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Highlights

Fast pick-freeze estimation of Sobol’ sensitivity maps using basis
expansions

Yuri Taglieri Sáo, Olivier Roustant, Geraldo de Freitas Maciel

• Fast computations of Sobol’ sensitivity maps (SMs) based on a general
basis expansion;

• Closed-form expression of SMs using pick-freeze formulas directly in
the basis coefficients (basis-derived approach);

• Computational gain analysis of the basis-derived approach over the
dimension-wise approach;

• Application to an analytical test-case (Campbell2D function) and to a
non-Newtonian fluid mechanics data-driven case.
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Abstract

Global sensitivity analysis (GSA) aims at quantifying the contribution
of input variables over the variability of model outputs. In the frame of
functional outputs, a common goal is to compute sensitivity maps (SM), i.e
sensitivity indices at each output dimension (e.g. time step for time series, or
pixels for spatial outputs). In specific settings, some works have shown that
the computation of Sobol’ SM can be speeded up by using basis expansions
employed for dimension reduction. However, how to efficiently compute such
SM in a general setting has not received too much attention in the GSA
literature.
In this work, we propose fast computations of Sobol’ SM using a general
basis expansion, with a focus on statistical estimation. First, we write a
closed-form expression of SM in function of the matrix-valued Sobol’ index
of the vector of basis coefficients. Secondly, we consider pick-freeze (PF)
estimators, which have nice statistical properties (in terms of asymptotical
efficiency) for Sobol’ indices of any order. We provide similar basis-derived
formulas for the PF estimator of Sobol’ SM in function of the matrix-valued
PF estimator of the vector of basis coefficients. We give the computational
cost, and show that, compared to a dimension-wise approach, the computa-
tional gain is substantial and allows to calculate both SM and their associated
bootstrap confidence bounds in a reasonable time. Finally, we illustrate the
whole methodology on an analytical test case and on an application in non-
Newtonian hydraulics, modelling an idealized dam-break flow.
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1. Introduction

Global Sensitivity Analysis (GSA) consists of numerous techniques that
apportion the uncertainty of a model output to uncertainties in its inputs
(Saltelli et al., 2008). We can understand as “model” a computational code
that receives input variables (or factor or parameter) and produces outputs,
which may be scalars or vectors, that correspond to real phenomena. GSA
has remarkable importance in any study that requires knowing which input
variables contributes the most to the variability of outputs, such as in model
validation, model calibration and decision-making processes (Morris, 1991;
Sobol, 2001; Saltelli et al., 2008). In general, but not limited to, GSA aims
to identify non-influential and important inputs, to rank the importance of
such parameters and to understand the model based on the interactions of
the parameters (Da Veiga et al., 2021; Iooss and Lemâıtre, 2015). Therefore,
GSA stands itself as an invaluable tool for studying any uncertainty-related
subject.

An important group of GSA techniques relies on quantifying the vari-
ance as uncertainty measure, the so-called “variance-based methods”. Since
the variance quantifies the dispersion of data around the mean, it represents
itself as an adequate metric to evaluate the uncertainty of input variables
over outputs (Saltelli et al., 2010; Borgonovo and Plischke, 2016). The vari-
ance also presents convenient statistical properties, which allow us to per-
form a variance-decomposition procedure (Sobol-Hoeffding decomposition)
and obtain the Sobol’ indices, which are intuitive sensitivity indices capable
of measuring the influence of input variables and their interaction over the
variability of the outputs (Sobol, 2001; Saltelli et al., 2008).

However, closed analytical formulas for calculating the Sobol’ indices ex-
ist just for some classes of models, such as Polynomial Chaos Expansion
(PCE) (Sudret, 2008), and some simple and explicit models, generally used
as benchmark cases (Becker, 2020). In the majority of practical cases, the
Sobol’ indices are estimated by sampling-based estimators, which consists of
obtaining a finite sample of model evaluations, typically with size on the or-
der of thousands, and applying a discrete estimation technique (Helton et al.,
2006; Saltelli et al., 2008). This kind of technique is called a “pick-freeze”
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(PF) scheme (Sobol, 1993; Saltelli, 2002; Gamboa et al., 2016). Its main
advantage is that it is a very general scheme, whose only assumption is the
square-integrability of the model with respect to the probability distribu-
tions of input variables (Da Veiga et al., 2021). Some works were dedicated
to improve the accuracy and efficiency of PF schemes by adopting different
sampling strategies (Devroye, 1986; McKay, 1995; Tissot and Prieur, 2015);
others studied their asymptotic properties for purely Monte-Carlo sampling
(Janon et al., 2014; Gamboa et al., 2016).

