor augmentation with an extra robotic arm without
functional interference. Science Robotics 8(85). DOI:10.1126/
scirobotics.adh1438.

Dominijanni G, Shokur S, Salvietti G, Buehler S, Palmerini E, Rossi
S, De Vignemont F, d’Avella A, Makin TR, Prattichizzo D
and Micera S (2021) The neural resource allocation problem
when enhancing human bodies with extra robotic limbs.
Nature Machine Intelligence 3(10): 850–860. DOI:10.1038/
s42256-021-00398-9.

Dragan A and Srinivasa S (2014) Integrating human observer
inferences into robot motion planning. Autonomous Robots
37(4): 351–368. DOI:10.1007/s10514-014-9408-x.

Du G, Wang K, Lian S and Zhao K (2021) Vision-based robotic
grasping from object localization, object pose estimation to
grasp estimation for parallel grippers: a review. Artificial
Intelligence Review 54(3): 1677–1734.

Dubljević V (2019) Neuroethics, justice and autonomy: Public
reason in the cognitive enhancement debate, volume 19.
Springer.

Eden J, BräckleinM, Ibáñez J, Barsakcioglu DY, Di Pino G, Farina D,
Burdet E andMehring C (2022) Principles of humanmovement
augmentation and the challenges in making it a reality. Nature
Communications 13(1): 1345.

Farina D, Burdet E, Mehring C and Ibáñez J (2023) Roboticists want
to give you a third arm: unused bandwidth in neurons can be
tapped to control extra limbs. IEEE Spectrum 60(3): 22–46.
DOI:10.1109/mspec.2023.10061646.

Fermüller C, Wang F, Yang Y, Zampogiannis K, Zhang Y, Barranco
F and Pfeiffer M (2017) Prediction of manipulation actions.
International Journal of Computer Vision 126(2–4): 358–374.
DOI:10.1007/s11263-017-0992-z.

Festor P, Shafti A, Harston A, Li M, Orlov P and Faisal AA (2022)
Midas: Deep learning human action intention prediction from
natural eye movement patterns. Arxiv DOI:10.48550/ARXIV.
2201.09135.

Filippidis IF, Kyriakopoulos KJ and Artemiadis PK (2012) Navi-
gation functions learning from experiments: Application to
anthropomorphic grasping. In: IEEE International Conference
on Robotics and Automation (ICRA). pp. 570–575. DOI:10.
1109/icra.2012.6225168.

Friston K (2018) Does predictive coding have a future?
Nature Neuroscience 21(8): 1019–1021. DOI:
10.1038/s41593-018-0200-7.

Ganesh G, Nakamura K, Saetia S, Tobar AM, Yoshida E, Ando H,
Yoshimura N and Koike Y (2018) Utilizing sensory prediction
errors for movement intention decoding: A newmethodology.
Science Advances 4(5). DOI:10.1126/sciadv.aaq0183.

Ganesh G, Takagi A, Osu R, Yoshioka T, Kawato M and Burdet E
(2014) Two is better than one: physical interactions improve
motor performance in humans. Scientific Reports 4(3824).
DOI:10.1038/srep03824.

Gonzalez DJ and Asada HH (2019) Hybrid open-loop closed-
loop control of coupled human–robot balance during assisted
stance transition with extra robotic legs. IEEE Robotics and
Automation Letters 4(2): 1676–1683. DOI:10.1109/lra.2019.
2897177.

Gurgone S, Borzelli D, de Pasquale P, Berger DJ, Baldi TL, D’Aurizio
N, Prattichizzo D and d’Avella A (2022) Simultaneous control
of natural and extra degrees of freedom by isometric force
and electromyographic activity in the muscle-to-force null
space. Journal of Neural Engineering 19(1): 016004. DOI:
10.1088/1741-2552/ac47db.

Haddadin S, Albu-Schäffer A and Hirzinger G (2009) Requirements
for safe robots: measurements, analysis and new insights. The
International Journal of Robotics Research 28(11-12): 1507–
1527. DOI:10.1177/0278364909343970.

Hafs A, Verdel D, Burdet E, Bruneau O and Berret B (2024) A
finite-horizon inverse differential game approach for optimal
trajectory-tracking assistance with a wrist exoskeleton. IEEE
RAS/EMBS International Conference on Biomedical Robotics
and Biomechatronics (BioRob) .

