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MULTILINEAR ANALYSIS OF QUATERNION ARRAYS:
THEORY AND COMPUTATION˚

JULIEN FLAMANT: , XAVIER LUCIANI; , SEBASTIAN MIRON: , AND YASSINE ZNIYED;

Abstract. Multidimensional quaternion arrays (often referred to as “quaternion tensors”) and
their decompositions have recently gained increasing attention in various fields such as color and
polarimetric imaging or video processing. Despite this growing interest, the theoretical development
of quaternion tensors remains limited. This paper introduces a novel multilinear framework for
quaternion arrays, which extends the classical tensor analysis to multidimensional quaternion data in
a rigorous manner. Specifically, we propose a new definition of quaternion tensors as HR-multilinear
forms, addressing the challenges posed by the non-commutativity of quaternion multiplication. Within
this framework, we establish the Tucker decomposition for quaternion tensors and develop a quaternion
Canonical Polyadic Decomposition (Q-CPD). We thoroughly investigate the properties of the Q-CPD,
including trivial ambiguities, complex equivalent models, and sufficient conditions for uniqueness.
Additionally, we present two algorithms for computing the Q-CPD and demonstrate their effectiveness
through numerical experiments. Our results provide a solid theoretical foundation for further research
on quaternion tensor decompositions and offer new computational tools for practitioners working
with quaternion multiway data.

Key words. quaternions, multilinear algebra, low-rank tensor decomposition, quaternion CPD.

MSC codes. 15A69, 15A33.

1. Introduction. Quaternions are famous in computer science by their ability to
efficiently encode three-dimensional (3D) rotations (which is crucial for e.g., computer
graphics [29]). In addition, recent years have seen an increased interest in quaternion
arrays, where quaternions are used to encode as a single scalar a 3D or 4D real vector
information. Important examples include RGB color images [1, 4, 37, 38], polarimetric
images [11, 24], vector array processing [3, 13] or joint wind and temperature fore-
casting [30], to cite only a few. For a recent review on the usefulness of quaternion
representations in data science, signal and image processing, see [23] and the recent
special issue [31, 32].

Quaternion multiway arrays arise naturally when 3D or 4D vector data is collected
across two or more diversities, such as time, space, wavelength, database index, etc.
Over the last decades, an important research effort has been devoted to the study of
quaternion vectors and matrices, see e.g., [36] for an introduction to quaternion linear
algebra. On the other hand, the study of quaternion higher-order multiway arrays
(i.e., with 3 dimensions or more) remains in its infancy. In particular, the notion of
quaternion tensor – as a multilinear mathematical object – remains to be properly
established, despite being commonly employed as a synonym for multidimensional ar-
rays of quaternions. Several tensor-like tools for quaternion multiway arrays have been
recently proposed [26, 21, 25] and used in color imaging applications [35, 22]. These
works essentially build on generalization of the tensor singular value decomposition
(t-SVD) [17, 16] to the quaternion domain. In fact, while in the real and complex cases
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;Université de Toulon, Aix-Marseille Université, CNRS, LIS UMR 7020, France

1

ar
X

iv
:2

41
2.

05
40

9v
1 

 [
m

at
h.

N
A

] 
 6

 D
ec

 2
02

4

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
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Notation Description

R,C,H real, complex fields and quaternion skew-field
Cµ “ R ‘ µR complex subfield of H, with µ2 “ ´1
a,a,A,A scalar, vector, matrix and tensor
a,a,A conjugation of a scalar / vector / matrix
AT,AH transpose and conjugate-transpose
q “ qa ` iqb ` jqc ` kqd q P H, qa, qb, qc, qd real components
q “ |q| expparg qq polar form of q P H
A ¨▷ B,A ¨◁ B direct and reverse quaternion matrix product
χ▷pAq, χ◁pAq direct and reverse complex adjoint
χπ

▷pAq, χπ
◁pAq direct and reverse column-wise complex adjoint

AbB,Ab▷ B,Ab◁ B Kronecker product, direct and reverse Kronecker
product

AdB,Ad▷ B,Ad◁ B Khatri-Rao product, direct and reverse Khatri-Rao
product

A � B Hadamard product
Ti::,T:j:,T::k i-th horizontal slice, j-th lateral slice, k-th frontal

slice of tensor T
Tpnq n-mode unfolding of tensor T
T ˆ▷

n A,T ˆnA,T ˆ◁
n A n-mode products with possible direct or reverse

quaternion matrix multiplication

Table 1
Notations used in this article. The matrices A and B have appropriate dimensions. When at

least one if real-valued, the ▷ and ◁ indices are irrelevant and they are dropped in notations.

it is known [12] that such decompositions can be interpreted as a specific multilinear
tensor decomposition (such as the Canonical Polyadic decomposition), the lack of a
multilinear definition of quaternion tensors makes it an interesting open question.

This paper deals with the study of quaternion tensors from a multilinear point
of view. The main difficulty lies in handling the non-commutativity of quaternion
multiplication, which complicates the analysis and prevents straightforward extensions
of the usual definitions from the real and complex cases. It builds on our preliminary
results in [14], where only partial results were presented. The contributions of this
paper are threefold: (i) we propose a coordinate-free definition of quaternion tensors as
HR-multilinear forms and identify a quaternion multiway array with the representation
of a quaternion tensor in some fixed product basis; (ii) we introduce the notion of
quaternion Tucker format, n-mode products, change-of-basis and characterize their
properties; (iii) we develop a complete theory for quaternion Canonical Polyadic
Decomposition (Q-CPD), including characterization of trivial ambiguities, equivalent
complex-valued models and establish several sufficient uniqueness conditions. Finally,
two practical algorithms for computing the Q-CPD are presented and their performance
is validated through numerical experiments. We believe the results of this paper can
be of interest to practitioners dealing with quaternion multiway arrays, by providing a
general framework for the development of new quaternion tensor decompositions and
relevant models for applications that require uniqueness guarantees. In addition, the
theoretical study presented in this paper relies extensively on the necessary distinction
between left and right linear independence of quaternion vectors – due to quaternion
non-commutativity – leading us to introduce several new results on left and right ranks
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and Kruskal ranks of quaternion matrices, which may be of independent interest for
researchers in quaternion linear algebra.

This paper is organized as follows. Section 2 recalls basics about the quaternion
algebra and introduces our notations. We then extend some key concepts of real
and complex multilinear algebra to the quaternion case. In particular we establish
several new results on the Kruskal rank of quaternion matrices that are crucial for
our theoretical analysis of quaternion tensor decompositions. Our main contributions
are exposed in subsequent sections. Section 3 establishes a formal definition of a
quaternion tensor as a multilinear form with a specific structure. This enables a
natural derivation of the Tucker model for quaternion tensors. Section 4 focuses on
the Q-CPD and the study of its properties, equivalent complex representations and
provides several sufficient uniqueness conditions. Section 5 develops two different
algorithms for computing the Q-CPD, which are further evaluated through numerical
experiments in Section 6. Section 7 concludes the paper. Appendix A gathers technical
details and proofs.

2. Preliminaries. This section starts by reviewing elementary properties of the
set of quaternions H. We proceed by introducing the basic notions of quaternion linear
algebra, including quaternion matrix operations, complex adjoint(s), and quaternion
vector spaces. The theory in this paper requires us to distinguish between direct and
reverse quaternion matrix products; together with the notion of left and right linear
independence of quaternion vectors, these notions leads to several new results that
may be of independent interest. These are presented in Subsection 2.2.4. In particular,
Proposition 2.7 links the right and left ranks of a quaternion matrix to that of its
direct and reverse complex adjoints; Definition 2.8 defines the notion of left and right
Kruskal rank (k-rank) for quaternion matrices, and Lemma 2.10 establishes a crucial
link between these k-ranks of a quaternion matrix and the so-called k1-rank of its
direct and reverse complex adjoint. For reference, Table 1 summarizes the notations
used in this article.

2.1. Quaternions. Let R and C denote the usual real and complex field, respec-
tively. The set of quaternions H defines a 4-dimensional normed division algebra over
the real numbers R. It has canonical basis t1, i, j,ku, where i, j,k are imaginary units
such that

(2.1) i2 “ j2 “ k2 “ ijk “ ´1, ij “ ´ji, ij “ k .

Any quaternion q P H can be written as

(2.2) q “ qa ` iqb ` jqc ` kqd ,

where qa, qb, qc, qd P R are called the components of q. The real part of q is Re q “ qa
whereas its imaginary part is Im q “ iqb`jqc`kqd. A quaternion q is said to be purely
imaginary (or simply, pure) if Re q “ 0. The quaternion conjugate of q is denoted
by q “ Re q ´ Im q. The modulus of q is |q| “

?
qq “

?
qq “

a

q2a ` q2b ` q2c ` q2d.
Any non-zero quaternion q has an inverse q´1 “ q{|q|2. Just like complex numbers, a
quaternion can be written uniquely in polar form as q “ |q| expparg qq, where arg q is
a pure quaternion encoding the axis and angle of q. One of the specific features of
quaternions is the non-commutativity of the quaternion product. Indeed, for p, q P H,
one has pq ‰ qp in general since imaginary units do not commute. Nonetheless,
standard operations such as conjugation and inversion distribute well over products of
two quaternions: one has ppqq “ q p and ppqq´1 “ q´1p´1.
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Given a pure unit quaternion µ (i.e., such that Reµ “ 0 and |µ| “ 1), one can
define the set Cµ “ R ‘ µR which is a complex subfield of H. In particular, any
quaternion q can be written as a combination of two complex numbers in Cµ, a
procedure known as the Cayley-Dickson decomposition of q. For µ “ i, it reads

(2.3) q “ q1 ` q2j, q1, q2 P Ci.