Although very general, PF schemes were primarily developed to perform
GSA of scalar outputs. However, many practical cases study temporal and/or
spatial outputs, i.e. functional outputs, high-dimensional by definition. This
high-dimensionality characteristic means that performing GSA produces re-
sults in the form of series or maps of Sobol’ indices. Herein, we call this
series/map as Sensitivity Map (SM). Therefore, the PF scheme may not be
readily applicable, requiring some type of pre-GSA approach to deal with
the high dimensionality of outputs. The most direct approach consists in
discretizing the domain with a finite number of coordinates, where each co-
ordinate produces a scalar value (Terraz et al., 2017). Then, the model is
evaluated on the order of thousand times and the PF scheme is performed on
each coordinate, ultimately producing SMs. Although very informative and
capable of providing sensitivity indices maps to analysts, two problems may
arise from this approach: 1) computational storage may be prohibitive; and
2) the model can be computationally expensive to produce enough realiza-
tions for an accurate Sobol’ indices estimation through PF schemes. The first
problem can be addressed by using dimension-reduction techniques, such as
basis expansions (e.g. Principal Component Analysis, B-splines, wavelets), to
reduce output dimensionality, consequently reducing memory storage (Abdi
and Williams, 2010; Hawchar et al., 2017; Nagel et al., 2020). The sec-
ond problem requires the construction of a metamodel (also called surrogate
model or emulator), which approximates accurately the model and is fast to
evaluate. Famous families of metamodels include Gaussian process regres-
sion (Williams and Rasmussen, 1995), polynomial chaos expansion (Sudret,
2008), artificial neural networks (Zou et al., 2009; Fonseca et al., 2003).

In this context, by applying a basis-expansion technique and by meta-
modeling and predicting the basis coefficients through the metamodels, the
original high-dimensional outputs can be decoded from the reduced-space
variables, i.e. the basis components and coefficients, using a scalar product
operation. Marrel et al. (2011) chose Principal Component Analysis (PCA)
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as a basis-expansion technique and used Gaussian Process Regression (GPR)
to metamodel the PCA coefficients and to perform GSA using the PF scheme
directly in each output dimension, obtaining the SMs. In this work, we name
this approach as dimension-wise approach, since the PF scheme is performed
in each output dimension separately. However, this methodology overlooks
the fact that basis coefficients and components could be used for a more
efficient GSA framework. In this direction, Nagel et al. (2020) also chose
PCA, but used Polynomial Chaos Expansion (PCE) to metamodel the PCA
coefficients. By leveraging the orthogonality properties of PCE, the Sobol’
indices of the PCA coefficients are calculated analytically and, therefore, no
PF scheme is needed. By decoding the Sobol’ indices from the reduced space
to the original space, SMs were obtained. Herein, we name this approach
as basis-derived approach, since the SMs are estimated directly from the ba-
sis coefficients and components. Although efficient, it is not general: the
analytical treatment of Sobol’ indices makes the framework limited only to
PCE. The application of other metamodeling techniques, e.g. ANN (Artifi-
cial Neural Networks) and Gaussian Process Regression (GPR), would not
be possible since they require a closed expression for the Sobol’ indices. In a
similar framework as Nagel et al. (2020), using PCA and GPR metamodel-
ing, Li et al. (2020) compute the Sobol’ indices by using the basis coefficients.
Eventually, notice that the aforementioned works do not explore the statis-
tical estimation of the Sobol’ indices computed with basis coefficients.

In this work, we investigate the basis-derived approach to obtain SMs for
general basis expansions. First, we obtain a closed-form expression of SM in
function of the matrix-valued Sobol’ index of the vector of basis coefficients
(Prop. 1). Then, we focus on statistical estimation. We show that the
same formula remains true when we replace the Sobol’ indices by their PF
estimators (Prop. 2). This remarkable property is due to the fact that usual
PF estimators are quadratic form of the two samples used in PF schemes
(Remark 3). We assess the computational cost (or numerical complexity)
of the basis-derived and dimension-wise approaches (Prop. 3). It appears
that the basis-derived approach is much less computationally demanding and
allows to estimate both the SMs and their bootstrap confidence bounds in a
reasonable time. We illustrate the performance of the basis-derived approach
on an analytical test-case (Campbell2D function), which has spatial maps as
outputs, and on an idealized gradual dam-break flow of non-Newtonian fluid
flow, which produces Sobol’ indices time series.

The work is organized as follows. Section 2 presents theoretical back-
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ground and concepts of GSA. Section 3 presents our contribution to the
study of PF schemes. Section 4 shows the applications chosen for this work,
i.e. the Campbell2D function and the gradual dam-break problem of non-
Newtonian fluids. Finally, Section 5 closes with the conclusions and future
works.

2. Background

In this section, we present the theoretical ground of the variance decompo-
sition and the concepts of sensitivity indices for variance-based GSA. Except
for Section 2.3, functions are scalar-valued. Most of the material is standard,
and can be found e.g. in Da Veiga et al. (2021).

2.1. Sobol-Hoeffding decomposition and Sobol’ indices for (scalar-valued case)

We represent X as the vector of input variables X = (X1, ..., Xd) ∈ Rd

and d the number of input variables. Each input variable has uncertainties
associated to it and we model them as random variables, denoting µX as
the probability distribution of X. The components Xi are assumed to be
independent, probability distribution µXi

. The corresponding model output,
here assumed to be scalar, is a random variable written as

Y = f(X). (2.1)

We assume that E(Y 2) < +∞. Equivalently, f belongs to the Hilbert
space L2(µX). We denote by ⟨., .⟩ its inner product : ⟨f, g⟩ =

∫
fg dµX .