Hao M, Zhang J, Chen K, Asada H and Fu C (2020) Supernumerary
robotic limbs to assist human walking with load carriage.
Journal of Mechanisms and Robotics 12(6). DOI:10.1115/1.
4047729.

Hemeren P, Veto P, Thill S, Li C and Sun J (2021) Kinematic-based
classification of social gestures and grasping by humans and
machine learning techniques. Frontiers in Robotics and AI 8.
DOI:10.3389/frobt.2021.699505.

Hignett S and McAtamney L (2000) Rapid entire body assessment
(REBA). Applied Ergonomics 31(2): 201–205. DOI:10.1016/
s0003-6870(99)00039-3.



Verdel et al. 15

Hommel B (2017) Consciousness and action control. DOI:10.1002/
9781118920497.ch7.

Hossain SQ and Ahmed SI (2021) Ethical analysis on the
application of neurotechnology for human augmentation in
physicians and surgeons. In: Future Technologies Conference
(FTC), Volume 3. Springer, pp. 78–99.

Hu ZJ, Xu H, Kim S, Li Y, Rodriguez y Baena F and Burdet E
(2024) Confidence-based intent prediction for teleoperation in
bimanual robotic suturing. Unpublished (submitted) .

Huang C, Xiao Y and Xu G (2021a) Predicting human intention-
behavior through EEG signal analysis using multi-scale
CNN. IEEE/ACM Transactions on Computational Biology
and Bioinformatics 18(5): 1722–1729. DOI:10.1109/tcbb.2020.
3039834.

Huang CM and Mutlu B (2016) Anticipatory robot control
for efficient human-robot collaboration. In: ACM/IEEE
International Conference on Human-Robot Interaction (HRI).
pp. 83–90. DOI:10.1109/hri.2016.7451737.

Huang Y, Eden J, Ivanova E and Burdet E (2023) Can training make
three arms better than two heads for trimanual coordination?
IEEE Open Journal of Engineering in Medicine and Biology 4:
148–155. DOI:10.1109/ojemb.2023.3305808.

Huang Y, Eden J, Ivanova E, Phee SJ and Burdet E (2021b)
Trimanipulation: Evaluation of human performance in a 3-
handed coordination task. In: IEEE International Conference
on Systems, Man, and Cybernetics (SMC). pp. 882–887. DOI:
10.1109/smc52423.2021.9659027.

Huang Y, Ivanova E, Eden J and Burdet E (2022) Identification
of multiple limbs coordination strategies in a three-goal
independent task. IEEE Transactions on Medical Robotics and
Bionics 4(2): 348–351. DOI:10.1109/tmrb.2021.3124263.

Huang Y, Lai W, Cao L, Liu J, Li X, Burdet E and Phee
SJ (2021c) A three-limb teleoperated robotic system with
foot control for flexible endoscopic surgery. Annals of
Biomedical Engineering 49(9): 2282–2296. DOI:10.1007/
s10439-021-02766-3.

Huang Y and Rao RPN (2011) Predictive coding. WIREs Cognitive
Science 2(5): 580–593. DOI:10.1002/wcs.142.

Hussain I, Salvietti G, Spagnoletti G and Prattichizzo D (2016)
The soft-sixthfinger: a wearable emg controlled robotic extra-
finger for grasp compensation in chronic stroke patients. IEEE
Robotics and Automation Letters 1(2): 1000–1006.

Ibáñez J, Zicher B, Burdet E, Baker SN, Mehring C and Farina D
(2024) Peripheral brain interfacing: Reading high-frequency
brain signals from the output of the nervous system. Arxiv
DOI:10.48550/ARXIV.2410.20872.

Ijspeert AJ, Nakanishi J, Hoffmann H, Pastor P and Schaal S (2013)
Dynamical movement primitives: learning attractor models
formotor behaviors. Neural Computation 25(2): 328–373. DOI:
10.1162/neco_a_00393.

Jain A, Horowitz AH, Schoeller F, Leigh Sw, Maes P and Sra M
(2020) Designing interactions beyond conscious control: a new
model for wearable interfaces. Proceedings of the ACM on
Interactive, Mobile, Wearable and Ubiquitous Technologies
4(3): 1–23. DOI:10.1145/3411829.

Jain A, Zamir AR, Savarese S and Saxena A (2016) Structural-rnn:
Deep learning on spatio-temporal graphs. In: IEEE Conference
on Computer Vision and Pattern Recognition. pp. 5308–5317.

