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Abstract: Air Quality (AQ) is determined by the concentrations of aerosols and trace gases. Aerosol 

concentration is measured by the mass concentration of particles smaller than 2.5 µm (PM2.5) or 10 µm 

(PM10), while trace gases include ozone (O3), nitrogen dioxide (NO2), sulfur dioxide (SO2), and carbon 

monoxide (CO). Ammonia (NH3) and (biogenic) volatile organic compounds ((B)VOCs) also play an 

important role in atmospheric chemistry affecting the concentrations of trace gases and ultimately AQ. This 

study focuses on various aspects of AQ in China, utilizing remote sensing data from satellite and ground-

based sensors to obtain information on PM emissions and concentrations and AQ-relevant trace gases. This 

research was conducted within the framework of the ESA/NRSCC MOST collaboration project Dragon 5, 

as part of the EMPAC (Exploitation of satellite remote sensing to enhance our comprehension of the 

Mechanisms and Processes influencing Air quality in China) project. It summarizes findings on four main 

topics: (1) Retrieval of trace gas concentrations and aerosol products from satellite data, validation using 

ground-based reference data, and interpretation of results in terms of AQ effects, such as the conversion of 

column-integrated properties to near-surface concentrations; (2) Determination of trace gases emissions 

relevant to AQ, using satellite data and models; (3) Analysis of time series data on trace gases and aerosols 
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to assess the impact of emission reduction policies on AQ improvement ; (4) Research contributing to a 

deeper understanding of mechanisms and processes affecting atmospheric composition about AQ. 

 

Keywords: Earth Observation, Algorithm Development, Validation, Atmosphere, Air Quality, Emissions, 

Aerosols, Trace Gases, Atmospheric Processes, Trends. 

 

 

1. Introduction 

Air quality (AQ) is determined by the concentrations of trace gases and aerosols near the Earth’s surface, 

where they harm Human health (e.g., Brunekreef et al., 2002), ecosystems (e.g., Manisalidis et al, 2020; 

EPA, 2024a), buildings, cultural heritage and materials (e.g., Varotsos et al., 2009; Rao et al., 2014). Air 

quality is often indicated by the air quality index (AQI) based on concentrations of trace gases and aerosols 

(cf. WAQI,  2024; WHO, 2024). In AQ studies, the commonly used proxy for aerosol concentrations is 

particulate matter (PM), i.e. the integrated mass of particles with in situ diameters smaller than 2.5 µm 

(PM2.5) or 10 µm (PM10), from which aerosol water has been removed by weighing them in an 

environment with low relative humidity (RH). The AQI is calculated as described by, e.g., Yuan et al. 

(2019) and is determined by the species with the highest concentration (see Fan et al., 2021, for a brief 

summary). However, the species included may be different between applications. For instance, the trace 

gases included in the World Air Quality Index (WAQI, 2024) are nitrogen dioxide (NO2), sulfur dioxide 

(SO2), ozone (O3), carbon monoxide (CO), PM2.5 and PM10, whereas the World's Air Pollution: Real-time 

Air Quality Index (WAQI, 2024) uses only PM2.5 and NO2. Other trace gases of importance for AQ and 

effects on Human beings and ecosystems are, for instance, ammonia (NH3), formaldehyde (CHCO), and 

(biogenic) volatile organic compounds ((B)VOCs). The mentioned trace gases are not only important for 

AQ but also for climate because they act as precursors for aerosols and O3 which are earmarked as essential 

climate variables (ECVs) (GCOS, 2024). The concentrations of NO2, VOCs, O3 and aerosols are not 

independent because of complicated chemical reactions and a reduction of the concentrations of one species 

may increase another species. This was clearly evidenced during the COVID-19 lockdown periods in China 

when emissions of NO2 were strongly reduced but concentrations of O3 increased substantially  (e.g., Huang 

et al., 2020; Fan et al., 2020a; 2021; Ding et al., 2020;Wang et al., 2021).  

The current study focuses on air quality in China. China is a very large country with a wide variety of 

conditions affecting air quality, with a variety of sources of aerosols and trace gases. China is located in 

several climate zones, i.e. the alpine climate zone, the temperate continental climate zone, the temperate 

monsoon climate zone, the subtropical monsoon climate zone, and the tropical monsoon climate zone (Li 

et al, 2022a). China is influenced by a variety of large-scale weather systems, such as the East Asia 

Monsoon with warm and wet summer monsoons and cold and dry winter monsoons, the Siberian High, 

etc., which are responsible for the occurrence of different transport patterns of atmospheric constituents. 

China also has a wide variety of surface properties, such as deserts, high mountains enclosing large basins, 

large planes, and oceans to the east and south. In addition, there are various anthropogenic influences with 

a strong contrast between the densely populated megacities and large industrial and economic centers on 

one side and the sparsely populated rural areas with agricultural activity and forests on the other. All these 

different influences render China a large natural laboratory for the study of air quality and climate. 

Air quality studies require information on aerosol and trace gas concentrations which usually are provided 

from ground-based monitoring networks using a suite of instrumentation for the various  species (WAQI, 

2024). In China, long-term data records, which can be used for air quality studies, are sparse. A national 
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network of ground-based air quality monitoring stations was established in 2013 and provides 

concentrations of PM2.5, PM10, SO2, NO2, O3, and CO. This network is maintained by the China National 

Environmental Monitoring Center (CNEMC) of the Ministry of Ecology and Environment (MEE, 2024). 

Hourly and 24-h moving averages for each site or city are used in many air quality studies (Fan et al., 2020a; 

Xue et al., 2020). However, despite the large number of monitoring sites included in this network, they are 

concentrated in densely populated regions in cities and industrial areas, which leaves gaps in other areas 

for which data is not available. The gaps can be filled by using satellite observations with wide spatial 

coverage. Satellite-based instruments used for trace gas retrieval are spectrometers, while radiometers are 

used for aerosol monitoring (de Leeuw et al., 2021). Both types of instruments measure the intensity of 

upwelling solar radiation reflected by the Earth (or Infra-red (IR) radiation emitted by the Earth) from which 

the required information is retrieved. The instruments used for trace gas retrieval and most sensors used for 

aerosol retrieval, fly on low Earth orbit (LEO) satellites, which do not provide more than one overpass 

during daytime, except at high latitudes. This problem can be overcome using several LEO satellites 

providing several consecutive views per day, or by using geostationary (GEO) satellites which view the 

Earth’s disc every 10 minutes (Earthdata, 2024). GEO satellites usually carry instruments designed for 

meteorological observations, but some of them are also used for aerosol retrieval, such as the Advanced 

Himawari Imager (AHI) on board Himawari-8 (H8), developed by the Japan Meteorological Agency (JMA) 

and launched on October 7, 2014 (JMA, 2024). The Geostationary Environment Monitoring Spectrometer 

(GEMS), launched by the Republic of Korea in February 2020, is the first satellite instrument to observe 

air quality (WMO, 2024) as part of a constellation of three satellite instruments (EPA, 2024b), including 

the ultraviolet and visible spectrometer flying on the Tropospheric Emissions: Monitoring Pollution 

(TEMPO) mission, launched by the United Sates National Aeronautics and Space Administration (NASA) 

on 7 April 2023) (TEMPO, 2024) and by Sentinel-4 on the Meteosat Third Generation Sounder (MTG-S) 

planned to be launched by the European Organisation for the Exploitation of Meteorological Satellites 

(EUMETSAT) in 2024 (EUMETSAT, 2024).  

Satellite observations provide information on the column-integrated concentrations of trace gases (vertical 

column densities, VCD) and aerosols (aerosol optical depth, AOD: the column-integrated extinction) 

inverted from spectrally resolved radiances measured at the top of the atmosphere (TOA). For aerosol 

retrieval, the use of one or more viewing angles and information on the degree of polarization provide added 

value allowing not only more accurate retrieval but also for better characterization of the aerosol properties 

such as aerosol type (Kahn and Gaitley, 2015; Li et al., 2019). The relations between column-integrated 

and near-surface concentrations of trace gases or between AOD and PM depend on the vertical distribution 

of the trace gas or aerosol concentrations (as well as optical properties in the case of aerosols) which in turn 

depend on meteorological factors and chemical reactions (Zhang and Li, 2015; Zhang et al., 2020). When 

the planetary boundary layer (PBL) is well-mixed, i.e. inert gases are homogeneously distributed from the 

surface to the top of the PBL, near-surface concentrations can simply be obtained by dividing the column-

integrated concentration by the PBL height (PBLH) and, provided that no species occur above the PBL, the 

satellite retrieved VCD and AOD are representative of the PBL concentration. However, often residual and 

disconnected layers occur above the PBL with trace gases and aerosols (Liu et al., 2021) which influence 

the satellite observations but are not related to the near-surface concentrations. Furthermore, the 

temperature decreases with height above the Earth’s surface which may disturb the chemical equilibrium 

and lead to changes in concentrations due to dissociation in the molecular or solid/liquid phase. An example 

is the dependence of the equilibrium between ammonium nitrate and ammonia and nitric acid on the 

ambient temperature (Kang et al., 2022). Another example is the increase of RH with decreasing 

temperature which results in the swelling of aerosol particles due to condensation of water vapor, which 

not only changes the particle size but also the aerosol composition and thus the optical properties.  

Time series of satellite and ground-based measurements may vary differently in response to changes in 

meteorological conditions (Fan et al., 2020b) and their seasonal variation may even be opposite, as has been 
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observed for AOD and PM2.5 time series (Xu et al., 2019). This may be due to responses to vertical mixing 

within the PBL and (seasonal) variations of the PBLH, responses to changes in air temperature affecting 

atmospheric lifetimes and chemical reactions, responses to variations in RH, transport of gases and aerosols 

due to changes in wind speed (ventilation, turbulent deposition) and wind direction (source regions), cloud 

processing changing concentrations and chemical composition of aerosol particles, and washout during 

rain. Large-scale weather systems influence the transport of aerosols and trace gases between source and 

receptor regions (Hou et al., 2020). Vertical transport mixes the aerosol particles and trace gases throughout 

the ABL with differences in temperature and RH at different altitudes, and these different meteorological 

environments affect chemical reactions and the composition of aerosols and concentrations of trace gases 

as observed in urban heat islands (e.g. Neuman, 2003; Aan De Brugh et al., 2012; Curci et al., 2015; Kang 

et al., 2022). 

The main goal of this study is to gather the key findings derived from the EMPAC project that improve our 

scientific knowledge of the mechanisms and processes affecting air quality in China. Specifically, we aim 

to explore how satellite observations can be used more effectively in AQ monitoring. To achieve this aim, 

the study has outlined the following objectives: 

- Develop improved algorithms to invert information on atmospheric composition from satellite 

observations; 

- Improve our understanding of relationships between concentrations of aerosols and trace gases 

retrieved from satellite observations and those near the surface, through a better understanding of 

processes affecting these relationships; 

- Quantify the emissions of trace gases and aerosol precursors using a top-down approach.  

