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THE PRYM-HITCHIN CONNECTION AND ANTI-INVARIANT

LEVEL-RANK DUALITY

THOMAS BAIER, MICHELE BOLOGNESI, JOHAN MARTENS, AND CHRISTIAN PAULY

Abstract. We construct a “Hitchin-type” connection on bundles of non-abelian theta
functions on higher-rank Prym varieties, for unramified double covers of curves. We
formulate a version of level-rank duality in this Prym setting (building on work of
Zelaci), show it holds for level one, and establish that the duality respects the flat
connections at all levels.

1. Introduction

Prym varieties are a classical topic of study in algebraic geometry, going back to the
19th century, and brought into a modern context by Mumford [Mum74]. Initially just
considered in the context of a double covering of a curve, as moduli space of line bundles
on the covering curve that dualise under the involution, they can be defined for much
more general morphisms between curves. In the original setting of double covers, how-
ever, a generalisation can also be made to higher-rank vector bundles, as was recently
done by Zelaci [Zel17, Zel19a, Zel19b, Zel22]. One now considers vector bundles on the
covering curve, possibly with fixed determinant, that dualize when pulled back under its
involution.

As with any abelian varieties, the sections of the line bundle that provides the principal
polarisation (also known as theta functions) for classical Prym varieties give rise to a
vector bundle over the moduli space of the abelian varieties. This bundle is naturally
equipped with a flat projective connection induced by a heat operator for the theta
functions [Wel83].

For higher-rank vector bundles with fixed determinant over a curve, or principal bundles
with a non-abelian, semi-simple structure group, Hitchin constructed a flat projective
connection on the associated bundles of non-abelian theta functions [Hit90]. Similar to
Welters’ approach, the connection of Hitchin arises through a projective heat operator
on the sections of the line bundle over the moduli space of bundles. The symbol of
this projective heat operator is dual to the quadratic part of the Hitchin system on the
moduli space of Higgs bundles. Such a symbol uniquely determines a heat operator if a
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number of cohomological conditions are satisfied, and Hitchin verified these, using the
similarities between the Hitchin system and the Narasimhan-Atiyah-Bott Kähler form
on the moduli space of bundles.

The main aim of this paper is now to construct a “Hitchin type” flat projective connection
on the bundles of non-abelian theta functions for the higher-rank Prym varieties of Zelaci
(Theorems 5.1.2 and 5.2.2).

Note that the symplectic geometric (or Kähler) description of these moduli spaces (well-
known and classical in the standard setting) has not yet been developed. We there-
fore take a purely algebro-geometric road to verifying the conditions on the candidate
symbol of the heat operator, which in the case of bundles on a curve (no covering)
was developed by the authors in [BBMP23]. The key tool there (substituting for the
Narasimhan-Atiyah-Bott Kähler form) is an explicit determination of the Atiyah class
of the determinant-of-cohomology line bundle on the moduli space of bundles, based on
work of Beilinson and Schechtman [BS88].

Once the existence of the Prym-Hitchin connection is established, we can look at gen-
eralizing some of the properties that are known to be satisfied by the classical Hitchin
connection. In particular, we will look at level-rank duality in the anti-invariant case,
extending work of Zelaci [Zel19a]. It was shown by Belkale in [Bel09] that the level-rank
duality respects the connections on the various bundles involved in the statement. We
formulate a version of level-rank duality in the Prym setting, see (16), show that it is an
isomorphism at level one (Corollary 7.3), and that at all levels it gives a flat morphism
(Theorem 8.2.1). We expect the duality to be an isomorphism at all levels, but do not
establish this. In order to do this, we prove in Theorem 6.2.3 a variant of a theorem
of Laszlo [Las98], showing that the Prym-Hitchin connection is equivalent to the WZW
connection for twisted conformal blocks. We also need to make use of conformal em-
beddings in the setting of twisted conformal blocks (see also [MZ20] for some related
work).

The formalism of [BBMP23] was recently also used by Biswas, Mukhopadhyay and Went-
worth in [BMW23, BMW24b, BMW24a] and Ouaras in [Oua23, Oua25] to construct a
Hitchin connection in the case of parabolic principal bundles with arbitrary simple struc-
ture group, or parabolic vector bundles with arbitrary fixed determinant, respectively.
Both our setting, and that of these parabolic versions, can be understood as special cases
of moduli space of torsors for a parahoric Bruhat-Tits group scheme, and we expect a
construction of the Hitchin connection to go through in that generality. As of this writ-
ing some foundational elements (mainly regarding the corresponding moduli spaces of
parahoric Higgs bundles, as well as a parahoric version of Beilinson and Schechtman’s
theory of trace complexes [BS88]) are missing to carry out the construction in this level
of generality. We hope to revisit this in the future.

In this paper we will only be concerned with unramified covers of curves. Though much
of the results (in particular the existence of the connection) would go through even for
ramified covers, and indeed Zelaci’s work already takes place in this context, it would
add an extra layer of complexity in an already quite baroque setting. As our own
motivating application of the Prym-Hitchin connection does not involve ramification,
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and ramification is essentially a variation on the parabolic settings mentioned above,
we have chosen to focus purely on the new aspects of this work, which is the use of a
symmetry that manifests itself simultaneously as the Galois group of a cover of curves,
and as automorphisms of the structure group of the bundles in the moduli problem.
This paper is the first to construct a Hitchin connection in this context.

The rest of this paper is organised as follows: in Section 2 we recall background material
on connections and heat operators. In Section 3 we summarise some of the relevant
definitions and results from Zelaci’s work on higher-rank Prym varieties. In Section 4
we prove additional results on the cohomology of these higher-rank Prym varieties. We
then show that the requirements for the candidate symbol map to determine a projective
heat operator are satisfied, and hence the existence of the Prym-Hitchin connection, in
Section 5. In Section 6 we show that Laszlo’s comparison theorem (which shows the
equivalence between the Hitchin connection and the WZW connection for bundles of
conformal blocks) also holds in the Prym context. In Section 7 we formulate level-rank
duality in the Prym setting, and verify that it holds at level one, through considerations
of the relevant theta-groups. The Laszlo theorem then allows us to establish the flatness
of the level-rank morphism for general levels, following an approach due to Belkale
[Bel09], in Section 8. Finally, Appendix A reviews the relevant constructions for the
twisted WZW connection, mainly following Damiolini [Dam20], and also discusses the
consequences of conformal embeddings in this twisted context.

1.1. Acknowledgments. The authors would like to thank Jørgen Ellegaard Andersen,
Prakash Belkale, Indranil Biswas, Chiara Damiolini, Jochen Heinloth, Swarnava Mukho-
padhyay, Zakaria Ouaras, Karim Rega, Angelo Vistoli, Richard Wentworth and Hacen
Zelaci for useful conversations and remarks at various stages of this work.

2. Connections of Hitchin type

In this section, we recall algebro-geometric conditions for the construction of a projec-
tive connection on direct image sheaves following Hitchin’s ideas from [BBMP23], to
which we refer for the necessary background. For simplicity we assume that the base
field is C, which will be necessary in sections 7 and 8 dealing with conformal blocks.
As in [BBMP23] the construction of the Prym-Hitchin connection remains valid over
an algebraically closed base field of arbitrary characteristic (with a few exceptional val-
ues).

2.1. (Projective) connections and Atiyah algebroids. We briefly recall here Ati-
yah’s viewpoint on connections [Ati57], as splitting of Atiyah sequences, as we will be
using that throughout.

Given a vector bundle on a smooth scheme E Ñ S, the Atiyah algebroid ApEq of E is
the sheaf of first order differential operators with diagonal symbol, i.e. the middle term
in the top short exact sequence (known as the Atiyah sequence) of the commutative
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diagram

0 EndpEq ApEq TS 0

0 EndpEq D
p1q
S pEq TS b EndpEq 0.

´bIdE

A connection ∇ on E is a splitting of the Atiyah sequence

0 EndpEq ApEq TS 0.

∇

It is flat if ∇ preserves the natural Lie brackets. A projective connection on E 1 is a
splitting of the push-out of the Atiyah sequence by EndpEq Ñ EndpEq

L
OS :

0 EndpEq
L
OS ApEq

L
OS TS 0,

∇

which is again called flat if it preserves the Lie brackets. Remark that a (projective)
connection on a vector bundle E induces a (projective) connection on the dual bundle
E˚, and if two bundles carry (projective) connections, there is natural one induced on
their tensor product.

Alternatively, one can characterise projective connections through local connections ∇i

defined on a covering Ui of S, with the condition that on the intersections Ui X Uj one

has that ∇i
Xpsq ´ ∇

j
Xpsq “ ωijpXqs, for some ωij P Ω1pUi X Ujq.

2.2. Flat morphisms between connections. A morphism Φ between bundles E and
F over S, equipped with connections ∇E and ∇F , is said to be flat (or to preserve
the connections), if for every open U Ă S, every X P TSpUq, and every s P EpUq, we
have

∇F
XpΦsq “ Φ

`
∇E
Xs

˘
.

This is equivalent to Φ, thought of as a section of F b E˚, being flat for the tensor

connection, i.e. ∇FbE˚

X Φ “ 0 for all vector fields X.

If E and F are equipped with projective connections, then Φ is flat if locally

∇F
XpΦsq ´ Φ

`
∇Es

˘
“ ωpXqΦpsq,

for some one-form ω. Flat morphisms between bundles with projective connections have
constant rank.

1This is easily seen to be equivalent to the definition of projective connection given in [Loo13, Section
1].
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2.3. Projective connections from symbol maps. Consider a smooth surjective mor-
phism of smooth schemes π : M Ñ S, and a line bundle L Ñ M such that π˚L is locally
free, hence a vector bundle. One way to construct a connection on π˚L is via a heat
operator on L. We briefly summarise this notion, and refer to [vGdJ98] and [BBMP23]
for further details.

On M we can consider the sheaf

WM{SpLq “ D
p1q
M pLq ` D

p2q
M{SpLq Ă D

p2q
M pLq,

which fits in the short exact sequence

0 D
p1q
M{SpLq WM{SpLq π˚pTSq ‘ Sym2 TM{S 0

σS‘σ2

(here D
p2q
M{SpLq refers to the second order differential operators that are vertical relative

to π, and σS and σ2 are the natural symbol maps).

A heat operator D on L is now a splitting of σS , which has an associated symbol
map

(1) ρD “ π˚pσ2q ˝ D : TS π˚ Sym
2 TM{S .

Similarly a projective heat operator D on L is a splitting of
`
π˚WM{SpLq

˘
{OS TS .

σS

Note that a projective heat operator also has a well-defined symbol map as in (1).

Each (projective) heat operator on L canonically induces a (projective) connection on
π˚L, see [vGdJ98, §2.3.3] or [BBMP23, §3.3].

Moreover, a projective heat operator can in turn be specified by a suitable candidate
symbol map. To this end, let us denote the Kodaira–Spencer map associated to π

by

κM{S : TS R1π˚TM{S ,

and the connecting homomorphism of the long-exact sequence associated to the symbol
map of π´1OS-linear second order differential operators

0 TM{S D
p2q
M{SpLq{OM Sym2 TM{S 0

by
µL : π˚ Sym

2 TM{S Ñ R1π˚TM{S;

also rLs P R1π˚Ω
1
M{S is the Atiyah class of L relative to π. We can now state the

conditions for a candidate symbol map to arise from a projective heat operator (this was
originally done by Hitchin [Hit90, Theorem 1.20] in an infinitesimal version).

Theorem 2.3.1 (Van Geemen – De Jong,[vGdJ98, §2.3.7], [BBMP23, Theorem 3.4.1]).
With L and π : M Ñ S as before, if the following conditions hold for a given candidate
symbol map ρ : TS Ñ π˚ Sym

2 TM{S:
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(a) κM{S ` µL ˝ ρ “ 0,

(b) the map

YrLs : π˚TM{S R1π˚OM

is an isomorphism, and

(c) π˚OM “ OS ,

then there exists a unique projective heat operator D on L with symbol ρ.

Furthermore, flatness of this connection is also related to properties of the symbol
map:

Theorem 2.3.2 ([Hit90, Theorem 4.9] [BBMP23, Theorem 3.5.1]). Under the conditions
of Theorem 2.3.1, the projective connection is flat if

(1) for all sections θ, θ1 of TS, we have tρpθq, ρpθ1quT˚
M{S

“ 0,

(2) the morphism µL is injective, and

(3) there are no vertical vector fields, i.e. π˚TM{S “ 0.

2.4. Hitchin’s connection. The main application so far of Theorem 2.3.1 is Hitchin’s
original one to moduli of stable vector bundles with trivial determinant. For referencing
purposes we recall the characteristic-free version: consider a smooth family πs : C Ñ S of
projective curves of genus g ě 2 (and g ě 3 if r “ 2) defined over an algebraically closed
field of characteristic p not dividing 2 and r, and the relative moduli scheme πe : M Ñ S

of stable vector bundles of rank r with trivial determinant, with L Ñ M the relatively
ample generator of its relative Picard group.