Jamsek M, Kunavar T, Bobek U, Rueckert E and Babic J (2021)
Predictive exoskeleton control for arm-motion augmentation

based on probabilistic movement primitives combined with a
flow controller. IEEE Robotics and Automation Letters 6(3):
4417–4424. DOI:10.1109/lra.2021.3068892.

Jang YM, Mallipeddi R, Lee S, Kwak HW and Lee M (2014) Human
intention recognition based on eyeball movement pattern and
pupil size variation. Neurocomputing 128: 421–432. DOI:
10.1016/j.neucom.2013.08.008.

Jarrassé N, Charalambous T and Burdet E (2012) A framework to
describe, analyze and generate interactive motor behaviors.
PLOS ONE 7(11): e49945. DOI:10.1371/journal.pone.0049945.

Javdani S, Srinivasa S and Bagnell A (2015) Shared autonomy via
hindsight optimization. In: Robotics: Science and Systems,
RSS2015. Robotics: Science and Systems Foundation, pp. 1–10.
DOI:10.15607/rss.2015.xi.032.

Johannsmeier L and Haddadin S (2017) A hierarchical human-
robot interaction-planning framework for task allocation in
collaborative industrial assembly processes. IEEE Robotics
and Automation Letters 2(1): 41–48. DOI:10.1109/lra.2016.
2535907.

Kevric J and Subasi A (2017) Comparison of signal decomposition
methods in classification of EEG signals for motor-imagery
BCI system. Biomedical Signal Processing and Control 31:
398–406. DOI:10.1016/j.bspc.2016.09.007.

Khatib O, Sentis L, Park J andWarren J (2004)Whole-body dynamic
behavior and control of human-like robots. International
Journal of Humanoid Robotics 01(01): 29–43. DOI:10.1142/
s0219843604000058.

Khazoom C, Caillouette P, Girard A and Plante JS (2020) A
supernumerary robotic leg powered by magnetorheological
actuators to assist human locomotion. IEEE Robotics and
Automation Letters 5(4): 5143–5150. DOI:10.1109/lra.2020.
3005629.

KhoramshahiM, Poignant A,Morel G and Jarrassé N (2023) A prac-
tical control approach for safe collaborative supernumerary
robotic arms. In: IEEE Conference on Advanced Robotics and
its Social Impact (ARSO). pp. 147–152.

Kieliba P, Clode D, Maimon-Mor RO and Makin TR (2021)
Robotic hand augmentation drives changes in neural body
representation. Science Robotics 6(54). DOI:10.1126/
scirobotics.abd7935.

Kim B, Kim L, Kim YH and Yoo SK (2017) Cross-association
analysis of EEG and EMG signals according to movement
intention state. Cognitive Systems Research 44: 1–9. DOI:
10.1016/j.cogsys.2017.02.001.

Koike U, Enriquez G, Miwa T, Yap HE, KabasawaM and Hashimoto
S (2016) Development of an intraoral interface for human-
ability extension robots. Journal of Robotics andMechatronics
28(6): 819–829. DOI:10.20965/jrm.2016.p0819.

Kong Y, Tao Z and Fu Y (2017) Deep sequential context networks
for action prediction. In: IEEEConference on Computer Vision
and Pattern Recognition. pp. 1473–1481.

Krausz NE, Lamotte D, Batzianoulis I, Hargrove LJ, Micera S and
Billard A (2020) Intent prediction based on biomechanical
coordination of EMG and vision-filtered gaze for end-point
control of an arm prosthesis. IEEE Transactions on Neural
Systems and Rehabilitation Engineering 28(6): 1471–1480.
DOI:10.1109/tnsre.2020.2992885.

Krejtz K, Duchowski AT, Niedzielska A, Biele C and Krejtz I
(2018) Eye tracking cognitive load using pupil diameter and
microsaccades with fixed gaze. PLOS ONE 13(9): e0203629.



16 XX XX(X)

Kucukyilmaz A, Sezgin TM and Basdogan C (2013) Intention
recognition for dynamic role exchange in haptic collaboration.
IEEE Transactions on Haptics 6(1): 58–68. DOI:10.1109/toh.
2012.21.

Kutch JJ and Valero-Cuevas FJ (2011) Muscle redundancy does
not imply robustness to muscle dysfunction. Journal of
Biomechanics 44(7): 1264–1270. DOI:10.1016/j.jbiomech.2011.
02.014.

