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Fatigue Mitigation through Planning in Human-Robot Repetitive
Co-Manipulation: Automatic Extraction of Relevant Action Sets

Aya Yaacoub1, Vincent Thomas1, Francis Colas1, Pauline Maurice1

Abstract— Work-related musculoskeletal disorders (WMSDs)
are among the most common injuries associated with industrial
tasks. Repetitive tasks are a major WMSDs risk factor, because
they load the same human joints over and over again. Collab-
orative robots can be used to induce movement variability in
highly repetitive co-manipulation tasks by changing the position
of the co-manipulated object through time, thereby distributing
the physical load over different body parts and reducing
fatigue accumulation. This is even more beneficial when long-
term consequences of the robot actions are considered. How-
ever, selecting the optimal action within the continuous robot
workspace is not compatible with time constraints imposed
by online planning in highly repetitive tasks, especially when
the planning horizon increases. In this work we therefore
propose an approach to automatically extract a set of actions
from the continuous workspace, that combines two properties:
planning speed (i.e. reduced number of actions in the set),
and ability to induce a variety of fatigue distributions over
the different human joints. The proposed approach combines
a digital human simulation to estimate the fatigue induced by
possible actions, with a repeated short-term planning (greedy-
based selection approach) phase that explores the fatigue space
and simultaneously identifies optimal actions from a large
space for each visited state. By retaining actions used in the
short-term planning, this process allows to extract a subset
of relevant actions. We evaluate our approach in a simulated
co-manipulation scenario, and show that the resulting action
set robustly outperforms action sets extracted with benchmark
methods, both in terms of planning time and human fatigue
mitigation.

I. INTRODUCTION

Work-related musculoskeletal disorders (WMSDs) are the
most common occupational disease in many countries, and
reach a high prevalence among industrial workers [1], [2].
Repetitive manual tasks have been identified as a major
WMSDs risk factor, even with limited force exertion, because
mechanical stress repeatedly affects the same musculoskele-
tal structures [3]. Actually, studies in the field of ergonomics
suggest that movement variability, i.e. varying the posture
adopted to perform a task, could be beneficial to reduce
WMSDs since it distributes mechanical load over different
body joints over time [4].

With the promise of collaborative robots (cobots) directly
interacting with humans, a research direction investigating
using cobots to reduce WMSDs risk has recently emerged
[5], [6]. In particular, several studies proposed to use cobots
to induce changes in the human posture during repetitive co-
manipulation tasks, using reactive robot behavior [7], random
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Fig. 1. Screenshot of the physics-based digital human simulation used to
estimate the fatigue evolution induced by an action (i.e. end-effector pose)
of the collaborative robot. The simulation serves to compute the whole-
body motion of the human in reaction to the robot action, and the associated
human joint torques. A fatigue model is then used to derive fatigue evolution
from the joint torques.

changes [8], or long-term planning [9]. By modifying the
human posture, these approaches aim at distributing the
physical stress on different body parts over time, hence
reducing fatigue effect. In a previous work, we introduced
a probabilistic planning approach to optimize a cobot be-
havior, in order to reduce human physical fatigue (used as
a proxy for WMSDs risk) in a highly repetitive task [9].
A specificity of this approach was to take into account the
inherent uncertainties on the human internal state and future
posture, stemming from the human kinematic redundancy.
Importantly, we showed that planning over several task
cycles was beneficial compared to reasoning over a single
cycle[9].

However, the complexity of probabilistic planning –and
hence the decision time– increases dramatically with both the
planning horizon and the size of the action space [10]. When
planning the robot behavior in human-robot co-manipulation,
actions correspond to the robot end-effector poses or tra-
jectories (depending on the specific task), hence the action
space is continuous. Methods have been proposed to deal
with planning in a continuous action space, mainly through
online sampling of the action space. For instance, Progressive
Widening (PW) algorithms progressively add actions to an
initial action set alongside planning [11][12]. However, an
action set is refined specifically for one belief state of the sys-
tem, hence the (potentially time-consuming) process needs



to be repeated for each new belief, i.e. at each new step of
the planning process. Such online-sampling approaches are
therefore hardly compatible with time constraints associated
with online robot decision-making, especially in the context
of highly repetitive tasks where cycle time varies from a few
seconds to a few minutes.