According to the Sobol-Hoeffding decomposition (see e.g. Sobol, 1993), f(X)
can be uniquely decomposed as a sum of terms with increasing complexity
(Eq. 2.2).

f(X) =
∑
I∈Pd

fI(XI) (2.2)

such that for all I ∈ Pd and all strict subset J ⊊ I, E[fI(XI)|XJ ] = 0
(with the convention E[.|X∅] = E[.]).

Two properties hold for the terms in Eq. 2.2. First, the zero-mean
property or centered-mean property, where E[fI(XI)] = 0. Second, the or-
thogonality property in L2(µX), i.e. ⟨fI , fI′ ⟩ = E[fI(XI)fI′ (XI′ )] = 0. This
leads to the variance decomposition formula (Eq. 2.3):
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Var(f(X)) =
∑

I∈Pd,I ̸=∅

Var(fI(XI)) (2.3)

Equation 2.3 allows us to account quantitatively the sensitivity of each
input and their interaction over the outputs. The influence of the group of
input variables XI can be quantified by the variance explained by fI(XI).
We call this quantity Sobol’ index : if normalized by the total variance, we
represent it as S(·); otherwise, we represent the unnormalized index (also
called partial variance) as D(·). The overall variance is represented by D,
without any subscript. Definition 1 provides the expressions of Sobol’ indices
and the different types of indices (first-order, closed, total and second-order).
A brief interpretation follows.

Definition 1 ((Unnormalized) Sobol’ indices). Let I ⊆ {1, . . . , d} and sub-
script (·)∼I to indicate that variables from the subset I were excluded from
the whole set. The following equations are associated to the group variables
XI .

• First-order Sobol’ index: DI = Var (fI(XI)).

• Closed Sobol’ index: Dc
I = Var (E [f(X)|XI ]).

• Total Sobol’ index (see Remark 1): Dtot
I = D −Dc

∼I .

• Second-order Sobol’ index (see Remark 2): D{i,j} = Dc
{i,j} − Di − Dj,

where i, j ∈ {1, . . . , d}.

For simplicity, let us choose I = {i}, I ′
= {i, j} and consider unnormal-

ized indices. The first-order Sobol’ index of input variable Xi, given by Di,
is the isolated contribution of Xi, or main effect of Xi. The closed Sobol’
index of XI′ , given by Dc

i,j, contains the isolated effects of Xi and Xj and
the interaction between both variables; therefore Dc

i,j = Di + Dj + Dij. If

I
′
= I = {i}, we have Dc

i = Di. The total Sobol’ index of input variables Xi

and Xj, given by Dtot
I′
, represents the main effect of both variables and the in-

teraction of {Xi, Xj} with the remaining ones X∼I′ . Lastly, the second-order
Sobol’ index of input variables Xi and Xj, given by Di,j, is the interaction
between both of them.

Remark 1. The total Sobol’ index is related to the law of total variance:

Var (f(X)) = Var (E [f(X)|X∼I ]) + E [Var (f(X)|X∼I)]
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which gives another interpretation of it as Dtot
I = E [Var (f(X)|X∼I)].

Remark 2. For all set I, each term of the Sobol-Hoeffding decomposition is
given by the recursion formula

fI(XI) = E[f(X)|XI ]−
∑
J⊊I

fJ(XJ)

This can be used to derive all Sobol’ indices recursively from the closed Sobol’
indices associated to subsets of variables. For instance, using the orthogonal-
ity of the decomposition, the second-order Sobol’ index is written

Var (fij(Xij)) = Var (E [f(X)|Xi, Xj])− Var (fi(Xi))− Var (fj(Xj))

= Dc
i,j −Dc

i −Dc
j

For most problems, there are no closed formulas for the exact calculation
of Sobol’ indices, except for simple explicit models and for some classes of
models, such as PCE-derived models (Sudret, 2008). In practice, the in-
dices are estimated through sampling-based methods, where a finite sample
of evaluations is employed for the estimation. In the sequel, we focus on
pick-freeze (“PF”) schemes or estimators (Sobol, 1993; Saltelli et al., 2008;
Gamboa et al., 2013), which have nice statistical properties and are applica-
ble to general sets I.