Furthermore, let ρHit : R1πs˚TC{S πe˚ Sym
2 TM{S be the Hitchin symbol, which

can be understood as the dual to the quadratic part of the Hitchin system: for a given
bundle E of trivial determinant on a curve C we have

Sym2H0pC, End0Eq H0pC,K2
Cq

which dualizes to

H1pC, TCq Sym2 TEM – Sym2H1pC, End0pEqq,

see [BBMP23, Definition 4.3.1] for the global description.

Theorem 2.4.1 ([Hit90, Theorems 3.6 and 4.9],[BBMP23, Theorem 4.8.1, 4.8.2]). Con-
sider any integer k such that p does not divide k ` r and such that πe˚pLkq is locally
free. Then there exists a unique projective connection on the vector bundle πe˚pLkq of
non-abelian theta functions of level k, induced by a heat operator with symbol

ρ “
1

r ` k

`
ρHit ˝ κC{S

˘
.

Furthermore, the projective connection defined in this way is projectively flat.
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3. Geometry of higher-rank Prym varieties

We now consider an étale double cover rC of a non-singular and projective relative curve
C over S,

(2)

rC C

S

p

with corresponding fixed-point free involution σ : rC Ñ rC over S. It is classical that the

Jacobian variety J rC{S
of the curve rC is isogenous to a product of two abelian varieties,

the Jacobian of the quotient JC{S and the Prym variety Pr rC{C. The modern treatment

of these classical Prym varieties was initiated by Mumford [Mum74] in the investigation
of the geometry behind the Schottky–Jung relations.

A natural generalization of this abelian setting occurs for moduli spaces of semi-stable
vector bundles of higher rank, and has been studied in the work of Zelaci [Zel22, Zel19b,
Zel17]. In this section we recall some of his results and establish several further facts
about the geometry of these higher-rank Prym varieties.

3.1. Let NGLr Ñ S be the relative algebraic stack of rank-r bundles E on rC equipped
with an isomorphism ψ : E Ñ σ˚pE˚q. This is a smooth stack, locally of finite type.
We will mainly consider two substacks, N˘

GLr
, cut out by the extra condition that ψ “

˘tpσ˚ψq. Following Zelaci, we refer to these as parameterising respectively σ-symmetric
and σ-alternating bundles (note that the latter can only occur in even rank). We will
use a subscript SLr to indicate the stacks where there is a further trivialisation of the
determinant detpEq – O rC .

The stacks N˘
GLr

and N˘
SLr

can also be understood as a special case of stacks parame-
terizing parahoric torsors, for the parahoric Bruhat-Tits group scheme on C obtained as
the Γ-invariant part of the Weil restriction Res rC{C

pGˆ CqΓ, where Γ “ Z{2Z which acts

as the Galois group on rC, and by the automorphisms

(3) Ψ` : g ÞÑ tpg´1q

(for the σ-symmetric case) and

(4) Ψ´ : g ÞÑ J tpg´1qJ´1

(for the σ-alternating case )

on G “ GLr or SLr, where J is the matrix representing the standard symplectic form on
C
r (of course one can equivalently conjugate in (3) and (4) by other matrices representing

non-degenerate symmetric or alternating bilinear forms), see [Zel19b, §2], [Zel19a, §3.1],
[Zel22], [Hei10], [PR10] for further details. Torsors for Bruhat-Tits group schemes were
also studied by Balaji and Seshadri in [BS15], but we should remark that they are
concerned with the case where the group scheme is generically trivial, which will not be
the case for us (on the other hand, we do not consider ramification).
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A stability condition for anti-invariant bundles, in terms of isotropic subbundles, was
developed in [Zel19b, §4], where also the construction was given of good moduli spaces
of semi-stable anti-invariant σ-symmetric and σ-alternating bundles. They are also con-
structed through the general theory of Alper, Halpern-Leistner and Heinloth [AHLH23,
§8]. We shall denote these moduli spaces (which are normal, projective varieties) by

N
˘,ss
GLr

and N
˘,ss
SLr

, and refer to them as higher-rank Prym varieties. Abusing notation,
we will denote the two open subsets corresponding to anti-invariant bundles whose un-
derlying vector bundle is stable by N

˘,s
GLr

Ă N
˘,ss
GLr

and N
˘,s
SLr

Ă N
˘,ss
SLr

. Note that these
two open subsets are strictly contained in the subsets of stable anti-invariant vector
bundles.

We could also consider the involution on the moduli spaces ĂMs
GLr

and ĂMs
SLr

of stable

degree 0, respectively fixed trivial determinant, bundles on rC, induced by σ and given
by E ÞÑ σ˚pE˚q. For simplicity we shall also denote this involution by σ. By definition

of the open subsets N
˘,s
GLr

and N
˘,s
SLr

we have natural morphisms induced by forgetting
the isomorphism ψ

(5) ιGLr : N˘,s
GLr

Ñ ĂMs
GLr

and ιSLr : N˘,s
SLr

Ñ ĂMs
SLr

.

The images of these morphisms ιGLr
and ιSLr

are clearly the fixed-point loci of the

involution σ on ĂMs
GLr

and ĂMs
SLr

, which we denote by
´

ĂMs
GLr

¯σ
˘
and

´
ĂMs

SLr

¯σ
˘
. It was

shown by Zelaci [Zel19b, Propositions 4.11 and 4.12] that ιGLr
induces an isomorphism

between N
˘,s
GLr

and
´

ĂMs
GLr

¯σ
˘
. In the SLr-case, it is shown that ιSLr

: N˘,s
SLr

Ñ
´

ĂMs
SLr

¯σ
˘

is an isomorphism if r is odd, and finite étale of degree 2 if r is even. Note that, since
the only automorphisms of stable bundles are given by scaling by a scalar, the only
anti-invariant bundles whose underlying bundle is stable have to be σ-symmetric or
σ-alternating.

3.2. Let ĂMs
SLr

Ñ S be the relative moduli space of stable rank-r bundles on rC with

trivial determinant. Using the morphism ιSLr from N
˘,s
SLr

to the fixed-point loci of ĂMs
SLr

we get a direct sum decomposition

(6) ι˚SLr
TĂMs

SLr
{S

“ T
N

˘,s
SLr

{S ‘ ι˚SLr
N
ιSLr pN˘,s

SLr
q{ ĂMs

SLr

,

where N
ιSLr pN˘,s

SLr
q{ ĂMs

SLr

is the relative normal bundle of ιSLr
pN˘,s

SLr
q in ĂMs

SLr
. This split

will allow us to deduce some of the geometry of N˘,s
SLr

from that of ĂMs
SLr

.

Some further notation we will need is collected in the following diagram:
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(7)

rC ˆS
ĂMs

SLr

ĂMs
SLr

rC ˆS N
˘,s
SLr

N
˘,s
SLr

rC

S

C

rπe

rπn

rπw

rπe

ιSLr

rπs

πs

.

We now summarize some of the relevant geometric properties of the higher-rank Prym
varieties in the fixed-determinant case established by Zelaci. We will state the results for

one fixed covering p : rC Ñ C, but all results also hold for relative coverings (2).

Theorem 3.2.1 (Zelaci). Let σ : rC Ñ rC be an involution without fixed points and let´
ĂMs

SLr

¯σ
˘
be the locus of σ-symmetric/σ-alternating anti-invariant stable vector bundles

of rank r and trivial determinant on rC in ĂMs
SLr

. Then

(a)
´

ĂMs
SLr

¯σ
`

is smooth, connected ([Zel22, Theorem 4.16]) and of dimension

1
2
prg ´ 1qpr2 ´ 1q, where rg is the genus of rC ([Zel17, §2.5]);

(b)
´

ĂMs
SLr

¯σ
´

is smooth, connected and (non-canonically) isomorphic to
´

ĂMs
SLr

¯σ
`

if r is even, and empty if r is odd ([Zel22, §4.2.2]);

(c) the Picard group of N`,s
SLr

(hence also of N´,s
SLr

if it is non-empty) is infinite cyclic
and generated by the square root Pr of the restriction of the ample generator
Lr P Pic ĂMs

SLr

. The square root Pr is called the Pfaffian line bundle ([Zel17, §4.3,

in particular Lemma 4.3.5] and [Hei10, Theorem 3]).

(d) the Pfaffian line bundle Pr descends to
´

ĂMs
SLr

¯σ
˘
, i.e., there exists a line bundle

P on
´

ĂMs
SLr

¯σ
˘

such that ι˚SLr
pPq “ Pr.

Remark 3.2.2. It is worthwhile to describe the above introduced moduli spaces in the
particular case when r “ 2. In fact, a rank-2 anti-invariant bundle with trivial determi-

nant is also invariant. More precisely, one can show that for an étale cover p : rC Ñ C
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with associated 2-torsion line bundle ∆ P PicCr2s the pull-back of vector bundles by p
induces the following isomorphisms

Mss
SL2

N
`,ss
SL2

„ and Mss
SL2

p∆q N
´,ss
SL2

,
„

whereMss
SL2

p∆q denotes the moduli space of rank-2 bundles with fixed determinant equal

to ∆. Under these isomorphisms the open subsets N˘,s
SL2

correspond to the complement

of the strictly semi-stable locus (Kummer variety of JC) plus the 2 components of the
(Kummer variety of) Prym varieties mapped to Mss

SL2
(and Mss

SL2
p∆q) by taking the

direct image under the covering map p. The Pfaffian line bundle P2 coincides with
the classical theta line bundle on Mss

SL2
and Mss

SL2
p∆q. Finally, the étale degree-2 maps

ιSL2
: N˘,s

SL2
Ñ

´
ĂMs

SL2

¯σ
˘
correspond to the quotient by the involution E ÞÑ Eb∆ acting

on Mss
SL2

and Mss
SL2

p∆q. Note that in this case there are two line bundles P verifying
ι˚SL2

P “ P2.

We also will need the following additional properties of these anti-invariant moduli
spaces.

Proposition 3.2.3. If r ą 2 and g ě 2 (or r “ 2 and g ě 3) the codimension of the

closed subvariety N
˘,ss
SLr

z N
˘,s
SLr

in N
˘,ss
SLr

is at least 2.

Proof. It is easily seen that a closed point in N
˘,ss
SLr

z N˘,s
SLr

corresponds either to a strictly
semi-stable anti-invariant bundle or to a direct sum of at least two non-isomorphic stable
anti-invariant bundles. In both cases we can give an upper bound of the dimension of
these loci as follows.
According to Zelaci [Zel19b, Lemma 4.3 and 4.4] a closed point corresponding to a
strictly semi-stable anti-invariant bundle can be represented by a direct sum of the type

F0 ‘
à
iPI

pHi ‘ σ˚H˚
i q or

à
iPI

pHi ‘ σ˚H˚
i q ,

where F0 is a stable anti-invariant bundle of degree 0, the bundles Hi are stable (but
not necessarily anti-invariant) and |I| ą 0. It will be enough to do the computations for
|I| “ 1 — since for |I| ą 1 the dimension of the loci are obviously smaller. We recall the
dimensions of the moduli spaces ([Zel22, Thm. 3.13] and [Zel17, §2.5])

dimN
˘,s
GLr

“
1

2
prg ´ 1qr2, dimN

˘,s
SLr

“
1

2
prg ´ 1qpr2 ´ 1q, dim ĂMs

GLr
“ prg ´ 1qr2 ` 1.

We denote r0 “ rkF0, r1 “ rkH1 with r “ r0 ` 2r1 and r0 ě 0, r1 ą 0. Thus
the dimension of the strictly semi-stable locus equals (note that we have to substract

dimN
˘,s
GL1

“ 1
2
prg ´ 1q as we consider fixed trivial determinant)

1

2
prg ´ 1qr20 ` prg ´ 1qr21 ` 1 ´

1

2
prg ´ 1q “

1

2
prg ´ 1qpr20 ` 2r21 ´ 1q ` 1.

So its codimension equals

1

2
prg ´ 1qp2r21 ` 4r0r1q ´ 1 “ 2pg ´ 1qr1pr1 ` 2r0q ´ 1
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which is ě 2 by our assumption on g and r.

In the second case, it will be enough to compute the dimension of the locus of anti-
invariant bundles of the form F1 ‘ F2 with Fi P N

˘,s
GLri

and detpF1 ‘ F2q “ O. This

dimension equals

1

2
prg ´ 1qr21 `

1

2
prg ´ 1qr22 ´

1

2
prg ´ 1q “

1

2
prg ´ 1qpr21 ` r22 ´ 1q.

So its codimension equals 1
2
prg ´ 1q2r1r2 “ prg ´ 1qr1r2 which is ě 2 by our assumption

on g and r. �

Proposition 3.2.4. The moduli spaces N
˘,ss
SLr

and N
˘,ss
GLr

are normal varieties.

Proof. By [Hei10, Proposition 1], we know that the stacks N˘
GLr

and N˘
SLr

are smooth.