The decomposition (2.3) permits to establish a useful complex matrix representation of
quaternions arrays [36], known as the complex matrix adjoint. This will be investigated
in detail in Subsection 2.2.2.

2.2. Quaternion linear algebra. This section reviews important notions of
linear algebra in the quaternion domain. For a comprehensive treatment of the subject,
see e.g., [36] or [27]. In addition, we prove some new results that will be useful to
study the uniqueness of quaternion tensor decompositions in Section 4.

2.2.1. Quaternion matrix operations. Quaternion vectors and matrices can
be defined as 1-D and 2-D arrays with quaternion entries. The i-th entry of quaternion
vector q P HN is given by pqqn “ qn P H, while for a quaternion matrix A P HMˆN ,
its pm,nq-th entry reads pAqmn “ amn P H. The columns of A P HMˆN are denoted
by a1, a2, . . . , aN P HM . The transpose of A P HMˆN is denoted by AT P HNˆM and
its conjugate-transpose is AH :“ pATq “ pAqT P HNˆM . Finally, we denote by IM
the identity matrix in HMˆM , which is the same as in CMˆM and RMˆM .

Standard operations of linear algebra translate to the quaternion domain provided
that operations take into account the non-commutativity of the quaternion product.
Consider A P HMˆN and B P HNˆP . Then it is possible to define the direct and
reverse quaternion matrix products as

direct quaternion matrix product pA ¨▷ Bqmp :“
N
ÿ

n“1

amnbnp,(2.4)

reverse quaternion matrix product pA ¨◁ Bqmp :“
N
ÿ

n“1

bnpamn.(2.5)

The direct or reverse denomination simply refers to the ordering of the two factors in
the expression of the matrix product entries: direct refers to the left-to-right direction,
while reverse means right-to-left direction. Note that, in many publications, the direct
matrix product is often implicitly used [36]; however this distinction will appear crucial
to our construction of quaternion tensors (see Section 3).

Due to quaternion non-commutativity, for two matrices with compatible sizes,
A ¨▷ B ‰ A ¨◁ B in general; however, if one of the matrices has real-valued entries
(say e.g., B P RNˆP ), then A ¨▷ B “ A ¨◁ B and we can drop the subscript to write
AB if there is no risk of confusion from the context.

Following [28]1, the direct and reverse quaternion matrix products satisfy the

1In [28], the authors refer to direct and reverse quaternion matrix products as “left” and “right”,
respectively. To avoid confusion with left and right quaternion vector spaces introduced in the next
section, we chose this alternate denomination of quaternion matrix products.
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following properties:

transposition pA ¨▷ BqT “ BT ¨◁ AT and pA ¨◁ BqT “ BT ¨▷ AT,

conjugation pA ¨▷ Bq “ A ¨◁ B and pA ¨◁ Bq “ A ¨▷ B,

conjugate-transposition pA ¨▷ BqH “ BH ¨▷ AH and pA ¨◁ BqH “ BH ¨◁ AH.

Proofs of these properties are readily obtained from the direct and reverse quaternion
matrix product definitions.

The same need to distinguish between direct and reverse product applies to Kron-
ecker and Khatri-Rao products, which are two standard matrix products encountered
in tensor algebra. Given two quaternion matrices A P HMˆN and B P HPˆQ, their
direct and reverse Kronecker product are defined as:

Ab
▷

B :“

»

—

–

a11B . . . a1NB
...

. . .
...

aM1B . . . aMNB

fi

ffi

fl

P HpMP qˆpNQq

Ab
◁

B :“

»

—

–

Ba11 . . . Ba1N
...

. . .
...

BaM1 . . . BaMN

fi

ffi

fl

P HpMP qˆpNQq.

Similarly, given two matrices A P HMˆP and B P HNˆP , their direct and reverse
Khatri-Rao product (column-wise Kronecker product) are defined as

Ad
▷

B :“
“

a1 b▷ b1 a2 b▷ b2 . . .aP b▷ bP

‰

P HpMNqˆP ,

Ad
◁

B :“
“

a1 b◁ b1 a2 b◁ b2 . . .aP b◁ bP

‰

P HpMNqˆP .

Finally, the Hadamard product between two quaternion matrices A,B P HMˆN is
defined as

(2.6) pA � Bqmn “ amnbmn .

which is naturally non-commutative, unlike its real and complex counterparts. There-
fore, we do not distinguish between direct and reverse product since it simply corre-
sponds to exchanging the positions of the two matrices A and B.

Finally, note that similarly to the quaternion matrix product case, the distinction
between direct and reverse operations becomes irrelevant for Kronecker and Khatri-Rao
products as long as one of the matrices is real-valued. In this case, we usually drop
the subscript if there is no risk of confusion within the context. More properties on
direct and reverse matrix operations can be found in [28].

2.2.2. Complex adjoints for quaternion matrix products. The notion of
complex adjoint of a quaternion matrix is a key tool in quaternion linear algebra
[36]. In particular, it permits to establish the properties of quaternion matrices (rank,
inversion, eigen-decompositions, etc.) from their complex adjoint counterpart. The
definition of the complex adjoint is implicitly related to the choice of quaternion
matrix multiplication, i.e., direct (2.4) or reverse (2.5). Therefore in full generality
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one needs to distinguish between direct and reverse adjoints. Let A P HMˆN and
consider its Cayley-Dickson decomposition A “ A1 ` A2j, where A1,A2 are matrices
in C2Mˆ2N

i . The direct complex adjoint χ▷pAq and reverse complex adjoint χ◁pAq

enable an isomorphism between quaternion matrices (equipped with the corresponding
matrix product) and complex matrices with block structure, such that

χ▷pAq “

„

A1 A2

´A2 A1

ȷ

P C2Mˆ2N
i ,(2.7)

χ◁pAq “

„

A1 ´A2

A2 A1

ȷ

P C2Mˆ2N
i .(2.8)

The only difference – yet crucial – between (2.7) and (2.8) resides in the placement of
anti-diagonal blocks. Proposition 2.1 below summarizes important properties of these
complex adjoints.

Proposition 2.1 (Properties of the complex adjoint). Let A and B be two quater-
nion matrices with arbitrary dimensions. The direct (2.7) and reverse (2.8) complex
adjoint satisfy the following properties:

‚ χ▷pIM q “ χ◁pIM q “ I2M ;
‚ χ▷pA`Bq “ χ▷pAq `χ▷pBq and χ◁pA`Bq “ χ◁pAq `χ◁pBq if A,B have
the same size;

‚ χ▷pA ¨▷ Bq “ χ▷pAqχ▷pBq and χ◁pA ¨◁ Bq “ χ◁pAqχ◁pBq if one can form
the matrix product between A and B;

‚ χ▷pAHq “ χH
▷pAq and χ◁pAHq “ χH

◁pAq;
‚ χ▷pAq “ χJ

◁pAJq;

The proof of these results follows by direct calculations. For additional properties, we
refer the reader to [36], where the direct complex adjoint is considered - similar results
hold for the reverse adjoint by simple adaption of the proofs therein.

Remark 2.2. The standard definitions (2.7)–(2.8) of complex adjoints of a quater-
nion matrix can be related to the horizontal stack of the adjoint of each of its columns.
Let A “ ra1a2 . . . aN s P HMˆN , and introduce the direct column-wise complex adjoint

(2.9) χπ
▷pAq “

“

χ▷pa1q | χ▷pa2q | . . . | χ▷paN q
‰

P C2Mˆ2N
i .

From the definition of the direct complex adjoint for a quaternion vector, it is easy to
see that there exists a permutation matrix Π P R2Nˆ2N such that χ▷pAq “ χπ

▷pAqΠ.
Equation (2.9) also defines a uniform partition of χπ

▷pAq in N submatrices χ▷panq P

C2Mˆ2
i . The same definition and properties holds for the columnwise reverse complex

adjoint, which we denote by χπ
◁pAq. This will be useful later on for the study of tensor

decompositions of quaternion multiway arrays.

2.2.3. Quaternion vector spaces. The set of quaternions H is non-commutative
and therefore it is not a field. As a result, since vectors spaces are defined over a field
(e.g., R or C), it is not possible to define the notion of vector space over H, per se.
Strictly speaking, one has to consider the notion of left- or right-module, which can be
viewed as an extension of vector spaces where scalar multiplication is performed over
a non-commutative ring. However, in the case of quaternions, it is common practice
[27] to call left (resp. right) H-modules left (resp. right) quaternion vector spaces,
with little abuse. In particular, since H is a division algebra, quaternion vector spaces
exhibit the usual properties of vectors spaces (dimension, basis, linear maps, etc. ) up
to the necessary distinction between left and right linearity.
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For completeness, we give the definition of a left quaternion vector space below.
The definition for a right vector space follows by direct adaption.

Definition 2.3 (Left quaternion vector space [15]). A left vector space H over H
is an additive abelian group in which the operation of scalar multiplication by elements
of H is defined. Scalar multiplication is assumed to obey the following laws for all
x,y P H and q, p P H:

‚ qpx ` yq “ qx ` qy;
‚ pq ` pqx “ qx ` px;
‚ pqpqx “ qppxq;
‚ 1 ¨ x “ x, where 1 P H.

A subscript L or R permits to distinguish between left and right quaternion vector
spaces. Two important examples are: HM

L , the left quaternion vector space of vectors
in HM et HM

R , the right quaternion vector space of vectors in HM .

2.2.4. The rank and Kruskal rank of quaternion matrices. In this section
we review the rank of a quaternion matrix and extend the definition of the Kruskal
rank, or simply k-rank, to quaternion matrices. In the real and complex cases, the rank
of a matrix refers to the maximum number of linearly independent columns (or rows)
in the matrix. When extending this notion to quaternion matrices, non-commutativity
of quaternion multiplication calls once again for a distinction between left and right
linear independence. The rank of a quaternion matrix A is usually defined to be the
maximum number of right linearly independent columns [36]. However, as it will
appear clearly in the sequel, the theory presented in this paper calls for a distinction
between the left and right ranks (and thus, k-ranks) of a quaternion matrix.