Kühn J, Bagnato C, Burdet E andHaddadin S (2021) Armmovement
adaptation to concurrent pain constraints. Scientific Reports
11(1). DOI:10.1038/s41598-021-86173-7.

Lachner J, Allmendinger F, Hobert E, Hogan N and Stramigioli S
(2021) Energy budgets for coordinate invariant robot control
in physical human–robot interaction. The International
Journal of Robotics Research 40(8-9): 968–985. DOI:10.1177/
02783649211011639.

Lanini J, Razavi H, Urain J and Ijspeert A (2018) Human intention
detection as a multiclass classification problem: application
in physical human–robot interaction while walking. IEEE
Robotics and Automation Letters 3(4): 4171–4178. DOI:10.
1109/lra.2018.2864351.

Lao-Rodríguez AB, Przewrocki K, Pérez-González D, Alishbayli
A, Yilmaz E, Malmierca MS and Englitz B (2023) Neuronal
responses to omitted tones in the auditory brain: A neuronal
correlate for predictive coding. Science Advances 9(24). DOI:
10.1126/sciadv.abq8657.

Leblanc L, Saghbini E, Da Silva J, Harlé A, Vafadar S, Chandanson
T, Vialle R, Morel G and Tamadazte B (2024) Automatic spinal
canal breach detection during pedicle screw placement. IEEE
Robotics and Automation Letters 9(2): 1915–1922. DOI:10.
1109/lra.2024.3349947.

Lee MJ, Eden J, Gurgone S, Berger DJ, Borzelli D, d’Avella A,
Mehring C and Burdet E (2024) Control limitations in the null-
space of thewrist muscle system. Scientific Reports 14(1). DOI:
10.1038/s41598-024-69353-z.

Lemus D, Berry A, Jabeen S, Jayaraman C, Hohl K, van der Helm
FCT, Jayaraman A and Vallery H (2020) Controller synthesis
and clinical exploration of wearable gyroscopic actuators to
support human balance. Scientific Reports 10(1). DOI:10.1038/
s41598-020-66760-w.

Lew E, Chavarriaga R, Silvoni S and del R Millán J (2012) Detection
of self-paced reaching movement intention from EEG signals.
Frontiers in Neuroengineering 5. DOI:10.3389/fneng.2012.
00013.

Li K, Hu J and Fu Y (2012)Modeling complex temporal composition
of actionlets for activity prediction, chapter 12. Springer
Berlin Heidelberg. ISBN 9783642337185, pp. 286–299. DOI:
10.1007/978-3-642-33718-5_21.

Li Y, Carboni G, Gonzalez F, Campolo D and Burdet E (2019)
Differential game theory for versatile physical human-robot
interaction. Nature Machine Intelligence 1(1): 36–43. DOI:
10.1038/s42256-018-0010-3.

Li Y and Ge SS (2014) Human–robot collaboration based on
motion intention estimation. IEEE/ASME Transactions on
Mechatronics 19(3): 1007–1014. DOI:10.1109/tmech.2013.
2264533.

Li Y, Sena A, Wang Z, Xing X, Babič J, van Asseldonk E and Burdet
E (2022) A review on interaction control for contact robots
through intent detection. Progress in Biomedical Engineering
4(3): 032004. DOI:10.1088/2516-1091/ac8193.

Lin CJ and Lukodono RP (2021) Sustainable human-robot collabo-
ration based on human intention classification. Sustainability
13(11): 5990. DOI:10.3390/su13115990.

Lippi M and Marino A (2020) Enabling physical human-robot
collaboration through contact classification and reaction.
In: IEEE International Conference on Robot and Human
Interactive Communication (RO-MAN). pp. 1196–1203. DOI:
10.1109/ro-man47096.2020.9223580.

Lisini Baldi T, D’Aurizio N, Gaudeni C, Gurgone S, Borzelli
D, d’Avella A and Prattichizzo D (2024) Exploiting body
redundancy to control supernumerary robotic limbs in human
augmentation. The International Journal of Robotics Research
DOI:10.1177/02783649241265451.

Losey DP, McDonald CG, Battaglia E and O'Malley MK (2018) A
review of intent detection, arbitration, and communication as-
pects of shared control for physical human–robot interaction.
Applied Mechanics Reviews 70(1). DOI:10.1115/1.4039145.

Luo R, Hayne R and Berenson D (2017) Unsupervised early
prediction of human reaching for human–robot collaboration
in shared workspaces. Autonomous Robots 42(3): 631–648.
DOI:10.1007/s10514-017-9655-8.