This work therefore addresses the question of offline
automatic selection of a reduced set of robot actions relevant
to long-term human fatigue mitigation. The challenge lies
in the tradeoff between the ability to induce a large variety
of human postures to distribute fatigue over the whole body
(for which more actions is better), and the speed of planning
(for which less actions is better). Specifically, working on
fatigue distribution requires to consider fatigue as a high-
dimensional state (each component corresponding to the
fatigue of a specific muscle or joint). Hence the relevance
of an action depends on its complementarity with the other
actions in the set, in terms of diversity of consequences in a
high-dimensional space.

We propose an offline approach for action-set extraction
that combines physics-based digital human simulation and
short-term planning. A 1-step horizon planning is repeatedly
run to select the (short-term) optimal action within the large
action space, using digital human simulation to evaluate
the fatigue evolution induced by all possible actions. The
process is repeated over a large number of cycles and in
different initial conditions to allow a wide exploration of the
fatigue space, and hence the selection of actions relevant for
a diversity of situations. We test our approach in simulation
to benchmark the long-term planning performance of the
resulting action set in terms of online decision time and
fatigue mitigation ability.

II. METHODS
The objective of our approach is to extract a set of

actions from a continuous action space, which represents a
good compromise between online decision-making time (i.e.
minimal number of actions in the set) and ability to distribute
fatigue on different body parts over time. In the remaining
of this article, we illustrate our approach on a task where,
at each cycle, a collaborative robot brings an object to the
human co-worker at a certain Cartesian pose (Fig. 1, video
1). The human then reaches to the object to work on it while
the robot continues to hold it at the same pose (e.g. spray
painting car pieces, scanning parcels packed by the robot).
When done, the robot moves the object away and brings
a new one, which corresponds to starting a new cycle. An
action therefore corresponds to a robot end-effector Cartesian
pose, and the continuous action space is the intersection of
the human and robot workspaces.

This section first presents the formulation of the long-term
decision making problem (Section II-A), and how it can be
solved (Section II-B). Section II-C then describes the digital
human simulation used to estimate the fatigue induced by
a robot action. Finally, the proposed approach for action-set
extraction is detailed in Section II-D.

1https://youtu.be/mBChsgYRX1g

A. Fatigue Mitigation Problem Formulation

The objective of the robot in the considered scenario is
to induce postural changes in the human by varying the co-
manipulated object pose across cycles, in order to minimize
the accumulated fatigue over a long-term horizon (i.e. many
cycles). However, owing to human kinematic redundancy, the
human postural reaction (i.e. whole-body motion) is not fully
determined by the object pose: the human may adopt differ-
ent postures to perform a same task, resulting in different
fatigue evolutions. This uncertainty on the human reaction
therefore needs to be taken into account when selecting the
optimal robot action. In addition, the reasoning is done on the
human physical fatigue, which is an internal state that cannot
directly be measured but only inferred. The problem is then
only partially observable. For the above-listed reasons (long-
term planning, uncertainty, partial observability), we model
the problem using the Partially Observable Markov Decision
Process (POMDP) framework [13].

The POMDP describes possible transitions from a
partially-observable human fatigue state s ∈ S, when a
robot action a ∈ A is executed, to some new fatigue state
s′ ∈ S with a probability T (s, a, s′). Following the transition
(s, a, s′), an observation o ∈ Ω of the human postural
reaction is returned with a probability O(s′, o), which serves
to update the robot belief on the current human fatigue state.
A reward r = R(s′) is associated with each state s′ and
depends on the fatigue value at s′. Finally, the initial belief
state b0 ∈ B is a probability distribution representing the
uncertainty on the initial human fatigue state (i.e. at the
beginning of the first cycle).

B. Robot Policy Computation

Solving the POMDP consists in finding a policy
π : B 7→ A according to which the next robot action a will be
selected at each cycle, given the current belief b on the human
fatigue state. The optimal policy π∗ maximizes the average
discounted-sum of received rewards E[

∑∞
t=0 γ

trt] during
execution, with γ being the discount factor balancing the
importance of immediate vs. late rewards. The optimal policy
can be approximated using algorithms such as POMCP based
on Monte-Carlo Tree Search [14].

However, in situations where decision time is critical,
a finite-horizon algorithm can be a faster sub-optimal al-
ternative to solve the POMDP. A finite horizon algorithm
guarantees a balanced evaluation of all possible actions
within an estimable time controlled by the choice of the
planning horizon. The principle of the finite-horizon (FH)
algorithm is summarized in Algorithm 1. For a given horizon
h ∈ N, and starting from a belief b over the human fatigue
state, FHh returns the action leading to the highest expected
sum of discounted rewards after h cycles2.