2.2. Pick-freeze estimators for scalar-valued functions

Let f : Rd → R be a scalar-valued function in L2(µX). In the PF scheme,
one considers two independent random vectors X and Z drawn from µX .
The model output is evaluated twice: firstly, by computing Y = f(X); and
secondly, by fixing (freezing) the coordinates of X in I and choosing (picking)
the other coordinates (denoted (·)∼I) in Z, leading to Y ∗ = f(XI , Z∼I). By
definition of X and Z, we can see that Y and Y ∗ have the same probability
distribution. But they are now dependent and their correlation is proved to
be equal to the closed Sobol’ index:

Sc
I =

Cov(Y, Y ∗)

Var(Y )
(2.4)
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This formula can be rewritten such that the first two moments of the
model output involve the two copies X and Z. Indeed, as µX = µZ , the
first moment is written f0 = E[Y ] = E[Y ∗] = E

[
Y+Y ∗

2

]
. The latter ex-

pression is preferable for estimation, as the associated empirical estimator
has a smaller quadratic risk. Similarly, the second moment is rewritten

E[Y 2] = E
[
Y 2+(Y ∗)2

2

]
. Finally, using that Cov(Y, Y ∗) = E[Y Y ∗] − f 2

0 and

Var(Y ) = E[Y 2]− f 2
0 , Eq. 2.4 is rewritten:

Sc
I =

E[Y Y ∗]−
(
E
[
Y+Y ∗

2

])2
E
[
Y 2+(Y ∗)2

2

]
−
(
E
[
Y+Y ∗

2

])2 (2.5)

In practice, an empirical estimator must be computed. We consider in-
dependent samples X(1), . . . , X(N) and Z(1), . . . , Z(N) drawn from µX . The
empirical versions of Y and Y ∗ are then given by the random variables

Y(k) = f(X(k)), Y ∗
(k) = f(X

(k)
I , Z

(k)
∼I ) (k = 1, . . . , N). (2.6)

Definition 2 (Pick-freeze estimator of closed Sobol’ indices for scalar-val-

ued functions). The empirical estimator of the closed Sobol’ index Ŝc
I

pf
cor-

responding to Eq. (2.5), called Janon-Monod pick-freeze estimator (Monod
et al., 2006; Janon et al., 2014), is given by

Ŝc
I

pf
=

D̂c
I

pf

V̂ar
pf

(2.7)

with

D̂c
I

pf
=

1

N

N∑
k=1

Y(k)Y
∗
(k) −

(
f̂0

pf
)2

(2.8)

V̂ar
pf

=
1

N

N∑
k=1

[
Y 2
(k) + (Y ∗

(k))
2

2

]
−
(
f̂0

pf
)2

(2.9)

and

f̂0
pf
=

1

N

N∑
k=1

[
Y(k) + Y ∗

(k)

2

]
. (2.10)

8



The PF estimator (2.7) has nice statistical properties: it is consistent,
asymptotically normally distributed, and asymptotically efficient among a
class of exchangeable variables, meaning that it has the smallest variance in
this class when N tends to infinity. We refer to Janon et al. (2014) for more
details.

Following Remark 2, one can deduce a natural PF estimator for a Sobol’
index associated to a set of variables I, from the (Janon-Monod) PF estima-
tors of the closed Sobol’ indices associated to subsets of I. For instance, for
second-order indices, one can set

D̂i,j

pf
:= D̂c

i,j

pf
− D̂c

i

pf
− D̂c

j

pf
, Ŝi,j

pf
=

D̂i,j

pf

V̂ar
pf

Similarly, from Definition 1, a natural candidate for a PF estimator of total
Sobol’ indices is written

Ŝtot
I

pf
= 1− Ŝc

∼I

pf
(2.11)

A second option explores Jansen’s formula (Jansen, 1999), which is rec-
ommended to evaluate total Sobol’ indices (Saltelli et al., 2010; Da Veiga
et al., 2021). The expression is given by Eq. 2.12.

Ŝtot
I

pf
=

D̂tot
I

pf

V̂ar
pf
, D̂tot

I

pf
=

1

2N

N∑
k=1

(
Y(k) − Y ∗

(k)

)2
(2.12)

Indeed, the numerator is non-negative and has the same statistical prop-
erties as Janon-Monod estimator: consistency, asymptotic normality and
asymptotic efficiency (Fruth et al., 2014).

Actually, many PF estimators can be produced by combining different
methods (Saltelli et al., 2010; Owen, 2013; Azzini et al., 2021) for the nu-
merator (partial variance) and denominator (overall variance). Here, we will
focus on the Monod-Janon estimator (2.7) and Jansen estimator (2.12) for
the estimation of first-order and total Sobol’ indices respectively. Neverthe-
less, we will see in the next section that our main result also applies to other
PF estimators, as soon as they can be expressed with quadratic forms in the
variables Y(1), . . . , Y(N), Y

∗
(1), . . . , Y

∗
(N) (see Remark 3).

2.3. Pick-freeze estimators for vector-valued functions

Here, we define natural extensions of the PF estimators to vector-valued
functions. They will be useful in the sequel.
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Definition 3 (Unnormalized closed Sobol’ index for vector-valued func-
tions). Let I ∈ Pd, f ∈ L2(µ), and X be a random vector with law µ. The
unnormalized closed Sobol’ index of f(X) = Y , denoted Dc

I(Y ), is defined as
the covariance matrix of the random vector E[Y |XI ]:

Dc
I(Y ) = Cov(E[Y |XI ])

The PF estimators of the unnormalized closed or total Sobol’ index and
the overall variance are immediately extended for vector-valued function, by
replacing products by dot products in Definition 2. However, some care is
needed to define a ratio between such quantities, as they are now matrices.
Actually, we will not pursue in this way, as we will not need it.