Luo S, Meng Q, Li S and Yu H (2024) Research of intent recognition
in rehabilitation robots: a systematic review. Disability and
Rehabilitation: Assistive Technology 19(4): 1307–1318.

Madan CE, Kucukyilmaz A, Sezgin TM and Basdogan C (2015)
Recognition of haptic interaction patterns in dyadic joint
object manipulation. IEEE Transactions on Haptics 8(1): 54–
66. DOI:10.1109/toh.2014.2384049.

Mainprice J and Berenson D (2013) Human-robot collaborative
manipulation planning using early prediction of human
motion. In: IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). pp. 299–306. DOI:10.1109/iros.
2013.6696368.

Mainprice J, Hayne R and Berenson D (2015) Predicting human
reaching motion in collaborative tasks using inverse optimal
control and iterative re-planning. In: IEEE International
Conference on Robotics and Automation (ICRA). pp. 885–892.
DOI:10.1109/icra.2015.7139282.

Makin TR, Micera S and Miller LE (2022) Neurocognitive
and motor-control challenges for the realization of bionic
augmentation. Nature Biomedical Engineering 7(4): 344–348.
DOI:10.1038/s41551-022-00930-1.

Maksimenko VA, Kurkin SA, Pitsik EN, Musatov VY, Runnova AE,
Efremova TY, Hramov AE and Pisarchik AN (2018) Artificial
neural network classification of motor-related eeg: an increase
in classification accuracy by reducing signal complexity.
Complexity 2018: 1–10. DOI:10.1155/2018/9385947.

Maroger I, Silva M, Pillet H, Turpin N, Stasse O and Watier B
(2022) Walking paths during collaborative carriages do not
follow the simple rules observed in the locomotion of single
walking subjects. Scientific Reports 12(1). DOI:10.1038/
s41598-022-19853-7.

Marques T, Nguyen J, Fioreze G and Petreanu L (2018) The
functional organization of cortical feedback inputs to primary
visual cortex. Nature Neuroscience 21(5): 757–764. DOI:
10.1038/s41593-018-0135-z.

McAtamney L and Corlett EN (1993) RULA: a survey method
for the investigation of work-related upper limb disorders.
Applied Ergonomics 24(2): 91–99. DOI:10.1016/0003-6870(93)
90080-s.



Verdel et al. 17

Medina JR, Lorenz T and Hirche S (2015) Synthesizing anticipatory
haptic assistance considering human behavior uncertainty.
IEEE Transactions on Robotics 31(1): 180–190. DOI:10.1109/
tro.2014.2387571.

Mehring C, Akselrod M, Bashford L, Mace M, Choi H, Blüher
M, Buschhoff AS, Pistohl T, Salomon R, Cheah A, Blanke O,
Serino A and Burdet E (2019) Augmented manipulation ability
in humans with six-fingered hands. Nature Communications
10(1). DOI:10.1038/s41467-019-10306-w.

Michel Y, Saveriano M and Lee D (2024) A novel safety-aware
energy tank formulation based on control barrier functions.
IEEE Robotics and Automation Letters 9(6): 5206–5213. DOI:
10.1109/lra.2024.3389556.

Millidge B, Seth A and Buckley CL (2021) Predictive coding: a
theoretical and experimental review. Arxiv DOI:10.48550/
ARXIV.2107.12979.

Mohd Khairuddin I, Sidek SN, PP Abdul Majeed A, Mohd Razman
MA, Ahmad Puzi A and Md Yusof H (2021) The classification
of movement intention through machine learning models: the
identification of significant time-domain EMG features. PeerJ
Computer Science 7: e379. DOI:10.7717/peerj-cs.379.

Morsella E and Poehlman TA (2013) The inevitable contrast:
Conscious vs. unconscious processes in action control.
Frontiers in Psychology 4. DOI:10.3389/fpsyg.2013.00590.

Nazmi N, Abdul Rahman M, Yamamoto SI, Ahmad S, Zamzuri
H and Mazlan S (2016) A review of classification techniques
of EMG signals during isotonic and isometric contractions.
Sensors 16(8): 1304. DOI:10.3390/s16081304.

Newbury R, Gu M, Chumbley L, Mousavian A, Eppner C, Leitner
J, Bohg J, Morales A, Asfour T, Kragic D et al. (2023) Deep
learning approaches to grasp synthesis: a review. IEEE
Transactions on Robotics 39(5): 3994–4015.