These objectives are achieved by conducting various research studies on different areas, in collaboration 

between universities and research centers in China and Europe. Satellite sensors along with ground-based 

remote sensing and in situ measurements (see Section 2 for an overview) are employed to analyze a range 

of factors influencing air quality in China.  

The study is structured along four main topics: (1) retrieval and validation of AOD, PM2.5, and NO2; (2) 

emissions of NO2, SO2, CO2, BVOCs, PM2.5 and PM10; (3) time series and trends of AOD and CO; (4) 

meteorological, physical and chemical processes influencing concentrations of O3, NOx (NO + NO2) and 

PM2.5 in the atmosphere. Each of these topics includes findings deduced from several studies performed 

in the frame of the EMPAC project aimed at enhancing our understanding of air quality processes and 

evaluating the effectiveness of policies to improve air quality. Section 2 provides an overview of the satellite 

sensors and other instruments, or techniques, used in this study. An overview of the studies undertaken and 

the mid-term results is presented in Section 3. Finally, Section 4, briefly discusses the results, summarizes 

the conclusions, and highlights the accomplishments. A list of abbreviations is provided in the Appendix. 

2. Materials and Methods 

The studies presented in Section 3 are undertaken by different universities and research centers, with the 

common goal of improving our understanding of different processes in the atmosphere and how these 

contribute to air pollution. This also requires monitoring of air quality, i.e. monitoring of the concentrations 

of aerosols (PM2.5 and PM10; sometimes also other mass fractions) and relevant trace gases such as O3, 

NO2, SO2, CO and other gases affecting these concentrations and / or life on Planet Earth. In particular, this 

study focuses on the use of a variety of satellites, with different techniques, to obtain information 

contributing to reaching the objectives. The satellites and sensors are listed in Table 1, together with their 

application in this study. For validation of the retrieval results, ground-based remote sensing instruments 

are used which are listed in Table 2 together with instruments used in process studies. The studies were 

made in different areas which are listed in Table 3. 
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Table 1. Satellites and sensors used in this study.  

Sensor Satellite launched characteristics Application 

(section) 

ESA third party missions 

OMI Aura 2004 UV/VIS 

spectrometer 

NO2 data  

(3.1.5) 

 HIMAWARI 2014   

MODIS TERRA 

Aqua 

1999 

2002 

Radiometer AOD time series 

(3.3.1) 

IASI METOP-A 

METOP-B 

METOP-C 

2006 

2012 

2018 

Infrared 

Atmospheric 

Sounding 

Interferometer 

CO total column 

concentrations  

(3.3.2) 

OCO-2 LeoStar-2 2014 3 spectrometers in 

the NIR and MIR 

CO2 data 

(3.2.3) 

ESA, Explorers and Sentinels  

TROPOMI Sentinel-5p 2017 UV/VIS 

spectrometer 

NO2 data 

(3.1.5; 3.1.6; 3.2.1; 

3.2.2; 3.2.3) 

ALADIN AEOLUS 2018 Wind profiles 3.4.3 

Chinese EO data 

Wide-Field-of-

View (WFV) 

cameras 

GF-1 (Gaofen-1) 2013 4 UV/VIS cameras 

with 16 m spatial 

resolution  

Retrieval of High-

Resolution AOD 

(3.1.4) 

Polarized Scanning 

Atmospheric 

Corrector (PSAC) 

HJ-2 A and B 

constellations 

2020 Polarization, 

multispectral  

AOD retrieval 

(3.1.1) 

Polarization 

CrossFire (PCF) 

satellite sensor 

GF5-02 

DQ-1  

2021 

2022 

Polarization AOD/PM2.5 

relationship (3.1.2) 

 

Table 2. Instruments used for validation and process studies in this study. 

Instrument Purpose Application (section) 

CIMEL CE-318 Sun-photometer SONET and AERONET networks 

providing reference data for 

aerosol retrieval  

Validation aerosol retrieval  

(3.1.3) 

AIS antenna and receiver Collecting AIS signals of ships (3.1.4) 

Multi-AXis Differential Optical 

Absorption Spectroscopy (MAX-

DOAS) 

NO2 profiles  Validation TROPOMI NO2 

retrieval results  

 (3.1.5) 

KNMI NO2-sonde  Used on quadcopter to measure in 

situ NO2 profiles 

(3.4.1) 

NOx analyzer type Thermo 

Environmental Instruments (TEI) 

42 

Intercomparison with KNMI NO2-

sonde 

(3.4.1) 

ground-based radar wind profiler 

(RWP) network of China 

Validation AEOLUS wind 

products 

(3.4.3) 
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Tethered balloon PM2.5 profiles (3.4.4) 

surface-based meteorological and 

PM2.5 observations, turbulence 

measurements using a 3-D Sonic 

Anemometer (CSAT3), and high-

resolution soundings 

Understanding processes affecting 

PM2.5 

(3.4.4) 

 

Table 3. Study regions in this study. 

Region Coordinates Application in Section 

Northeast Asia 30-40 N, 120-140E 3.1.1 

Beijing Radi Site SONET/AERONET 

40.005°N, 116.379°E 

3.1.3 

Xuzhou region (Jiangsu, China) 33.3-35 N, 116.5-118.5 E;  3.1.4, 3.15, 3.4.2 

Xuzhou, CUMT MAX-DOAS site 34.217 N, 117.142 E 3.1.5, 3.4.2 

Arctic  (>70 N) 3.1.6 

Yangtze River Delta 26-34 N, 112-124 E.; (Figure 11) 3.2.1, 3.2.2, 3.4.1 

Wuhan, Hubei, China circular region centered at 114◦ E, 

30.7◦ N, with a diameter of ∼ 186 

km 

3.2.3 

Qianyanzhou subtropical 

coniferous plantation in Taihe 

county, Jiangxi, China 

26o44’48” N, 115o04’13” E 3.2.4 

South-Eastern China Below the 

Hu line (SECBH) 

Part of the area between 20-55 N, 

100-130 E, encompassing NCP, 

YRD,. PRD, SCB and HNB 

3.3.1 

Nanjing, Jiangsu, China – Pukou 

district 

32.214 N, 118.658 E 3.4.1 

Athens, Greece  38N, 23.7 E 3.4.2 

Xiangyang, Hubei, China 32.0090 N, 112.1226 E 3.4.4 

 

3. Results 

3.1 Retrieval and Observations 

In this Section, the development and use of new satellite-retrieved products for aerosols and NO2 is 

presented. Aerosol particles are characterized by a number of physical and chemical parameters such as 

their particle size distribution (the number concentration of particles at each size, where size ranges from a 

few nm to tens of µm), chemical composition including aerosol water, and particle shape. The particle sizes 

of importance for satellite remote sensing range from about 0.05 µm to about 10 µm. The chemical 

composition of the particles determines their hygroscopicity, i.e. the uptake of water vapor by the particles 

from the atmosphere, as a function of RH and the deliquescence point (the RH at which particles are 

activated). The uptake or release of water vapor in turn changes the particle size distribution. The chemical 

composition (including aerosol water) and the size of a particle determine the complex refractive index. 

Particle size distribution, shape and complex refractive index together determine the interaction of an 

aerosol with solar radiation, i.e., the scattering and absorption of light by the particles. The light 

backscattered into space is detected by optical sensors aboard satellites and the scattered signal is used 

together with a model to retrieve the aerosol properties. This brief summary clearly shows that a suite of 
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aerosol parameters needs to be measured to accurately determine the aerosol optical and physical properties. 

A satellite sensor does not provide enough information to do this, and therefore aerosol parameters need to 

be estimated beforehand (in a forward model) to simulate the signals from the satellite sensor. By 

comparison of the simulated and measured signals, a limited number of actual aerosol parameters are 

estimated. Traditionally, satellites only measure the intensity of the scattered radiation at a specific 

wavelength and viewing angle. By using more wavelengths, several viewing angles and polarization 

information, the number of degrees of freedom can be increased and aerosols can be better characterized. 

In this section, the advantage of the use of polarization to improve the AOD retrieval is presented for two 

Chinese sensors: the Polarized Scanning Atmospheric Corrector (PSAC) (Section 3.3.1) and the 

Polarization CrossFire (PCF) sensor on board the GF5-02 and DQ-1 satellites (Section 3.3.2). In particular, 

a new strategy to retrieve PM2.5 from PCF is presented and uncertainties are discussed. For the validation 

of aerosol products, the Sun-sky radiometer Observation NETwork (SONET) is used to provide ground-

based reference data (Section 3.1.3) and the use of these data is illustrated for validation of PSAC-retrieved 

AOD. 

To collect enough scattered radiation for aerosol characterization, the sensor needs to be highly sensitive 

and usually this is achieved at the expense of spatial resolution. In practice, often the signal received over 

a number of satellite pixels is averaged to achieve a sufficient signal to noise ratio (SNR). However, for 

monitoring of urban scale air pollution from space, a finer spatial resolution is desirable. A novel method 

to achieve this is described in Section 3.1.4, where the accurate AOD provided by the most commonly used 

(for aerosol retrieval) Moderate Resolution Imaging Spectroradiometer (MODIS) is downscaled to a 

resolution of 100 m by the utilization of data from high-resolution cameras on the Chinese GF-1 satellite.  

The TROPOspheric Monitoring Instrument (TROPOMI/Sentinel-5p) provides NO2 vertical column 

densities with unprecedented accuracy and spatial resolution. The data over Xuzhou are validated versus 

ground-based NO2 VCDs retrieved using a MAX-DOAS (Multi-AXis Differential Optical Absorption 

Spectroscopy) instrument as described in Section 3.1.5. TROPOMI is the successor of the Ozone 

Monitoring Instrument (OMI), from which a long NO2 VCD time series is available since its launch in 

2004, but with a larger footprint than for TROPOMI. To extend the TROPOMI NO2 VCDs to 2004 by 

using OMI data, the latter are downscaled using a method described in Section 3.1.5. In Section 3.1.6, 

TROPOMI data are used to determine Lightning NO2 (LNO2) productivity over the Arctic and the results 

are compared with the productivity from other NO2 emission sources in the Arctic. 

3.1.1 Improving aerosol remote sensing using polarization measurements 

The PSAC was launched on board the HJ-2 A and B constellations on September 27, 2020. PSAC provides 

advanced measurements of aerosols, clouds and water vapor, with a focus on atmospheric correction for 

the charge-coupled device (CCD) camera, the hyperspectral imager (HIS) and the infrared 

spectroradiometer (IRS) onboard the same satellite platforms. 

Examples of PSAC false color maps and corresponding AOD retrieval results over land are presented in 

Figure 1. In general, thanks to the additional simultaneous polarization measurements, the AOD retrieval 

results show good performance compared with traditional AOD remote sensing based on intensity-only 

satellite sensors such as MODIS. 
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Figure 1. PSAC observations and retrieved AOD over Northeast Asia on April 11, 2021. (a) PSAC false-

color map synthesized using nonpolarized data. (b) PSAC false-color map synthesized using polarization 

data. (c) Corresponding AOD retrieval results. (Figure adapted from  Li et al., 2022b). 