Definition 4 (Pick-freeze estimator for vector-valued functions). The pick-
freeze estimator of the unnormalized closed Sobol’ index, total Sobol’ index
and the covariance matrix of a vector-valued function, are defined by the
matrices

D̂c
I

pf
=

1

N

N∑
k=1

Y(k)(Y
∗
(k))

⊤ − f̂0
pf
(
f̂0

pf
)⊤

D̂tot
I

pf
=

1

2N

N∑
k=1

(
Y(k) − Y ∗

(k)

) (
Y(k) − Y ∗

(k)

)⊤
Ĉov

pf
=

1

N

N∑
k=1

[
Y(k)Y

⊤
(k) + Y ∗

(k)(Y
∗
(k))

⊤

2

]
− f̂0

pf
(
f̂0

pf
)⊤

with

f̂0
pf
=

1

N

N∑
k=1

[
Y(k) + Y ∗

(k)

2

]

3. Contributions

The contributions of this work are focused on applications that employ
basis expansions to reduce dimensionality. Let us consider that output data
yℓ(X) are expanded in a functional basis of dimensionm, where (·)ℓ represents
the index of each output dimension, as follows:
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yℓ(X) =
m∑
i=1

ci(X)vi,ℓ (3.1)

where (c1(X), . . . , cm(X)) are basis coefficients and (v1,ℓ, . . . , vm,ℓ) are basis
components. We set c(X) = (c1(X), . . . , cm(X))⊤ and v.,ℓ = (v1,ℓ, . . . , vm,ℓ)

⊤

the corresponding vectors.
The following proposition develops the expression of closed Sobol’ indices

considering the basis coefficients.

Proposition 1 (Expression of closed Sobol’ indices with basis coefficients).
Let yℓ(X) = v⊤.,ℓ c(X) and, for all I ⊆ {1, . . . , d},

Sc
I(yℓ(X)) =

v⊤.,ℓ D
c
I(c(X)) v.,ℓ

v⊤.,ℓ Cov(c(X))v.,ℓ
(3.2)

Proof. We should recall that if Y is a square integrable random vector of size
m, and A is a (deterministic) p×m matrix, then Cov(AY ) = ACov(Y )A⊤.
For the numerator, by linearity of the conditional expectation, we have

E[yℓ(X)|XI ] = v⊤.,ℓ E[c(X)|XI ]

Applying the covariance formula with A = v⊤.,ℓ and Y = E[c(X)|XI ] gives
the expression of the numerator:

Dc
I(yℓ(X)) = v⊤.,ℓ D

c
I(c(X)) v.,ℓ

Using the same logic for the denominator, we have immediately:

Var(yℓ(X)) = v⊤.,ℓ Cov(c(X)) v.,ℓ

This concludes the proof.

Proposition 1 shows that the closed Sobol’ index of yℓ(X) can be com-
puted directly from the random vector of its coefficients c(X) in the basis v.,ℓ.
Following Remark 2, formula (3.2) can be extended to Sobol’ indices of any
order and total Sobol indices, as they can be expressed as linear combinations
of closed Sobol indices. Notice further that (3.2) is similar to formula (11) of
(Li et al., 2020) written in the context of PCA for first-order Sobol’ indices.
Therein, a matrix P is used, whose row ℓ contain the first PCA eigenvectors
corresponding to v⊤.,ℓ in our framework. With that notation, the numerator
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(resp. denominator) of (3.2) is equal to the coefficient (ℓ, ℓ) of the diagonal
matrix diag(PDc

IP
⊤) (resp. diag(PCov(c(X))P⊤) ), and we retrieve their

expression.

We now focus on estimation of Sobol’ indices. The next proposition shows
that Proposition 1 remains valid when we replace the theoretical quantities
by their PF estimator, providing a formula to estimate the SMs.

Proposition 2 (Expression of pick-freeze estimators with basis coefficients).
For all I ⊆ {1, . . . , d} and all ℓ ∈ {1, . . . , L}, we have, with the notations of
Definition 2 and Definition 4,

Ŝc
I

pf
(yℓ(X)) =

v⊤.,ℓ D̂
c
I

pf
(c(X)) v.,ℓ

v⊤.,ℓ Ĉov
pf
(c(X)) v.,ℓ

(3.3)

Proof. Consider the same random vectors X and Z from Subsec. 2.2 and let
Y = yℓ(X) = v⊤.,ℓc(X) and Y ∗ = v⊤.,ℓc(XI , Z∼I). Let us denote C = c(X) and
C∗ = c(XI , Z∼I), similarly to Definition 2 for f(X).
Let us first consider the PF estimator of the partial variance of yℓ(X). By
substituting it in Definition 2, we have

D̂c
I

pf
(yℓ(X)) = Q(Y(1), . . . , Y(N), Y

∗
(1), . . . , Y

∗
(N))

where Q is the quadratic form in the variables Y(1), . . . , Y(N), Y
∗
(1), . . . , Y