Noohi E, Zefran M and Patton JL (2016) A model for hu-
man–human collaborative object manipulation and its appli-
cation to human–robot interaction. IEEE Transactions on
Robotics 32(4): 880–896. DOI:10.1109/tro.2016.2572698.

Oertelt N, Arabian A, Brugger EC, Choros M, Farahany NA,
Payne S and Rosellini W (2017) Human by design: An ethical
framework for human augmentation. IEEE Technology and
Society Magazine 36(1): 32–36.

Ofner P, Farina D and Mehring C (2024) Mental tasks induce
common modulations of oscillations in cortex and spinal cord.
bioRχiv DOI:10.1101/2024.11.08.615786.

Orhan A, Verdel D, Bruneau O, Geffard F and Berret B
(2024) Combining model-based and data-based approaches
for online predictions of human trajectories. In: IEEE
RAS/EMBS International Conference on Biomedical Robotics
and Biomechatronics (BioRob). pp. 1–8.

Parietti F and Asada H (2016) Supernumerary robotic limbs for
human body support. IEEE Transactions on Robotics 32(2):
301–311. DOI:10.1109/tro.2016.2520486.

Parietti F and Asada HH (2014) Supernumerary robotic limbs for
aircraft fuselage assembly: body stabilization and guidance by
bracing. In: IEEE International Conference on Robotics and
Automation (ICRA). pp. 1176–1183. DOI:10.1109/icra.2014.
6907002.

Parietti F, Chan KC, Hunter B and Asada HH (2015) Design
and control of supernumerary robotic limbs for balance
augmentation. In: IEEE International Conference on Robotics
and Automation (ICRA). pp. 5010–5017. DOI:10.1109/icra.

2015.7139896.
Parr T, Pezzulo G and Friston KJ (2022) Active inference: the free

energy principle in mind, brain, and behavior. MIT Press.
Peña-Pérez N, Eden J, Ivanova E, Farkhatdinov I and Burdet E

(2023) How virtual and mechanical coupling impact bimanual
tracking. Journal of Neurophysiology 129(1): 102–114. DOI:
10.1152/jn.00057.2022.

Penaloza CI and Nishio S (2018) Bmi control of a third arm for
multitasking. Science Robotics 3(20). DOI:10.1126/scirobotics.
aat1228.

Pinardi M, Longo MR, Formica D, Strbac M, Mehring C, Burdet
E and Di Pino G (2023a) Impact of supplementary sensory
feedback on the control and embodiment in humanmovement
augmentation. Communications Engineering 2(1). DOI:10.
1038/s44172-023-00111-1.

Pinardi M, Noccaro A, Raiano L, Formica D and Di Pino G (2023b)
Comparing end-effector position and joint angle feedback for
online robotic limb tracking. PLOS ONE 18(6): e0286566. DOI:
10.1371/journal.pone.0286566.

Pinardi M, Raiano L, Noccaro A, Formica D and Di Pino G
(2021) Cartesian space feedback for real time tracking of a
supernumerary robotic limb: a pilot study. In: International
IEEE/EMBS Conference on Neural Engineering (NER). pp.
889–892. DOI:10.1109/ner49283.2021.9441174.

PinoGD,Maravita A, Zollo L, Guglielmelli E and Lazzaro VD (2014)
Augmentation-related brain plasticity. Frontiers in Systems
Neuroscience 8. DOI:10.3389/fnsys.2014.00109.

Prattichizzo D, Pozzi M, Baldi TL, Malvezzi M, Hussain I, Rossi
S and Salvietti G (2021) Human augmentation by wearable
supernumerary robotic limbs: review and perspectives.
Progress in Biomedical Engineering 3(4): 042005. DOI:10.1088/
2516-1091/ac2294.

Quesada L, Verdel D, BruneauO, Berret B, AmorimMAandVignais
N (2024a) EMG feature extraction and muscle selection for
continuous upper limb movement regression. SSRN DOI:
10.2139/ssrn.4953765.

Quesada L, Verdel D, BruneauO, Berret B, AmorimMAandVignais
N (2024b) EMG-to-torque models for exoskeleton assistance:
a framework for the evaluation of in situ calibration. bioRχiv
DOI:10.1101/2024.01.11.575155.

Rao RPN and Ballard DH (1999) Predictive coding in the visual
cortex: a functional interpretation of some extra-classical
receptive-field effects. Nature Neuroscience 2(1): 79–87. DOI:
10.1038/4580.