By [Hei17, Proposition 3.18], the semi-stable loci inside these stacks is open, hence also
smooth, in particular normal. By [AHLH23, Theorem 8.1], these semi-stable loci have

good moduli spaces, N
˘,ss
GLr

and N
˘,ss
SLr

. By [Alp13, Theorem 4.16 (viii)], these good
moduli spaces are normal. �

Corollary 3.2.5. We have H0pN˘,s
SLr

,Oq “ H0

ˆ´
ĂMs

SLr

¯σ
˘
,O

˙
“ C.

Proof. Since N
˘,ss
SLr

is a complete variety, we have H0pN˘,ss
SLr

,Oq “ C. On the other

hand, since by Proposition 3.2.4 N
˘,ss
SLr

is normal and since by Proposition 3.2.3 the

codimension of N˘,ss
SLr

z N
˘,s
SLr

in N
˘,ss
SLr

is at least 2, we deduce by Hartogs’s theorem

that H0pN˘,s
SLr

,Oq “ H0pN˘,ss
SLr

,Oq “ C. Finally, since the map ιSLr
: N˘,s

SLr
Ñ

´
ĂMs

SLr

¯σ
˘

is either an isomorphism or a finite étale map of degree 2 (depending on the parity of

r), we obtain that H0p
´

ĂMs
SLr

¯σ
˘
,Oq is either isomorphic to, or a direct summand of

H0pN˘,s
SLr

,Oq, which allows to conclude. �

Corollary 3.2.6. The line bundle Pr extends to the full moduli space N
˘,ss
SLr

, and the

direct images rπe˚P
k
r have finite rank.

Remark 3.2.7. This can also be seen directly by descending the line bundle from the
semi-stable locus on the stack, using [Alp13, Theorem 10.3] and a similar reasoning as
the discussing of the action of the stabilizer given in [Zel19a, Lemma 6.1].

We will also need the following fact about the relative canonical bundle of N˘,s
SLr

.

Proposition 3.2.8. The relative canonical bundle on ĂMs
SLr

pulls back to twice the

relative canonical bundle of N˘,s
SLr

, i.e.

ι˚SLr
KĂMs

SLr
{S

– K2

N
˘,s
SLr

{S
.
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Proof. As before, we denote by End0pEq Ñ rCˆS
ĂMs

SLr
the universal adjoint bundle. The

relative tangent bundle TĂMs
SLr

{S
of ĂMs

SLr
Ñ S is the first direct image

TĂMs
SLr

{S
“ R1rπn˚pEnd0pEqq.

Now we restrict TĂMs
SLr

{S
to a component of the anti-invariant locus N˘,s

SLr
Ă ĂMs

SLr
. Then

we have
TĂMs

SLr
{S

|
N

˘,s
SLr

“ R1rπn˚pEnd0pEq| rCˆSN
˘,s
SLr

q.

For simplicity, we drop the subscript rC ˆS N
˘,s
SLr

. On the fibered product rC ˆS N
˘,s
SLr

we
have, after replacing the universal bundle E étale-locally by some tensor product with a
line bundle coming from N

˘,s
SLr

, an isomorphism

ψ : σ˚pEq E˚.
„

This isomorphism induces a natural σ-linearization of the bundle EndpEq

σ˚pEndpEqq “ σ˚pEq b σ˚pE˚q EndpEq.
ψbσ˚ψ´1

Since the subbundle O ãÑ EndpEq corresponding to homotheties of E is clearly σ-
invariant, we also obtain a σ-linearization on End0pEq, i.e. an isomorphism

σ˚pEnd0pEqq End0pEq.„

The involution σ is fixed point free, so the vector bundle End0pEq descends by Kempf’s

lemma to a vector bundle F Ñ C ˆS N
˘,s
SLr

End0pEq – p˚F F

rC ˆS N
˘,s
SLr

C ˆS N
˘,s
SLr

N
˘,s
SLr

.

p

rπn πn

As p is unramified, there is a two-torsion element ∆ P JC{Sr2s in the relative Jacobian
such that

p˚O rC “ OC ‘ ∆,

and by the projection formula we obtain a decomposition

TĂMs
SLr

{S
|
N

˘,s
SLr

“ R1rπn˚pEnd0pEqq “ R1rπn˚pp˚Fq

“ R1πn˚pp˚pp˚Fqq “ R1πn˚pFq ‘R1πn˚pF b ∆q.

Here we used the fact that p is finite, hence R1p˚ “ 0.

Then by the argument of [Zel22, §3.2] we obtain identifications

T
N

`,s
SLr

“ R1πn˚pFq, N
N

`,s
SLr

{ ĂMs
SLr

“ R1πn˚pF b ∆q
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or

T
N

´,s
SLr

“ R1πn˚pF b ∆q, N
N

´,s
SLr

{ ĂMs
SLr

“ R1πn˚pFq,

depending on whether we are on the σ-symmetric or the σ-alternating component. So
in either case, in order to conclude the statement of the Proposition, it will be enough
to show that

detR1πn˚pFq – detR1πn˚pF b ∆q.

We note that πn˚pFq – πn˚pF b ∆q “ 0 and therefore detR1πn˚pFq “ detR‚πn˚pFq
and detR1π˚pF b∆q “ detR‚π˚pF b∆q, where detR‚πn˚ denotes the determinant line
bundle of a family of vector bundles. But now the statement

detR‚πn˚pFq – detR‚πn˚pF b ∆q

follows from general properties of the determinant line bundles as detpFq – O or ∆ and
degp∆|Csq “ 0. �

Remark 3.2.9. Since KĂMs
SLr

{S
– L´2r

r , where Lr is the ample generator of Pic ĂMs
SLr

, and

the relative Picard is torsion-free, we obtain that

K
N

˘,s
SLr

{S – P´2r
r P Pic

N
˘,s
SLr

{S .

4. The Prym–Hitchin system

4.1. The Prym–Hitchin system for a fixed double cover. We consider an étale

double cover p : rC Ñ C with associated 2-torsion line bundle ∆. In this section we will
denote for simplicity

(8) N “
´

ĂMs
SLr

¯σ
`

and M “
´

ĂMs
GLr

¯σ
`
.

It will be enough to study the ` component, since the ´ components, if it exists, is
isomorphic to N or M. Recall that N and M are smooth non-complete varieties and
their closed points correspond to stable bundles E with trivial determinant or degree 0

over rC which are anti-invariant, i.e. there exists an isomorphism ψ : σ˚E Ñ E˚. Zelaci
studied the analogue of the Hitchin system on the cotangent bundles T ˚N and T ˚M.
We now recollect the main results obtained in [Zel22]. First we recall that a point in

T ˚M corresponds to an anti-invariant Higgs bundle pE,Φq with Φ P H0p rC,EndpEqK rCq

satisfying σ˚Φ “ Φt. Note that this condition is independent of the choice of the
isomorphism ψ. Zelaci constructs the analogue of the Hitchin map

(9) h : T ˚M W :“
Àr

i“1H
0pC, pKC b ∆qiq.

Since T ˚N Ă T ˚M, we will denote the restriction of h to T ˚N by h0 and note that

h0 : T
˚N W0 :“

Àr
i“2H

0pC, pKC b ∆qiq Ă W.

In the next section we will construct some extensions of h and h0 to proper maps.
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4.2. Codimension estimates in the moduli space of anti-invariant Higgs bun-
dles. We will denote by Higgs rCprq and Higgs rCprq0 the coarse moduli space of semistable

Higgs bundles pE,Φq of degree 0, respectively with fixed trivial determinant, over rC
equipped with the Hitchin maps

h : Higgs rCprq B “
Àr

i“1H
0p rC,Ki

rCq, h0 : Higgs rCprq0 B0 “
Àr

i“2H
0p rC,Ki

rCq.

The involution σ induces an involution on Higgs rCprq, which we also denote by σ, by

sending pE,Φq to σ.pE,Φq “ pσ˚E˚, σ˚Φtq and on B using Zelaci’s canonical lineariza-
tion on K rC . Then h and h0 are σ-equivariant. If we denote by HiggsσrCprq and HiggsσrCprq0
the fixed-point loci of σ in Higgs rCprq and Higgs rCprq0, and by Bσ “ W and Bσ

0 “ W0 the
fixed-point loci of σ in B and B0 we obtain by restriction morphisms, which we denote
by hσ and hσ0

Higgs rCprq B

HiggsσrCprq W

h

hσ

and

Higgs rCprq0 B0

HiggsσrCprq0 W0.

h0

hσ
0

Then, since h0 is σ-equivariant, for any v P W0 the fibre phσ0 q´1pvq equals the fixed-point
locus of σ in the fiber h´1

0 pvq. Consider

W sm Ă W and W nod Ă W

the open subsets parameterizing spectral covers π : Xv Ñ C which are smooth (hence
connected), respectively integral with at most one node. Then obviously we have
W sm Ă W nod Ă W . Similarly we define W sm

0 Ă W0 and W nod
0 Ă W0 for Higgs bundles

with fixed trivial determinant. We define the preimages in HiggsσrCprq

Asm “ phσq´1pW smq and Anod “ phσq´1pW nodq,

as well as their analogues in HiggsσrCprq0

Asm
0 “ phσ0 q´1pW sm

0 q and Anod
0 “ phσ0 q´1pW nod

0 q.

We will need the following

Lemma 4.2.1. The open subsets Asm,Anod,Asm
0 ,Anod

0 are smooth.

Proof. It will be enough to show smoothness for the open subsets Anod and Anod
0 . By

[Nit91, Proposition 7.4] the open subset of Higgs rCprq corresponding to stable Higgs

bundles is smooth. On the other hand, if v P W nod the spectral cover Xv is irreducible
and reduced, so any Higgs bundle in the fiber h´1pvq is stable (see e.g. [KP95, Remark
1.5]). Thus h´1pvq is contained in the smooth locus of Higgs rCprq for any v P W nod. Since
the fixed-point set of an involution acting on a smooth variety is smooth, we deduce that
Anod is smooth. A similar result holds for Anod

0 . �
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If we denote by T ˚Mnod and T ˚N nod the preimages of h and h0 over W nod and W nod
0 ,

then we have the following inclusions

T ˚Mnod

W nod

Anod

h

hσ

T ˚N nod

W nod
0

Anod
0

h0

hσ
0

and similar statements for the loci of smooth spectral covers. Note that hσ and hσ0 are
proper maps, since h is proper by [Nit91, Theorem 6.1].

The fibers of h0 and hσ0 can be described as follows. We consider first the case v P W sm
0 .

If π : Xv Ñ C denotes the smooth degree-r spectral cover over C associated to v P W sm
0

and rXv denotes the fiber product over C

rXv
rC

Xv C,

q

rπ

p

π

then we obtain a non-trivial étale double cover q : rXv Ñ Xv and the fiber h´1
0 pvq is

isomorphic [Hit87] to the kernel of the Norm map

h´1
0 pvq :“ Av “ kerpNm : Jacp rXvq Jacp rCqq,

which is an abelian variety. The involution σ of rC lifts to an involution on rXv, which
we also denote by σ. Then phσ0 q´1pvq equals the fixed-point locus of the action induced
by σ on h´1

0 pvq, which by [Zel22] equals the intersection of Av with the Prym variety

Prymp rXv{Xvq

phσ0 q´1pvq :“ Aσv “ Av X Prymp rXv{Xvq,

which is also an abelian variety.

Next we consider the case v P W nod
0 zW sm

0 . Then the curve Xv is integral with one

node and the étale cover rXv is integral with two nodes, which are interchanged by the
involution σ. The fiber h´1

0 pvq is again the kernel of the Norm map

h´1
0 pvq :“ pAv “ kerpNm : yJacp rXvq Jacp rCqq,

where yJacp rXvq denotes the compactified Jacobian parameterizing rank-1 torsion-free

sheaves over rXv of degree 0. The structure of pAv is described e.g. in [KP95, Section
1.3].
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Similarly the fiber phσ0 q´1pvq equals the fixed-point locus of the action induced by σ on

h´1
0 pvq :“ pAv, which equals the intersection

(10) phσ0 q´1pvq :“ pAσv “ pAv X {Prymp rXv{Xvq,

where {Prymp rXv{Xvq denotes the compactified Prym variety (see e.g [LSV17, §4.1]) of

the étale double cover q : rXv Ñ Xv. Using standard techniques one can show the
following facts, which we will use in the proof of Proposition 4.3.4.

Proposition 4.2.2. Exactly as for the abelian varieties Av and Aσv associated to smooth
spectral covers, we have the following isomorphisms for integral nodal spectral covers

H0p pAσv , T q “ H0p pAv, T q` and H1p pAσv ,Oq “ H1p pAv ,Oq`,

and both spaces have dimension dim pAσv .

We will need the following codimension estimate.

Proposition 4.2.3. If r ě 3 and g ě 3, then

codimAnodpAnodzT ˚Mnodq ě 3.

Proof. From the construction of Anod and T ˚Mnod we see that a point in Anod cor-
responds to an anti-invariant Higgs bundle pE,Φq having an associated integral spec-
tral curve with at most one node. So the Higgs bundle pE,Φq is stable. The subset
AnodzT ˚Mnod corresponds to those stable Higgs bundles such that E is not stable.