Definition 2.4 (Left and right columns spans). Let A P HMˆN and denote by
a1, . . . , aN P HM its columns. Then, the span of left-linear combination of columns of
A is denoted as

(2.10) spanLpAq :“

#

N
ÿ

n“0

xnan | x1, . . . , xn P H

+

,

and the span of right-linear combinations of colums of A is given by

(2.11) spanRpAq :“

#

N
ÿ

n“0

anxn | x1, . . . , xn P H

+

.

From these definitions, one observes that spanLpAq defines a left vector space over the
columns of A, while spanRpAq defines a right vector space over the same columns.

The following definition of left and right ranks of a quaternion matrix follows
naturally.

Definition 2.5 (Left and right ranks of a quaternion matrix). Let A P HMˆN .
The left rank of A is defined as rankL A “ dim spanLpAq while the right rank is given
by rankR A “ dim spanRpAq.

Remark 2.6. For a real or complex matrix A, we drop the subscripts and keep
the unambiguous notations spanpAq to denote the span of its columns and its rank by
rankA.

As in the usual real and complex cases, the dimension of the left (resp. right)
column span encodes the maximal number of left (resp. right) linearly independent
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vectors. For an arbitrary quaternion matrix, the left and right ranks are different [36].
Hence the distinction is critical. Nonetheless, the left and right ranks satisfy several
important properties similar to their real and complex counterparts. In particular,
for a quaternion matrix A P HMˆN , the rank cannot exceed its dimensions, i.e.,
rankL A ď minpM,Nq and rankR A ď minpM,Nq. The matrix A is said to be full left
rank if rankL A “ minpM,Nq and full right rank if rankR A “ minpM,Nq.

The following proposition relates the left and right ranks of a quaternion matrix
to that of its direct and reverse complex adjoints.

Proposition 2.7 (Left and right ranks from complex adjoints). Let A P HMˆN

be a quaternion matrix, and let r be an integer such that r ď minpM,Nq. Then :
1. rankR A “ r if and only if rankχ▷ pAq “ 2r,
2. rankL A “ r if and only if rankχ◁ pAq “ 2r.

Proof. The result originates from [33], where the implication rankR A “ r ñ

rankχ▷pAq “ 2r was proven. Due to the importance of this result for this paper, we
provide below a proof for completeness.

We start by proving the result for the rankR A. We proceed by induction. Let us
begin by considering a non-zero quaternion vector q P HMzt0u such that q “ q1 `q2j,
where q1,q2 are vectors in CM

i (not simultaneously zero). The direct complex adjoint
matrix of q is

χ▷ pqq “

„

q1 q2

´q2 q1

ȷ

P C2Mˆ2
i .

The dot product of the columns of χ▷ pqq is given by:

(2.12)

„

q1

´q2

ȷH „

q2

q1

ȷ

“ qH
1q2 ´ qT

2q1 “ 0.

This implies that the columns of the direct adjoint matrix of a quaternion vector are
orthogonal, i.e., the direct adjoint matrix of a non-zero quaternion vector is rank 2. The
result in (2.12) is straightforwardly obtained using the commutativity of the product
of complex numbers and the definitions of the conjugate and conjugate-transpose of a
complex matrix.

We prove next that the right rank of a quaternion matrix equals one if and only if
the rank of its direct adjoint matrix is 2. Consider a quaternion matrix A P HMˆN ,
such that rankR A “ 1, and let χ▷pAq P C2Mˆ2N

i be its direct complex adjoint. The
fact that rankR A “ 1 is equivalent to the existence of two non-zero quaternion vectors
a P HM and b P HN , such that A “ a ¨▷ bT. According to the third property of
Proposition 2.1, χ▷pAq “ χ▷pa ¨▷ bTq “ χ▷paqχ▷pbTq. Since χ▷paq and χ▷pbTq are
matrices with 2 orthogonal columns and 2 orthogonal rows, respectively, this means
that rankχ▷pAq “ 2.

Suppose next that rankR A “ r ô rankχ▷pAq “ 2r. We must prove rankR A “

r`1 ô rankχ▷pAq “ 2r`2. Under the assumption above, this is equivalent to saying
that for a vector p P HM , rankR rA,ps “ r ` 1 if and only if rankχ▷prA,psq “ 2r ` 2,
or alternatively, that p P spanRpAq if and only if the columns of χ▷ppq P spanpχ▷pAqq.
If p P spanRpAq, then it can be expressed as a right linear combination of the columns
of A, i.e., there exists c P HNzt0u such that p “ A ¨▷ c. According to the third
property of Proposition 2.1 this is equivalent to χ▷ppq “ χ▷pAqχ▷pcq, which means
that the columns of χ▷ppq P spanpχ▷pAqq, which completes the proof by induction.

The second result can be proved in an analogous way, by replacing operators χ▷,
rankR, ¨▷ and spanR by χ◁, rankL, ¨◁ and spanL, respectively.
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The definition of the left and and right Kruskal ranks follows naturally from that
of the left and right ranks of a quaternion matrix.

Definition 2.8 (Left and right Kruskal ranks of a quaternion matrix). Let
A P HMˆN be a quaternion matrix. Then:

‚ the left Kruskal rank of A is denoted by kLpAq. It is the maximal number r
such that any set of r columns of A are left linearly independent.

‚ the right Kruskal rank of A is denoted by kRpAq. It is the maximal number r
such that any set of r columns of A are right linearly independent.

For a real or complex matrix A, we simply write kpAq to denote its usual Kruskal
rank. For quaternion matrices, we use the shorthand kL-rank and kR-rank to mean
the left and right Kruskal ranks, respectively.

It is possible to relate the kL-rank and kR-rank of a quaternion matrix to the
k’-rank of its direct and reverse column-wise complex adjoints (see definitions in
Remark 2.2). Let us first recall the definition of the k’-rank of a partitioned matrix.

Definition 2.9 (k’-rank of a partitioned matrix [8]). Let X P FMˆN be a real
or complex partitioned matrix (not necessarily uniformly). Then the k’-rank of X,
denoted by k’pXq, is the maximal number r such that any set of r submatrices of X
yields a set of linearly independent columns.

The following lemma establishes the relation between the kL-rank and kR-rank of
a quaternion matrix and the k’-rank of its column-wise complex adjoints.

Lemma 2.10 (k’-rank of column-wise adjoint matrices). Let A P HMˆN and let
χπ

▷pAq P C2Mˆ2N
i and χπ

◁pAq P C2Mˆ2N
i be its column-wise direct complex adjoint

and reverse complex adjoint, respectively, with the uniform partition introduced in
Remark 2.2. Then kRpAq “ k’pχπ

▷pAqq and kLpAq “ k’pχπ
◁pAqq.

Proof. We start by proving the result for the kR-rank of A. Let us assume that
kRpAq “ c. According to the definition of the kR-rank, any subset of c columns of A
forms a submatrix Ac of A such that rankR Ac “ c. Using Proposition 2.7, we obtain
rankχ▷pAcq “ 2c. This is equivalent to saying that any set of direct adjoint matrices
associated with the c columns of Ac yields a set of linearly independent columns of
χπ

▷pAq, which, by Definition 2.9 implies k’pχπ
▷pAqq ě c “ kRpAq.

Using once again the definition of the kR-rank, there exists at least a subset of c`1
columns of A, such that the matrix Ac`1 formed by these c ` 1 columns is right rank
deficient, i.e., rankR Ac`1 ă c ` 1, implying rankχ▷pAc`1q ă 2pc ` 1q. Consequently,
as χ▷pAq “ χπ

▷pAqΠ, there exists a set of c ` 1 submatrices of χπ
▷pAq that yields a

set of linearly dependent columns, thereby completing the proof. The second result
can be proved in an analogous way, by replacing χ▷pAq by χ◁pAq and right ranks by
left ranks.

This result will be essential to the study of uniqueness conditions for the quaternion
Canonical Polyadic Decomposition, see further in Section 4.

3. Quaternion tensors: construction and properties. In the standard real
and complex cases, three alternative definitions of tensors are possible [20]: tensors as
objects obeying certain transformation rules, tensors as multilinear maps or tensors as
elements of tensor product spaces. While the first definition has historical importance,
it has now been superseded by the two other definitions [5]. Over the past few years,
there has been an increasing interest in studying multidimensional arrays of quaternions
[26, 21, 25, 35, 22]; while the term quaternion tensor is often used, a proper algebraic,
coordinate-free definition remains to be established.
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In this paper, we choose to construct quaternion tensors as quaternion-valued
multilinear forms. Our definition of a quaternion tensor can be viewed as an in-
stance of [20, Definition 3.3] specified to quaternion-valued forms satisfying sufficient
multilinearity properties. More precisely, we identify a tensor of order D with a
quaternion-valued multilinear form f : S1 ˆ S2 ˆ ¨ ¨ ¨ ˆ SD Ñ H where tSduDd“1 are
some carefully chosen vector spaces. This definition enables a natural generaliza-
tion of the notion of tensors to the quaternion domain, while revealing the crucial
caveats associated to the non-commutativity of quaternion multiplication. In what
follows, Subsection 3.1 discusses the issue of quaternion multilinearity, Subsection 3.2
establishes the definition of quaternion tensors as multilinear forms. Subsection 3.3
derives elementary transformations for quaternion-valued tensors, which are direct
consequences of Definition 3.3 below. Finally, Subsection 3.4 introduces the Tucker
format of a quaternion tensor.