3.1.2 New polarimetric satellite sensor suits applied to derive the AOD/PM2.5 relationship 

Studies of the AOD/PM2.5 relationship benefit from the new generation of optical and microphysical 

aerosol parameters obtained from advanced polarimetric satellites. China has launched the GF5-02 and DQ-

1 satellites, on 7 Sep, 2021 and 16 Apr, 2022, respectively, carrying the most advanced Polarization 

CrossFire (PCF) satellite sensors. The corresponding retrieval strategy, using the Particulate Matter Remote 

Sensing (PMRS) model (Zhang and Li, 2015; Zhang et al., 2020), was then applied to PCF data for the 

retrieval of PM2.5 from space.  

In the PMRS model, PM2.5 mass concentrations near the ground are calculated from five aerosol physical 

and optical parameters, i.e. AOD, fine mode fraction (FMF), aerosol layer height (ALH), fine-mode 

columnar volume-to-extinction ratio (VEf) , effective density of fine-mode aerosol particles (ρf), and the 

volume hygroscopic growth function (f(RH)), which represents the ratio of the total volume of particulate 

matter to the dry volume, based on the RH of the surrounding air. The approaches to estimate PM2.5 using 

these parameters are described in detail in Zhang and Li (2015) and Zhang et al. (2020).  

The PMRS model inevitably has some uncertainties. The sensitivity to assumptions in the calculation of 

PM2.5 from AOD observations using the PMRS model are presented in Figure 2, together with the 

corresponding statistical metrics for comparison of the retrieval results with the input data. In Figure 2, the 

x-axis represents the assumed truth (input) values, and the y-axis represents the corresponding retrieval 

results. The impact of using the fine mode AOD, obtained by multiplying AOD by FMF, to calculate the 

extinction contribution to PM2.5, is presented in Figure 2(a). Figure 2(a) shows the good correlation (with 

R2 of 0.99) between the input and output values of AOD × FMF. Hence, the uncertainties caused by the 

size cutting procedure are small.  

As regards the volume visualization procedure, the AOD is converted to volume concentration through VEf 

which is calculated from the FMF (Li et al., 2017). The relatively large uncertainty in the retrieved FMF, 

especially for small FMF values, is transferred directly to VEf, resulting in the offset of some data pairs 

from the identity line in Figure 2(b).  

The mass density weighting procedure in Figure 2(d) was realized using the semi-empirical relationship 

between ρf and the real part of complex refractive index of dry fine mode particles mr
f. Due to the small 

variation of VEf and ρf, the uncertainties introduced by the volume visualization procedure, and the 

weighting procedure, both are relatively small.  

The bottom isolation procedure is conducted by using PCF retrievals of aerosol layer height. By using ALH, 

the ratio of the extinction coefficient near the ground to the total aerosol optical depth can be obtained. The 

line fitted to the data points in the scatter plot in Figure 2(c) has a slope close to 1 and a small offset. 

Compared with the other procedures, there is a higher cost performance to effectively improve the accuracy 

of aerosol layer height retrieval. 
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To account for the difference in AOD and PM2.5 due to the measurement of AOD in ambient RH 

conditions, versus measurements of PM2.5 at low RH conditions, i.e. dry aerosol mass, the hygroscopic 

growth factor f(RH) was used. To achieve this, f(RH) was estimated using assumptions on the real part of 

the refractive index for wet and dry particles (Zhang et al., 2017). The results are presented in Figure 2(e). 

The uncertainties in f(RH) may come from retrieval errors of the input mr
f, or the assumed value of the dry 

particulate matter. The aerosol hygroscopic properties of aerosol particles are related to their chemical 

composition. For the same ambient humidity, the hygroscopic growth factors of different aerosol types are 

obviously different and may range from 1.0 to 3.0. For particles with the same chemical composition, the 

hygroscopic growth factor increases with the increase of ambient humidity. Direct humidity correction from 

satellite data depends on the development of sensors and the improvement of inversion techniques in the 

future. Using the PMSR model, PM2.5 can be retrieved from PCF synthetic data as shown in Figure 2f. 

 

Figure 2. Propagation of errors due to assumptions in the PMRS model: (a) size cutting procedure, (b) 

volume visualization procedure, (c) bottom isolation procedure, (d) mass density weighting procedure, (e) 

hygroscopic growth factor drying procedure, and (f) scatterplot of the retrieved PM2.5 versus synthetic 

data, with an expected error (EE) of ±(30%PM2.5 +15) μg m − 3. (Figure adapted from Li et al., 2022c). 

3.1.3 Validation of PSAC-retrieved AOD using SONET sun photometer reference data 

To assess the aerosol remote sensing performance of the PSAC sensors onboard the HJ-2 A/B satellites, 

time series of satellite AOD in China are compared with ground-based reference measurements from the 

SONET network (for a map of the SONET location and a description of the SONET network, see Li et al., 

2018). SONET complements NASA’s Aerosol Robotic Network (AERONET) sun photometer network 

(Holben et al, 1998; AERONET, 2024), with some sites in China in common. SONET follows the same 

procedures as AERONET. As an example for the use of SONET data, time series of AOD ground-based 

measurements from the CIMEL CE-318 Sun-photometer at the Beijing_RADI site (40.005°N, 116.379°E) 
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and PSAC-retrieved AOD are compared as shown in Figure 3a. The time series in Figure 3a show the good 

comparison between the two data sets. 

For validation, the mean value of the SONET AOD observations within half an hour of the satellite overpass 

time is matched with the spatial average of satellite-retrieved AOD within an area of 50 km x 50 km 

centered on the SONET site. A valid match between SONET data and remote sensing data must meet two 

requirements at the same time: i) the number of valid satellite retrievals within the area of 50 km x 50 km 

centered on the SONET site is not less than five and ii) the number of SONET observations within half an 

hour of the satellite observation time is not less than two. A scatter plot of the collocated PSAC-retrieved 

AOD and the AERONET/SONET AOD observations is presented in Figure 3b. This comparison shows 

that 68.6% of the data are within the expected error (EE) of ±(0.05 + 0.2 ∗ AODSONET) (PER20) required 

for in-orbit test objectives. 

 

Figure 3. (a) Time series comparison of AOD obtained from SONET measurements and retrieved from 

PSAC data at the Beijing_RADI site. (b) Scatter density plot of collocated PSAC and AERONET data 

during the period from March 2021 to May 2021. The dotted line in the middle is the 1-1 line. The dotted 

lines on either side of the identity line are the envelope of PER20. (Figure adapted from Li et al., 2022b). 

3.1.4 Retrieval of High-Resolution Aerosol Optical Depth for Urban Air Pollution Monitoring 

Aerosol Optical Depth (AOD) is a key physical quantity to characterize atmospheric turbidity and air 

pollution. Accurate retrieval of AOD is of great importance for air quality assessment. The satellite sensors 

which are currently used for AOD retrieval (Sogacheva et al., 2020) provide AOD with a spatial resolution 

of 1 km (Lyapustin et al., 2018) or more. For AQ applications on local to regional scales, AOD information 

on spatial scales smaller than 1 km would be desirable. However, the provision of observations at scales of 

10s of meters usually suffers from a long revisit time (Sun et al., 2017). As a compromise, the Chinese 

Gaofen-1 (GF-1) satellite, with four Wide-Field-of-View (WFV) cameras which together cover a 

wavelength range from 0.45 µm to 0.89 µm with a spatial resolution of 16 m, is proposed to be used. The 

four cameras have a combined overlapping swath of 830 km and the revisit time is 4 days. Gaofen-1 was 

launched in April 2013 into a sun-synchronous orbit at an altitude of 645 km and an inclination of 98°, with 

a revisit frequency maximum of 4 days. It is the first spacecraft in the civilian China High-Resolution Earth 

Observation System (CHEOS). For more detail, see eoPortal (2024). 

GF-1 data were used together with MODIS Terra and Aqua data to obtain AOD with a spatial resolution of 

100 m. To this end, the Synergetic Retrieval of Aerosol Properties (SRAP) algorithm (Xue et al., 2014) was 

applied to the two MODIS data sets in synergy to obtain AOD with 1 km resolution and the GF-1 wide-

field-of-view data were used to further downscale the 1 km MODIS data based on the mutual information 

method (Li et al., 2012). This method was developed for application over Beijing (Bai et al., 2022) and in 

the current project it is applied to data over the Xuzhou region (Jiangsu, China; 33.3-35 N, 116.5-118.5 E). 

As an example, the AOD spatial distribution over this region on May 18, 2020, is presented in Figure 4, 

showing the detailed information on the AOD resulting from the high spatial resolution (100 m). The AOD 

spatial distribution provides information on the occurrence of aerosol air pollution across the study area, 
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which is affected by the direct emission of aerosol particles, the emission and concentration of aerosol 

precursor gases and meteorological conditions. Preliminary validation of the retrieval results has been 

carried out by comparison with AERONET ground-based observations. The results are presented in Figure 

5 and the statistical analysis shows that the correlation coefficient is 0.85, the root-mean-square error is 

0.14 and 51% of the data are within the expected error envelope (EE) of ±0.05 ±0.2 τa, where τa is the 

AERONET AOD. The experimental results show that the method has high precision, and further 

verification work is continuing. 

 

Figure 4. Spatial distribution of retrieved AOD, with a spatial resolution of 100 m, over the Xuzhou area 

on May 18, 2020. 
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Figure 5. Scatter density plot of retrieved 100m AOD versus AERONET data in Xuzhou (Jiangsu, China). 

Statistical metrics are presented in the top left corner. The red line is the 1:1 line, the green line is the LSQ 

fit line given in the legend, and the blue lines indicate the expected error envelope (EE = ±0.05 ±0.2 τa), 

where τa is the AERONET AOD. 

3.1.5 Validation of TROPOMI NO2 and exploring the utility of high-resolution NO2 columns from 

TROPOMI  

Satellite remote sensing techniques can provide detailed information on the spatial and temporal distribution 

of NO2 in the troposphere, which enables us to monitor changes in NO2 levels over time and assess the 

effectiveness of emission reduction measures. TROPOMI/Sentinel-5p is particularly useful for identifying 

pollution sources within individual urban areas, as it has a higher spatial resolution than other sensors 

(3.5×7.0 km² before August 6, 2019, and 3.5×5.5 km² at nadir thereafter), with daily global coverage. To 

evaluate the performance of the TROPOMI NO2 data for this application, the S5P-PAL reprocessing) were 

compared with offline products (processor versions are earlier than v2.3.1) and with ground-based Multi-

AXis Differential Optical Absorption Spectroscopy (MAX-DOAS) observations in Xuzhou (a city in the 

Jiangsu province in eastern China, see Section 3.1.4).  

The TROPOMI data shows a strong correlation with MAX-DOAS measurements, with monthly correlation 

coefficients (R) reaching as high as 0.92 under quality assurance (QA) thresholds above 75%. However, a 

tendency to underestimate NO2 levels is observed, particularly during high pollution episodes (Figure 6a). 