We first compute the dimension of the locus of anti-invariant Higgs bundles pE,Φq such
that E is stricly semi-stable. A general strictly semistable bundle E can be written as
an extension

(11) 0 E1 E E2 0

with E1, E2 stable and degE1 “ degE2 “ 0. As E is anti-invariant, there exists an

isomorphism ψ : σ˚E E˚„ which induces by composition a morphism

α : σ˚E1 σ˚E E˚ E˚
1 .

ψ

Since σ˚E1 and E˚
1 are two stable degree-0 bundles, the morphism α is either 0 or an

isomorphism. We will distinguish these two cases.
Suppose α is an isomorphism. Inverting α will give a splitting of the exact sequence
(11). Thus E “ E1 ‘ E2 and both E1 and E2 are anti-invariant. The Higgs field
Φ P H0pEndpEq bKq decomposes as

Φ “

ˆ
Φ1 β2,1
β1,2 Φ2

˙
,

with Φi P H0pEndpEiq bKq and βi,j P HompEi, EjKq. The condition σ˚Φ “ Φt implies
that σ˚Φi “ Φti and βi,j “ σ˚βtj,i. Thus the pEi,Φiq are anti-invariant Higgs bundles
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with Ei stable. Also dimHompE1, E2Kq “ dimHompE2, E1Kq “ prg´ 1qr1r2 for general

Ei. Since dimHiggs rCprqσ “ 2 dimN
˘,s
GLr

“ prg´1qr2, the codimension of this locus equals

prg ´ 1qr2 ´
`
prg ´ 1qr21 ` prg ´ 1qr22 ` prg ´ 1qr1r2

˘
“ prg ´ 1qr1r2.

Suppose now that α “ 0. Then we obtain that E2 “ σ˚E˚
1 and the extension class e of

0 E1 E σ˚E˚
1 0

in PExt1pσ˚E˚
1 , E1q “ PH1pE1bσ˚E1q is σ-invariant. We observe that E1bσ˚E1 “ p˚F1

for some rank-r21 bundle F1 and that H1pE1 b σ˚E1q “ H1pF1q ‘ H1pF1 b ∆q. Since
H0pE1 b σ˚E1q “ 0 by stability of E1 (note that E˚

1 ‰ σ˚E1 for E1 general), we obtain
by Riemann-Roch that both direct summands have dimension r21pg ´ 1q “ 1

2
r21prg ´ 1q.

As in [Hit90, p. 372], we note that by stability of the Higgs bundle pE,Φq the dimension
of the space of Higgs fields on E modulo automorphisms of E is given by

dimH0pEndpEq bK rCq ´ dimH0pEndpEqq ` 1 “ χp rC, EndpEq bK rCq ` 1.

Since E˚ “ σ˚E, the bundle EndpEq b K rC descends to a bundle F b KC on C and

we obtain a decomposition χp rC, EndpEq b K rCq “ χpC,F b KCq ` χpC,F b ∆ b KCq.

We compute that χpC,F b KCq “ χpC,F b ∆ b KCq “ r2pg ´ 1q. Thus, restricting
attention to σ-invariant Higgs fields, i.e., satisfying σ˚Φt “ Φ, we obtain that its number
of parameters equals r2pg ´ 1q ` 1 “ 2r21prg ´ 1q ` 1.

Putting these estimates together and recalling that dim ĂMs
GLr1

“ r21prg ´ 1q ` 1 we find

the following upper bound for the dimension of this locus

r21prg ´ 1q ` 1 `
1

2
r21prg ´ 1q ´ 1 ` 2r21prg ´ 1q ` 1 “

7

2
prg ´ 1qr21 ` 1.

Since dimHiggs rCprqσ “ prg ´ 1qr2 “ 4prg ´ 1qr21 the codimension of this locus is ě
1
2
prg ´ 1qr21 ´ 1.

Next, we consider the locus of anti-invariant Higgs bundles pE,Φq such that E is not
semistable. Then a general non-semistable bundle can be written as an extension

0 E1 E E2 0

with E1, E2 stable and µ “ µpE1q ą 0 ą µpE2q, r1 “ rkpE1q. As E is anti-invariant, the
induced map σ˚E1 Ñ E˚

1 is zero by stability of E1 and the fact that µ ą 0. Then we
conclude that there is an isomorphism E2 “ σ˚E˚

1 and the extension class e of

0 E1 E σ˚E˚
1 0

in PExt1pσ˚E˚
1 , E1q “ PH1pE1 b σ˚E1q is σ-invariant. We will now give an upper

bound of dimH1pE1 b σ˚E1q` by adapting the argument of [Hit90, page 372] to anti-
invariant bundles. We choose an effective divisor D on C of degree d with d “ tµu ` 1,
i.e. the integer d is defined by the inequalities d ą µ ě d ´ 1. If we denote by
L “ p˚OpDq, we see that the condition on d implies that ´µ ą µ ´ 2d, hence
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HompE˚
1 , σ

˚E1L
´1q “ H0pE1 b σ˚E1L

´1q “ 0. Thus we can compute by Riemann-
Roch

dimH1pE1 b σ˚E1L
´1q “ r21p2d ´ 2µq ` r21prg ´ 1q.

On the other hand E1 b σ˚E1 descends to a bundle F on C and we have the equality
H1pE1 b σ˚E1L

´1q` “ H1pC,F p´Dqq. Thus

dimH1pE1 b σ˚E1L
´1q` “

1

2
dimH1pE1 b σ˚E1L

´1q “ r21pd ´ µq ` r21pg ´ 1q.

Also there is a σ-equivariant surjective map

H1pE1 b σ˚E1L
´1q H1pE1 b σ˚E1q

which allows us to give an upper bound

dimH1pE1 b σ˚E1q` ď r21pd´ µq ` r21pg ´ 1q ď r21g,

where we used d ´ µ ď 1.

Finally, by the same argument as before, we compute that for a general anti-invariant
non-semistable bundle E the number of parameters of σ-invariant Higgs fields on E

equals 2r21prg ´ 1q ` 1.

Putting these estimates together, we find the following upper bound for the dimension
of this locus

r21prg ´ 1q ` 1 ` r21g ´ 1 ` 2r21prg ´ 1q ` 1 “ 3prg ´ 1qr21 ` r21g ` 1.

Therefore the codimension of this locus is ě pg ´ 2qr21 ´ 1.

It is clear that if g ě 3 and r ě 3 all three lower bounds for the codimensions are ě 3. �

Corollary 4.2.4. If r ě 3 and g ě 3, then

codimAnod
0

pAnod
0 zT ˚N nodq ě 3.

Proof. We note that the Norm map of rπ gives a fibration of Anod over the Prym va-

riety P0 “ Prymp rC{Cq which restricts to the determinant map T ˚Mnod Ñ M Ñ P0.
Moreover P0 acts by tensor product on Anod preserving the subvariety AnodzT ˚Mnod.
Thus all the fibers of Anod Ñ P0 and of AnodzT ˚Mnod Ñ P0 have the same dimension
and we can conclude by restricting the fibration hσ : Anod Ñ W nod to the subspace
W nod

0 Ă W nod. �

Remark 4.2.5. Our working definition of a moduli space for anti-invariant Higgs bundles
is the fixed-point locus HiggsσrCprq0 inside the coarse moduli space of semistable Higgs

bundles HiggsσrCprq over rC. This provides us with a quasi-projective variety containing

the cotangent bundle T ˚N , but this variety is not a coarse moduli space for the moduli
functor associated to anti-invariant Higgs bundles. The question of constructing and
studying a moduli stack and a coarse moduli space for semistable anti-invariant Higgs
bundles was addressed in the recent paper [Rég24].
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4.3. Results on some cohomology spaces of N . We recall from the previous section

that N denotes
´

ĂMs
SLr

¯σ
`

and P the (descendent of the) Pfaffian line bundle. In this

subsection, we will show that N satisfies condition (b) of the van Geemen-de Jong
criterion (Theorem 2.3.1).

The proof of the following proposition is based on [Sin21, Theorem 2.2], which develops
ideas already contained in [Hit90].

Proposition 4.3.1. The linear maps induced by cup product with the Atiyah class
rPs P H1pN ,Ω1

N q

YrPs : H0pN ,SymmTN q H1pN ,Symm´1TN q

are injective @m ě 1.

Proof. The proof goes exactly as in [Sin21, Theorem 2.2] with the additional observation
that one does not require normality (as is assumed in [Sin21, §2]), since we will restrict
ourselves to the smooth family of abelian varieties Asm

0 introduced above. For the
convenience of the reader we will outline the full proof.

First we note that there is a natural isomorphism

H ipT ˚N ,OT˚N q “
à
mě0

H ipN ,SymmTN q,

which corresponds to the C
˚-character space decomposition for the natural C˚-action

on the LHS. We also recall that there is a natural inclusion

T ˚N sm Asm
0

over W sm
0 . Now the restriction of regular functions to the open subset T ˚N sm Ă T ˚N

gives an injective map H0pT ˚N ,Oq Ă H0pT ˚N sm,Oq. We note that Asm
0 is smooth

and by Corollary 4.2.4 codimAsm
0

pAsm
0 zT ˚N smq ě 2, so by Hartogs’s theorem we have

equality H0pT ˚N sm,Oq “ H0pAsm
0 ,Oq. Also, the map hσ0 : Asm

0 Ñ W sm
0 is proper with

connected fibers, so by Zariski’s main theorem (see [Gro61, IV, Cor. 18.12.13], or [Sin21,
Lemma 2.1]) applied to hσ0 , we deduce that phσ0 q˚OA “ O. The rest of the argument is
identical to the argument in [Sin21].

The injectivity of the map YrPs will follow from the commutativity of the following
diagram, obtained by restricting Yrη˚Ps to a general fiber of the Hitchin map (here
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η : T ˚N Ñ N is the projection):

H0pT ˚N ,Oq H1pT ˚N ,Oq

H0pT ˚N sm,Oq H1pT ˚N sm,Oq

H0pT ˚N sm, T relq

H0pAvzUv, TAv q H0pAv, TAv q H1pAv ,Oq H1pAvzUv,Oq.

Yrη˚Ps

res
res

ν

res
h

´1

0
pvq

res
h

´1

0
pvq

– Yrη˚PAv s res

The vertical map ν : H0pT ˚N sm,Oq Ñ H0pT ˚N sm, T relq is defined by associating to a
regular section f P H0pT ˚N sm,Oq (which is constant along the fibers of
h0 : T

˚N sm Ñ W sm
0 ) its Hamiltonian vector field Xf , which takes values in the relative

tangent sheaf T rel of the fibration h0. We observe that ker ν consists of constant func-
tions. Consider for m ě 1 a non-zero function fm P H0pN ,SymmTN q Ă H0pT ˚N ,Oq.
Since fm is non-constant, the 1-form dfm on W sm

0 is non-zero, hence for a general
v P W sm

0 we have dfmpvq ‰ 0. Thus we obtain a non-zero element in H0pAvzUv, TAv q,

where AvzUv “ h
´1

0 pvq. Hartogs’s theorem implies that H0pAv, TAv q – H0pAvzUv, TAv q
and H1pAv,Oq ãÑ H1pAvzUv,Oq injective, since codimAvpAvzUvq ě 2. Moreover, the
(extended) line bundle η˚P|Av

is ample (more precisely, it is r times a prinicipal polar-
ization by [Zel19a] Theorem 6.4), which implies that the cup-product Yrη˚P|Av

s is an

isomorphism. Therefore, the image of fm in H1pAvzUv,Oq is non-zero, and by commu-
tativity of the above diagram, we deduce that fm Y rη˚Ps ‰ 0. �

Similarly, we can state the analogue of the above proposition for the moduli space
N

˘,s
SLr

.

Proposition 4.3.2. The linear maps induced by cup product with the Atiyah class rPrs P

H1pN˘,s
SLr

,Ω1

N
˘,s
SLr

q

YrPrs : H
0pN˘,s

SLr
,SymmT

N
˘,s
SLr

q H1pN˘,s
SLr

,Symm´1T
N

˘,s
SLr

q

are injective @m ě 1.

Proof. Same as proof of Proposition 4.4.2. �

Remark 4.3.3. In this paper we will only need the cases m “ 1 and m “ 2, which appear
as conditions in Theorems 2.3.1 and 2.3.2.

Proposition 4.3.4. With the above notation we have

H1pN ,Oq “ 0.

Proof. The argument follows very closely the proof given in [Hit90, Proposition 5.2] in the
case of the moduli space of stable vector bundles with trivial determinant. We outline
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the argument. We denote by W nod
0 Ă W0 the open subset corresponding to integral

spectral curves π : Xv Ñ C having at most one node. Then the closed subset W0zW nod
0

has codimension 2. Also, since all the fibers of the Hitchin map h0 : T ˚N Ñ W0 are
isotropic for the canonical symplectic form on T ˚N [Zel22, Theorem 4.8]2, hence of

dimension ď dimW0 “ dimN , we see that the preimage h
´1

0 pW nod
0 q “ T ˚N nod Ă T ˚N

also has a complement of codimension 2. Therefore, by Hartogs’s theorem, restriction
of classes in H1 gives an inclusion

H1pN ,Oq Ă H1pT ˚N ,Oq ãÑ H1pT ˚N nod,Oq.