C. Fatigue Evolution Estimation

Computing the robot policy requires to evaluate the re-
wards associated with a series of actions. Since the reward

2Note that FH1 is equivalent to greedy action selection, i.e. selecting the
action that minimizes the expected fatigue cost after one single cycle.



Algorithm 1 Finite Horizon FH
Input h, b0 . planning horizon, initial belief
Output amax . action with highest value
amax, Vamax ← FH(h, b0)
return amax

procedure FH(h, b)
for a ∈ A do

Initialize Va ← 0 . value of action a
for o ∈ Ω do

b′(s′)s′∈S ∝ O(s′, o)
∑

s∈S T (s, a, s′).b(s)
a′, Va′ ← FH(h− 1, b′) . recursive call
V o
a ← r(b, a, o) + Va′

Va ← Va + P (o|b, a).V o
a

return tuple(arg max
a∈A

Va, max
a∈A

Va)

depends here on the fatigue state, it means predicting the
fatigue evolution induced by the series of actions.

In this work, we consider fatigue at joint level, and define
it as a temporary loss in the torque generation capacity of a
joint j [15]:

f j(t) = 1− τ jcem(t)

τ jmax

(1)

where f j is the instantaneous fatigue of joint j, τ jcem is the
current maximum exertable torque of joint j, and τ jmax is
the nominal maximum exertable torque (in the absence of
fatigue)3. We use the model of Ma et al. to represent the
evolution of τ jcem(t) as a function of the history of joint
torques τ j0→t exerted during the motion [16].

Estimating the non-measurable fatigue evolution induced
by a robot action therefore requires to estimate the human
joint torques exerted during the human postural reaction
(whole-body motion) in response to the robot action. In this
work, we use a physics-based Digital Human Model (DHM)
simulation (Fig. 1) to generate dynamically-consistent whole-
body motions and their associated joint torques from a high-
level description of the task to perform (defined by the
pose of the co-manipulated object). The DHM motion is
computed by solving a Linear Quadratic Programming (LQP)
optimization problem to find the actuation variables (joint
torques) which enable to follow some objectives at best
(e.g., hand trajectory, balance, postural preferences), while
respecting dynamic and biomechanical constraints (e.g., joint
position and actuation limits) [17]. More details about the
DHM simulation can be found in [9].

D. Action Set Extraction

A naive approach to address the issue of the continuous
action space would be to randomly sample a large number n
of actions, resulting in a discrete, but very large, action set
An. However, while the FH algorithm returns a decision

3We actually consider positive and negative torques separately to represent
agonist and antagonist muscles, hence two fatigue values are associated to
each joint.

in a bounded time, this time depends on the depth of the
horizon h but also on the size of the action set. Planning
within An then becomes computationally too expensive for
long-term planning (i.e. more than a few steps ahead). Thus,
a small-size relevant subset of actions within An needs to
be identified.

Since we consider offline action-set extraction, the ex-
tracted subset should be relevant for any possible state of the
system. But the state space here is continuous (fatigue state),
so it is not possible to test for all possible states. We therefore
propose to use a fast short-term planning (greedy, FH1) step
within An, to explore the state-space and identify relevant
actions for the visited states. The short-term planning is
conducted over many task cycles (ncycles), and repeated for
a set B of various initial beliefs b0, to cover the state space as
exhaustively as possible. The extracted action set G (greedy-
used) is the union of all actions selected during the planning.
Algorithm 2 summarizes the proposed method.

.

Algorithm 2 Greedy-Used
Input An . base action set
Input B . a set of initial beliefs
Input ncycles . number of task cycles
Initialize G ← Ø
for b0 ∈ B do
Gb0 ← Ø
b← b0
for s ∈ b do . repeat for all possible states in b

repeat ncycles times
a← FH(1, b)
Gb0 ← Gb0 ∪ {a}
(s′, o, r)← POMDP (s, a)
b(s′′)s′′∈S ∝ O(s′′, o)

∑
s∈S T (s, a, s′′).b(s)

s← s′

end
G ← G ∪ Gb0

return G . Greedy-Used set derived from B

III. EXPERIMENTS

In order to evaluate the performance (decision time, ob-
tained rewards, and robustness to initial belief) of action
sets obtained following our approach, we benchmarked it
on a simulated task scenario similar to [9]. This section first
describes the task and the POMDP parameters (Section III-
A); then the benchmark tests (Section III-B), and finally the
metrics and analyses that were used (Section III-C).