When comparing the PAL_v2.3.1 dataset with earlier offline versions, PAL data was found to be 

consistently higher by 17-48% from December 2019 to November 2020, with seasonal variability (Figure 

6b).  

 

Figure 6. Comparison of TROPOMI and MAX-DOAS NO2 data under QA > 75%. (a) Monthly time series 

of tropospheric NO2 comparisons between TROPOMI and MAX-DOAS instruments over the study region 

from 2018 to 2020. (b) Scatter plots comparing TROPOMI's updated PAL_v2.3.1 data product with the 

earlier offline version from December 2019 to November 2020.  

Spatial representativeness varies across the scanline, with reduced precision in edge pixels due to high 

viewing zenith angles (VZA), which introduces greater difference (Figure 7). The results show that the size 

of the footprint can affect the validation results, and the smaller pixels (<29 km2, 2°<VZA<34°) have a 

higher correlation with MAX-DOAS (R=0.91) when compared to larger pixels (>53.55 km2, 

47°<VZA<65°).  
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Figure 7. Influence of spatial resolution and viewing zenith angle (VZA) on TROPOMI's NO2 validation. 

(a) Map showing the spatial coverage area used for TROPOMI and MAX-DOAS comparison around 

Xuzhou, highlighting the areas with varying pixel footprints. (b) Comparison of TROPOMI and MAX-

DOAS NO2 for pixels with different footprints.In addition, a downscaling framework was proposed to 

generate high-resolution (0.05°) NO2 columns from OMI/Aura retrievals. OMI has provided continuous 

measurements since 2004 but with relatively low spatial resolution (13×24 km2 at nadir). We compared the 

performance of two machine learning models:  extreme gradient boosting (XGBoost, Figure 8a), and super-

resolution convolutional neural network (SRCNN, Figure 8b). The XGBoost method (Chen & Guestrin, 

2016) uses pixels from the common observation period of TROPOMI and OMI after 2018 to derive the 

relationship between high- and low-resolution NO2 concentrations and was applied to the historical OMI 

dataset for capturing finer spatial variability and pollution gradients in urban environments, enhancing air 

quality assessments in densely populated areas. The SRCNN model (Dong et al., 2014) extracts features 

using 64 convolutional layers with a 9×9 kernel, then applies 32 layers with a 1×1 kernel to map the high-

dimensional tensor representation to another set, corresponding to the high-resolution image features. 

Finally, a single 5×5 convolutional layer reconstructs the high-resolution image. 

 

Figure 8. NO2 downscaling framework using machine learning. (a) XGBoost model structure. (b) SRCNN 

architecture for enhancing spatial resolution. (c) Comparison of NO2 maps generated by TROPOMI, OMI 

bilinear interpolation, XGBoost, and SRCNN. 
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When compared to direct bilinear interpolation of OMI (Figure 8c), XGBoost predictions outperforms with 

a 10.55 dB increase in Peak Signal-to-Noise Ratio (PSNR) and a 0.09 improvement in Structural Similarity 

Index (SSIM). SRCNN also improves over bilinear interpolation, though with more modest gains in PSNR 

(2.61 dB) and SSIM (0.06). 

Its serendipitous capability was then explored with the advantages of the orbital characteristics and the high 

spatial resolution of the sensor. It shows that at latitudes higher than 35°, the Sentinel-5p orbits allow for 

two observations within an interval of 100 minutes with a probability greater than 20%. By utilizing these 

overlapping TROPOMI orbits at high latitudes, a model-free inversion approach (Qin et al., 2023; Li et al., 

2023; Liu et al., 2024) was applied, based on a dynamic balance among NOx emissions, chemical decay, 

and advective transport (Figure 9). This approach enables quantification of diurnal NOx emissions from 

observed tropospheric NO2 column values while flexibly incorporating various atmospheric processes and 

conditions. Overall, the utility of overlapping NO2 columns for investigating diurnal variability was 

demonstrated and the importance of the spatial scale when analyzing and interpreting NO2 data was 

highlighted. 

 

Figure 9. Model-free inversion of diurnal NOx emissions using overlapping TROPOMI orbits. (a) 

Illustration of overlapping orbits enabling two observations within 100 minutes. (b) Schematic of the 

model-free inversion framework. 

3.1.6 Spaceborne observations of lightning NO2 in the Arctic 

Lightning is the dominant source of upper tropospheric nitrogen oxides, which are precursors for ozone and 

hydroxyl radicals. The Arctic region is experiencing notable warming as well as increasing lightning. To 

evaluate lightning NO2 (LNO2) production in the Arctic, TROPOMI NO2 observations during the summer 

months (June-August) in 2019–2021 have been combined with the Vaisala Global Lightning Dataset 360 

(GLD360). Figure 10a shows the mean tropospheric NO2 column density over the Arctic region, together 

with the locations of anthropogenic NO2 sources. Consecutive TROPOMI NO2 observations have been 

used to determine the production efficiency and lifetime of LNO2 in the Arctic during the 2019–2021 

summer months. Our results show that the LNO2 production efficiency over the ocean is about 6 times 

higher than that over continental regions. Moreover, the 3 hours lifetime of NO2 in the Arctic is similar to 

that in mid-latitude polluted regions. Additionally, we find that higher LNO2 production efficiency often 

correlates with lower lightning rates. The summertime lightning NOx emission in the Arctic (north of 70o 
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N) is estimated to be 219 ± 116 Mg(N), which is equal to 5% of the anthropogenic NOx emissions. However, 

as illustrated in Figure 10b, for the span of a few hours, the Arctic LNO2 density can be comparable to the 

anthropogenic NO2 emissions in the region. Assuming a NOx to NO2 ratio of 2.4, we compare the LNOx 

emission (73 Mg(N) month−1) with anthropogenic and soil NOx emissions during the summer. Soil 

emissions, totaling 2670 Mg(N) month−1, dominate NOx over the Arctic land, while anthropogenic NOx 

emissions of 350 Mg(N) month−1 over land are roughly the same in magnitude as the wildfire emission of 

430 Mg(N) month−1. Ship emissions, totaling 1160 Mg(N) month−1, are the primary source of NOx over the 

Arctic ocean. However, the LNOx contributes 93% of NOx in the northeastern region of the Arctic (90◦–

180◦ E, 80◦–90◦ N). These new findings suggest that LNO2 can play an important role in chemical processes 

in the upper troposphere/lower stratosphere in the Arctic region, particularly during the summer. For 

additional information, see Zhang et al. (2023a). 

 

Figure 10. (a) Mean 4 km × 4 km TROPOMI tropospheric NO2 column density in the local afternoon 

during June–August of 2019–2021. Mining and oil & gas stations are indicated by gray and red circles, 

respectively. (b) Comparisons of NO2 column densities resulting from four sources: lightning, mining, oil 

& gas, and wildfire. The bar for lightning represents the maximum NO2 values over pixels for each lightning 

case. The wildfire, mining, and oil & gas bars are the daily maximum NO2 values at typical locations. The 

lines inside the box are the median (black) and mean (red) values, respectively. The lower and upper box 

boundaries are the 25th and 75th percentiles, respectively. The lower and upper error lines are 10th and 

90th percentiles, respectively. 

3.2 Emissions 

Satellite data can be used to retrieve column-integrated concentrations of trace gases and aerosol which in 

turn can be used to derive emissions by inverse modeling. This is illustrated in Section 3.2.1 where 

TROPOMI-retrieved NO2 VCDs are used with the Daily Emissions Constrained by Satellite Observations 

(DECSO) algorithm to determine high-resolution NOx emissions over the Yangtze River Delta (YRD) 

region. In Section 3.2.2, a methodology is described for the use of these data to identify emissions from 
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ships on the Yangtze River in the region of Nanjing. An alternative method for the determination of NOx 

emissions based on TROPOMI observations and CO2:NOx emission ratios, applied to determine emissions 

from the city Wuhan, is described in Section 3.2.3. Results from the analysis of BVOC emission fluxes 

measured over a coniferous plantation, as a function of driving parameters, are presented in Section 3.2.4. 

3.2.1 High-resolution NOx emissions for the YRD region  

To derive NOx emissions, the latest version of the DECSO inversion algorithm, version 6.1, has been used. 

DECSO has been applied to NO2 observations of the TROPOMI instrument on the Sentinel 5p satellite. 

The NO2 data has recently been reprocessed with the retrieval algorithm v.2.3.1, known as the PAL data 

collection (TEMIS, 2024).  

The NOx emissions are derived at a resolution of 0.1o x 0.1 o (about 10 km x 10 km) over the region of the 

Yangtze River Delta which includes the megacities Wuhan, Hefei, Nanjing, Hangzhou, and Shanghai. The 

results for 2019 are presented in Figure 11 and clearly show the high emissions along the Yangtze River as 

well as from large urban centers with high emissions from industry, transportation, and households. In 

particular, the large emissions in the eastern part of the study area, encompassing Shanghai, Hangzhou and 

Ningbo are evident, and further upstream of the Yangtze, Nanjing and Wuhan are large sources of NO2. 

High emissions are also observed in the valleys extending to the southwest of Hangzhou and to the west of 

Ningbo to Jinhua, Shangrao, Nanchang and Changsha and from Changsha to Wuhan. The emission data 

along the Yangtze River are used in the study on the importance of NOx emissions from inland ships on the 

Yangtze River (Section 3.2.2). 

 

Jo
urn

al 
Pre-

pro
of



Figure 11. Annual mean NOx emissions for 2019 from the Yangtze River Delta region (26-34 N, 112-124 

E., resolution 0.1ox0.1o) derived from Sentinel 5p (TROPOMI) observations using the DECSO inversion 

algorithm. 

3.2.2. The impact of inland ship emissions on air quality 

With the rapid economic growth, China's ports and shipping industry has achieved unprecedented 

development, while aggravating air pollution. As shown in Figure 11, emissions along the Yangtze River 

are very high, which may be due to both intensive industrial and associated other anthropogenic activities 

along the river, together with the large number of domestic inland river vessels. However, information on 

the contributions of these sources is very limited due to limited legislation for emission control and the 

absence of monitoring infrastructure. In order to explore how the information on inland river vessel 

emissions can be improved, a ship emission inventory has been compiled for the Yangtze River in the 

region of Nanjing, based on real-time information received from Automatic Identification System (AIS) 

signals and the China Classification Society (CCS) database. A method has been developed to use AIS 

signals to calculate ship emissions per vessel. The total ship emissions for NOx, SO2, PM10 and PM2.5 in 

the observation area have been estimated for the period from September 2018 to August 2019, showing that 

the ship emissions were highest during the summer. Cargo ships dominate in the Jiangsu section of the 

Yangtze River with 81% of the total number of ships and contribute the highest NOx emissions, 64.4%, to 

the total ship emissions. The calculated inland ship NOx emissions have been compared with the total NOx 

emissions in the same region derived from TROPOMI observations using DECSO (Section 3.2.1), the 

Multi-resolution Emission Inventory for China (MEIC, 2024; Li et al., 2017; Zheng et al., 2018a and the 

Shipping Emission Inventory Model (SEIM)(MEIC, 2024) . The spatial distribution of NOx from the ship 

emission inventory is consistent with that from other inventories, with riverine cities having higher NOx 

pollution than non-riverine cities. Emissions of NOx and SO2 from inland vessels have a significant impact 

on air pollution along the river, each accounting for at least 40 %. For additional information, see Zhang et 

al. (2023b).  