∗
(N)

Q(Y(1), . . . , Y(N), Y
∗
(1), . . . , Y

∗
(N)) =

1

N

N∑
k=1

Y(k)Y
∗
(k) −

(
1

N

N∑
k=1

Y(k) + Y ∗
(k)

2

)2

Notice that the definition of Q can be extended to vectors by replacing prod-
ucts with dot products:

Q(Y(1), . . . , Y(N), Y
∗
(1), . . . , Y

∗
(N)) =

1

N

N∑
k=1

Y(k)(Y
∗
(k))

⊤

−

(
1

N

N∑
k=1

Y(k) + Y ∗
(k)

2

)(
1

N

N∑
k=1

Y(k) + Y ∗
(k)

2

)⊤

With this extended definition, we have, from Definition 4,

D̂c
I

pf
(c(X)) = Q(C(1), . . . , C(N), C∗

(1), . . . , C∗
(N))

12



Furthermore, as Q is a quadratic form, a direct computation shows that

Q(Y(1), . . . , Y(N), Y
∗
(1), . . . , Y

∗
(N)) = Q(v⊤.,ℓC(1), . . . , v⊤.,ℓC(N), v

⊤
.,ℓC∗

(1), . . . , v
⊤
.,ℓC∗

(N))

= v⊤.,ℓQ(C(1), . . . , C(N), C∗
(1), . . . , C∗

(N))v.,ℓ

Finally, we obtain:

D̂c
I

pf
(yℓ(X)) = v⊤.,ℓD̂

c
I

pf
(c(X))v.,ℓ

The same method can be used for the PF estimator of the overall variance of
yℓ(X), remarking that it is also defined as a quadratic form in the variables
Y(1), . . . , Y(N), Y

∗
(1), . . . , Y

∗
(N). This leads to the announced formula.

Remark 3 (Extension to other pick-freeze estimators). Looking at the proof
of Proposition 2, we see that the result can be extended to all PF estimators
that can be expressed with quadratic forms in the variables of the two samples.
For instance, for the estimator 2.12 of total Sobol’ indices, we have, with the
notations of Definition 2 and Definition 4:

Ŝtot
I

pf
(yℓ(X)) =

v⊤.,ℓ D̂
tot
I

pf
(c(X)) v.,ℓ

v⊤.,ℓ Ĉov
pf
(c(X)) v.,ℓ

(3.4)

Proposition 2 allow to estimate the SMs of closed Sobol’ indices in two
approaches and obtain the exact same result, either using the Definition 2
for each output dimension (dimension-wise approach) or using formula (3.3)
(basis-derived approach). This also applies for the SMs of Sobol’ indices and
total Sobol’ indices, following Remark 2 and Remark 3. In the dimension-
wise approach, only scalar-valued functions are considered, but the compu-
tation of Sobol’ indices must be done for each pixel ℓ. In the basis-derived
approach, a matrix containing the Sobol’ index of the vector of coefficients
is first computed. As this matrix does not depend on ℓ, it can be stored and
reused to compute the SM by simple vector-matrix multiplications. Further-
more, as this matrix is generally of small size, equal to the number of basis
functions, we can expect a substantial gain in the computational time.

To confirm this intuition, we now quantify the computational cost of the
two approaches. We will assume the same cost for additions and multiplica-
tions.
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Proposition 3 (Computational cost to compute Sc
I(yℓ(X))). Assume that

the PF samples X(1), . . . , X(N), Z(1), . . . , Z(N) and the corresponding output
values c(X(k)) and c(X

(k)
I , Z

(k)
∼I ) have been computed for k = 1, . . . , N , with

N ≫ 1. Let H(x1, x2) = 2x1x2

x1+x2
be the harmonic mean of two positive real

numbers x1, x2. Then the ratio of computational costs between the dimension-
wise (DW) and basis-derived (BD) approaches is equal to

(2m+ 4)NL

4m2N +mN +m2 +mL(m+ 1)
>

H(2N,L)

3m
(3.5)

Proof. The dimension-wise approach first requires obtaining L scalar output
values by decoding the basis coefficients (Eq. 3.1) and then performing scalar-
valued pick-freeze estimation over the L output dimensions through Defini-
tion 2, using Y = yℓ(X) = v⊤.,ℓc(X) and Y ∗ = v⊤.,ℓc(XI , Z∼I). Next, the basis-
derived approach performs the vector-valued pick-freeze estimation (Defini-
tion 4) considering the m-sized vectors Y = c(X) and Y ∗ = c(XI , Z∼I).
Then Proposition 2 is applied. Tables 1 and 2 summarize the computational
costs related to each mathematical expression calculated in each approach.
For the last two operations of Table 2, we expanded the expression of form
x⊤Ax as follows

x⊤Ax =
m∑
i=1

x2
iAi,i + 2

∑
1≤i<j≤m

xixjAi,j.

where A is a symmetric matrix of size (m,m) and x is a vector of length
m. The computation of x⊤Ax can be done with approximately 3