A. Simulated Scenario

1) Task: The repetitive co-manipulation task depicted in
Fig. 1 is considered as a test-bed, with ncycles = 100
repetitions. Each cycle lasts 16 s: the robot brings the object
at the given pose, the human reaches to it with its right
hand carrying a 5 kg manual tool and operates on the object
for 6 s while maintaining a fixed whole-body posture (no
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Fig. 2. 3D positions, with respect to the human model, of the actions (i.e.
poses of the object brought by the robot) forming the A1500 set. A1500 is
a fine discretization of the continuous action space. The tested sets Gi and
Rk are all extracted from A1500.

significant human-robot or -object force exchange), then the
human returns to its initial posture (idle with arms down),
and the next cycle starts.

2) Reward Function: The reward function of the POMDP
is defined by r(s′) = r(ft+1) = −C(ft+1) where ft+1 is the
fatigue state at s′. The fatigue cost C(ft) is:

C(ft) =
∑

j∈joints

(f jt )2

2N
(2)

with 2N the combined number of agonist and antagonist
joints (N each) in the human model.

3) Human Postural Reaction: Because of its kinematic
redundancy, the human can adopt various postural reactions
to reach one given object pose. In this example, we use two
possible manually defined postural reactions: back reaction
and arm reaction. In back reaction the human aims at
keeping its upper-arm vertical to reduce shoulder torque,
and prefers to use its back when reaching. Conversely, in
arm reaction the human aims at keeping its back upright
to reduce lumbar torque, and prefers to use is arm when
reaching. These postural reactions are implemented by tuning
parameters in the LQP controller animating the human model
[9]. Here we consider that at each cycle, the human chooses
the reaction which minimizes its fatigue cost at the end of
the cycle. The human reaction is therefore deterministic.

B. Benchmark

In order to test the proposed action set extraction method,
we first create the large action set An with n = 1500, by
randomly sampling from the continuous shared robot and
human Cartesian workspace. Only positions are considered,
the object orientation is kept constant in this work. The
shared workspace is estimated based on the human body
dimensions, and the feasibility of each action (3D object
pose) is verified through the DHM simulation. Figure 2
shows the sampled positions in A1500 around the digital
human.

1) Influence of the set of initial beliefs: The greedy-used
action set G is extracted from A1500 by running the FH1

algorithm over 100 cycles, and for a set B containing nb
randomly selected initial beliefs. nb initial beliefs are used
to create G so that the belief space is explored as exhaustively
as possible, resulting in a set G yielding robust performance.
Nevertheless, the extracted set G may depend on the choice
of initial beliefs in B. We therefore repeat the creation of
G using different sets Bi of initial beliefs, each Bi giving
one greedy-used set Gi, and we compare the performance of
these sets Gi. Three different types of Bi are explored:
• Bsinglei is a set of nb = 20 randomly selected single-

state initial beliefs (i.e. a single possible initial state,
no uncertainty). Twenty randomly selected sets Bsinglei

(0<i<20) are tested, each resulted in one greedy-used
action set Gsinglei .

• Bmulti
i is a set of nb = 20 randomly selected multi-

state initial beliefs (i.e. several possible initial states,
with uncertainty). Twenty randomly selected sets Bmulti

i

(0<i<20) are tested, each resulted in one greedy-used
action set Gmulti

i . While the initial beliefs are randomly
selected, we limit the choice to 3-states initial beliefs
(i.e. 3 possible initial states).

• Bfatigue is a set containing one single-state initial belief
for each joint4 j, corresponding to the state where joint
j is fully fatigued (fj = 1) and the other joints are fully
relaxed (fk 6=j = 0). Bfatigue is expected to result in a
greedy-used action set Gfatigue that contains at least
one action acting to minimize fatigue for each joint.

2) Comparison with other extraction methods: We com-
pare the performance of the greedy-used action set with
3 other types of action sets. In order to further validate
the robustness of the greedy-used sets Gi, we conduct the
comparison using all the sets Gi described in Section III-
B.1, except Gfatigue (i.e. we use 40 sets Gi: Gsinglei and
Gmulti
i for 0<i<20). The other types of action sets are:
• A1500: The large initial action set. We hypothesize

that planning in A1500 results in fatigue mitigation
performance better or equal than G, since there are more
actions to choose from. However, the size of A1500

makes it impossible to plan within the time limit of
a task cycle with a horizon h > 1.