Since Anod
0 is smooth by Lemma 4.2.1 and since codimAnod

0

pAnod
0 zT ˚N nodq ě 3 by Corol-

lary 4.2.4, we can apply Hartogs’s theorem to classes in H1 (see e.g. [Gro68] Exposé I
Corollaire 2.14 and Exposé VII Corollaire 1.4) and we obtain an isomorphism

H1pT ˚N nod,Oq “ H1pAnod
0 ,Oq.

Next, we observe that h˚OAnod
0

“ OWnod
0

by Zariski’s main theorem and

(12) R1h˚OAnod
0

“ OWnod
0

bW ˚
0 .

The last equality is seen as follows: as already noticed in (10), for any v P W nod
0 the

fiber phσ0 q´1pvq “ pAσv equals the fixed-point locus of σ in the fiber h´1
0 pvq “ pAv, which

is a closed subvariety of the compactified Jacobian yJacp rXvq. We again adapt Hitchin’s
original proof [Hit90, page 378] to the anti-invariant case. Consider the unique extension
of the line bundle η˚L to the open subset h´1

0 pBnod
0 q Ă Higgs rCprq0. It is shown in loc.cit.

that the map given by cup-product with the Atiyah class of the restriction η˚L| pAv
is an

isomorphism

Y
”
η˚L| pAv

ı
: H0p pAv , T q H1p pAv,Oq.

–

We note that σ preserves the line bundle η˚L
| pAv

and that this cup-product map is σ-

equivariant. Using Proposition 4.2.2 we obtain an isomorphism by restriction to the
σ-invariant subspace

H0p pAσv , T q “ H0p pAv, T q` H1p pAv ,Oq` “ H1p pAσv ,Oq.
–

We then deduce the equality (12) as in [Hit90, page 378].

Thus, by Leray’s spectral sequence and the fact that H1pW nod
0 ,Oq “ 0, we deduce that

H1pT ˚N nod,Oq “ H0pW nod
0 ,Oq bW ˚

0 “ H0pW0,Oq bW ˚
0 ,

where the last equality is obtained again thanks to Hartogs’s theorem.

We can now conclude, similarly as in [Hit90] page 378, by saying that any non-zero class
in H1pN ,Oq would define a non-zero class in H0pW0,Oq bW ˚

0 of homogeneity ´1, but
there are no such classes. �

Using Proposition 4.3.1 with m “ 1 we deduce

2Zelaci shows the statement for the nilpotent cone, but his argument equally works for any fiber.
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Corollary 4.3.5. With the above notation we have

H0pN , TN q “ 0.

4.4. The Prym–Hitchin system for a family of double covers. We can consider

for a family of double covers p : rC Ñ C over S the relative moduli space

π : N rC{S Ñ S

such that for any s P S we have π´1psq “ N , where N denotes the moduli space (8)

associated to the cover rC “ rCs Ñ C “ Cs. For simplicity we will also denote by N the
relative moduli space N rC{S

. The next proposition is a direct consequence of the base

change theorems, Proposition 4.3.4 and Corollary 4.3.5.

Proposition 4.4.1. Using the above notation, we have for the relative moduli space
π : N “ N rC{S Ñ S

(1) π˚TN “ 0,

(2) R1π˚ON “ 0.

Similarly, we can also consider as in (7) the family

rπe : N˘,s
SLr

Ñ S.

As was explained in §3.1, there is a natural map ιSLr
: N˘,s

SLr
Ñ N over S, which is an

isomorphism if r is odd, and a double étale cover if r is even. We also have

Proposition 4.4.2. Using the above notation, we have for the relative moduli space
rπe : N˘,s

SLr
Ñ S

(1) rπe˚TN˘,s
SLr

“ 0,

(2) R1rπe˚ON
˘,s
SLr

“ 0.

Proof. If r is odd, ιSLr is an isomorphism and we are done. If r is even, we claim that

Proposition 4.3.4 and Corollary 4.3.5 also hold for the double étale cover N˘,s
SLr

. Without

going into the details, we observe that the cotangent bundle T ˚N
˘,s
SLr

is the fiber product

of T ˚N by N
˘,s
SLr

, so it is a double étale cover over T ˚N . This cover extends uniquely

to Asm
0 and Anod

0 . The reader can easily check that the proofs of Proposition 4.3.4 and
Corollary 4.3.5 remain valid when considering these étale covers. �

Remark 4.4.3. For stack aficionados, we can give a shorter proof of the analogue of
Proposition 4.3.4 showing that H1pN˘,s

SLr
,Oq “ 0. Consider (see §3.1) the moduli stack

N˘
SLr

parameterizing pairs pE,ψq of anti-invariant vector bundles E together with an
isomorphism ψ : E Ñ σ˚E˚. By [Hei10, Proposition 1] we know that the moduli stack
N˘

SLr
is smooth and by [Hei10, Theorem 3] that PicpN˘

SLr
q “ Z. We then consider the
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open substack N
˘,s
SLr

parameterizing pairs pE,ψq such that E is a stable vector bundle.
By general results on stacks, the homomorphism given by restriction of line bundles

Z “ PicpN˘
SLr

q ÝÑ PicpN˘,s
SLr

q

is either an isomorphism if codimpZq ě 2, or a surjection if codimpZq “ 1, where Z

denotes the closed substack N˘
SLr

zN˘,s
SLr

. In both cases we can conclude that PicpN˘,s
SLr

q

is discrete. Moreover, the surjective classifying map N
˘,s
SLr

Ñ N
˘,s
SLr

to the coarse mod-

uli space induces an injective homomorphism PicpN˘,s
SLr

q ãÑ PicpN˘,s
SLr

q, from which we

conclude that PicpN˘,s
SLr

q is also discrete. Hence the trivial bundle O on N
˘,s
SLr

has no

infinitesimal deformations, which implies that H1pN˘,s
SLr

,Oq “ 0.

5. The Prym–Hitchin connection

Still in the setting of the previous section, we now give the construction of a flat projective
connection on the locus of anti-invariant vector bundles. According to Theorem 2.3.1,
the existence of this connection follows from the construction of a symbol map verifying
conditions (a) through (c), whereas in Theorem 2.3.2 we will use Zelaci’s Prym–Hitchin
integrable system in lieu of the original one.

5.1. Using the morphism ι˘ from an open subvariety of N˘,s
SLr

to a smooth subvariety of
ĂMs

SLr
, we have the canonical splitting of the pull-back of the ambient tangent bundle, as

in (6). We will denote the canonical projection ι˚˘TĂMs
SLr

{S
Ñ T

N
˘,s
SLr

{S (which averages a

tangent vector and its image under the involution σ) by pσ.

Both the construction of the symbol map and the verification of the conditions in Theo-
rem 2.3.1 for N˘,s

SLr
Ñ S now proceed through use of the splitting of the ambient tangent

and cotangent bundles along N
˘,s
SLr

.

Definition 5.1.1. The Prym–Hitchin symbol ρPH is the composition

R1rπs˚T rC{S
rπe˚ Sym

2 TĂMs
SLr

{S
rπe˚ Sym

2 T
N

˘,s
SLr

{S
.

ρHit

ρPH

rπe˚pSym2 pσ˝ι˚˘q

Theorem 5.1.2. The direct image sheaf rπe˚

`
Pbk
r

˘

carries a unique projective connection with symbol map

ρ “
2

r ` k
pρPH ˝ κ rC{S

q.
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Proof. To verify condition (a) of Theorem 2.3.1, we need to compute µPbk ˝ρ; note that
we have a diagram

rπe˚ Sym
2 TĂMs

SLr
{S

rπe˚ Sym
2 T

N
˘,s
SLr

{S

R1rπe˚TĂMs
SLr

{S
R1rπe˚TN˘,s

SLr
{S

rπe˚pSym2 pσ˝ι˚˘q

YrLrs ĂMs
SLr

{S
Yrι˚˘Lrs

N
˘,s
SLr

{S

R1rπe˚ppσ˝ι˚˘q

which is commutative since σ˚Lr – Lr, and therefore the relative first Chern class
rLrs ĂMs

SLr
{S

restricted to the anti-invariant locus has no components along the conormal

bundle. It is immediate to check that the Kodaira–Spencer map of N˘,s
SLr

{S factors as

κ
N

˘,s
SLr

{S “ R1rπe˚ppσ ˝ ι˚˘q ˝ κĂMs
SLr

{S
.

Condition (a) is now verified by commutativity of the big triangle in the following di-
agram, which follows from that of the small triangle (by the original case of Hitchin’s
construction Theorem 2.4.1) and of the square which we just checked:

rπe˚ Sym
2 T

N
˘,s
SLr

{S

rπe˚ Sym
2 TĂMs

SLr
{S

TS

R1rπe˚TĂMs
SLr

{S

R1rπe˚TN˘,s
SLr

{S
.

2µ
Pk
r

“

Y2pr`kqrPrs“

Ypr`kqrι˚˘Lrs

µ
Lk
r

“

Ypr`kqrLrs

rπe˚pSym
2 pσ˝ι

˚
˘

q

1

r`k
ρH

it˝κ rC{S

´κ ĂMs
SLr

{S

´κ
N

˘,s
SLr

{S

1

r`k
ρPH˝κ rC{S

R1rπe˚ppσ˝ι˚
˘ q

Note that we used the fact that µPk
r

“ Ypr ` kqrPrs, which follows from Remark 3.2.9

and from [BBMP23, Proposition 3.6.1].

As for condition (b), we know from Proposition 4.4.2(2) that R1rπe˚ON
˘,s
SLr

“ 0, so that

surjectivity is trivially satisfied.

Finally, condition (c) is a consequence of Corollary 3.2.5. �

5.2. As already stated above, the flatness of the Prym–Hitchin connection follows now
from an analogous reasoning as before:

Lemma 5.2.1. The second-order symbols of the projective heat operators which define
the connections of Theorem 5.1.2, seen as functions on the cotangent bundle T ˚

N
˘,s
SLr

{S
,

are components of the Prym–Hitchin integrable system.
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Proof. We recall from [Zel22, Proposition 4.4] that the quadratic part of the Prym–
Hitchin integrable system is given by the composition

T ˚
N

˘,s
SLr

{S
ι˚˘T

˚
ĂMs

SLr
{S

rπs˚K
2
rC{S

prπs˚K
2
rC{S

q` – πs˚K
2
C{S ,

j p`

where the middle arrow is the quadratic part of the original Hitchin system. As in the
discussion preceding Definition 5.1.1, factoring through symmetric squares and dualizing,
in order to show the claim we need to verify that

Sym2 j˚ “ Sym2ppσ ˝ ι˘q, and p˚
` ˝ κC{S “ κ rC{S .

The first of these conditions is again clear in view of the splitting of the restriction of the
relative tangent and cotangent bundle. The second follows since we can calculate the

Kodaira–Spencer map of the family rC Ñ S in the Čech formalism from that of C Ñ S

by simply lifting vector fields on C to σ-invariant vector fields on rC. �

Theorem 5.2.2. The Prym–Hitchin connection is projectively flat.

Proof. Lemma 5.2.1 verifies condition (1) of Theorem 2.3.2. Proposition 4.3.2 for m “ 2
verifies condition (2) since µPk

r
“ Ypr ` kqrPrs. Proposition 4.4.2(1) verifies condition

(3). �

6. A Laszlo theorem for anti-invariant bundles

6.1. A key ingredient in the standard theory of non-abelian theta function is the cor-
respondence with spaces of conformal blocks [BL94]. These form natural vector bundles
on the moduli spaces of pointed projective curves Mg,n (and in fact also their Deligne-

Mumford compactification Mg,n obtained by adding stable curves, though we will not
make use of this). There exists a twisted D-module structure (or, in the terminology
of [Loo13], a λ-flat connection), known as the WZW or TUY connection, on these as
well [TUY89, Tsu93]. Each twisted D-module induces a flat projective connection, and
it was shown by Laszlo that the natural isomorphism between two projective bundles of
non-abelian theta functions and conformal blocks (or rather the descent of the latter to
Mg) is flat with respect to the Hitchin and WZW connections ([Las98], see also [Uen08,
§5.6]). Another approach to this, based on localisation of vertex algebras, was given by
Ben-Zvi and Frenkel in [BZF04]. More recently, Laszlo’s Theorem was also extended to
the case of parabolic bundles in [BMW24a].

The counterpart to non-abelian theta functions on moduli spaces of torsors for parahoric
Bruhat-Tits group schemes is given by the spaces of so-called twisted conformal blocks.

In this set-up one considers a finite group Γ which acts on a curve rC, as well as on

a semi-simple Lie algebra g. In the case where rC is smooth (and varies in a family
parametrised by S), a connection on the corresponding vector bundle was constructed
by Szcesny [Szc06], in the framework of vertex algebras. Various generalisations of this
were since given by Damiolini [Dam20], Hong and Kumar [HK23], and Deshpande and
Mukhopadhyay [DM23].
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Very relevant for us, Hong and Kumar also established the isomorphism between non-
abelian theta functions and twisted conformal blocks [HK23, Theorem 12.1]. In the case

where g “ slr, Γ “ Z{2Z and rC Ñ C is ramified, this was also shown by Zelaci [Zel19a,
Theorem 5.4].