2
m(m + 1)

operations.
The ratio of computational costs is immediately deduced, using that 3m2

can be neglected relatively to 2m(3m+ 1)N as N ≫ 1. The lower bound in
(3.5) is due to the following inequalities (which are sharp when m is large)

2m(3m+ 1)

m+ 2
< 6m,

3m(m+ 1)

m+ 2
< 3m,

which implies

CostDW

CostBD

≈ 4(m+ 2)NL

2m(3m+ 1)N + 3m(m+ 1)L
>

4NL

6mN + 3mL
=

H(2N,L)

3m

14



Dimension-wise approach Cost

Set Y = yℓ(X) =
∑m

i=1 ci(X)vi,ℓ

Compute Y(k), Y
∗
(k), k = 1, . . . , N 4mN

Compute α := 1
N

∑N
k=1 Y(k)Y

∗
(k) 2N

Compute β := 1
2N

∑N
k=1

(
Y 2
(k) + (Y ∗

(k))
2
)

4N

Compute γ := 1
2N

∑N
k=1

(
Y(k) + Y ∗

(k)

)
2N

Deduce Ŝc
I

pf
(yℓ(X)) = α−γ2

β−γ2 -

Total Cost (ℓ fixed) 4(m+ 2)N

Total Cost (for ℓ = 1, . . . , L) CostDW = 4(m+ 2)NL

Table 1: Dimension-wise approach expressions and respective computational costs in func-
tion of number of basis components m, length of PF samples N and number of output
dimensions L.
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Basis-derived approach Cost

Set Y = c(X) = (c1(X), . . . , cm(X))⊤

Compute A :=
1

N

N∑
k=1

Y(k)(Y
∗
(k))

⊤ 2m2N

Compute B :=
1

2N

N∑
k=1

[
Y(k)Y

⊤
(k) + Y ∗

(k)(Y
∗
(k))

⊤
]

4m2N

Compute γ := 1
2N

∑N
k=1

[
Y(k) + Y ∗

(k)

]
2mN

Deduce C = γγ⊤, D̂c
I

pf
(c(X)) = A − C and

Ĉov
pf
(c(X)) = B − C

3m2

Store D̂c
I

pf
(c(X)) and Ĉov

pf
(c(X))

For ℓ = 1, . . . , L, compute v⊤.,ℓ D̂
c
I

pf
(c(X)) v.,ℓ ≈ 3

2
m(m+ 1)L

For ℓ = 1, . . . , L, compute v⊤.,ℓ Ĉov
pf
(c(X)) v.,ℓ

≈ 3

2
m(m+ 1)L

Total Cost: CostBD ≈ 2m(3m+1)N+3m(m+1)L

Table 2: Basis-derived approach expressions and respective computational costs in func-
tion of number of basis components m, length of PF samples N and number of output
dimensions L.
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Proposition 3 shows that the ratio CostDW

CostBD
increases with L and decreases

with m. This is expected since CostDW requires iterating over the output
dimensions L whereas CostBD depends on the vector of basis coefficients of
size m. In practice, if the dimension reduction is effective, we may expect
that m ≪ L. We may also choose N such that m ≪ N . Then, H(2N,L) >
min(2N,L), implying that

CostDW

CostBD

>
min(2N,L)

3m
≫ 1

This confirms the intuition of substantial computational gain of the basis-
derived approach over the dimension-wise approach while obtaining the same
exact result.

4. Applications

In this section, we present applications of GSA in cases with high dimen-
sional outputs (time series and maps) using the contribution described in
this work, i.e. PF scheme applied directly in basis components. The goal
is to obtain the Sensitivity Maps (SMs). The treatment of functional out-
puts follows a general methodology, explained extensively in Marrel et al.
(2011); Nagel et al. (2020); Li et al. (2020); Perrin et al. (2021). Basically,
two steps are followed. First, output data are expanded in a functional basis
(Eq. 3.1), which allows us to represent data with few m dimensions instead
of L dimensions. Second, a metamodel is trained for each basis coefficient,
enabling the fast and reasonably accurate prediction of coefficients. There-
fore, the PF scheme becomes feasible with low computational resources. If
one wants to predict the functional data represented in high-dimension L,
the coefficients can be predicted by the metamodels and then original high-
dimensional data can be recovered through a scalar product operation with
the basis components.

In the following applications, we employed the Principal Component
Analysis (PCA) and Gaussian Process Regression (GPR) methods as the
basis-expansion and metamodeling techniques, respectively. The implemen-
tation was done in Python language, using the “scikit-learn” (Pedregosa
et al., 2011) and “gpflow” (Matthews et al., 2017) libraries for the PCA
and the GPR procedures, respectively. The scripts are publicly available in
https://osf.io/njgzt/?view_only=9d7d6f02c1e447059bf2792aa34e1db0.
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To verify the accuracy of the metamodels’ predictions, we employed the Q2

metric (Marrel et al., 2011) as indicated by Eq. 4.1.