• Rk: A set of randomly sampled actions (within A1500)
of similar size k as G. Since there are 40 sets Gi, the
number of actions k in Rk is chosen as the average
number of actions of all sets Gi. This comparison serves
to verify that the fatigue mitigation performance is not
merely related to the number of actions in the set.
We hypothesize that planning in Rk results in fatigue
mitigation performance lower than G since the actions
constituting G are selected optimally vs. randomly for
Rk. The decision time will be similar since both sets
contain the same number of actions. The performance of
Rk is likely unstable (if k � 1500), thus 20 randomly

4Except joints in the left arm that are omitted since the left arm is not
actively used in the considered scenario, hence its fatigue will remain low.



sample 20 sets Rj
k are included in the benchmark.

• M2: The set containing the two manually selected
actions used in [9]. These two actions (low and high
poses) were selected to induce significantly different
human postures. We hypothesize that planning in M2

results in fatigue mitigation performance lower than G
since the M2 action set was not optimized.

3) Evaluation: The action sets tested, both for the influ-
ence of the initial belief set and for the extraction method,
are all evaluated in the same way. They are used for planning
with the finite horizon algorithm FHh for different horizons
h, on the simulated scenario described in Section III-A. The
performance of the different sets are compared in terms of
decision time, and fatigue mitigation performance.

The fatigue mitigation performance however depends on
the initial state and belief. For each action set and each
planning horizon h, the planning and execution of the robot
policy is therefore tested for 50 different initial beliefs b0.
Among them, 25 are single-state initial beliefs, and 25
are multi-state (3-states) initial beliefs. All are randomly
sampled. Single-state b0 serve for testing the approach when
the robot has a full knowledge of the human fatigue, whereas
multi-state b0 serve to test the robustness of the performance
in the presence of uncertainty.Finally, for all evaluations, the
real initial fatigue state is contained within the initial belief
b0.

C. Data Analysis

1) Performance Criteria: Performance is evaluated with
respect to both decision time during online planning, and fa-
tigue mitigation. Fatigue mitigation performance is measured
with the average fatigue cost over the whole task:

C = − 1

ncycles

ncycles∑
k=1

rk. (3)

2) Statistical Tests: The fatigue mitigation performance is
compared for the different action sets using statistical tests.
The performance is analyzed separately when testing from
single-state vs. multi-state initial beliefs (25 data points for
each action set in both cases). For each type of action set,
we use the fatigue mitigation performance obtained with the
highest planning horizon h, which decision time still remains
under the task cycle time5. Data are tested for normality
using the Shapiro-Wilk test. Some conditions do not follow
the normality assumption, hence non-parametric Wilcoxon
signed-rank tests are used to perform pairwise comparisons.

Each condition (i.e. type of action set extraction method,
or type of initial belief set used to run greedy-used) contains
several repetitions. We therefore conduct pairwise compar-
isons between all pairs of action sets obtained with a different
method (e.g., A1500 vs. all Gsinglei and all Gmulti

i ; all Rk

vs. all Gsinglei and all Gmulti
i ; M2 vs. all Gsinglei and all

5We actually used a time limit of 12 s, which is a few seconds shorter
than the full cycle time, to allow the robot to observe the postural reaction
of the human when the human starts moving from its neutral posture at the
beginning of the cycle.

Gmulti
i ). In the results, we report the percentage of pairwise

comparisons for which the p-value is p < 0.0001. Statistical
analyses are conducted in Python.

IV. RESULTS

A. Size of the greedy-used action sets

The greedy-used action set extraction approach resulted
in action sets G containing 23.6±2.1 actions when G was
derived from single-state initial beliefs (Gsinglei ), 19.5±1.6
actions when G was derived from multi-state initial beliefs
(Gmulti

i ), and 32 actions for Gfatigue (derived from 64 initial
beliefs). Compared to the initial set A1500 containing 1500
actions, the greedy-used extraction approach allows to divide
the size of the action set by 65 (Gsinglei ) to 75 (Gmulti

i ) in
average.