3.1. The quaternion multilinearity issue. The definition of quaternion mul-
tilinearity is cumbersome due to the non-commutativity of quaternion multiplication.
To illustrate this, considering the three-dimensional case is sufficient. Let S1,S2,S3 be
three left quaternion vector spaces and let f : S1 ˆ S2 ˆ S3 Ñ H be a multilinear form.
By definition, f is left-linear in each one of its arguments, i.e., for any α, β P H and
for any xd,yd P Sd with d “ 1, 2, 3, one has

fpαx1 ` βy1,x2,x3q “ αfpx1,x2,x3q ` βfpy1,x2,x3q,(3.1)

fpx1, αx2 ` βy2,x3q “ αfpx1,x2,x3q ` βfpx1,y2,x3q,(3.2)

fpx1,x2, αx3 ` βy3q “ αfpx1,x2,x3q ` βfpx1,x2,y3q.(3.3)

However, when one has to evaluate quantities such as fpαx1, βx2,x3q, one is faced
with a disturbing issue: in which order should linearity properties (3.1) – (3.3) be
applied? Starting with (3.1) and then (3.2) gives fpαx1, βx2,x3q “ αβfpx1,x2,x3q,
while the reversed order yields fpαx1, βx2,x3q “ βαfpx1,x2,x3q. Since the product of
two quaternions is non-commutative, αβ ‰ βα in general and thus βαfpx1,x2,x3q ‰

αβfpx1,x2,x3q. Any other choice of variables leads to similar contradictions. In
other terms, without specifying a somewhat arbitrary ordering of the variables x1,x2

and x3 (or equivalently, of quaternion vector spaces S1,S2 and S3), the definition of
quaternion multilinearity is unpractical as it is.

The issue is not limited to left quaternion vector spaces. Considering S1,S2,S3

to be right quaternion vector spaces leads to the same conclusions. Mixing left and
right quaternion vector spaces does not solve the issue either. To see this, suppose
without loss of generality that S1,S2 are left quaternion vector spaces, while S3 is
a right quaternion vector space. Quaternion multilinearity between the first and
last variables is unambiguous: indeed, for any α, β P H, one has fpαx1,x2,x3βq “

αfpx1,x2,x3βq “ fpαx1,x2,x3qβ “ αfpx1,x2,x3qβ. However, the first two modes
suffer from the previous issue since for any α, β P H, fpαx1, βx2,x3q can be equal to
αβfpx1,x2,x3q or βαfpx1,x2,x3q, depending on the order in which linearity properties
are applied.

In the next section, we circumvent the issue of general quaternion multilinearity
by introducing a special class of multilinear quaternion-valued forms. By carefully
specifying the nature of the vector spaces tSdu, we can recover fundamental multilin-
earity properties, similar to those in the real and complex cases. This class forms the
foundation for the definition of quaternion tensors in Section 3.2 and the establishment
of their properties.
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3.2. Quaternion tensors as HR-multilinear forms. In order to extend rele-
vant multilinearity-like properties to the quaternion linear form f : S1 ˆ ¨ ¨ ¨ ˆSD Ñ H,
it is necessary to restrict the nature of the different vectors spaces tSdu defining the
domain of f .

Definition 3.1 (HR-multilinear form). Let D ě 3 be an integer and let the
vectors spaces tSdu be such that: S1 is a left quaternion vector space; Sd, 1 ă d ă D
are real vector spaces; and such that SD is a right quaternion vector space. Then
f : S1 ˆ ¨ ¨ ¨ ˆ SD Ñ H is said to be HR-multilinear if

‚ f is left-quaternion linear in its first argument, i.e.,

(3.4) @α, β P H,@x1,y1 P S1, fpαx1 ` βy1, . . .q “ αfpx1, . . .q ` βfpy1, . . .q;

‚ f is real-linear in its d-th argument, 1 ă d ă D, i.e.,

@α, β P R,@xd,yd P Sd,

fp. . . , αxd ` βyd, . . .q “ fp. . . ,xdα ` ydβ, . . .q

“ αfp. . . ,xd, . . .q ` βfp. . . ,yd, . . .q

“ fp. . . ,xd, . . .qα ` fp. . . ,yd, . . .qβ;

(3.5)

‚ f is right-quaternion linear in its last argument, i.e., :
(3.6)

@α, β P H,@xD,yD P SD, fp. . . ,xDα ` yDβq “ fp. . . ,xDqα ` fp. . . ,yDqβ.

Remark 3.2. Several remarks are in order. The term HR-multilinearity refers
to the fact that conditions (3.4)–(3.6) mix between real and quaternion linearity
properties. In addition, note that if a function is HR-multilinear, by definition it is
also R-multilinear. Finally, it is worth noting that the ordering of vector spaces in
Definition 3.1 is completely arbitrary, and can be permuted if necessary. The only
restriction lies in considering exactly one quaternion left vector space, one quaternion
right vector space, and D ´ 2 real-vector spaces for an arbitrary number of dimensions
D ě 3.

In the sequel, we restrict our attention to finite dimensional vector spaces tSdu

with respective dimension dimSd “ Nd. Therefore, without loss of generality, we can
assume that S1 “ HN1

L , Sd “ RNd for 1 ă d ă D and SD “ HND
R . The next definition

defines quaternion tensors as HR-multilinear forms.

Definition 3.3 (Quaternion tensor). Let f : HN1
L ˆ RN2 ˆ RND´1 ˆ HND

R Ñ H
be a HR-multilinear form. Let te

pdq

id
uid“1:Nd

denote a basis of the vector space Sd for
1 ď d ď D. Then the quaternion tensor of order D associated to f is the D-dimensional
quaternion array T P HN1ˆ...ˆND defined by its entries as

(3.7) Ti1i2...iD “ f
´

e
p1q

i1
, e

p2q

i2
, . . . , e

pDq

iD

¯

i.e., T is the representation of f in the Cartesian product basis
ŚD

d“1te
pdq

id
uid“1:Nd

.

Remark 3.4. Following standard practice in multilinear algebra, we identify a
tensor with its multidimensional array coordinate representation in a given basis.

Definition 3.3 suggests that different choices of bases for tSdu lead to different
multidimensional quaternion arrays representations of the same HR-multilinear form
f . Therefore a natural question is how these representations are related to one another.
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Let f : HN1
L ˆ RN2 ˆ RND´1 ˆ HND

R Ñ H be a HR-multilinear form and consider two
quaternion multidimensional array representations:

“new” representation T P HN1ˆ...ˆND in the basis
D

ą

d“1

te
pdq

id
uid“1:Nd

,(3.8)

“old” representation T̃ P HN1ˆ...ˆND in the basis
D

ą

d“1

tẽ
pdq

jd
ujd“1:Nd

.(3.9)

Expressing “new” basis vectors as a function of “old” ones one gets

e
p1q

i1
“

N1
ÿ

j1“1

a
p1q

i1j1
ẽ

p1q

j1
, a

p1q

i1j1
P H, i1 “ 1, . . . , N1(3.10)

e
pdq

id
“

Nd
ÿ

jd“1

a
pdq

idjd
ẽ

pdq

jd
, a

pdq

idjd
P R, id “ 1, . . . , Nd and 1 ă d ă D(3.11)

e
pDq

iD
“

ND
ÿ

jD“1

ẽ
pdq

jD
a

pDq

iDjD
, a

pDq

iDjD
P H, iD “ 1, . . . , ND,(3.12)

on account of the nature of the vectors space tSdu. Plugging expressions (3.10) – (3.12)
into the definition (3.7) of T , one obtains the fundamental change-of-basis relation for
quaternion tensors relating the entries of the tensor T to that of T̃ :

(3.13) Ti1i2...iD “

N1,N2,...,ND
ÿ

j1,j2,...,jD“1

a
p1q

i1j1
a

p2q

i1j1
. . . a

pD´1q

iD´1jD´1
T̃j1j2...jDa

pDq

iDjD
.

On the one hand, remark the particular position of terms a
p1q

i1j1
et a

pDq

iDjD
, to the left

and to the right of T̃j1j2...jD , respectively, due to the left (resp. right) linear nature of
the associated quaternion vector spaces. On the other hand, the position of central

terms a
pdq

idjd
, 1 ă d ă D, with respect to T̃j1j2...jD has no importance since they are

real-valued.

3.3. Transformations rules for quaternion tensors. The change-of-basis
equation (3.13) is the first example of transformation rules for quaternion tensors.
Such transformations rely on the HR-multilinear form representation of quaternion
tensors (Definition 3.3) and the linearity properties of the underlying vector spaces.
Extending the change-of-basis rule to arbitrary linear transformations in each variable
leads to the definition of the n-mode product, which needs to be carefully specified
for quaternion tensors due to HR-multilinearity. From now on we fix a basis for
the D vectors spaces S1,S2, . . . ,SD and identify tensors with D-dimensional array of
numbers.

Definition 3.5 (n-mode product for quaternion tensors). Let T P HN1ˆ...ˆND

be a quaternion tensor of order D. The n-mode-product operation corresponds to
multiplying the n-mode fibers of T by a matrix U of appropriate size and domain,
depending on the considered mode. Explicitly,

‚ the 1-mode product is defined as the direct quaternion matrix product by
U P HJˆN1 such that

(3.14) pT ˆ▷
1 Uqji2...iD “

N1
ÿ

i1“1

uji1Ti1i2...iD ,
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‚ for 1 ă d ă D, the d-mode product is defined as the real matrix product by
U P RJˆNd such that

(3.15) pT ˆd Uqi1...j...iD “

Nd
ÿ

id“1

Ti1...id...iDujid ,

‚ the D-mode product is defined as the reverse quaternion matrix product by
U P HJˆND such that

(3.16) pT ˆ◁

D Uqi1...iD1
j “

ND
ÿ

iD“1

Ti1i2...iDujiD .