3.2.3 Top-Down emission estimates NOx and CO2  

The day-to-day quantification and control of emissions of nitrogen oxides (NOx) and CO2 from a large 

urban source is addressed using an improved top-down method. Daily observations from the TROPOMI 

sensor and CO2:NOx emission ratios from two state-of-science emission inventories are used to estimate 

day-to-day NOx and CO2 emissions from the Chinese city Wuhan. The model used is inspired by the work 

of Lorente et al. (2019), who developed a superposition column model to constrain daily NOx emissions 

and applied it to Paris. In the current study, the superposition model was improved by accounting for 

changes in the background NO2 density in the study domain along the wind direction, which made it suitable 

to monitor NOx emissions from cities like Wuhan, located in a polluted background. Using the improved 

top-down method, urban NOx and CO2 emissions were obtained for 50 individual days between September 

2019 and August 2020, including several days during the COVID-19 lockdown period. The top-down 

emissions closely capture the day-by-day variation of NOx and CO2 emissions from Wuhan, revealing only 

a weak ‘weekend effect’ and a stronger ‘holiday effect’ compared to bottom-up emission inventories. Also, 

the abrupt decrease and slow rebound of NOx and CO2 emissions due to the lockdown in early 2020 were 

caught. CO2 emissions were verified for two days with OCO-2 observations close to Wuhan, showing good 

agreement between predicted and observed CO2 column mixing ratios, despite considerable differences in 

emission strength and wind speed between these two days. This work demonstrates that the improved 

superposition model, driven by satellite NO2 measurements and verified by satellite CO2 measurements, is 

a promising new tool for quantification of city NOx and CO2 emissions, allowing policy makers to gain 

rapid insights into spatio temporal emission patterns and the effectiveness of carbon and nitrogen regulation 

in urban environments. For additional information, see Zhang et al. (2023c). 
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3.2.4 Emission fluxes of isoprene and monoterpenes and their affecting factors  

Emission fluxes of isoprene and monoterpenes (in this study referred to as BVOCs) in the Qianyanzhou 

subtropical coniferous plantation in Taihe County, Jiangxi Province, China (26o44’48” N, 115o04’13”), 

were calculated for the period from May 2013 to December 2016, using an empirical model for BVOC 

emissions (EMBE) (Bai and Duhl, 2021). EMBE is formulated in terms of the following parameters: S/Q 

(S and Q are diffuse and global solar radiation), PAR (photosynthetically active radiation), air temperature 

T, relative humidity RH and water vapor pressure pE. To investigate the sensitivity of BVOC fluxes to each 

of these parameters, the calculated BVOC fluxes were binned into intervals according to S/Q with an S/Q 

bin width of 0.05, for S/Q ranging from 0 to1. A plot of the fluxes of isoprene, monoterpene and the sum 

of these two species versus S/Q is presented in Figure 12a. The data show low emissions at low S/Q, and 

increase with increasing S/Q. However, when S/Q exceeds a certain value, the emissions decrease. Because 

of the large scatter in the individual data, it is hard to determine the turning point, i.e. the S/Q value for 

which the emissions start to decrease. Therefore, curves were fitted to the data for each species, as shown 

in Figure 12a, and the S/Q value of the turning point was determined as the maximum in this smoothed 

curve, i.e. at S/Q=0.55. Following a similar procedure, the turning point for air temperature has been 

determined at T=26 oC and for water vapor pressure at pE=24 hPa. The data in Figure 12d show that the 

BVOC emission fluxes increase linearly over the whole range of PAR values observed during the 

measurements in the Qianyanzhou subtropical coniferous plantation.  

a b 

c d 

 

Figure 12. The relationships between calculated BVOC emission fluxes and (a) S/Q, (b) water vapor 

pressure, (c) air temperature and (d) PAR, where the data have been binned with respect to S/Q in intervals 

of 0.05 (S/Q = 0 - 1). Fluxes of isoprene, monoterpenes and BVOCs (isoprene + monoterpenes) are 

indicated by open circles, triangles and filed circles. (adapted from Bai, 2021a).  
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VOCs are important for the oxidizing capacity of the atmosphere and are precursors for the formation of 

new aerosol particles by nucleation. Kulmala et al. (2011) formulated proxies for the concentration in the 

nucleation mode in terms of the organic precursor vapor concentration ([ORG]), the ultraviolet radiation 

(UV) and the condensation sink (CS), i.e. Nn,3 = UV [ORG]/CS2 and Nn,4 = UV2 [ORG]2/CS3 for the 

estimation of the formation of new particles using satellite observations. The condensation sink is a measure 

for the aerosol surface available for condensation of vapors on existing aerosol particles in the atmosphere. 

However, the newly nucleated particles formed by nucleation are too small to serve as CS or to be observed 

from satellites directly and it takes time for them to grow into the accumulation mode (by condensation and 

coagulation) and thus provide enough surface area to be detected by optical instruments. The proxies show 

that an increase of BVOC emissions results in the production of small aerosol particles, but the non-linear 

behavior of the BVOC emissions will also affect the formation of new particles.  

In view of the simultaneous increase of S/Q and BVOC emissions during favorable conditions, human-

induced enhancement of BVOC emissions is recommended to be reduced to avoid increase of BVOC 

emissions and subsequent photochemical formation of fine particulates, e.g., by cutting plants and grasses 

in cities after 16:00 and by controlling biomass burning, in order to control O3 and aerosol pollution (Bai, 

2021b). 

3.3 Time series and trends 

Air pollution results from emissions of pollutants and unfavorable meteorological conditions. The air 

pollution can be reduced by reducing pollutant emissions by the implementation of policy measures. Time 

series of air pollutant concentrations show the effects of emission reduction policy, which however may be 

masked by meteorological conditions. Meteorological effects can be determined by comparison of observed 

and model-calculated time series, where in the model the emissions for the whole run are fixed to those in 

the starting year, but actual meteorological conditions are used. Hence the model shows only meteorological 

effects on the variation of the pollutant concentrations. This method is discussed in Section 3.3.1, for time 

series of aerosol concentrations, using AOD as a proxy, for 2010-2022. The method to determine the 2008-

2022 CO trends over China using IASI observations is discussed in Section 3.3.2 and results are presented.  

3.3.1 Monitoring effects of emission reduction in China through AOD time series 

The atmospheric concentrations of aerosol and trace gases in China have been increasing during the 20st 

century. To reduce them and thus improve air quality, emission reduction measures have been implemented 

starting in the first decade of the 21st century, through a series of 5-Year Plans and Action Plans for Clean 

Air. These plans have resulted in the reduction of SO2 since 2007 and NO2 since 2011, as shown by van der 

A et al. (2017) using data from the Ozone Monitoring Instrument (OMI) flying on the Aura satellite. 

However, time series of annual mean AOD derived from MODIS Terra and Aqua observations using the 

Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithm Lyapustin eta. 2018), show 

that aerosol concentrations over most of eastern China started to decrease only from 2014 and this decrease 

flattened from about 2018, varying somewhat between different locations across China (de Leeuw et al., 

2021; 2022). The flattening was first reported for two cities in China (Shanghai and Zhengzhou) (de Leeuw 

et al. 2021) and was confirmed from time series of AOD averaged over provinces in South-Eastern China 

Below the Hu line (SECBH) (de Leeuw et al. 2021). This study also showed that the AOD reached a 

maximum in 2014 over provinces in central China, but over provinces in the north or the south of the 

SECBH the AOD decrease started earlier.  

To further investigate these AOD time series and determine whether the AOD variations were due to 

meteorological or anthropogenic influences, the satellite-derived AOD times were used together with 

methods outlined in Kang et al. (2019). Kang et al. used a chemistry-transport model to compute time series 
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of AOD and trace gases, with actual meteorology but with emissions fixed to those in a reference year. In 

this way, all AOD variations are caused by meteorological influences and from the comparison with satellite 

observations, which include both meteorological and anthropogenic effects on the AOD, these effects can 

be separated and quantified. This was achieved by application of the Community Earth System Model 

(CESM) Version 1.0.4 (Hurrell et al., 2013) with the Community Atmospheric Model version 5 (CAM5) 

(Neale et al., 2012) for the simulation of aerosol concentrations. CESM has a spatial resolution of 1.9° × 

2.5° (latitude × longitude). The AOD was calculated from the modelled aerosol concentrations, for each 

grid point and time step, with the model developed by Zhang et al. (2017). The CESM was applied to 

provide AOD for the period January 2010 to August 2022, with emissions fixed to those for 2010 and with 

actual MERRA-2 (Modern Era Retrospective analysis for Research and Applications) re-analysis 

meteorological data (Rienecker et al., 2011; Gelaro et al., 2017). The CESM resolution does not allow for 

the application on a provincial scale and therefore five larger areas, representative of large industrial and 

urban centers in different climate, were selected for this study: the North China Plain (NCP), the Yangtze 

River Delta (YRD), the Pearl River Delta (PRD), the Sichuan Basin (SCB) and Hunan and Hubei (HNB). 

Figure 13 shows the time series of the annual mean AOD over the 5 study regions retrieved from MODIS 

data using the MAIAC algorithm and obtained from the CESM simulations using fixed emissions and actual 

meteorology. The time series in Figure 13 have been normalized to the year 2010. The MODIS time series, 

extended with one year with respect to those of de Leeuw et al. (2022), shows the AOD peak in 2014 for 

YRD, PRD and HNB and the flattening of the decrease from about 2018, confirming earlier observations 

on the provincial scale. The CESM data show that the normalized simulated AOD is larger than 1, which 

can only be caused by meteorological effects on the AOD. This leads to the conclusion that meteorological 

effects played a role in the enhancement of the AOD in 2014 despite the implementation of the 2013-2017 

Clean Air Action Plan aimed at reducing aerosol concentrations (Feng et al. 2019). Indeed, PM2.5 

concentrations strongly decreased between 2013 and 2017 as reported in many publications (e.g., Zheng et 

al., 2018a; Zhang et al., 2019a; Zhang et al., 2019b; Zhai et al., 2019; Feng et al., 2019; Xiao et al., 2021) 

and, unlike AOD, the annual average PM2.5 concentrations do not peak in 2014 as shown in Figure 3 of 

Xiao et al. (2021). Xiao et al. (2021) derived PM2.5 from MODIS AOD over key regions, some of which 

are similar to the ones used in our study. using models, ground-based PM2.5 measurements and machine 

learning. Their algorithm appears to have effectively removed the anomaly in the AOD data, resulting in 

smooth PM2.5 time series.  