B. Influence of the set of initial beliefs

Fig. 3 shows one representative example of the fatigue
mitigation vs. online decision time performance graph for
the different initial belief sets Bi used for action set extrac-
tion, and for different planning horizons. The performance
distribution within Gsinglei (resp. within Gmulti

i ) is narrow.
So, overall, the performance within one type of initial belief
set Bi is relatively stable, suggesting that nb = 20 randomly
selected initial beliefs in Bi are sufficient to yield a robust
action set. Then, the sets Gsinglei derived from single-state
sets Bsinglei and Gmulti

i derived from multi-state sets Bmulti
i

have close performance, both in terms of decision time and
fatigue mitigation. When the planning horizon increases,
the decision time is slightly larger for Gsinglei sets. This
is in agreement with the larger average number of actions
in Gsinglei (23.6±2.1) compared to Gmulti

i (19.5±1.6). Con-
versely, the performance of Gfatigue extracted from a hand-
crafted set of initial beliefs is lower, both in terms of decision
time (since this set contains more actions) and of fatigue
mitigation.

Table I summarizes the results of the statistical com-
parisons between each pair of action sets extracted from
different type of initial belief sets. For each evaluated action
set, the performance used for the statistical comparison
is the one obtained with the longest planning horizon,
which decision time remains below the task cycle time.
When evaluating on multi-state initial beliefs, all Gsinglei

and Gmulti
i sets outperform the Gfatigue set. Gsinglei and

Gmulti
i sets are not significantly different from each other.

When evaluating on single-state initial beliefs, all Gmulti
i

sets and about half Gsinglei sets outperform the Gfatigue
set. Gmulti

i sets outperform the Gsinglei sets in about half
the comparisons. Thus it seems that action sets extracted
using a set Bi of multi-state initial beliefs yield the best and
most robust performance. However, the observed difference
in fatigue mitigation performance may also partly be due to
the planning horizon. Indeed, the planning horizon is one step
shorter for Gfatigue and for some Gsinglei sets with single-
state initial belief evaluations.



Fig. 3. Fatigue mitigation performance vs. online decision time, for the
action sets extracted from the different sets Bi of initial beliefs. Gsingle

i

(20 sets) corresponds to single-state initial belief sets Bsingle
i , Gmulti

i
(20 sets) to multi-state initial belief sets Bmulti

i , and Gfatigue (1 set)
to a hand crafted set of initial beliefs Bfatigue. For Gsingle

i and Gmulti
i ,

the distribution across the 20 sets is shown in blue (resp. magenta), and
the indicated decision time is the average over all 20 sets. Colored dots
correspond to average values, and horizontal lines to medians. G (orange
line) corresponds to the distribution of performance across all sets Gsingle

i
and Gmulti

i together. The performance of each action set was evaluated with
different planning horizons FHh. Data shown on the graph correspond to
one representative evaluation, i.e. when testing from one initial belief out
of the 25 single-state initial beliefs used for the benchmark.

C. Comparison with other extraction methods

The results of the previous section show that there is little
difference between the performance of Gsinglei and Gmulti

i

sets. Hence, in this section these sets are all analyzed together
and denoted as Gi (40 sets). The randomly selected sets Rk

were then designed to contain 22 actions, which was the
average size of the 40 action sets Gi.

Fig. 4 shows one representative example of the fatigue
mitigation vs. online decision time performance graph for
the different methods used to extract the action set (A1500,
Gi, R22, and M2), and for different planning horizons. Sets
extracted with greedy-used (Gi) and with random selection
(R22) have similar decision time, since they contain approx-
imately the same number of actions. However, the fatigue
mitigation performance is better with Gi sets, showing that
it is not merely the number of actions in the set that matters.
TheM2 set has a low decision time since it contains only 2
actions. But it has the worst performance regarding fatigue
mitigation, even with long planning horizons. Hence, while
the planning horizon plays a role in the fatigue mitigation
performance (it is beneficial to plan with a longer horizon),
it needs to be associated to a relevant and rich-enough
action set. The full set A1500 and the greedy-used sets
Gi have close –and best overall– performance in terms of
fatigue mitigation. However, for a same planning horizon,
the decision time of A1500 is much longer given the large

TABLE I
PERCENTAGE OF COMPARISONS WHERE THE AVERAGE FATIGUE COST OF

ACTION SETS IN ROWS IS SIGNIFICANTLY LOWER THAN SETS IN

COLUMNS. THE THRESHOLD FOR SIGNIFICANCE IS 0.0001. NUMBERS

IN PARENTHESES INDICATE THE PLANNING HORIZON USED TO MEASURE

THE PERFORMANCE.