Just like for quaternion matrix multiplication, symbols ▷ and ◁ indicate the
type of quaternion matrix multiplication involved in mode-products when relevant.
In addition, one can express n-mode products in terms of unfoldings of quaternion
tensors and quaternion matrix multiplication operations. Following standard practice,
we denote by Tpdq P HNdˆ

ś

i‰d Ni the d-th mode unfolding of a quaternion tensor

T P HN1ˆ¨¨¨ND and use the indexing convention of [18]. The n-mode product operations
relate to matrix unfoldings as

T 1
“ T ˆ▷

1 U ðñ T1
p1q “ U ¨▷ Tp1q,(3.17)

T 1
“ T ˆd U ðñ T1

pdq “ UTpdq,(3.18)

T 1
“ T ˆ◁

D U ðñ T1
pDq “ U ¨◁ TpDq,(3.19)

i.e., the matrix unfoldings inherit the direct and reverse order of the n-mode product
operation.

Proposition 3.6 and Proposition 3.7 show that the Definition 3.5 of n-modes
product permits to preserve the classical properties of successive n-mode products: (i)
commutativity between distinct modes and (ii) matrix composition between identical
modes. These desirable properties are directly inherited from the definition a quaternion
tensor as a HR-multilinear form.

Proposition 3.6 (Commutativity). Let T P HN1ˆN2ˆ...ˆND be a quaternion
tensor of order D. Let U1 P HJ1ˆN1 and UD P HJDˆND be arbitrary quaternion
matrices, and let Ud P RJdˆNd and Ud1 P RJd1 ˆNd1 be arbitrary real matrices with
d ‰ d1, 1 ă d, d1 ă D. The following properties are satisfied:

pT ˆ▷
1 U1q ˆ◁

D UD “ pT ˆ◁

D UDq ˆ▷
1 U1,(3.20)

pT ˆ▷
1 U1q ˆd Ud “ pT ˆd Udq ˆ▷

1 U1,(3.21)

pT ˆd Udq ˆ◁

D UD “ pT ˆ◁

D UDq ˆd Ud,(3.22)

pT ˆd Udq ˆd1 Ud1 “ pT ˆd1 Ud1 q ˆd Ud.(3.23)

Proposition 3.7 (Composition). Let T P HN1ˆN2ˆ...ˆND be a quaternion tensor
of order D. Let U and V be matrices with adequate dimensions and values. The
following properties are satisfied:

T ˆ▷
1 U ˆ▷

1 V “ T ˆ▷
1 pV ¨▷ Uq,(3.24)

T ˆ◁

D U ˆ◁

D V “ T ˆ◁

D pV ¨◁ Uq,(3.25)

T ˆd U ˆd V “ T ˆd pVUq, 1 ă d ă D.(3.26)
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Proofs of Proposition 3.6 and Proposition 3.7 are found by direct calculations.

Remark 3.8 (Change-of-basis). The change of basis equation (3.13) can be rewrit-
ten as successive n-mode products. Let Ap1q P HN1ˆN1 ,Ap2q P RN2ˆN2 , . . . ,ApD´1q P

RND´1ˆND´1 ,ApDq P HNDˆND the change-of-basis matrices. Then the change-of-basis
equation can be rewritten as

(3.27) T “ T̃ ˆ▷
1 Ap1q ˆ2 A

p2q ¨ ¨ ¨ ˆD´1 A
pD´1q ˆ◁

D ApDq,

where n-mode products can be performed in any order according to Proposition 3.6.

3.4. Tucker format of quaternion tensors. Without loss of generality, in the
remainder of the paper we focus on the case of third order tensors. The next definition
defines the Tucker format for quaternion tensors.

Definition 3.9 (Tucker format). Let T P HN1ˆN2ˆN3 be a third-order quaternion
tensor. The tensor T is said to be expressed in Tucker format if there exists a core
tensor S P HF1ˆF2ˆF3 and matrices A P HN1ˆF1 ,B P RN2ˆF2 and C P HN3ˆF3 such
that

(3.28) T “ S ˆ▷
1 A ˆ2 B ˆ◁

3 C.

The Tucker format of T is written in short-hand notation as T “ JS;A,B,CK.

Direct calculations show that the entries of a tensor T “ JS;A,B,CK can be written
in terms of the entries of the core tensor S and factors matrices A,B,C as

(3.29) Ti1i2i3 “

F1
ÿ

f1“1

F2
ÿ

f2“1

F3
ÿ

f3“1

Ai1f1Bi2f2Sf1f2f3Ci3f3 ,

for i1 “ 1, . . . , N1, i2 “ 1, . . . , N2 and i3 “ 1, . . . , N3. Note that due to quaternion
non-commutativity, elements in (3.29) do not commute except for the entries of B.
For tensors written in Tucker format it is also possible to derive expressions of their
mode-unfoldings. Following the unfolding convention of Kolda and Bader [18], if
T “ JS;A,B,CK then its matrix unfoldings along the first and last mode read

Tp1q “ A ¨▷ Sp1q ¨▷ pCbBq
J
,(3.30)

Tp3q “ C ¨◁ Sp3q ¨◁ pBbAq
J
.(3.31)

However, due to quaternion non-commutativity, the unfolding along the central mode
can only be expressed in a simple way when the core tensor is real-valued, i.e.,

(3.32) Tp2q “ BSp2q

ˆ

Cb
◁

A

˙J

, when S is real-valued.

4. Quaternion Canonical Polyadic Decomposition.

4.1. Definition. If in (3.28) the tensor S is diagonal, it enables the derivation
of the quaternion equivalent of a well-known tensor model, the Canonical Polyadic
Decomposition (CPD). By absorbing the diagonal entries of S in the factor matrices
A,B,C, we define the Quaternion Canonical Polyadic Decomposition (Q-CPD) as
follows.
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Definition 4.1 (Quaternion Canonical Polyadic Decomposition (Q-CPD)). The
Q-CPD of a third-order quaternion tensor T P HN1ˆN2ˆN3 is given element-wise by :

(4.1) Ti1i2i3 “

F
ÿ

f“1

Ai1fBi2fCi3f ,

for i1 “ 1, . . . , N1, i2 “ 1, . . . , N2 and i3 “ 1, . . . , N3. The smallest value of F for
which equality (4.1) holds exactly is called the rank of T . By expressing the elements
of the decomposition in matrix format, the Q-CPD of T can be succinctly expressed as
T “ JA,B,CK, where A P HN1ˆF ,B P RN2ˆF , C P HN3ˆF .

Remark 4.2. Contrary to quaternion matrices, the rank of a quaternion tensor is
unambiguous as defined and thus the left or right distinction does not apply.

Similarly to the Tucker model, elements in (4.1) do not commute except for the entries
of B. First, let us analyze the trivial ambiguities of the Q-CPD.

Let T “ JA,B,CK follow a CPD of rank F . The first trivial ambiguity corresponds
to an arbitrary joint permutation of the columns of the factors matrices, i.e., T “

JA,B,CK “ JAΠ,BΠ,CΠK with Π P RFˆF an arbitrary permutation matrix. The
second trivial ambiguity relates to scaling between factors: unlike the real and complex
CPD, one has to distinguish between real and quaternion scaling ambiguities due
to factor matrices taking values in different spaces. Define three diagonal scaling
matrices ΛA,ΛC P HFˆF and ΛB P RFˆF (with non-zero diagonal entries). Direct
calculations show that T “ JA,B,CK “ JA ¨▷ ΛA,BΛB,C ¨◁ ΛCK if and only if
pΛA ¨▷ ΛCqΛB “ IF , where IF is the F ˆ F identity matrix. By exploiting the polar
form of scaling coefficients further interpretation is possible.

Proposition 4.3 (Interpretation of scaling ambiguities). Consider three diagonal
matrices ΛA “ diagpα1, . . . , αF q P HFˆF , ΛB “ diagpβ1, . . . , βF q P RFˆF and ΛC “

diagpγ1, . . . , γF q P HFˆF . Write quaternion entries in polar form such that αf “

|αf | exppargαf q and γf “ |γf | expparg γf q where | ¨ | denotes the modulus and arg
the quaternion argument (a pure imaginary quaternion). Then, the scaling condition
pΛA ¨▷ ΛCqΛB “ IF equivalently reads

(4.2) |αf | |βf | |γf | “ 1 and argαf “ ´
βf

|βf |
arg γf , f “ 1, . . . , F

i.e., moduli must multiply to 1 and arguments of quaternion factors must be opposite
if βf ą 0 and equal if βf ă 0.

Proof. Starting from pΛA ¨▷ ΛCqΛB “ IF we get αfβfγf “ 1 for every f “

1, . . . , F . Using polar forms, the latter reads |αf | exppargαf qβf |γf | exp arg γf “ 1.
Taking the modulus of this expression one gets |αf | |βf | |γf | “ 1. For the argument,

note that we have that exppargαf q “
βf

|βf |
expp´ arg γf q hence argαf “ ´

βf

|βf |
arg γf .

These ambiguities play a crucial role to define the uniqueness of the Q-CPD;
see subsection 4.3 for more details. Finally, note that handling the Q-CPD trivial
ambiguities does not pose any challenge as long as non-commutativity of quaternion
multiplication is taken into account.

The matrix unfoldings of the quaternion CPD model follow directly from the
unfoldings (3.30) – (3.32) of the Tucker model. Indeed, since in the quaternion CPD
the core tensor can always be chosen to be the identity tensor, the unfoldings of
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T “ JA,B,CK read

Tp1q “ A ¨▷ pCdBq
J
,(4.3)

Tp2q “ B

ˆ

Cd
◁

A

˙J

,(4.4)

Tp3q “ C ¨◁ pBdAq
J
.(4.5)

Once again, these matrix unfoldings are similar to those of the real and complex cases
(see, e.g., [18]) yet matrix and Khatri-Rao products have direct or reverse orderings
due to non-commutativity of the quaternion product. Moreover, these unfoldings are
essential to the practical computation of the factors matrices A,B and C; see Section 5
for further details.