The year 2014 was anomalous, with winterhaze, summer drought and monsoon effects as reported in several 

studies (e.g., Cao et al., 2015; Wang and He, 2015; Yin et al.,, 2017; 2024). Most of these studies focused 

on the NCP where the observed AOD was not enhanced but the model simulations in Figure 13b show a 

substantial meteorologically induced increase. A similar increase is simulated over the HNB, but over the 

other three study areas the meteorological effect is smaller. In contrast, the observations in Figure 13a show 

a much larger increase over the YRD, the PRD and the HNB, in particular considering that the AOD had 

overall decreased from the start of the study in 2010. To further investigate these effects, time series of 

monthly averaged AOD observations in 2013-2015 were used (Figure 14). The data in Figure 14 show that 

in the first half of 2014 the AOD was enhanced over all five regions, with anomalously high peaks in June 

over the HNB and the YRD (monthly mean AOD ~1.2 as compared to peak values of 0.6-0.8 in adjacentn 

years). Over the HNB another peak is observed in April and over the PRD anomalously high AOD was 

observed in March and April. After June the AOD dropped to below ~0.6 over all regions, but with NCP 

peaking in July. This behavior is in line with the large scale meteorological situations reported in Wang and 

He (2015), showing precipitation anomalies in July and August 2014 (high over central and south China, 

low over the north), and Yin et al. (2017). To further specify meteorological conditions influencing the 

AOD series in 2014 would require a detailed model study which is beyond the scope of this paper.       
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Figure 13. Time series of the annual mean AOD (January 2010- August 2022) over the 5 study regions (a) 

retrieved from MODIS data using the MAIAC algorithm, (b) obtained from the CESM simulations using 

fixed emissions and actual meteorology. All time series have been normalized to the year 2010. 

 

 

 

 

Figure 14. Time series of satellite-derived monthly mean AOD (January 2010- August 2022) over the 5 

study regions 

The data in Figure 13 show that, for the years 2017-2021, the difference for each year from the average is 

±10%, confirming that the decrease flattened during these years. During this flattening period an AOD peak 

is observed over the YRD, the PRD, and the HNB in 2019. The satellite-derived monthly mean AOD data 

(not shown) reveal that anomalously high AOD occurred over the PRD in March and April 2019, over the 

YRD in these same months with an additional peak in July and over the HNB in March and in 

August/September. Also the model simulations show an AOD peak  in 2019, over all areas except YRD 

where AOD continued to increase in 2020. These simulations suggest that meteorological effects 

contributed to the enhanced AOD and thus offset the effects expected from the implementation of the Three-

year Action Plan for Clean Air in 2018. Like 2014, also the year 2019 was anomalously warm, in particular 

in the north and east of China, with anomalously high precipitation in central east China (Zeng et al., 2020). 

The reasons for the enhanced meteorologically-induced AOD increase requires a detailed analysis as 

indicated above for 2014.  
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3.3.2 IASI Satellite CO Trends (2008-2022)  

Since 2007, three IASI (Infrared Atmospheric Sounding Interferometer) instruments have been 

successively embarked on board the polar-orbiting METeorological Operational satellites Metop-A, -B and 

-C. They provide daily global coverage of CO total column concentrations in the atmosphere with two daily 

overpasses (at 9:30 am and 9:30 pm, local time).  

 

Figure 15. Carbon monoxide total columns (COTC) trends derived from IASI daytime gridded data (from 

January 2008 to December 2022, with 1° x 1° spatial resolution). Areas where the trends are not statistically 

significant (p > 0.05) are indicated in grey. The location of Beijing is marked with a red star.  

The map in Figure 15 shows the 2008–2022 trends in IASI carbon monoxide total columns (COTC) over 

China with a spatial resolution of 1° × 1° (daytime data only). In the statistical method used here, the 

seasonal component of the dataset was removed by subtracting the monthly COTC concentrations for each 

year from the monthly averages of the 15-year data. These concentration anomalies were then divided by 

the average concentrations of the dataset, providing normalized values. The Theil-Sen method was then 

applied to the normalized data in order to compute the median slope of the time series, while ignoring errors 

induced by outliers. The p-value of Sen’s Slope was determined using the Mann-Kendall test.  

Figure 15 shows an overall decline of COTC which can be explained by the reduction of emissions from 

source sectors in China, such as iron and steel industries, residential sources, gasoline-powered vehicles, 

and construction materials industries (Zheng et al., 2018b). The largest negative trends are observed over 

areas with high population density, especially the Beijing-Tianjin-Hebei region (trends larger than -

2%/year). Industrial areas with high population density, like the Sichuan Basin, also show a significant 

decrease of COTC, more than -1.5%/year. 

3.4 Process studies 

The concentrations, emissions, and trends of pollutants in the atmosphere are the result of a wide variety of 

processes, including anthropogenic and natural emissions (Section 3.2), their reduction, and meteorological 

processes which were briefly discussed in the Introduction (Section 1). Experiments contributing to a better 

understanding of the vertical mixing of pollutants in the ABL are discussed in Section 3.4.1. The mechanism 

of removal of O3 due to uptake on aerosol particles and cloud droplets is discussed in Section 3.4.2. Wind 

and large-scale weather systems are important factors in the transport and removal of pollutants and their 
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vertical and spatial distribution. Validation of satellite-derived wind products is discussed in Section 3.4.3 

and the effect of a large-scale weather system on the distribution of PM2.5 is discussed in Section 3.4.4. 

3.4.1 Measurement of vertical in situ nitrogen dioxide profiles near Nanjing using a quadcopter  

NO2 is a key component of air pollution worldwide. The Royal Netherlands Meteorological Institute 

(KNMI) Research and Development Satellite Observations department monitors trace gases such as NO2 

from space using satellite instruments such as TROPOMI. The amount of NO2 in the atmosphere derived 

from TROPOMI observations is often divided into a tropospheric and a stratospheric amount. The derived 

tropospheric column density of NO2 often is subjected to large uncertainties of about 30-40%. One of the 

major sources of uncertainty is the assumed NO2 vertical profile shape in the troposphere. In addition to 

satellite validation, measurement of the vertical distribution of NO2 is essential to: 1) Study NOx -

photochemistry and (aerosol) dynamics; 2) Validate results from chemical models; 3) Understand effects 

of regional transport and 4) Identify sources and sinks (Wang et al., 2019). The objective of the current 

study is to determine the vertical distribution of NO2 in the planetary boundary layer (PBL) and gain better 

insight into the local NOx photochemistry. 

To achieve this objective, KNMI and the Nanjing University of Information Science and Technology 

(NUIST) conducted repetitive, high-resolution soundings of the PBL. These soundings were performed in 

Nanjing, Jiangsu, China, at a rural site in the Pukou district (32.214 oN, 118.658 oE) during the period 1-14 

June 2018, using an in-house developed, accurate in-situ NO2 sensor mounted on a quadcopter. The NO2 

sensor, called the KNMI NO2-sonde (Sluis et al., 2010), was calibrated by means of a side-by-side inter-

comparison with a commercial Thermo Environmental Instruments (TEI) 42 type NOx analyzer installed 

at the nearby NUIST campus. 

During the period 2-12 June 2018, 36 calibrated NO2 vertical profiles were measured. This collection of 

profiles clearly shows the diurnal cycle of NO2. Elevated NO2 concentrations close to the surface were 

observed during the night and the early morning, followed by development of the PBL from sunrise onward. 

During the afternoon, the PBL was well-mixed, and the vertical NO2 concentration profiles showed little 

variation between the surface and the top of the PBL, but with much lower concentrations near the surface 

than during the night and early morning. This is clearly illustrated with the profiles measured on 5 June 

2018 (Figure 16). 

More accurate flight telemetry data from the unmanned aerial vehicle (UAV) could improve the vertical 

profile accuracy and resolution. However, because these were not available, simultaneously measured 

pressure data from the NUIST ozone sensor has been used to determine the height of the NO2 observations. 

Furthermore, some of the nighttime measurements suffered from saturation issues i.e. the NO2-sensor could 

not always capture full night-time NO2 peak concentrations. If available, a surface NO2 dataset could be 

used to determine a possible correction factor. Finally, supplementary surface NO2 data should also be used 

to investigate cases where the upward and downward soundings differ substantially and cases where the 

measured NO2 volume mixing ratios appear too low. 

In conclusion, with the KNMI NO2-sonde mounted on the NUIST quadcopter a unique dataset of 36 vertical 

in-situ NO2 profiles was collected that demonstrates the (local) diurnal cycle. This data set will be further 

analyzed together with O3, PM2.5 and black carbon (BC) profiles measured simultaneously on the 

quadcopter, as well as with NO2 profiles measured at the nearby NUIST campus. 
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Figure 16. Overview of a typical measurement day where the diurnal cycle of NO2 is clearly visible. 0 and 

4 AM: elevated concentrations near the surface during the night and early morning; 8 AM: development of 

the PBL from sunrise onward. 1 and 4 PM: well-mixed PBL, flat NO2 vertical profile shapes with lower 

concentrations. 

3.4.2 Tropospheric ozone removal due to its diffusion in solid particles 

The removal of tropospheric O3 (TrO3) by aerosol and water droplets in Athens, Greece (380 oN, 23.70 oE) 

and Xuzhou, Jiangsu, China (34.2 oN, 117.1 oE) is estimated, based on the removal mechanisms and uptake 

rate as a function of accommodation and diffusional mechanisms. 

The sticking efficiency or mass accommodation coefficient of a gas molecule impinging on a liquid surface 

indicates the probability that this molecule will enter the bulk liquid phase. The most widely used values 

for the mass accommodation coefficient are 1 and 0.036. However, the application of the model developed 

earlier by Ghosh et al. (2018) to data obtained in Athens and Xuzhou, led to the conclusion that these widely 

used values differ significantly from those found in this study, i.e., for water vapor impinging on cloud 

droplets, the values of the mass accommodation coefficient vary in the range 0.004 - 0.046. Using these 

values in the cloud droplet growth equations results in large changes in cloud base height position of up to 

30%, suggesting that even large-scale models should use appropriate accommodation and diffusion 

coefficients.  

In addition, the diffusion of gas-phase molecules of various atmospheric compounds into solid particles is 

governed by a vacancy–mediated mechanism. In this context, H2O ice particles play a key role in the TrO3 

loss. The relevant model developed by Varotsos and Zellner (2010) is mainly based on the following. When 

a single diffusion mechanism operates in a solid, the diffusion coefficient, D, of gas-phase molecules in a 

solid is often found to follow an Arrhenius-type behaviour, i.e., D =Do exp [−E/ (kBT)], where the activation 

energy E and the pre-exponential factor Do are essentially temperature independent, and kB is the 

Boltzmann constant. The temperature-dependent measurements of D for various gas-phase molecules in 

solids have shown that their Do values differ by several orders of magnitude, while their D values do not 

differ significantly. This indicates that material transport occurs at comparable rates for the same 
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mechanism. Despite this variation, a linear relationship between lnDo and E holds. In the case of ice the 

following relationship applies: lnDo = 2.5023 E – 20.365. If Do values could be estimated, then the above 

relationship could have substantial predictive power for the diffusion coefficients of other species, e.g., O3 

in ice.  