Evaluation with single-state b0

Gsingle
i Gmulti

i Gfatigue
(h=3.5± 0.5) (h=4± 0) (h=3± 0)

Gsingle
i – 0.0 55.0
Gmulti
i 45.0 – 100.0
Gfatigue 0.0 0.0 –

Evaluation with multi-state b0

Gsingle
i Gmulti

i Gfatigue
(h=3± 0) (h=3± 0) (h=2± 0)

Gsingle
i – 0.0 100.0
Gmulti
i 0.0 – 100.0
Gfatigue 0.0 0.0 –

number of actions it contains.
Table II summarizes the results of the statistical com-

parisons between each pair of action sets extracted with a
different method. For each evaluated action set, the perfor-
mance used for the statistical comparison is the one obtained
with the longest planning horizon such that its decision time
remains below the task cycle time. All greedy-used sets Gi
significantly outperform all other sets, whether the evaluation
is conducted with single-state or multi-state initial beliefs.
Interestingly, Gi outperforms A1500 with respect to fatigue
mitigation, even though all actions in Gi are also in A1500.
This is likely due to the small size of Gi, which allows to
plan with a longer horizon, whereas A1500 is limited to a
horizon of 1 to remain compatible with the task cycle time.
This shows that increasing the planning horizon is beneficial
with respect to fatigue mitigation. Overall, these results show
that the greedy-used action set extraction method gives sets
that are a good compromise between the number of actions
on one hand, and their diversity and relevance with respect
to fatigue mitigation on another hand.

TABLE II
PERCENTAGE OF COMPARISONS WHERE THE AVERAGE FATIGUE COST OF

ACTION SETS IN ROWS IS SIGNIFICANTLY LOWER THAN SETS IN

COLUMNS. THE THRESHOLD FOR SIGNIFICANCE IS 0.0001. NUMBERS

IN PARENTHESES INDICATE THE PLANNING HORIZON USED TO MEASURE

THE PERFORMANCE.

Evaluation with single-state b0
A1500 G M2 R22

(h=1± 0) (h=3.8± 0.4) (h=11± 0) (h=4± 0)
A1500 – 0.0 100.0 100.0
G 100.0 – 100.0 100.0
M2 0.0 0.0 – 0.0
R22 0.0 0.0 100.0 –

Evaluation with multi-state b0
A1500 G M2 R22

(h=1± 0) (h=3± 0) (h=7± 0) (h=2.9± 0.3)
A1500 – 0.0 100.0 100.0
G 100.0 – 100.0 100.0
M2 0.0 0.0 – 0.0
R22 0.0 0.0 100.0 –



Fig. 4. Fatigue mitigation performance vs. online decision time, for the action sets extracted with the different methods: full set (A1500, 1 set), greedy-used
extraction (Gi, 40 sets), random selection (R22, 20 sets), and manually crafted set (M2, 1 set). For Gi (resp. R22), the distribution across the 40 (resp.
20) sets is shown in orange (resp. magenta), and the indicated decision time is the average over all sets. Colored dots correspond to average values, and
horizontal lines to medians. The performance of each action set was evaluated with different planning horizons FHh. Data shown on the graph correspond
to one representative evaluation, i.e. when testing from one initial belief out of the 25 single-state initial beliefs used for the benchmark.

V. DISCUSSION

The results of this study suggest that the proposed greedy-
used approach is relevant to extract a small subset of relevant
actions from a large action space, in the context of fatigue
mitigation with a cobot. The greedy-use extraction approach
allowed to divide the size of the action set by about 70,
which enabled to use a longer horizon for online planning
compared to the large initial set representing the continuous
space. This is especially important, as increasing the plan-
ning horizon has been shown beneficial to improve fatigue
mitigation performance, both here and in previous work [9].
Importantly, when considering a same planning horizon, the
average fatigue cost of greedy-used action sets was close
to that of the initial large set. Thus, reducing the size of
the action set was not detrimental to the fatigue mitigation
performance, which confirms the relevance of the extracted
actions.

While reducing the action set size is crucial for online
planning applications, a diversity of actions to choose from
should nevertheless be maintained. Indeed, sets of randomly
selected actions (R22) performed better than the set of man-
ually selected actions (M2), even though this latter action set
was constituted with fatigue mitigation in mind. The limited
diversity offered by only two action choices (compared to
the 22 actions in R22) was therefore not sufficient to allow
for an efficient variation of physical load distribution on the
different human joints over time. The proposed greedy-used
approach therefore offers a good trade-off between size of
the action set, and diversity of actions in the set.