In this section we will show that, in the case where g “ slr, Γ “ Z{2Z and rC is as in
Section 3, the isomorphism of Hong and Kumar respects the twisted WZW connection
and the Prym-Hitchin connection. This is of interest in its own right, but will also help
us in Section 8 to use conformal embeddings (see Appendix A), which give rise to flat
maps between bundles of twisted conformal blocks (note that even in the non-twisted
case the corresponding flatness property for maps between bundles of non-abelian theta
functions is proven in [Bel09] using a necessary excursion to conformal blocks).

Our strategy will broadly follow [Las98, Section 8], and more particularly the approach to
Laszlo’s theorem given in [Uen08, §5.6] (Laszlo’s original proof characterised the Hitchin
connection infinitesimally, as was done in [Hit90], rather than locally via Theorem 2.3.1),
see also [BMW24a] for the equivalent story in the parabolic case. Essentially, we will
show that the construction of the twisted WZW connection can be recast to construct a
projective heat operator with the same symbol that determines the Prym-Hitchin con-
nection. We will follow Damiolini’s construction of the relevant twisted WZW connection
[Dam20, §4], a summary of which is given in Appendix A.3.

6.2. The WZW connection as a heat operator. Following the notation from Ap-
pendix A, we will denote the parahoric Bruhat-Tits group schemes on X obtained by
invariant Weil restriction by SL˘

r (using the involutions (3) and (4) respectively) and
the stack of SL˘

r -torsors on X as BunSL˘
r
. As was discussed in Section 3.1, we have

an equivalence of stacks BunSL˘
r

– N˘
SLr

. The stable loci in these stacks are denoted

as Buns
SL˘

r
and N

˘,s
SLr

. By Heinloth’s uniformization theorem [Hei10] (conjectured by

Pappas-Rapoport [PR10]), this can be expressed as a quotient

BunSL˘
r

– QSL˘
r

M
SL˘

r pC0q,

where QSL˘
r

is the twisted affine Grassmannian and C0 is the punctured curve. We
will denote by Qs

SL˘
r
the locus that descends to Buns

SL˘
r
. By the affine version of the

Borel-Weil theorem [Mat86, Kum87], we have that

H
SL˘

r

ℓ – π
Q

SL
˘
r

˚ pLbℓq “ π
Qs

SL
˘
r

˚ pLbℓq,

where H
SL˘

r

ℓ is the irreducible quotient of the Verma module as in A.2((iii)), and L is
the positive generator of the Picard group of QSL˘

r
. Similar to [BD91, 5.2.12] or [Las98,

(8.6)], the algebra action of UphSL
˘
r

D0 on H
SL˘

r

ℓ corresponds to a morphism

´
UphSL

˘
r

D0

¯opp

π
Q

SL
˘
r

˚

`
DQ{SpLq

˘
,

where opp denotes the opposite algebra, and DQ{SpLq refers to the sheaf of relative
differential operators on L. (This can be understood as an instance of Beilinson-Bernstein
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localization.) This morphism now descends to a morphism

´
UphSLr

D0

¯opp

π
N

˘,s
SLr

˚

´
D

N
˘,s
SLr

{SpLrq
¯
.

(As in [Las98, (8.6)], this is done, strictly speaking, using a quasi-section of

Buns
SL˘

r
Ñ N

˘,s
SLr

defined using an étale surjective morphism to N
˘,s
SLr

. Such a quasi-

section is guaranteed to exist by [Hei10].) Together with steps ((ii)), ((iii)), ((iv)), and
((v)) from Appendix A.3 (using the fact that the Segal-Sugawara construction is qua-
dratic), we get a morphism

DWZW : TS W
N

˘,s
SLr

{SpLrq
M
OS .

We can summarise this discussion as

Proposition 6.2.1. The map DWZW defines a projective heat operator on L.

We now have

Proposition 6.2.2. The symbol of the heat operator DWZW is given by ρ from Theorem
5.1.2.

Proof. The proof will follow a similar approach as [Las98, §8.10-8.14] (see also [Uen08, p.
128], [BMW24b, §6.3-6.4]): we will calculate the symbol of the heat operator associated
with the twisted WZW-connection (as outlined above and in Appendix A), and then
express the symbol of the Prym-Hitchin heat operator in similar terms, so that they can
be compared.

The former is expressed using the curve C, and the calculation uses the explicit expression

for the Segal-Sugawara construction. The latter is defined using the double cover rC, and
in order to compare its symbol we calculate it in Čech cohomology using the formal

cover given by the twice punctured curve rC00, and two formal neighbourhoods of the
punctures that are interchanged by the involution.

We begin by looking at the twisted WZW connection. Following [Dam20, Remark
4.15], we can express the Sugawara operators associated to Dj “ ´zj`1 d

dz
(for a formal

coordinate z on D) concretely. We have3

ThpDjq “
1

2
`
cslr ` h_

slr

˘
ÿ

i

˝
˝DjpAiq ˝Bi

˝
˝,

where the Ai and Bj are dual bases for ωD0 b h
SL˘

r

D0 and h
SL˘

r

D0 with respect to the perfect

pairing x.|.y “ resD0 p.|.q, and ˝
˝. .

˝
˝ refers to the normal ordering. If Ck is an orthonormal

3Note that there is a difference with the signs in the corresponding definitions in [Loo13, Corollary 3.2]
and [Dam20, Page 1667], related to a sign difference in the generators Dj of the Virasoro algebras in
these papers. Our sign agrees with the more standard conventions for the Virasoro algebra and Sugawara
operators, as in e.g. [Kac90, KRR13].
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basis of slr with respect to the normalized Killing form, we can put

(13) rCk “
1

2

`
Ck ` dΨ˘pCkq

˘
,

where Ψ˘ are as in (3) and (4). (We are thinking here of the Ck and dΨ˘pCkq as

belonging to the two different marked points on rC, and are implicitly assuming these
can be globally distinguished, which is always the case étale-locally.) We can then let
the index i for the Ai and Bi run over pairs pk, lq P t1, . . . ,dimpslrqu ˆ Z, and take

Ai “ rCkz´l´1dz and Bi “ rCkzl.
To calculate the (vertical) symbol of the associated differential operator, we need to
evaluate (for any j P Z, and any vector field τj on S whose image under the Kodaira-
Spencer map is represented by Dj)

xφb φ|ρDWZW pτjqy “ xφb φ|ThpDjqy

for any φ P π˚T
˚N

˘,s
SLr

mapping to φ P hSL
˘
r b ΩD0 . It suffices to look at φ of the form

rCmzndz. We get (unpacking the normal ordering)

2
`
cslr ` h_

slr

˘ @
φ b φ|ThpDjq

D

“

C
rCmzndz b rCmzndz

ˇ̌ ÿ

i

˝
˝DjpAiq ˝ Bi

˝
˝

G

“
ÿ

k

ÿ

´1`jă2l

resD0

´
rCmzndz| ´ rCkz´l´1`j`1

¯
resD0

´
rCmzndz| rCkzl

¯

`
ÿ

k

ÿ

´1`j“2l

1

2
resD0

´
rCmzndz| ´ rCkz´l´1`j`1

¯
resD0

´
rCmzndz| rCkzl

¯

`
ÿ

k

ÿ

´1`j“2l

1

2
resD0

´
rCmzndz| rCkzl

¯
resD0

´
rCmzndz| ´ rCkz´l´1`j`1

¯

`
ÿ

k

ÿ

´1`ją2l

resD0

´
rCmzndz| rCkzl

¯
resD0

´
rCmzndz| ´ rCkz´l´1`j`1

¯

“
ÿ

l

´δn`j,l´1δn`l,´1

“ ´ δ2n`j,´2.

(14)

We can now turn our attention to the Prym-Hitchin connection. To be able to compare
the symbol of the Prym-Hitchin projective heat operator to that of the twisted WZW
one, we have to express it in comparable terms. For the Hitchin heat operator this is
done in [Las98] by expressing the symbol, in Čech terms, using the formal open covering
of C given by the punctured curve C0 and the formal disk D.

The Prym-Hitchin symbol was defined in Definition 5.1.1 and Theorem 5.1.2 by project-

ing down from the Hitchin symbol for rC. In order to do this in the Čech language, we will

first express the Hitchin symbol for rC using a formal cover made of the twice punctured

curve rC00, and two formal open disks rD “ D
š

D, interchanged under the involution σ
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(étale locally these can always be discriminated, which we will do for convenience). The
average of the two residues at the marked points gives an isomorphism

res
rD
00 : R

1π˚K rC{S
– OS

(the factor 1
2
is there to make the isomorphism commensurate with the isomorphism

resD0 on C). The fact that we are projecting down the ordinary Hitchin symbol for rC
means that we are only interested in families of rC coming from families rC Ñ C of étale
double covers, hence the elements of R1πT rC{S we will see can be represented by identical

pairs pt, tq P T‘2
D0{S.

We now want to evaluate the Hitchin symbol ρHit on φ b φ, where

φ P π˚T
˚
N

˘,s
SLr

{S
Ă π˚T

˚
ĂMs

SLr
{S

– π˚pEnd0pEq bK rC{Sq.

As we have an injection given by restriction

π˚pEnd0pEq bK rC{Sq slr b
´
Ω1
D0{S ‘ Ω1

D0{S

¯
,

we can represent such φ as pφ1, φ2q given by pairs in slr b
´
Ω1
D0{S ‘ Ω1

D0{S

¯
that are

exchanged by the isomorphism dΨ˘ b σ˚. We have (see [Las98, (8.5)])

ρHitpt, tqpφ b φq “ res
rD
00

´ `
φ1, φ2

˘ ˇ̌
ˇpt, tq.

`
φ1, φ2

˘ ¯
,

where p.|.q is the normalized Killing form on slr. Using a local formal coordinate z on
D as before, it suffices to look at t P TD0 of the form t “ Dj “ ´zj`1 d

dz
, for some j P Z.

In the same vein, to compare with the symbol we calculated for DWZW , we can just take
pφ1, φ2q of the form pCmz

ndz, dΨ˘pCmqzndzq. We then get

2pk ` rqρHitpt, tqpφ b φq

“ res
rD
00

´ `
φ1, φ2

˘ ˇ̌
ˇpt, tq.

`
φ1, φ2

˘ ¯

“ res
rD
00

´ `
Cmz

ndz, dΨ˘pCmqzndz
˘

|
`
DjCmz

ndz,DjdΨ
˘pCmqzndz

˘ ¯

“ res
rD
00

`
´z2n`j`1dz,´z2n`j`1dz

˘

“ ´δ2n`j,´2.

(15)

Comparing (14) and (15) now gives the result. �

This allows us to conclude

Theorem 6.2.3. The projective connection induced by DWZW (the twisted WZW connec-
tion) is the same as the Prym-Hitchin connection.

Proof. This follows immediately from Theorem 5.1.2, Proposition 6.2.2 and the unique-
ness in Theorem 2.3.1. �
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7. Anti-invariant level-rank duality

7.1. General statement of anti-invariant level-rank duality. We can now state
the Prym version of the level-rank duality we will be considering. We consider a fixed

double étale cover p : rC Ñ C and we denote by N
˚,`,ss
GLr

the moduli space of semi-stable

rank-r vector bundles E on rC that come equipped with an isomorphism

φ : σ˚pEq E˚ bK rC
–

satisfying φ “ σ˚φt.

Hence degpEq “ rprg´ 1q. If we choose the canonical linearisation on K rC “ p˚KC , then,
as explained in [Zel19b, §4], we can equip p˚pEq with a non-degenerate KC-valued qua-

dratic form and deduce, by a result of Mumford [Mum71, Page 184], that h0p rC,Eq mod 2

is constant on each connected component of N ˚,`,ss
GLr

. Hence we can decompose

N
˚,`,ss
GLr

“ N
even,`,ss
GLr

\ N
odd,`,ss
GLr

.

Note that the moduli space N
˚,´,ss
GLr

, parameterizing pairs pE,φq as above with

φ “ ´σ˚φt, is non-canonically isomorphic to N
˚,`,ss
GLr

. In the particular case r “ 1,
we will denote

N
even,`,ss
GL1

“ P even and N
odd,`,ss
GL1

“ P odd

the two connected components of Nm´1pKCq Ă Picrg´1
rC . We also note that for the

´components we have N
˚,´,ss
GL1

“ Nm´1pKC b ∆q Ă Picrg´1
rC .

Recall that on ĂM˚,s
GLr

(the moduli space of stable, rank-r bundles on rC of degree rprg´1q)
there exists a natural divisor Θ, which as a set is given by

Θ “ tE P ĂM˚,s
GLr

| h0p rC,Eq ‰ 0u.