Romtrairat P, Virulsri C and Tangpornprasert P (2019) An
application of scissored-pair control moment gyroscopes in a
design of wearable balance assistance device for the elderly.
Journal of Biomechanics 87: 183–188. DOI:10.1016/j.jbiomech.
2019.03.015.

Rozo L, Calinon S, Caldwell D, Jimenez P and Torras C (2013)
Learning collaborative impedance-based robot behaviors.
AAAI Conference on Artificial Intelligence 27(1): 1422–1428.
DOI:10.1609/aaai.v27i1.8543.

Salvietti G, Hussain I, Cioncoloni D, Taddei S, Rossi S and
Prattichizzo D (2016) Compensating hand function in
chronic stroke patients through the robotic sixth finger.
IEEE Transactions on Neural Systems and Rehabilitation
Engineering 25(2): 142–150.

Saveriano M, Abu-Dakka FJ, Kramberger A and Peternel L (2023)
Dynamic movement primitives in robotics: A tutorial survey.



18 XX XX(X)

The International Journal of Robotics Research 42(13): 1133–
1184. DOI:10.1177/02783649231201196.

Schmalfuss L, Hahne J, Farina D, Hewitt M, Kogut A, Doneit W,
Reischl M, Rupp R and Liebetanz D (2018) A hybrid auric-
ular control system: direct, simultaneous, and proportional
myoelectric control of two degrees of freedom in prosthetic
hands. Journal of Neural Engineering 15(5): 056028. DOI:
10.1088/1741-2552/aad727.

Scott SH (2012) The computational and neural basis of voluntary
motor control and planning. Trends in Cognitive Sciences
16(11): 541–549. DOI:10.1016/j.tics.2012.09.008.

Sebanz N and Knoblich G (2021) Progress in joint-action research.
Current Directions in Psychological Science 30(2): 138–143.
DOI:10.1177/0963721420984425.

Seminara L, Dosen S, Mastrogiovanni F, Bianchi M, Watt S,
Beckerle P, Nanayakkara T, Drewing K, Moscatelli A, Klatzky
RL and Loeb GE (2023) A hierarchical sensorimotor control
framework for human-in-the-loop robotic hands. Science
Robotics 8(78). DOI:10.1126/scirobotics.add5434.

Shadmehr R and Ahmed AA (2020) Vigor : neuroeconomics of
movement control. The MIT Press. ISBN 9780262044059.

Shakeel A, Navid MS, Anwar MN, Mazhar S, Jochumsen M
and Niazi IK (2015) A review of techniques for detection
of movement intention using movement-related cortical
potentials. Computational and Mathematical Methods in
Medicine 2015: 1–13. DOI:10.1155/2015/346217.

Siu HC, Arenas AM, Sun T and Stirling LA (2018) Implemen-
tation of a surface electromyography-based upper extremity
exoskeleton controller using learning from demonstration.
Sensors 18(2): 467. DOI:10.3390/s18020467.

Siu HC, Sloboda J, McKindles RJ and Stirling LA (2020)
Ankle torque estimation during locomotion from sur-
face electromyography and accelerometry. In: IEEE
RAS/EMBS International Conference for Biomedical Robotics
and Biomechatronics (BioRob). pp. 80–87. DOI:10.1109/
biorob49111.2020.9224286.

SongH and Asada HH (2021) Integrated voluntary-reactive control
of a human-SuperLimb hybrid system for hemiplegic patient
support. IEEE Robotics and Automation Letters 6(2): 1646–
1653. DOI:10.1109/lra.2021.3058926.

Takagi A, Ganesh G, Yoshioka T, Kawato M and Burdet E (2017)
Physically interacting individuals estimate the partner’s goal
to enhance their movements. Nature Human Behaviour 1(54):
1–6. DOI:10.1038/s41562-017-0054.

Takagi A, Hirashima M, Nozaki D and Burdet E (2019) Individuals
physically interacting in a group rapidly coordinate their
movement by estimating the collective goal. eLife 8: 1–19.
DOI:10.7554/eLife.41328.001.

Takagi A, Li Y and Burdet E (2021) Flexible assimilation of human’s
target for versatile human-robot physical interaction. IEEE
Transactions onHaptics 14(2): 421–431. DOI:10.1109/toh.2020.
3039725.

Takagi A, Usai F, Ganesh G, Sanguineti V and Burdet E (2018)
Haptic communication between humans is tuned by the hard
or soft mechanics of interaction. Computational Biology 14(3):
1–17. DOI:10.1371/journal.pcbi.1005971.