One advantage of the greedy-used approach is that the
number of parameters to tune is limited, and their meaning
is understandable. The important point is that the belief
space be explored as exhaustively as possible during the
extraction phase, in order to select suitable responses (i.e.
actions) to any possible situation that may happen. This is
why repeating the extraction process for several initial beliefs
was proposed. The results actually suggest that the extracted
action set is more robust (better performance on a diversity of
evaluations despite less actions) when using several randomly
selected initial beliefs (Gsinglei and Gmulti

i ), compared to
using manually defined initial beliefs designed to represent
a wide variety of fatigue states (Gfatigue). In addition, sets
derived from multi-state initial beliefs (Gmulti

i ) marginally
outperformed those derived from single-state initial beliefs
(Gsinglei ). This could be explained by the fact that multi-
state beliefs intrinsically consider uncertainty on the fatigue
state, hence actions that generate a safer behavior are selected
(i.e. actions that result from a trade-off between risk and
performance). These safer actions may be more robust on
fatigue states that were not explored in the action set ex-
traction phase, compared to actions tailored for one specific
deterministic state6.

Despite the promising results of the greedy-used approach,
this work has some limitations. We tested the performance
of the greedy-used approach on one single co-manipulation

6When starting from a single-state initial belief, the fatigue state remains
deterministic throughout the whole task, since in the present example the
human postural reaction is deterministic, hence the whole evolution is.



scenario, and we cannot exclude that the results do not
generalize to other scenarios. For instance, the greedy-used
extraction approach may result in a set that contains too
many actions to be compatible with time constraint of online
planning for repetitive co-manipulation tasks. If so, the
greedy-used approach would need to be extended to further
reduce the number of actions in the set. This may require
to rank the actions, and therefore assign a value to each
action. The number of times an action is selected could be
one solution, however the magnitude of its consequences
should also be considered. In addition, we did not evaluate
the performance of the action sets in case of an erroneous
belief, i.e. a belief that does not contain the real fatigue state
of the human. Such case would benefit from actions that –
along with performance– optimize the information provided
about the human state, in order to quickly refine the belief
[18].

Another limitation concerns the reliability of the human
model, which affects the estimated fatigue evolution and
hence performance. The human postural reactions (motion
preferences) were manually designed. We chose them to
be sensible w.r.t. how a human could react, but we cannot
guarantee that they match real human behaviors. In addition,
the simulated human always chose the postural reaction
resulting in the smallest fatigue cost at the end of the current
cycle. In reality, humans may apply some hysteresis in their
choices: while the fatigue level definitely affects the choice,
humans may also tend to keep the same reaction as before
up to a certain level of fatigue. In the future, we therefore
plan to identify human motion preferences from real human
data. We will also evaluate the performance of the extracted
action sets in a real human-robot experiment replicating the
simulated scenario. This will be an opportunity to assess
whether the human model used for the action set extraction is
good enough for the performance to transfer from simulation
to real.

VI. CONCLUSION

In this work, we addressed the question of action set
extraction from a continuous space, in the context of hu-
man fatigue mitigation in highly repetitive human-robot co-
manipulation tasks. Long-term planning of robot actions is
beneficial to optimize human fatigue mitigation. However,
the constraint on the decision time imposed by short task
cycle requires that the set of actions used for planning be
of limited size. Yet, actions constituting the set should allow
for a diversity of fatigue distributions on the different human
joints, and be robust to uncertainties on the human state. We
proposed a method for offline action set extraction, based
on short-term planning and physics-based digital human
simulation. The short-term planning phase is conducted to
explore the fatigue belief space and simultaneously identify,
from a large action space, optimal actions with respect
to fatigue mitigation for each visited belief. The digital
human simulation serves to evaluate the fatigue induced by
each possible action of the robot. We evaluated our greedy-
used approach in a simulated co-manipulation scenario, and

showed that the action sets thereby extracted are a good
compromise between the number of actions in the set,
and their diversity and relevance with respect to fatigue
mitigation. Importantly, the small size of the resulting set
allowed to increase the online planning horizon, which was
beneficial for fatigue mitigation. In the future, we will
improve the realism of the human model, leveraging data-
driven approaches. We also intend to validate our approach
on a real human subject experiment, and test it on different
human-robot co-manipulation scenarios.
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