Analysis of the ozone-sounding observations shows a significant anticorrelation between O3 concentration 

and water vapor mixing ratio, which becomes stronger on cloudy days. The result from this analysis is that 

in the upper PBL, the O3 uptake rates are high due to the preponderance of large cloud droplets, and this is 

reflected in the drop of O3 concentration observed in both the Athens and Xuzhou regions. At the gas-liquid 

interface, mass transfer is governed by molecular dynamics, while away from the droplet, surface eddy 

motions are responsible for mass transfer. To quantify O3 uptake by tropospheric clouds we used the model 

developed by Varotsos and Ghosh (2017), in which processes were considered within the gas phase and O3 

transport in a cloud droplet proceeds by both molecular and turbulent diffusion. The results show that for 

the summer season, the diffusivity at the surface is lower than that at the top of the PBL by about 35%. 

Also, the summer and spring profiles show larger diffusivity values than the autumn and winter profiles, 

thus confirming the T3/2 law for diffusivity. In addition, the diffusional contribution to the O3 uptake rate 

increases with increasing droplet size in both Athens and Xuzhou. 

3.4.3 Validation of Aeolus wind products using ground-based radar wind profiler network of China 

Aeolus is the first satellite mission providing global wind profile information. The Atmospheric Laser 

Doppler Instrument (ALADIN) is a direct-detection ultraviolet wind lidar aboard Aeolus operating at 355 

nm (Reitebuch, 2012; Ingmann and Straume, 2016). It is a dual channel design, with a Mie channel for the 

detection of aerosol backscatter and a Rayleigh channel for the detection of molecular backscatter, operating 

simultaneously. The wind speed is calculated from the signals in each channel based on the Doppler effect, 

after application of atmospheric and bias corrections. Aeolus provides wind profiles from the surface up to 

30 km, i.e., the wind vector component along the instrument’s line of sight, with a vertical resolution of 

0.25 to 2 km and a wind accuracy of 2 to 4 m/s, depending on altitude. The Aeolus data products were 

released to the public on 12 May 2020. However, before they can be used operationally in scientific studies 

or industrial applications, the Aeolus wind products need to be extensively evaluated by comparison with 

data from ground-based remote sensing measurements. 

In the current study, Aeolus L2B products containing horizontal line of sight (HLOS) wind components, 

have been evaluated over China for the period from 20 April to 20 July 2020. Rayleigh-clear winds, 

referring to the wind observations in an aerosol-free atmosphere, and Mie-cloudy winds, acquired from Mie 

backscatter signals induced by aerosols and clouds, have been validated using wind observations from the 

radar wind profiler (RWP) network in China as a reference. The Aeolus and RWP were collocated 

according to three matchup criteria, with 1 or 2 overpasses within 37.5 km of the RWP site and the third 

one with 1 overpass at a distance between 37.5 and 75 km of the EWP site. The evaluation shows that the 

performance of the Mie-cloudy wind products does not change much between the three matchup categories, 

but for the Rayleigh-clear wind products, the differences for the first two categories are much smaller than 

for category 3 where the distance between the Aeolus overpass and the RWP site is larger. The vertical 

variations of the Aeolus wind products are similar to those of the RWP observations, except for the 

Rayleigh-clear winds in the height range of 0–1 km, due to the limited power in the Rayleigh channel at 

these altitudes. The mean absolute normalized differences between the Mie-cloudy (Rayleigh-clear) and 

the RWP wind components are 3.06 (5.45) for all orbits, 2.79 (4.81) for ascending orbits and 3.32 (5.72) 

m/s for descending orbits. This indicates that the wind products for ascending orbits are slightly better than 

those for descending orbits, and the observation time has a minor effect on the comparison. The Aeolus 

Mie-cloudy winds are consistent with the RWP winds over most of east China, except in coastal areas 

where the Aeolus Rayleigh-clear winds are more reliable. Overall, the Mie-cloudy (Rayleigh-clear) and 

RWP winds correlate well, with correlation coefficients R of 0.94 (0.81). These results show the good 
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agreement of the Aeolus wind products with wind observations from the RWP network in China, which 

provides sufficient confidence that the newly released Aeolus wind products can be used for assimilation 

in operational weather forecasting in China (Guo et al., 2021a).  

3.4.4 Characterization of the role of atmospheric turbulence and stratification in aerosol pollution 

Fine particulate matter (PM2.5) concentrations near the surface can be significantly modulated by 

atmospheric turbulence (Xia et al., 2022) and the stratification of the PBL. However, the mechanism by 

which these factors influence the variation in PM2.5 remains poorly understood. To better understand the 

influence of turbulence and PBL stratification on PM2.5, surface-based meteorological and PM2.5 

observations, turbulent kinetic energy from a sonic anemometer (Figure 17a), and high-resolution 

soundings have been analyzed during a severe regional pollution transport event in Xiangyang (32.0090 
oN, 112.1226 oE), a city in the middle reaches of the Yangtze River, from January 3 to January 9, 2019. To 

the north lies a large plain region (Figure 17), which is subjected to the long-range transport of atmospheric 

pollutants from the north. During this period, Xianyang was influenced by a developing Mongolian high-

pressure system moving eastward, resulting in a northerly airflow over Central China favorable for the 

transboundary transport of pollutants to Xiangyang on January 4 and 5 when PM2.5 was continuously 

increasing. During the next few days, the Mongolian high-pressure system continued to develop and moved 

further eastward and southward, resulting in the accumulation of pollutants in the Xiangyang area on 

January 6. Afterwards, the Mongolian high moved further eastward and southward and then weakened. 

Central China was controlled by northerly airflow at the bottom of the high-pressure system and easterly 

airflow behind the system. The atmospheric pollution event gradually weakened and disappeared. 
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Figure 17. The terrain map of Xiangyang (XY marked with a red star in the upper right panel), a city in 

central China. Also shown is the weather station of XY and its surrounding environment (lower left panel), 

in which a 3-D Sonic Anemometer (CSAT3) manufactured by Campbell Scientific is installed. The tethered 

balloon launched from the roof of Xiangyang weather station was mainly used for measuring PM2.5 at 

various altitudes (lower right panel).  

 

During the entire pollution event, the turbulent kinetic energy and sensible heat flux tended to be lower at 

high PM2.5 concentrations and there was no obvious inversion layer below 500 m. During the initial and 

maintenance stages, there was a negative correlation between the turbulent kinetic energy or sensible heat 

flux and PM2.5, while the correlation was positive during the growth stage when regional transport 

dominated the variation in PM. During the initial and maintenance stages, a weak inversion layer appeared 

at higher altitudes. The occurrence of low PM2.5 concentrations within the atmospheric surface layer, 

observed by the tethered balloon (Figure 17), is explained by the presence of wind shear during the 

prevailing northerly winds. The pollutants were transported from the north over large distances but the wind 

shear prevented their downward transport. For more detail, see Zhou et al. (2022) and Guo et al. (2021b). 

4. Discussion and conclusions 

The focus of this work is on the use of satellite remote sensing to improve our understanding of air quality 

in China. Air quality aspects addressed are the emission of BVOCs in a rural area, building on earlier studies 

in other areas with different types of vegetation (Section 3.2.4), and the effect of large weather systems on 

PM2.5 using sophisticated instrumentation to understand the processes involved (Section 3.4.4). The latter 

includes the use of high-resolution soundings of PM2.5 and influencing parameters measured from a 

tethered balloon. To study NO2 profiles, a quadcopter was used, carrying a sophisticated in-house built NO2 

sensor together with a few other instruments for measuring O3 and black carbon profiles and a pressure 

sensor as an indicator of the elevation above the surface (Section 3.4.1). Another process studied was the 

removal of tropospheric O3 by aerosol and water droplets to explain the anticorrelation between O3 

concentration and the water vapor mixing ratio observed by ozone soundings (Section 3.4.2). This is due 

to high O3 uptake rates in the presence of large cloud droplets in the upper planetary boundary layer, which 

results in the drop of O3 concentration observed in both the Athens and Xuzhou regions. 

Other teams focus on the development of algorithms to improve the information retrieved from satellite 

observations, such as the use of polarization to increase the number of degrees of freedom for more accurate 

retrieval of aerosol parameters, in particular AOD (Section 3.1.1). The increased information content is also 

used, together with dedicated models, to improve the AOD/PM2.5 relationship and retrieve PM2.5 as 

demonstrated with PCF synthetic data. Such studies lead to a better understanding of how satellite 

observations of AOD can be used for AQ studies which require PM2.5 (Section 3.1.2). These studies are 

made using polar orbiting satellites flying in a low Earth orbit (LEO), which at low latitudes provide at best 

a single overpass per day during daylight hours. Complementary to this effort, instruments on geostationary 

(GEO) satellites are being used to develop algorithms for AOD retrieval, providing high temporal resolution 

which can be used to provide information on the diurnal variation of aerosols and the evolution of air 

quality. The improvement in spatial resolution to a scale of the order of 100 m renders the data better suited 

to study small-scale variations in urban areas (Section 3.1.4). All such studies require validation. Ground-

based networks have been established and are maintained and expanded to provide high-quality reference 

data for aerosol retrieval, such as from the Chinese SONET sun photometer network, complementary to the 

global AERONET (Section 3.1.3), and the radar wind profiler (RWP) network in China used as a reference 

for the validation of Aeolus wind products (Section 3.4.3).  

Much work is focused on the retrieval of NO2 from satellite data, in particular on the use of OMI and 

TROPOMI data. The validation of TROPOMI retrieval results, using MAX-DOAS data at Xuzhou as a 
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reference, is addressed in Section 3.1.5 and the data set was used in studies on the diurnal variation of NO2 

and on the importance of spatial scales. TROPOMI NO2 data were used to determine NO2 emissions over 

the Yangtze River Delta using the DECSO model (Section 3.2.1) with a resolution of 0.1o x 0.1o, showing 

the high emissions along the Yangtze River as well as from large urban centers. NOx emissions retrieved 

along the Yangtze River were subsequently used to compile a novel inventory of emissions from ships 

sailing on the river in the region of Nanjing. The results show the substantial contribution of ship emissions 

to the total NO2 emission in that area (Section 3.2.2). The NOx and CO2 emissions from a large 

anthropogenic source, taking the Megacity Wuhan as an example, were determined using TROPOMI data 

together with CO2:NOx emission ratios from two emission inventories and an improved superposition 

model driven by satellite NO2 measurements and verified by satellite CO2 measurements (Section 3.2.3). 