To conclude this section, note that it is also possible to derive mathematical
expressions for the matrix slices of the Q-CPD (4.1). The frontal slices T::i3 P HN1ˆN2 ,
lateral slices T:i2: P HN1ˆN3 and horizontal slices Ti1:: P HN2ˆN3 of T “ JA,B,CK
can be written in terms of factor matrices as

Ti1:: “ B
´

D
pi1q

A ¨▷ CT
¯

, D
pi1q

A :“ diagpAi1:q P HFˆF , i1 “ 1, . . . , N1,(4.6)

T:i2: “

´

AD
pi2q

B

¯

¨▷ CT, D
pi2q

B :“ diagpBi2:q P RFˆF , i2 “ 1, . . . , N2,(4.7)

T::i3 “

´

A ¨▷ D
pi3q

C

¯

BT, D
pi3q

C :“ diagpCi3:q P HFˆF , i3 “ 1, . . . , N3.(4.8)

These expressions can be deduced from the definition (4.1) of the Q-CPD. They will
be useful in the next section to study equivalent models of the Q-CPD.

4.2. Equivalent models. In this subsection, we propose different ways to rewrite
the Q-CPD as structured or constrained decompositions in the complex domain. Two
main approaches are investigated. The first one models complex adjoints of lateral
slices of T while the second one models separately the two Cayley-Dickson parts of
of T . The former will allow us to establish uniqueness properties of the Q-CPD in
Subsection 4.3. The latter will be useful in Section 5 to derive a simple complex-domain
Q-CPD algorithm.

4.2.1. Complex adjoint representation. Consider a third-order tensor T P

HN1ˆN2ˆN3 following a rank-F quaternion CPD such that T “ JA,B,CK. Recall
that the lateral slices of T are given by (4.7) and let us write A “ A1 ` A2j and
C “ C1 ` C2j, where A1,A2 P CN1ˆF

i and C1,C2 P CN3ˆF
i . Then, the direct

complex adjoint of the i2-th lateral slice (4.7) is given by

χ▷pT:i2:q “ χ▷

´

pA ¨▷ D
pi2q

B q ¨▷ CT
¯

“ χ▷pAqχ▷pD
pi2q

B qχ▷pCTq

“

„

A1 A2

´A2 A1

ȷ „

diagpBi2:q 0
0 diagpBi2:q

ȷ „

CT
1 CT

2

´CH
2 CH

1

ȷ

.

(4.9)

Denote by T C the complex-valued tensor generated by the lateral slices χ▷pT:i2:q for
i2 “ 1, . . . , N2. It is a structured tensor of dimensions 2N1 ˆN2 ˆ2N3. The expression
(4.9) of its lateral slices shows that T C follows a standard complex CPD model with
colinearities. Calculations permit to reorganize terms in (4.9) as

(4.10) T C “

F
ÿ

f“1

χ▷paf qχ▷pcJ
f q ˝ bf “

F
ÿ

f“1

χ▷paf qχJ
◁pcf q ˝ bf
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where ˝ is the outer product. Eq. (4.10) shows that T C follows a decomposition into
F rank-p2, 2, 1q terms [9]. This result is summarized in the following proposition.

Proposition 4.4. Let T P HN1ˆN2ˆN3 be a third-order tensor and denote by
T C P C2N1ˆN2ˆ2N3

i the tensor constructed from complex adjoints of lateral slices of
T . Then T follows a rank-F quaternion CPD if and only if T C follows a structured
rank-(2,2,1) decomposition of the form (4.10).

Proof. The result holds by isomorphism between the set of quaternions matrices
equipped with the direct quaternion matrix product and and the set of direct complex
adjoints.

Remark 4.5. It is worth noting that the ambiguities of the decomposition (4.10)
are more restrictive than those of the standard unconstrained rank-pL,L, 1q decom-
position [9]. Indeed consider such an arbitrary decomposition of a complex tensor

T “
řF

f“1 UfW
T
f ˝ vf , where Uf ,Wf have full column rank L, and where vf are

vectors. Then it is well known that only the low-rank UfW
T
f subspaces can be

identified since UfW
T
f “ UfRUpVfRVqT where RU,RV P CLˆL are such that

RURT
V “ IL. In (4.10), the complex adjoint structure of rank-(2,2,1) factors makes

the ambiguities far more constrained. One has χ▷paf qχ▷pcJ
f q “ χ▷paf qχJ

◁pcf q “

χ▷paf qRApχ◁pcf qRCqJ if and only if there exists scalars rA, rC P H such that
RA “ χ▷prAq,RC “ χ▷prCq and such that rArC “ 1, i.e., the ambiguities of the
rank-(2,2,1) factors are exactly those between the quaternion factors of the Q-CPD.

Proposition 4.4 is particularly useful to establish uniqueness results for the quater-
nion CPD; see Subsection 4.3 below.

4.2.2. Coupled CONFAC model. Suppose again that T “ JA,B,CK follows
a rank-F Q-CPD and consider its Cayley-Dickson decomposition as T “ T 1 `

T 2j, where T 1,T 2 P CN1ˆN2ˆN3

i . Then, another approach to build a complex
representation of the Q-CPD of T consists in modeling separately T 1 and T 2 and
interpreting the Q-CPD as a coupled decomposition of these two components. In
the following we define as a constraint matrix any matrix that is full row rank and
whose each column have one, and only one, non-null entry. We then say that a
third order tensor X P CN1ˆN2ˆN3

i admits a CONFAC decomposition [10] (or follows
a CONFAC model) of rank Fc if there exist three matrices, U,V and W of sizes
pN1, L1q, pN2, L2q, pN3, L3q respectively and three constraint matrices, Ψ, Φ, Ω of
sizes pL1, Fcq, pL2, Fcq, pL3, Fcq such that

(4.11) X “ vUΨ,VΦ,WΩw.

Provided that the constraint matrices Ψ, Φ, Ω are known, the factor matrices U,V
and W are easily identified by means of an ALS algorithm [6]. Note that the CONFAC
model is closely related to the PARALIND model [2]. Theorem 4.6 states that the
Q-CPD implies that each component follows a CONFAC decomposition model.

Theorem 4.6 (Link between the Q-CPD and the complex CONFAC decompo-
sition). Let T be a third order tensor of quaternions of size pN1, N2, N3q. Let
vA,B,Cw be its rank-F Q-CPD and T 1 and T 2 the two Ci-valued tensors such that
T “ T 1 ` T 2j. Then, T 1 and T 2 each admits a CONFAC decomposition of rank
2F given by

T 1 “vUΨ,BΦ, ĎWI2F w,(4.12a)

T 2 “vUI2F ,BΦ,WI2F w,(4.12b)
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where the factor matrices U and W read in terms of Cayley-Dickson factors of A and
C

(4.13) U “
“

A1 A2

‰

, W “
“

C2
sC1

‰

,

and where the constraint matrices Ψ and Φ are given by

(4.14) Ψ “

„

0 IF
´IF 0

ȷ

, Φ “
“

IF IF
‰

.

Proof. Consider the Cayley-Dickson decomposition of quaternion factors matrices
as A “ A1 `A2j and C “ C1 `C2j. Then, the Q-CPD of T “ JA,B,CK rewrites as

T “

F
ÿ

f“1

pa1f ` a2fjq ˝ bf ˝ pc1f ` c2fjq

where a1f is the column f of matrix A1. This leads to

T 1 “

F
ÿ

f“1

a1f ˝ bf ˝ c1f ´ a2f ˝ bf ˝ sc2f ,(4.15)

T 2 “

F
ÿ

f“1

a1f ˝ bf ˝ c2f ` a2f ˝ bf ˝ sc1f .(4.16)

Thus, equation (4.15) decomposes T 1 as a sum of two CPDs and there is an unfolding
of T 1 of size pN2, N3N1q, denoted TB

1 and such that

TB
1 “ Bpp´A2 d sC2qT ` pA1 dC1qTq

“
“

B B
‰ “

´A2 d sC2 A1 dC1

‰T

“
“

B B
‰ ““

´A2 A1

‰

d
“

sC2 C1

‰‰T
.

(4.17)

Introducing U “ rA1 A2s and W “ rC2
sC1s, Equation (4.17) rewrites

(4.18) TB
1 “ BΦpUΨd ĎWqT

which is equivalent to equation (4.12a). The same reasoning holds for T 2 and leads to

(4.19) TB
2 “ BΦpUdWqT

which is equivalent to equation (4.12b). Eventually, one can immediately check that
Ψ, Φ, and I2F have full row rank and their columns have one and only one non-null
entry.

The system of equations (4.12a) and (4.12b) (or (4.18) and (4.19)) defines a
coupled CONFAC decomposition2. It is worth mentioning that this decomposition
was introduced by [7, section IV.A] in a totally different context. The main advantage
of this model with respect to the complex adjoint representation of equation (4.10) is
that it only involves the 2N1N2N3 complex equations that are directly induced by the

2One can easily check that a similar reasoning applies to the four real components of T leading
to a real coupled CONFAC decomposition of the four tensors.
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Q-CPD model. It is thus more suitable for calculating the Q-CPD in the complex field.
Moreover, it has been shown in [7] that it can be computed using a simple algorithm,
from which we have drawn inspiration for the Q-CPD algorithm presented in Section
5.2.

In addition, we will show in Subsection 4.3 that under some assumptions, the real
factor matrix can be identified from any of the two CONFAC models involved in the
coupled CONFAC decomposition.

4.3. Uniqueness of the Q-CPD. As explained in Subsection 4.1, the Q-CPD
exhibits trivial scaling and permutation ambiguities, leading to the following definition
of uniqueness.