The analogue for anti-invariant bundles is given by

Proposition 7.1.1 ([Zel19a]). There is a natural Cartier divisor Ξ on N
even,`,ss
GLr

, de-
fined on the stable locus as the underlying reduced divisor of the restriction of the divisor

Θ on ĂM˚,s
GLr

. We have that h0pN even,`,ss
GLr

,OpΞqq “ 1.

Proof. This property is essentially Lemmas 6.2 and 6.3 in [Zel19a], though it is formu-
lated there slightly differently, in terms of a divisor ΞL on one connected component of
N

`,s
GLr

, depending on a line bundle L in P even, and supported on bundles E such that

h0pEbLq ‰ 0. Tensoring with this L gives an isomorphism of this connected component

of N`,s
GLr

with N
even,`,s
GLr

. We then can extend the divisor from N
even,`,s
GLr

to N
even,`,ss
GLr

by
Hartogs’s theorem. �

We will put PΞ,r “ OpΞq. Because semi-stability is preserved by tensor product and
because of [Zel19b, Proposition 4.2] we have a morphism induced by tensor product

t : N`,ss
SLr

ˆ N
even,`,ss
GLk

N
even,`,ss
GLkr

.
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If r is even, we can extend this map to the odd-component of N ˚,`,ss
GLk

t : N`,ss
SLr

ˆ N
odd,`,ss
GLk

N
even,`,ss
GLkr

Indeed, for any vector bundles E P N
`,ss
SLr

and F P N
odd,`,ss
GLk

we see that h0pE b F q is
even, since this number is constant under deformation and is even when E is the trivial
anti-invariant bundle Or. We have, from the seesaw theorem [Mum08, Corollary 6, §5],
that

t˚PΞ,kr – Pk
r b Pr

Ξ,k.

If r is even, we define the line bundle Pr
Ξ,k on N

odd,`,ss
GLk

as the restriction

Pr
Ξ,k “ Op r

2
Θq|

N
odd,`,ss
GLk

.

Considering the above introduced moduli spaces for the relative curve p : rC Ñ C over
S and denoting by π the projection maps to S, we obtain by taking the direct image
under π of these line bundles to S a morphism of locally free sheaves over S

(16) SD : π˚P
k
r

´
π˚P

r
Ξ,k

¯˚
,

which we refer to as the anti-invariant level-rank duality or anti-invariant strange du-
ality. Note that the moduli spaces appearing on the RHS of (16) depend on r: if r is

odd, we take the component N
even,`,ss
GLk

and if r is even, we take the two components

N
˚,`,ss
GLk

.

We will show that the vector bundle map (16) is an isomorphism for k “ 1 and that it is
projectively flat with respect to the Prym-Hitchin connections for all k and all r.

7.2. Classical level-rank duality at level one. In preparation for discussing flatness
of level-rank duality at level one between the abelian and the higher-rank Prym varieties

of an unramified double cover rC Ñ C, we recall the classical case in our set-up. We
consider here a smooth proper relative curve C Ñ S of genus g, and the associated
relative moduli spaces Picg´1

C{S Ñ S of line bundles of degree g ´ 1, and Ms
SLr

Ñ S of

stable rank r vector bundles with trivial determinant. Consider also the natural line
bundles LΘ,1 “ OpΘq Ñ Picg´1

C{S and Lr Ñ Ms
SLr

(the ample generator of the relative

Picard group).

Theorem 7.2.1. In the above setting we have

(a) (Beauville–Narasimhan–Ramanan [BNR89, Theorem 3]) There is a natural non-
degenerate duality, unique up to Oˆ

S ,

(17) π˚L
r
Θ,1 b π˚Lr OS .

(b) (Belkale [Bel09, Proposition 1.2]) This duality is projectively flat with respect to
the Mumford–Welters and the Hitchin connection, respectively.
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We will detail the argument, since it will apply practically verbatim to the Prym
case.

Proof. Consider the fiber-wise product Picg´1

C{S ˆSM
s
SLr

and its quotient by the natural

action of Picrrs, the r-torsion of the Picard scheme, which is naturally identified with
the relative moduli space M

˚,s
GLr

of stable rank r vector bundles of degree rpg ´ 1q,

(18)

LrΘ,1 b Lr L1

Picg´1 ˆSM
s
SLr

M
˚,s
GLr

.
{Picrrs

Here, L1 has a one-dimensional space of sections corresponding to the natural Brill–
Noether divisor, and its pull-back is isomorphic to LrΘ,1 b Lr by the see-saw principle.

In particular, it is possible to choose a lift of the action of Picrrs to the total space of
LrΘ,1 b Lr.

Now define the groups GpLrΘ,1q,GpLrq,GpLrΘ,1bLrq to be the central extensions of Picrrs
which act naturally on the total spaces of the respective line bundles. The first of these
is an instance of Mumford’s theta group ([Mum66], [BL04, Chapter 6]), and it plays
(through its representation theory) in particular a crucial role in the original construc-
tion of the Mumford–Welters connection, which we will make use of. We obtain a
commutative diagram

1 1

Gm Gm

1 Gm ˆ Gm GpLrΘ,1q ˆ
Picrrs

GpLrq Picrrs 0

1 Gm GpLrΘ,1 b Lrq Picrrs 0

1 1.

λÞÑpλ,λ´1q λÞÑpλ,λ´1q

pλ,λ1qÞÑλλ1

As we just observed, the bottom row is split since the Picrrs-action can be lifted; choose a
splitting σ : Picrrs Ñ GpLrΘ,1 bLq, and use it to define a morphism φ : GpLrΘ,1q Ñ GpLrq
by requiring that

πpg, φpgqq “ σpπpgqq @g P GpLrΘ,1q,

(where we denote all projections to Picrrs by π). It is clear from the definition that
φpλq “ λ´1, and in particular φ is an isomorphism.

Taking the direct image of (18) under the projection to S and using φ to act with
the theta group GpLrΘ,1q, we therefore obtain an equivariant map of GpLrΘ,1q-linearized
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sheaves (17). The center Gm of GpLrΘ,1q acts on π˚L via λ ÞÑ λ´1, so this has to be a

direct sum of several copies of the dual of the standard representation π˚OpLrΘ,1q. As

the rank of π˚Lr is known to be rg [BNR89], there is only a single copy present, so that
furthermore due to equivariance the pairing has to be non-degenerate.

As for (b), first we observe (following Belkale [Bel09, Corollary 4.2]) that the action of the
theta group GpLrΘ,1q on π˚L

k
r leaves the Hitchin connection invariant: this follows since

the symbol map ρHit is Picrrs-equivariant. Taking the conjugate of the heat operator D
defining the connection with a section γ of GpLrΘ,1q, we obtain a heat operator γ ˝D˝γ´1

with the same symbol, so that it has to coincide with D by the uniqueness statement in
Theorem 2.3.1.

For k “ 1, consider now the divisor I of Pπ˚

´
LrΘ,1 b Lr

¯
defined by the kernel of the

map (17) and its pull-back to Pπ˚L
r
Θ,1 ˆS Pπ˚Lr, where it defines a section of Op1, 1q

(up to scale). As the pairing is non-degenerate, the morphism induced by I

Pπ˚L
r
Θ,1 Q p I X tpu ˆ Pπ˚Lr P pPπ˚Lrq

˚

is defined everywhere. By its definition, it descends from the non-zero intertwiner
π˚L

r
Θ,1 Ñ pπ˚Lrq

˚ of irreducible (standard) representations of the theta group GpLrΘ,1q

given by (17). But as there is a unique projective connection compatible with this action
(cf. [Wel83, Proposition 2.7]), this proves the assertion (b). �

7.3. The Prym case at level one. We can now observe how also for Prym varieties
flatness of level-rank duality at level one follows from the same reasoning.

We consider here the case when r is even. When r is odd, we only consider the connected
component P even on the RHS of (16). We have a diagram

(19)

Pr
Ξ,1 b Pr P 1

`
P even Y P odd

˘
ˆS N

`,ss
SLr

N
even,`,ss
GLr

,
{Prrrs

where Prrrs denotes the group of r-torsion points in the connected component of the
origin of Nm´1pOq. We then obtain, exactly as before, an equivariant map of GprΞq-
linearized sheaves

(20) π˚P
r
Ξ,1 b π˚Pr π˚P

1.

Theorem 7.3.1 (Zelaci [Zel19a, Theorem 6.4]). π˚P
1 – OS and the pairing (20) is

non-degenerate, i.e., for any s P S the pairing induces an isomorphism

‚ if r is even, H0pN`,ss
SLr

,Prq
„

ÝÑ H0pP even,Pr
Ξ,1q˚ ‘H0pP odd,Pr

Ξ,1q˚,

‚ if r is odd, H0pN`,ss
SLr

,Prq
„

ÝÑ H0pP even,Pr
Ξ,1q˚.
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Proof. We will reuse here the notation N from (8). We recall, see (5), that there exists

a natural map ιSLr : N`,s
SLr

Ñ N , which is an isomorphism if r is odd, and a double

étale cover if r is even. Hence, if r is odd, H0pN`,ss
SLr

,Prq “ H0pN`,s
SLr

,Prq “ H0pN ,Prq
and the theorem follows from [Zel19a, Theorem 6.4]. If r is even, we need to add a
description of the line bundles over N . We consider, as before, the tensor product maps

teven : N ˆ P even Ñ N
even,`,s
GLr

and todd : N ˆ P odd Ñ N
even,`,s
GLr

,

using the fact that ιGLr
is an isomorphism. Then we observe that, by the see-saw

theorem, we obtain two line bundles Pr and P 1
r over N satisfying

ptevenq˚PΞ,r “ Pr b Pr
Ξ,1 and ptoddq˚PΞ,r “ P 1

r b Pr
Ξ,1.

Repeating the argument of [Zel19a, Theorem 6.4] we obtain two isomorphisms

H0pN ,Prq
„

ÝÑ H0pP even,Pr
Ξ,1q˚ and H0pN ,P 1

rq
„

ÝÑ H0pP odd,Pr
Ξ,1q˚.

Now we can conclude since pιSLr
q˚pPrq “ ι˚SLr

pP 1
rq “ Pr and pιSLr

q˚pPrq “ Pr ‘ P 1
r. �

Corollary 7.3.2. The corresponding duality

Pπ˚Pr

´
Pπ˚P

r
Ξ,1

¯˚

is projectively flat with respect to the Prym–Hitchin and the Mumford–Welters connec-
tion, respectively.

Proof. As the proof of Theorem 7.2.1 relies only on the uniqueness of irreducible rep-
resentations of theta groups for which the center acts by λ ÞÑ ˘λ, compatibility of the
connections with the theta group actions, and uniqueness of the compatible connection
on projective bundles coming from these irreducible representations, we only need to
check the compatibility. But this follows by the same use of Theorem 2.3.1, as the
symbol ρPH is Prrrs-invariant. �

8. Flatness of rank-level duality in general

8.1. We have constructed the flat projective Prym-Hitchin connection on π˚P
k
r in Sec-

tion 5. We can also consider a flat projective connection on π˚P
r
Ξ,k, as follows. If r is

even, we notice that the two moduli spacesN even,`,ss
GLk

andN
odd,`,ss
GLk

are (non-canonically)
isomorphic, so it will be enough to describe the flat projective connection for one of these
two components. There is a Galois cover

P evenrC{C
ˆ N

`,ss
SLk

Ñ N
even,`,ss
GLk

given by taking tensor products. The Galois group consists of the k-torsion points in
Pr rC{C

, and similar to the case considered in Section 7.3, the theta group GpPr
Ξ,1q also

acts on Pk
Ξ,1 b Pr

k . We have

π˚P
r
Ξ,k –

´
π˚P

k
Ξ,1 b π˚P

r
k

¯GpPr
Ξ,1q

,



THE PRYM-HITCHIN CONNECTION AND ANTI-INVARIANT LEVEL-RANK DUALITY 35

and as GpPr
Ξ,1q preserves the flat projective connections on π˚P

k
Ξ,1 and π˚P

r
k , this defines

a flat projective connection on π˚P
r
Ξ,k.

8.2. We are now ready to show

Theorem 8.2.1. The morphism SD from (16) is flat for all r and k.

Proof. We begin by observing that the map of Lie algebras

slr ‘ slk slkr : A ‘B A b Idk ` Idr bB,

(where b denotes the Kronecker product of matrices), which is a conformal embedding
with Dynkin index pk, rq (see [SW86]), is equivariant for the involution dΨ`. Therefore,
by Theorems A.4.1 and 6.2.3, we have that the morphism between

(21) π˚Prk π˚P
k
r b π˚P

r
k

is flat.

We can now consider the following commutative diagram, with all maps induced by
tensor products:

N
`,ss
SLr

ˆ N
`,ss
SLk

ˆ P evenrC{C

N
`,ss
SLkr

ˆ P evenrC{C
N

`,ss
SLr

ˆ N
even,`,ss
GLk

N
even,`,ss
GLkr

which gives rise to the commutative diagram of morphisms of sheaves over S

π˚P
k
r b π˚P

r
k b π˚P

kr
Ξ,1

π˚Pkr b π˚P
kr
Ξ,1 π˚P

k
r b π˚P

r
Ξ,k

π˚PΞ,kr.