TROPOMI NO2 data, combined with the Vaisala Global Lightning Dataset, were used to determine the 

production of NOx from lightning over the Arctic during the summer months. The results were compared 

with other NOx sources at latitudes within the Arctic Circle, and the importance of this source has been 

discussed (Section 3.1.6). 

The implementation of emission reduction measures to improve AQ requires monitoring the effect of these 

measures on the concentrations of aerosols and trace gases. Preferably, ground-based networks would be 

used, providing a long time series of concentrations where they matter most for AQ. However, as mentioned 

in the introduction, in China such networks were established in 2013 and thus do not provide prior 

information, while also gaps exist in the spatial coverage. Satellite observations providing continuous time 

series of AOD go back to 1995 (Along Track Scanning Radiometer 2, ATRS-2, which flew on ENVISAT), 

and comparison of ATSR-retrieved AOD time series over SE China with those published in Sogacheva et 

al. (2018) shows that in 2017 the AOD was close to that in 1995 (de Leeuw et al., 2021). Provincial scale 

time series show large fluctuations, with a decrease starting between 2011 and 2014 (depending on the 

location in China), which flattened in recent years (from about 2018). Comparison with model simulations 

discussed in Section 3.3.1 shows the substantial influence of meteorological factors which either reduce or 

reinforce the effects of emission reduction. The decrease of CO over China, for the period 2008-2022, was 

studied using CO total column concentrations (COTC) retrieved from IASI on METOP-A, B, and C, with 

a spatial resolution of 1°×1° (daytime data only) (Section 3.3.2). The results show an overall decline of 

COTC, with the highest negative trends (more than -2%/year) over areas with high population density, 

especially the Beijing-Tianjin-Hebei region and the Sichuan Basin.  

In conclusion, the use of satellite remote sensing has considerably contributed to improving our 

understanding of the mechanisms and processes affecting air quality in China and has provided several new 

products: 

 A new AOD data set, using polarization data from the polarized scanning atmospheric corrector 

(PSAC). 

 AOD/PM2.5 ratios and PM2.5 data retrieved using data from the Polarization CrossFire (PCF) 

satellite, together with the PMRS model.  

 A high-resolution AOD data set for urban air pollution monitoring using GF-1 data together with 

MODIS AOD data. 

 Validated satellite-retrieved wind products over China. 

 Production efficiency and lifetime of NO2 from lightning in the Arctic during the summer seasons 

of 2019–2021.  

 A high-resolution NOx emission data base over the Yangtze River Delta derived from TROPOMI 

data. 

 An estimate of the impact of inland ship emissions on air quality in the region of Nanjing. 

 A new tool for quantification of city-scale emissions of NOx and CO2, driven by satellite NO2 

measurements. 

Jo
urn

al 
Pre-

pro
of



 A data set for the analysis of the vertical variation of NO2, using dedicated equipment on a 

quadcopter. 

 A characterization of the role of atmospheric turbulence and stratification in aerosol pollution.  

 Information on the role of aerosol and cloud droplets in the removal of tropospheric O3, explaining 

observations on the variation of O3 over Athens and Xuzhou. 

 Information on the sensitivity of BVOC emissions to influencing factors such as PAR, air 

temperature, water vapor pressure, and atmospheric pollution. 

The AOD time series and CO trends lead to the conclusion that the emission reduction policy in China has 

been effective but, as shown from the AOD time series, meteorological effects need to be accounted for to 

further reduce aerosol concentrations.  

The analysis of the importance of the production of NO2 from lightning in relation to other sources suggests 

that LNO2 can play an important role in the upper troposphere/lower stratosphere atmospheric chemical 

processes in the Arctic region, particularly during the summer. 

The improved superposition model is a promising new tool for quantification of city-scale emissions of 

NOx and CO2 allowing policymakers to gain rapid insights into spatial-temporal emission patterns and the 

effectiveness of carbon and nitrogen regulation in urban environments. 

In summary, the cooperation between scientists with different backgrounds, interests and skills in the 

DRAGON5 project EMPAC has facilitated further insights in the use of satellite data for air quality studies 

and the effects of emission reduction policies on the concentrations. New sensors are being developed and 

deployed providing better quality with improved spatial and temporal resolution. Gound-based remote 

sensing reference data is crucial for the continuous validation and evaluation of satellite data. In situ data 

are used together with satellite data to develop better understanding of processes influencing atmospheric 

composition, including effects of emission reduction of one or more constituents on the evolution of others. 

In particular the influence of emission reduction policy on the oxidative capacity of the atmosphere is an 

important issue. Simulations of atmospheric processes using transport and climate models are of utmost 

importance to understand the satellite observations, to develop and improve the algorithms applied to 

analyze the satellite observations and to separate different effects on the observed variations. The analysis 

leads to important conclusions on the implication of emission reduction policies and thus improve air 

quality. 

In the current study we have mainly used data from sensors on polar orbiting satellites, with some examples 

from the geostationary Himawari satellite. With the launch of GEMS and other sensors on geostationary 

satellites (TEMPO, Sentinel-4), important AQ data will become available with high temporal resolution 

providing detailed information on the evolution of trace gases and aerosols over very large areas. This 

creates enormous amounts of data which requires the application of machine learning (ML) techniques for 

the fast processing needed to timely make these data available. ML strongly depends on the availability of 

reliable data sets for training and excellent results have been achieved. For the detailed understanding of 

atmospheric phenomena, the combination of detailed in situ measurements, including laboratory studies, 

field campaigns and monitoring, modeling on a variety of scales and ground-based and satellite remote 

sensing are crucial, in particular in a rapidly changing environment such as China.  
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Appendix: List of abbreviations 

 

AEOLUS Atmospheric Dynamics Mission-Aeolus (ADM-Aeolus 

AERONET Aerosol Robotic Network  

AHI Advanced Himawari Imager 

AIS Automatic Identification System 

ALADIN  Atmospheric Laser Doppler Instrument 

ALH Aerosol Layer Height 

AOD Aerosol Optical Depth 

AQ Air Quality 

AQI Air Quality Index 

ATSR-2 Along Track Scanning Radiometer 2 
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BC Black Carbon 

BVOC Biogenic volatile organic compounds 

CAM5 Community Atmospheric Model version 5 

CCD Charge Coupled Device 

CCS China Classification Society 

CESM  Community Earth System Model 

CHCO Formaldehyde  

CHEOS civilian China High-Resolution Earth Observation System 

CNEMC  China National Environmental Monitoring Center  

CO Carbon Monoxide 

COTC Carbon monoxide total column 

CS Condensation Sink 

D Diffusion coefficient 

DECSO Daily Emissions Constrained by Satellite Observations  

E  Activation Energy 

ECV Essential Climate Variables  

EE Expected Error 

EMBE empirical model for BVOC emissions  

EMPAC Exploitation of satellite remote sensing to enhance our comprehension of the Mechanisms 

and Processes influencing Air quality in China 

ENVISAT Environmental Satellite 

EPA United States Environmental Protection Agency 

ESA European Space Agency 

EUMETSAT  European Organisation for the Exploitation of Meteorological Satellites 

FMF Fine Mode Fraction 

f(RH) Hygroscopic Growth Factor 

GF-1 Gaofen-1 

GCOS Global Climate Observing System 

GEMS Geostationary Environment Monitoring Spectrometer 

GEO Geostationary Earth Orbit 
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GLD360 Global Lightning Dataset 360  

HIS Hyperspectral Imager 

HLOS Horizontal Line of Sight 

HNB Hunan and Hubei 

H8 Himawari-8 (JMA)  

JMA Japan Meteorological Agency 

IASI Infrared Atmospheric Sounding Interferometer 

IR Infra-Red 

IRS Infrared Spectroradiometer 

KNMI Royal Netherlands Meteorological Institute 

kB Boltzmann constant 

LEO  Low Earth Orbit 

LNO2 Lightning NO2 

MAIAC Multi-Angle Implementation of Atmospheric Correction 

MAX-DOAS Multi-AXis Differential Optical Absorption Spectroscopy 

MEE Ministry of Ecology and Environment  

MEIC Multi-resolution Emission Inventory for China  

MERRA-2  Modern Era Retrospective analysis for Research and Applications, version 2 

METOP METeorological Operational satellite  

MIR Mid Infra-Red 

MODIS Moderate Resolution Imaging Spectroradiometer 

MOST Ministry of Science and Technology of the P.R. China 

MTG-S  Meteosat Third Generation Sounder 

mr
f real part of the complex refractive index of dry fine mode particles 

NASA United Sates National Aeronautics and Space Administration  

NCP North China Plain 

NH3 Ammonia 

NIR Near Infra-red 

NO Nitrogen Monoxide 

NO2 Nitrogen Dioxide 
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NOx  NO + NO2 

NRSCC National Remote Sensing Center  

NUIST Nanjing University of Information Science and Technology 

OCO-2 Orbiting Carbon Observatory-2 

OMI Ozone Monitoring Instrument 

ORG Organic Precursor Vapor Concentration 

O3 Ozone 

PAR  photosynthetically active radiation 

PBL  Planetary Boundary Layer 

PBLH  Planetary Boundary Layer Height 

PCF Polarization CrossFire 

pE water vapor pressure 

PM Particulate matter 

PMRS Particulate Matter Remote Sensing 

PM2.5/PM10 Mass concentration of particles smaller than 2.5 µm (PM2.5) or 10 µm (PM10) 

PRD Pearl River Delta 

PSAC Polarized Scanning Atmospheric Corrector 

Q global solar radiation 

RH Relative Humidity 

RWP Radar Wind Profiler 

S diffuse solar radiation 

SCB Sichuan Basin 

SECBH South-Eastern China Below the Hu line 

SEIM Shipping Emission Inventory Model 

SNR Signal to Noise Ratio 

SONET Sun-sky radiometer Observation NETwork 

SO2 Sulfur Dioxide 

SRAP Synergetic Retrieval of Aerosol Properties 

TEI Thermo Environmental Instruments 

TEMPO  Tropospheric Emissions: Monitoring of Pollution 
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TOA Top of Atmosphere 

TROPOMI TROPOspheric Monitoring Instrument 

TrO3 Tropospheric O3  

UAV Unmanned Aerial Vehicle 

UV Ultra-Violet Radiation 

VCD Vertical Column Density 

VEf Fine-mode columnar volume-to-extinction ratio 

VIS Visible 

VOC  Volatile organic compounds 

WAQI World Air Quality Index 

WFV Wide-Field-of-View 

WHO World Health Organization 

WMO World Meteorological Organization 

YRD Yangtze River Delta 

ρf effective density of fine-mode aerosol particles 

τa AERONET AOD 
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Highlights 

- AOD, NO2 and CO time series show effectiveness emission reduction policy in China; 

- Meteorological effects influence the aerosol concentration trends.  

- Production of NO2 from lightning important in the Arctic region; 

- Improved superposition model to quantify city-scale emissions of NOx and CO2; 

- High-resolution NOx emission data base over the Yangtze River Delta from TROPOMI; 

- Estimate of impact of inland ship emissions on air quality in Nanjing region. 
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