Definition 4.7 (Uniqueness of the Q-CPD). Let T “ JA,B,CK admit a rank-F
Q-CPD. We say that the Q-CPD is essentially unique (or simply, unique) if the only
factors matrices Ã, B̃, C̃ such that T “ JÃ, B̃, C̃K are related through

(4.20) Ã “ A ¨▷ pΛAΠq , B̃ “ BΛBΠ, C̃ “ C ¨◁ pΛCΠq ,

where Π P RFˆF is a permutation matrix, ΛA,ΛC are quaternion-valued diagonal
scaling matrices and where ΛB is a real diagonal matrix such that pΛA ¨▷ΛCqΛB “ IF .

Now, uniqueness results for the quaternion CPD can be readily obtained through
the equivalence with the structured rank-p2, 2, 1q decomposition (4.10) (see also Propo-
sition 4.4). This statement is made precise in the following proposition, which is a
direct consequence of Proposition 4.4.

Proposition 4.8. Let T P HN1ˆN2ˆN3 be a third-order tensor and denote by
T C P C2N1ˆN2ˆ2N3

i the tensor constructed from direct complex adjoints of lateral slices
of T . Suppose that T follows a rank-F quaternion CPD (4.1). Then the quaternion
CPD is unique if and only if the structured rank-(2,2,1) decomposition (4.10) of T C is
unique.

The proof is straightforward by observing that the mapping between the factor
matrices of T and those of T C is one-to-one. Building on this result, Theorem 4.9
below establishes a sufficient uniqueness condition for the Q-CPD.

Theorem 4.9. Let A P HN1ˆF ,B P RN2ˆF and C P HN3ˆF be factor matrices.
Suppose that (at least) one of the following conditions is satisfied:

1. rankR A “ F , rankL C “ F and B does not have proportional columns;
2. kpBq “ F and kRpAq ` kLpCq ě F ` 2;
3. kRpAq “ F and kpBq ` kLpCq ě F ` 2;
4. kLpCq “ F and kRpAq ` kpBq ě F ` 2;
5. N1N3 ě F and kRpAq ` kpBq ` kLpCq ě 2F ` 2.

Then the Q-CPD T “ JA,B,CK is unique in the sense of Definition 4.7.

Proof. The sufficient uniqueness conditions for the Q-CPD derive directly from the
usual uniqueness conditions for rank-pL,L, 1q decompositions [9], using the equivalence
of Subsection 4.2.1 and our Lemma 2.10. Let T “ JA,B,CK and construct the complex
adjoint tensor T C as in (4.10). From Proposition 4.8 the Q-CPD of T is unique if
and only if the structured rank-(2,2,1) decomposition of T C is unique. Following the
approach in [9], remark that the horizontal stack of rank-2 factors simply corresponds
to the direct (resp. reverse) column-wise complex adjoint (2.9) of the matrix A (resp.
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C), i.e.,

χπ
▷pAq “

“

χ▷pa1q ¨ ¨ ¨ χ▷paF q
‰

P H2N1ˆ2F ,

χπ
◁pCq “

“

χ◁pc1q ¨ ¨ ¨ χ◁pcF q
‰

P H2N3ˆ2F .

Recall from Remark 2.2 that there exists a permutation matrix Π P R2Fˆ2F such
that χπ

▷pAq “ χ▷pAqΠ and χπ
◁pCq “ χ◁pCqΠ. Therefore uniqueness of the rank-

p2, 2, 1q decomposition of T C can directly be characterized in terms of matrices
χ▷pAq, χ◁pCq and B. Moreover, from the properties of the complex adjoints we have
that rankχ▷pAq “ rankχπ

▷pAq “ 2F if and only if rankR A “ F (Proposition 2.7)
and k’pχπ

▷pAqq “ kRpAq (by Lemma 2.10). Similarly for C one has rankχ◁pCq “

rankχπ
◁pCq “ 2F if and only if rankL C “ F and k’pχπ

◁pCqq “ kLpCq. It now suffices
to apply, in order, Theorems 4.1, 4.4, 4.5(a), 4.5(b) and 4.7 [9] to the rank-p2, 2, 1q

decomposition of T C to obtain conditions 1., 2., 3., 4., and 5.

Remark 4.10. Condition 5. in Theorem 4.9 resembles the usual Kruskal uniqueness
condition for the CPD in the real and complex cases, up to (i) the necessary distincition
between left and right Kruskal ranks of aquaternion matrix; and (ii) the (usually
non-restrictive) condition N1N3 ě F , i.e., that the product of the dimensions of the
two quaternion-valued factors is at least equal to the rank of the tensor. In particular,
when F ď maxpN1, N3q, the condition is automatically satisfied and Condition 5. boils
down to the well-known Kruskal condition generalized to the quaternion case.

Remark 4.11. For a generic quaternion matrix, left and right k-ranks are both
equal, i.e., if A P HMˆF is generic, then kLpAq “ kRpAq “ minpM,F q. This results
directly from the definition of complex matrix adjoints (2.7) – (2.8) and Lemma 2.10.

Eventually, Proposition 4.12 states that the CONFAC decomposition of only one
component of the Cayley-Dickson decomposition of T is likely to be sufficient to
identify the real factor matrix of the Q-CPD but insufficient to identify the quaternion
factor matrices.

Proposition 4.12 (Essential uniqueness of B). Let T be a third order tensor of
quaternions such that T “ T 1 ` T 2j. Let vA,B,Cw be the rank-F Q-CPD of T and
vUΨ,BΦ, ĎWI2F w the CONFAC decomposition of T 1 given in Theorem 4.6. If B, U
and W are full column rank then B is essentially unique.

A proof is given in the Appendix. This result also holds for T 2 and Equation (4.12b).

5. Algorithms for computing the quaternion CPD. In this section we
introduce two algorithms that compute the Q-CPD in H and C domains, respectively.
Both algorithms resort to the well known Alternating Least Squares procedure (ALS).

5.1. Computing the Q-CPD, first approach: the Q-ALS algorithm. The
Q-ALS algorithm extends the ALS algorithm to the Q-CPD. It resorts to the matrix
unfoldings of the Q-CPD given in equations (4.3)-(4.5). Thereby, at each iteration the
factor matrices are updated as:

A Ð argmin
A

∥Tp1q ´ A ¨▷ pCdBqT ∥2F ,(5.1)

B Ð argmin
B

∥Tp2q ´ BpCd
◁

AqT ∥2F s.t. B has real-valued entries,(5.2)

C Ð argmin
C

∥Tp3q ´ C ¨◁ pBdAqT ∥2F ,(5.3)
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where } ¨ }F denotes the Frobenius norm of a matrix. We thus have to solve three
different kinds of quaternion matrix least squares subproblems:

X̂▷ “ argmin
X

∥M ´ X ¨▷ N∥2F ,(5.4)

X̂ “ argmin
X

∥M ´ XN∥2F s.t. X has real-valued entries,(5.5)

X̂◁ “ argmin
X

∥M ´ X ¨◁ N∥2F .(5.6)

The solution to (5.4) can be found in [34] and is given by X̂▷ “ M ¨▷ NH ¨▷
`

N ¨▷ NH
˘´1

. (Note that in this section, quaternion matrix inverses are always
defined with respect to the direct quaternion matrix product). The second subproblem
is a constrained optimization problem since X is constrained to belong to the set of real-
valued matrices. The optimal solution can be found in [11, Appendix B] and is given

by X̂ “ RetM ¨▷ NHuRet
`

N ¨▷ NH
˘

u´1 . Eventually, in order to solve (5.6), we resort
to the properties of direct and reverse quaternion matrix products: ∥M ´ X ¨◁ N∥2F “

∥MT´NT ¨▷X
T∥2F so that the solution is given by: X̂◁ “ M¨◁N

H ¨◁

”

`

N ¨▷ NT
˘´1

ıT

.

As a consequence, the updates computed during one iteration of the Q-ALS
algorithm are given by:

A Ð Tp1q ¨▷ pCdBq ¨▷

´

pCdBqT ¨▷ pCdBq

¯´1

B Ð RetTp2q ¨▷ pCd
◁

AquRet

ˆ

pCd
◁

AqT ¨▷ pCd
◁

Aq

˙

u´1

C Ð Tp3q ¨◁ pBdAq ¨◁

”

`

pBdAqH ¨▷ pBdAq
˘´1

ıT

.

5.2. Computing the Q-CPD, second approach: the C-ALS algorithm.
The C-ALS algorithm resorts to the coupled CONFAC decomposition of the Q-
CPD in the complex field given by Theorem 4.6. Starting from the Cayley-Dickson
decomposition of T “ T 1 ` T 2j, we exploit unfoldings (4.18) and (4.19) where
matrices TB

1 and TB
2 are the respective unfoldings of T 1 and T 2 along the second

mode. From Equation (4.18) we immediately deduce

(5.7) sTB
1 “ BΦp sUΨdWqT.

By stacking sTB
1 and TB

2 into a matrix TB we have:

(5.8) TB “
“

TB
2

sTB
1

‰

“ BΦ

„„

U
sUΨ

ȷ

dW

ȷT

“ BΦ
“

χ▷pAq dW
‰T

.

A least squares estimate of the matrix B can thus be computed as

(5.9) B̂ “ TBpΦ
“

χ▷pAq dW
‰T

q`

where notation X` stands for the Moore-Penrose pseudo-inverse of X.
We now look for similar representations that would allow to estimate U and W in

the same way. For this purpose, let us start from equations (4.19) and (5.7). We can
immediately deduce that there are two unfoldings of T 2 and sT 1 denoted, TC

2 and sTC
1
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Fig. 1. Median value of the cost function and median NMSE on the factor matrices with respect
to the SNR.

respectively, that verify TC
2 “ WpUdBΦqT and sTC

1 “ Wp sUΨdBΦqT. Stacking it
into a matrix TC yields:

(5.10) TC “
“

TC
2

sTC
1

‰

“ W

„„

U
sUΨ

ȷ

dBΦ

ȷT

“ W
“

χ▷pAq dBΦ
‰T

.