Todorov E and Jordan MI (2002) Optimal feedback control as a
theory of motor coordination. Nature Neuroscience 5(11):
1226–1235. DOI:10.1038/nn963.

Trigili E, Grazi L, Crea S, Accogli A, Carpaneto J, Micera S, Vitiello
N and Panarese A (2019) Detection of movement onset using
EMG signals for upper-limb exoskeletons in reaching tasks.
Journal of NeuroEngineering and Rehabilitation 16(1). DOI:
10.1186/s12984-019-0512-1.

Verdel D, Bruneau O, Sahm G, Vignais N and Berret B (2023) The
value of time in the invigoration of human movements when
interacting with a robotic exoskeleton. Science Advances
9(38). DOI:10.1126/sciadv.adh9533.

Villavisanis DF, Zhang D, Shay PL, Taub PJ, Venkatramani H and
Melamed E (2023) Assisting in microsurgery: operative and
technical considerations. Journal of Hand Surgery Global
Online 5(3): 358–362. DOI:10.1016/j.jhsg.2023.01.011.

von Helmholtz H (1866) Handbuch der physiologischen Optik: Mit
213 in den Text eingedruckten Holzschnitten und 11 Tafeln.
Leipzig : Voss.

Vondrick C, Pirsiavash H and Torralba A (2016) Anticipating visual
representations from unlabeled video. In: IEEE Conference on
Computer Vision and Pattern Recognition. pp. 98–106.

Wang Y and Makeig S (2009) Predicting intended movement
direction using EEG from human posterior parietal cortex.
In: Foundations of Augmented Cognition. Neuroergonomics
andOperational Neuroscience. Springer BerlinHeidelberg, pp.
437–446. DOI:10.1007/978-3-642-02812-0_52.

Wen Y and Pagilla P (2023) Path-constrained and collision-free
optimal trajectory planning for robot manipulators. IEEE
Transactions on Automation Science and Engineering 20(2):
763–774. DOI:10.1109/tase.2022.3169989.

Winter DA (1990) Biomechanics and motor control of human
movement. Second edition. New York: John Wiley and Sons.
ISBN 9780470549148.

Wong AL, Haith AM and Krakauer JW (2014) Motor plan-
ning. The Neuroscientist 21(4): 385–398. DOI:10.1177/
1073858414541484.

Wu FY and Asada HH (2016) Implicit and intuitive grasp posture
control for wearable robotic fingers: a data-driven method
using partial least squares. IEEE Transactions on Robotics
32(1): 176–186.

Yang B, Huang J, Chen X, Xiong C and Hasegawa Y (2021)
Supernumerary robotic limbs: a review and future outlook.
IEEE Transactions on Medical Robotics and Bionics 3(3): 623–
639. DOI:10.1109/tmrb.2021.3086016.

Yang S, Garg NP, Gao R, Yuan M, Noronha B, Ang WT and Accoto
D (2023) Learning-based motion-intention prediction for end-
point control of upper-limb-assistive robots. Sensors 23(6):
2998. DOI:10.3390/s23062998.

Yu X, Li Y, Zhang S, Xue C and Wang Y (2020) Estimation
of human impedance and motion intention for constrained
human–robot interaction. Neurocomputing 390: 268–279.
DOI:10.1016/j.neucom.2019.07.104.

Yu Z and Lee M (2015) Human motion based intent recognition
using a deep dynamic neural model. Robotics and
Autonomous Systems 71: 134–149. DOI:10.1016/j.robot.2015.
01.001.

Zunino A, Cavazza J, Volpi R, Morerio P, Cavallo A, Becchio
C and Murino V (2019) Predicting intentions from motion:
the subject-adversarial adaptation approach. International
Journal of Computer Vision 128(1): 220–239. DOI:10.1007/
s11263-019-01234-9.


	1 Introduction
	2 Augmentation concepts and framework
	3 Use cases
	4 Dynamic safety and coordination
	4.1 Static constraints
	4.2 Detection of human intention
	4.2.1 Intent identification
	4.2.2 Trajectory prediction

	4.3 Limb coordination

	5 Flexible action planning
	5.1 Predictive sensory feedback to human user
	5.2 Control modes
	5.2.1 Direct control.
	5.2.2 Autonomous behaviors

	5.3 General voluntary control

	6 Discussion
	Bibliography