We need to show that the image of the tautological section of π˚PΞ,kr in π˚P
k
r bπ˚P

r
Ξ,k

is flat, and since

π˚P
k
r b π˚P

r
Ξ,k – π˚P

k
r b

´
π˚P

r
k b π˚P

kr
Ξ,1

¯GprΞq
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it suffices to show that the image in π˚P
k
r bπ˚P

r
k bπ˚P

kr
Ξ,1 is flat. But this follows from

Corollary 7.3.2 and the flatness of (21). �

Appendix A. Twisted conformal embeddings

A crucial step in Belkale’s proof of flatness of the strange duality morphism [Bel09] uses
the concept of conformal embeddings. In this appendix we review the WZW connec-
tion for twisted conformal blocks, and discuss equivariant conformal embeddings in the
twisted context. We will heavily rely on the material from [Bel09, Loo13, Dam20], to
which we refer for the relevant background material.

A.1. Overview of classical case. Even though the mathematical version of strange
duality is naturally stated in terms of non-abelian theta functions, Belkale used Laszlo’s
theorem [Las98] to switch to the setting of bundles of conformal blocks, and then used
properties of conformal embeddings there to obtain the flatness of the strange duality
morphism.

Suppose we have an embedding p Ă q of complex Lie algebras, where q is simple, and p
is semi-simple, with a decomposition in simple summands p “ ‘k

i“1pi. Associated with
this is a Dynkin index d “ pd1, . . . , dkq P Z

k
ą0. If we denote the associated affine Lie

algebras as pq and ppi, then we have an induced map

pp “ ‘k
i“1

ppi Ñ pq,

such that the generating central element ci of ppi gets mapped to di times the generating
central element of pp.

The embedding p Ă q is said to be conformal if apq “ app, where

apq “
dim q

h_
q ` 1

is the central charge of pp at level 1 (the only level at which this can occur), and

app “
kÿ

i“1

di dim pi

h_
pi ` di

is the sum of the central charges of the pi at level di (here h
_
q and h_

pi
are the respective

dual Coxeter numbers). The relevance of this is that it ensures compatibility of the
corresponding Segal-Sugawara constructions (see [Bel09, Section 5.2]). In particular, we
can consider the so-called co-set representation of the two Segal-Sugawara constructions,
which is a representation of the Virasoro algebra which will have, if the embedding is
conformal, trivial central charge. This guarantees that the whole coset representation is
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trivial, which is equivalent to saying that the diagram

(22)

Upp
«

1
cpi`h_

pi

ffAutppq

Vir

Upq
«

1
cq`h_

q

ffAutpqq

Tp

Tq

commutes. Here Vir is the Virasoro algebra, Upp and Upq are the suitable completions of
the universal enveloping algebras of pp and pq, cpi and cq are the central generators of ppi
and pq, Tp and Tq are the Segal-Sugawara morphisms, and the vertical arrow is naturally
induced by the inclusion p Ă q.

The Segal-Sugawara construction is the crucial ingredient in the WZW/TUY connection
on bundles on conformal blocks, and the main corollary of (22) is

Theorem A.1.1 ([Bel09, Proposition 5.8]). If p Ă q is a conformal embedding of Lie
algebras (with q simple, and p semi-simple as before), then the induced map between the
projective bundles of conformal blocks is flat.

A.2. Twisted conformal blocks. We now want to indicate how this result also holds
for bundles of twisted conformal blocks. As in Section 6, we will use Damiolini’s approach
to the latter [Dam20], which requires the Galois group Γ to be cyclic of prime order.
Though the result is no doubt true in greater generality, this will suffice for our purposes.
So from now on the Lie algebras pi and q (respectively semi-simple and simple, as before)
will come equipped with the action of a finite cyclic group Γ of prime order, such that
the embedding p Ă q is Γ-equivariant.

In order to define the bundles of conformal blocks, the choice of (at least) one marked
point is required. We will denote by HurpΓqg,1 the Hurwitz stack of étale Galois covers
rC Ñ C with Galois group Γ, equipped with the choice of a marked point on C. (In
[Dam20] also ramication, and nodal curves, are considered, but this will not be a concern

for us.) Given a level ℓ P Zą0, the bundle of conformal blocks V
:

h,ℓ,rCÑC
, is constructed

by Damiolini on HurpΓqg,1 (we will only need the case corresponding to the trivial
representations of p and qq. Similar to [Bel09, Section 5.1], this construction naturally

generalizes to our equivariant semi-simple case, to give bundles V:

p,pℓ1,...,ℓkq, rCÑC
.

If P and Q are the simply-connected semi-simple groups corresponding to the Lie alge-
bras p and q (which also carry an action of Γ), we can consider the parahoric Bruhat-Tits
group schemes P and Q associated to this data as invariants of the Weil restriction of the
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constant group schemes on rC (cfr. [Hei10, p. 500]). We will denote the associated rel-
ative moduli stacks of torsors as πP : BunP Ñ HurpΓqg,1 and πQ : BunQ Ñ HurpΓqg,1
(no choice of marked point is needed here, so these are actually pull-backs from the
forgetful morphism to the unmarked Hurwitz stacks). Remark that we have a natural
morphism of group schemes P Ñ Q, and hence extension of structure group gives a
morphism BunP Ñ BunQ. The relative Picard group of BunQ is cyclic with generator
L [Hei10], and given ℓ P Zą0, the line bundle Lbℓ pulls back to a line bundle Lpℓd1,...,ℓdkq

on BunP .

The construction of the bundles of twisted conformal blocks on Hurg,1 goes in the fol-
lowing steps (we referred to [Dam20, Section 3] for details):

(i) Take the associated bundles of Lie algebras for P and Q, which we shall denote
respectively by hP and hQ, and restrict these, firstly to the punctured curve, to
obtain bundles hPA and hQA, and secondly to the punctured formal neighbourhood

D
0 Ñ S of the marked point, to obtain bundles hP

D0 and hQ
D0 (at a point these will

look like the loop algebras of p and q).

(ii) There are canonical central extensions of the latter, denoted by respectively phP
D0

and phQ
D0 , with the rank of the center of the former given by k. By the residue

theorem, hPA and hQA are naturally sub-bundles of phP
D0 and phQ

D0 .

(iii) Given ℓ P Zą0, or pℓ1, . . . , ℓkq P Z
k
ą0, define the Verma modules of that level, as

rHQ
ℓ “ UphQ

D0

M ´
UphQ

D0 ˝ F 0hQ
D0 , c “ ℓ

¯

and

rHP
pℓ1,...,ℓkq “ UphPD0

M ´
UphPD0 ˝ F 0hPD0 , ci “ ℓi

¯
.

Here F 0hP
D0 and F 0hQ

D0 denote the subsheaves of sections that extend to the formal

disk. Both of rHQ
ℓ and rHP

pℓ1,...,ℓkq have unique maximal proper submodules, and

the respective quotients are denoted by HQ
ℓ and HP

pℓ1,...,ℓkq.

(iv) Finally the bundles of covacua are defined as

V
hQ,ℓ,rCÑC

“
`
hQA ˝ HQ

ℓ

˘ I
HQ
ℓ

and

V
hP ,pℓ1,...,ℓkq, rCÑC

“
´
hPA ˝ HP

pℓ1,...,ℓkq

¯ I
HP

pℓ1,...,ℓkq,

and the bundles of conformal blocks V
:

hQ,ℓ, rCÑC
and V

:

hP ,pℓ1,...,ℓkq, rCÑC
are their

duals.

We firstly observe (without requiring the embedding p Ă q to be conformal) that we
obtain a natural morphism between the bundles of twisted conformal blocks.
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Proposition A.2.1. In the setting above, there is a natural diagram

πP˚ Lbℓ
V

:

hP ,ℓ, rCÑC

πQ˚ Lpℓd1,...,ℓdkq V
:

hQ,pℓd1,...,ℓdkq, rCÑC

–

–

that commutes up to Oˆ
S .

Here the horizontal morphisms are given by the correspondence between non-abelian
theta functions and twisted conformal blocks [HK23, Theorem 12.1]. We will work

throughout with families of Γ-covers rC Ñ C Ñ S as above, parametrised by a scheme
S.

Proof. To obtain the right vertical arrow, it suffices to remark that the Γ-equivariance
of p Ă q gives natural morphisms P Ñ Q, hP Ñ hQ, hPA Ñ hQA, h

P
D0 Ñ hQ

D0 ; as well as (by

scaling the central generators using the Dynkin index d) phP
D0 Ñ phQ

D0 . These in turn induce

morphisms rHP
pℓ1,...,ℓkq Ñ rHQ

ℓ , H
P
pℓ1,...,ℓkq Ñ HQ

ℓ and V
hP ,pℓ1,...,ℓkq, rCÑC

Ñ V
hQ,ℓ, rCÑC

. Using

[HK23, Theorem 12.1], the rest of the statement follows similarly to [Bel09, Proposition
5.2]. �

A.3. Overview of construction of twisted WZW connection. Following Looi-
jenga’s approach in the non-twisted case [Loo13], the construction of the twisted WZW
connection by Damiolini [Dam20] (and extended to the semi-simple case) proceeds as
follows:

(i) If θD0{S denotes the sheaf of Lie algebras on S given as vertical vector fields
on the formal punctured neighbourhood on C, there exists a canonical central
extension

0 ~OS
pθD0{S θD0{S 0,

referred to as the Virasoro algebra over S. There is also a canonical short exact
sequence

0 θD0{S θD0,S TS 0,

where θD0,S is the sheaf of vector fields on all of the formal punctured neighbour-
hood on C.

(ii) The twisted Segal-Sugawara construction now gives [Dam20, Proposition 4.17]
morphisms

(23) ThP : pθD0{S Ñ UphPD0

«
1

cpi ` h_
pi

ff
and ThQ : pθD0{S Ñ UphQ

D0

«
1

cq ` h_
q

ff
,

where U denotes the completion of the universal enveloping algebras of phP
D0 and

phQ
D0 with respect to suitable filtration F ˚phP

D0 and F ˚phQ
D0 .
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(iii) The morphisms ThP and ThQ induce morphisms (by abuse of notation denoted
in the same way)

ThP : pθD0{S Ñ End
`
F`

`
hPD0

˘˘
and ThQ : pθD0{S Ñ End

`
F`

`
hQ
D0

˘˘
,

where

F`
`
hQ
D0

˘
“

´
UphQ

D0

M
UphQ

D0 ˝ F 1phQ
D0

¯ «
1

cq ` h_
q

ff

and

F`
`
hPD0

˘
“

´
UphPD0

M
UphPD0 ˝ F 1phPD0

¯ «
1

cpi ` h_
pi

ff
.

(iv) The projectivizations of ThP and ThQ combine with the subsheaf F 0θD0,S Ă θD0,S

(acting via coefficient-wise derivation) to give morphisms of Lie algebras

PThP ,S : θD0,S D
p1q
S

´
HP

pℓ1,...,ℓkq

¯ M
OS

and

PThQ,S : θD0,S D
p1q
S

`
HQ
ℓ

˘ M
OS .

(v) In turn, PThP and PThQ induce the flat projective connections on the bundles of
covacua ([Dam20, Lemma 4.22])

∇P : TS A
´
V
hP ,pℓ1,...,ℓkq, rCÑC

¯ M
OS

and

∇Q : TS A
´
V
hQ,ℓ, rCÑC

¯ M
OS .

Remark A.3.1. Though we have no need to do so, it is possible to avoid going to projec-
tivizations, to obtain a λ-flat connection (in the terminology of [Loo13]), also known as
a twisted D-module, as is done in [DM23, §12]. Twisted D-modules induce flat projective
connections, but carry a bit more information.

A.4. Conformal embeddings and twisted flatness. We will now further require
the equivariant embedding p Ă q to be conformal as before (and hence put ℓ “ 1),

and consider the flat projective WZW connections on V
:

h,ℓ,rCÑC
and V

:

q,pℓd1,...,ℓdkq, rCÑC
as

constructed in [Dam20, Section 4].

Theorem A.4.1. If the Γ-equivariant embedding p Ñ q is conformal, the natural mor-

phism between the projective bundles of twisted conformal blocks V
:

h,1,rCÑC
and

V
:

p,pd1,...,dkq, rCÑC
preserves the projective connections.
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Proof. If p Ă q is conformal, and we take ℓ “ 1, pℓ1, . . . , ℓkq “ pd1, . . . , dkq, the Segal-
Sugawara morphisms (23) will again form a commutative diagram, as in (22), in the
construction of the connection outlined in A.3. (As in [Bel09], this follows from consid-
ering the coset representation for ThP and ThQ , which by [KW88, Proposition 3.2(c)] is
trivial for each closed point in S, hence trivial on all of S.)

Together with the natural map

φ : F`
`
hP
D0

˘
F`

`
hQ
D0

˘

this gives in step (iii)

φ
´
ThQp pXqpsq

¯
“ ThP p pXqpφpsqq

for pX P pθD0{S .

The result then follows by following this through steps (iii) and (v), and dualizing to the
bundles of conformal blocks. �
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