Thus we can estimate W as

(5.11) Ŵ “ TCp
“

χ▷pAq dBΦ
‰T

q`.

Eventually, for U we have to restart from equations (4.15) and (4.16) and define
matrices TA

1 and TA
2 as the unfoldings of T 1 and T 2 verifying

TA
1 “ A1pC1 dBqT ´ A2p sC2 dBqTq “ UpĎWΩdBΦqT(5.12)

TA
2 “ A1pC2 dBqT ` A2p sC1 dBqTq “ UpWdBΦqT(5.13)

with Ω “ ´Ψ. By stacking the two unfoldings into a matrix TA we have:

(5.14) TA “
“

TA
1 TA

2

‰

“ U

„„

ĎWΩ
W

ȷ

dBΦ

ȷT

“ U
“

χ◁pCq dBΦ
‰T

and the estimate of U is given by

(5.15) Û “ TAp
“

χ◁pCq dBΦ
‰T

q`.

Thereby, the classical ALS algorithm can be used to compute matrices Û, B̂ and
Ŵ from TA, TB and TC . At each iteration new updates of the three matrices are
computed from equations (5.15), (5.9) and (5.11) respectively. The first iteration can

be computed from random draws of Û, B̂ and Ŵ. At convergence, matrices Â and Ĉ
are directly deduced from Û and Ŵ.

6. Numerical simulations. The purpose of the following numerical simulations
is twofold. We thus want to : i) verify that the Q-CPD can be computed effectively ;
ii) assess the performances of the proposed algorithms in terms of convergence speed
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and accuracy in a simple but classical scenario. To this purpose, we consider here the
Q-CPD decomposition of 500 third order tensors built according to the Q-CPD model
(4.1), with F “ 5 and N1 “ N2 “ N3 “ 10. The entries of the three factor matrices
were drawn randomly according to a normal distribution and are different for each
tensor. Before computing the Q-CPD, an additive white Gaussian noise was applied
to each tensor. The noise powers were set in order to obtained the desired Signal to
Noise Ratio (SNR). More complex scenarios involving correlated factors, higher ranks,
higher order tensors and further comparison between the algorithms deserve a specific
study and are not in the scope of this paper. All simulations were performed using
Matlab environment. The Q-ALS algorithm has been programmed using the QTFM
toolbox3. Both Q-ALS and C-ALS algorithms were initialized with the same (random)
values and were stopped when the relative deviation between two consecutive values
of the cost function fell under 10´8 with a maximum of 500 iterations. At the end of
each run, after removing the scaling and permutation ambiguities, the relative root
mean-squared errors between the actual and estimated factor matrices were computed
for both algorithms. Eventually, the mean values of these errors and of the relative
cost function were calculated over the 500 tensors realizations. This scenario was
repeated for different SNR. Results are plotted on Figure 1.

Three main conclusions can be drawn. First, the curves corresponding to the
two algorithms overlap perfectly meaning that both algorithms provided the same
average estimation of the factor matrices. Second, the errors decrease linearly with
the noise power. This behavior is similar to the standard CPD algorithms used for
real or complex tensors. Third, the error values are small enough to consider that
Q-CPD decomposition can actually be computed, which validates the possibility of
using this new tensor model in practical applications. We also computed for each
algorithm the average running time, the average running time for one iteration and the
average number of iterations. In the considered scenarios, the average running time for
C-ALS was about 0.078s while the average running time of Q-ALS was about 0.134s.
This difference is mainly explained by the average running time per iteration: about
0.0016s and 0.0027s for C-ALS and Q-ALS respectively, while the average numbers of
iteration was similar for both algorithms (around 50 iteration.) This could be due to
the QTFM toolbox functions not being as optimized as the original Matlab functions.
These observations hold for all the considered SNR. Eventually, the same experiments
were run for F “ 10 leading to similar conclusions (plots not shown).

7. Conclusion. In this paper, we rigorously extended the notion of tensors to
quaternion algebra. The key insight is that a quaternion tensor can be understood
as a peculiar type of multilinear form, an HR-multilinear form, which preserves the
fundamental multilinearity properties expected of such mathematical objects. Building
on this foundation, we extended the Tucker and Canonical Polyadic Decompositions
(CPD) to quaternion tensors. In particular, we showed the equivalence of the quaternion
CPD (Q-CPD) to a specific complex-valued rank-p2, 2, 1q decomposition and established
sufficient conditions for its uniqueness. These conditions rely on a careful handling of
left and right linear independence in the quaternion domain, through the notion of left
and right ranks, and left and right Kruskal ranks which are defined herein. Additionally,
we derived two ALS-based algorithms for computing the Q-CPD, one operating in
the quaternion domain and the other in the complex domain, demonstrating that the
new decomposition can be computed efficiently. Future work will focus on further

3https://nl.mathworks.com/matlabcentral/fileexchange/76158-quaternion-toolbox-for-matlab

https://nl.mathworks.com/matlabcentral/fileexchange/76158-quaternion-toolbox-for-matlab
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evaluation of the Q-CPD algorithms and on exploring their potential applications in
data analysis and related fields.

Appendix A. Proof of Proposition 4.12. Let us first define wpuq as the
number of non zero entries of the complex vector u and recall the Kruskal permutation
lemma [19].

Lemma A.1 (Kruskal permutation lemma). Let B and rB be two (real or complex)
matrices of the same size and assume that kB ě 2 (no colinear columns). Let F denote

the number of columns. If for any complex vector x such that wp rBHxq ď F ´rank rB`1

we have wpBHxq ď wp rBHxq then there exists a non singular diagonal matrix D and a

permutation matrix P so that rB “ BPD.

We can now start the proof of proposition 4.12.

Proof. Suppose that there exists an alternative solution of the CONFAC decom-

position of T 1 given by (rU, rB, ĂW). Then, we have pTB
1 qT “ p rUΨd

Ď

ĂWqΦT
rBT “

pUΨd ĎWqΦTBT. From the full column rank assumptions, we immediately verify

that rank pUΨd ĎWqΦTBT “ rankB “ F “ rank p rUΨd
Ď

ĂWqΦT
rBT. Therefore

rank rB ě F . Since rank rB ď F by construction, rank rB “ F . As a consequence,
the condition in the lemma becomes simply: for any x such that wp rBTxq ď 1 we have

wpBTxq ď wp rBTxq.

If wp rBTxq “ 0 then pUΨd ĎWqΦTBTx “ 0. UΨ and W being full column
rank, UΨd ĎW is also full column rank, thus we necessarily have BTx “ 0 so that
wpBTxq “ 0 “ wp rBTxq. The condition in the lemma is verified.

Let us now suppose that wp rBTxq “ 1, there exists i, 1 ď i ď F , so that rBTx “ ei
where ei is the i

th unit vector of size F . Denoting z “ BTx and M` the Moore-Penrose
pseudo-inverse of M, we have:

p rUΨd
Ď

ĂWqΦTei “ pUΨd ĎWqΦTz(A.1)

p rUΨb
Ď

ĂWqpI2F d I2F qΦTei “ pUΨb ĎWqpI2F d I2F qΦTz(A.2)

pUΨb ĎWq`p rUΨb
Ď

ĂWqpI2F d I2F qΦTei “ pI2F d I2F qΦTz(A.3)

pΨ`U`
rUΨb ĎW`

ĂWqpI2F d I2F qΦTei “ pI2F d I2F qΦTz.(A.4)

We then define the two non-singular matrices of size 2F ˆ 2F : R “ Ψ`U`
rUΨ and

S “ ĎW`
ĂW. It yields

(A.5) pRdSqΦTei “ pI2F d I2F qΦTz.

On the one hand

pRdSqΦTei “ ri b si ` rf`i b sN`i(A.6)

“ vectsir
T
i ` sN`ir

T
N`iu(A.7)

where ri and si denote the ith columns of R ans S respectively.
On the other hand

pI2F d I2F qΦTz “

F
ÿ

f“1

zf

ˆˆ

ef
0

˙

b

ˆ

ef
0

˙

`

ˆ

0
ef

˙

b

ˆ

0
ef

˙˙

(A.8)

“ vect

ˆ

Diagtzu 0
0 Diagtzu

˙

u.(A.9)
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So that equation (A.5) rewrites

(A.10) sir
T
i ` sF`ir

T
F`i “

ˆ

Diagtzu 0
0 Diagtzu

˙

.

Eventually, we just need to consider the two upper blocks. So that defining

r0i “
`

R1,i, ¨ ¨ ¨ , RF,i

˘T
(A.11)

r0F`i “
`

R1,F`i, ¨ ¨ ¨ , RF,F`i

˘T
(A.12)

r1i “
`

RF`1,i, ¨ ¨ ¨ , R2F,i

˘T
(A.13)

r1F`i “
`

RF`1,F`i, ¨ ¨ ¨ , R2F,F`i

˘T
(A.14)

s0i “
`

S1,i, ¨ ¨ ¨ , SF,i

˘T
(A.15)

s0F`i “
`

S1,F`i, ¨ ¨ ¨ , SF,F`i

˘T
(A.16)

yields

s0i pr1i qT ` s0F`ipr
1
F`iq

T “ 0(A.17)

Rf,is
0
i ` Rf,F`is

0
F`i “ zfef , @f “ 1, ¨ ¨ ¨ , F.(A.18)

Thus there exists α P C such that

(A.19) pRf,i ` αqs0i “ zfef , @f “ 1, ¨ ¨ ¨ , F.

We immediately deduce that there is at most one f verifying zf ‰ 0. Thereby,

wpBTxq ď 1. Hence wpBTxq ď wp rBTxq and, again, the condition in the permutation
lemma is verified. We can thus apply it and conclude the proof.
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