Q2 = 1− Eℓ{EX [(yℓ(X)− ŷℓ(X))2]}
Eℓ{VarX [yℓ(X)]}

(4.1)

where ŷℓ are metamodels’ predictions. Here Eℓ denotes the expectation
for the uniform probability distribution on {1, . . . , L}, equal to the average
on ℓ. In practice EX and VarX are approximated by computing the average
on a sample drawn from the probability distribution of X. If Q2 > 0, the
metamodels’ prediction is a better prediction than the average value of the
observation. The closest to 1, the better the prediction accuracy.

Finally, since this work deals with high-dimensional output models, sen-
sitivity indices are distributed along the domain (space or time series). To
assess the global influence of each input variable in a single concise index,
we employed the Generalized Sensitivity Index (GSI) (Lamboni et al., 2011;
Perrin et al., 2021), indicated by Eq. 4.2.

GSIcI =

∑m
k=1 λkS

c
I,k∑m

k=1 λk

(4.2)

where λk is the eigenvalue of the k-th basis component and Sc
I,k is the

closed Sobol’ index of the k-th basis coefficient. The GSI index is defined in
a similar way for total Sobol’ indices, replacing Sc

I,k by Stot
I,k in (4.2).

The following Subsection 4.1 details the application of GSA in an ana-
lytical function (Campbell2D function). Then, Subsection 4.2 describes the
case of an idealized gradual dam-break flow case of non-Newtonian fluids,
where GSA is applied to the observed time series - the maximum position of
the wave (runout) over time.

4.1. Analytical case - Campbell2D function

The analytical test case presented here is the Campbell2D function (Mar-
rel et al., 2011). The function has 8 inputs (d = 8), which can range from −1
to 5, and produces a spatial map yℓ(X) as output. Equation 4.1 shows the
mapping of inputs to spatial outputs. Figures 1a, 1b, 1c shows Campbell2D
outputs for different input values, where the spatial domain is discretized on
an uniform grid of size 64× 64.
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f : [−1, 5]2 −→ L2
(
[−90, 90]2

)
X = (x1, ..., x8) 7−→ yℓ (X)

(4.3)

where z = (z1, z2) ∈ [−90, 90]2.

(a) X = [-1,-1,-1,-1,-1,-1,-1,-1]. (b) X = [5,5,5,5,5,5,5,5]. (c) X = [5,3,1,-1,5,3,1,-1].

Figure 1: Examples of Campbell2D spatial outputs.

Using the Latin Hypercube Sampling (LHS) technique, a Design of Ex-
periment (DoE) of size 200 was generated considering uniform probability
distributions for input variables. For the basis expansion, PCA was applied
using m = 7 basis components, which account for 99.24% of the total vari-
ance. Then, each basis coefficient was metamodeled by a GPR using the
Matérn 5/2 kernel and the “L-BFGS-B” optimizer for Maximum Likelihood
Estimation. To evaluate the accuracy of the metamodels, the Q2 metric (Eq.
4.1) was employed considering a validation set of size 50. Figure 2 shows
Q2 > 0.95, which implies good predictions from the metamodels. Therefore,
we can ensure reasonably accurate predictions for the basis coefficients using
the trained metamodels.
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Figure 2: Q2 metrics for evaluation of metamodels’ accuracy.

To estimate the SMs, two methods were employed: the direct method
and the basis-derived method. For the direct method, the outputs yℓ(X)
of Campbell2D function were calculated using the theoretical equation and
applied directly in Definition 2 for each output dimension. For the basis-
derived solution, the predictions of basis coefficients from GPR metamodels
were generated and applied in Definition 4. Both of them were computed
using PF samples of size 5 000. The bootstrap method was employed to
evaluate the mean result and the correspondent standard deviation, using
50 bootstrap replicates. Figures 3 and 4 show the first-order SMs for input
variables x2 and x6, both referring to the direct and basis-derived methods. In
the same direction, Figs. 5 and 6 show the total order SMs for input variables
x4 and x8, respectively. The results of the basis-derived method present a
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good agreement with those of the direct method, with errors mostly ranging
from 5 to 15%. We can notice some zones with larger errors (50% for Fig. 3
and 30% for Fig. 4), associated with low-value Sobol’ indices. Since we are
considering the predicted SM with bootstrap mean, the error can be sensitive
to the standard deviation around the mean due to the low-value indices.

(a) Direct method. (b) Basis-derived method. (c) Relative errors.

Figure 3: Comparison of the first-order SMs for x2 obtained with the direct and basis-
derived methods. In (c), the color scale values correspond to percentages of the direct
method result represented in (a).

(a) Direct method. (b) Basis-derived method. (c) Relative errors.

Figure 4: Comparison of the first-order SMs for x6 obtained with the direct and basis-
derived methods. In (c), the color scale values correspond to percentages of the direct
method result represented in (a).
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(a) Direct method. (b) Basis-derived method. (c) Relative errors.

Figure 5: Comparison of the total order SMs for x4 obtained with the direct and basis-
derived methods. In (c), the color scale values correspond to percentages of the direct
method result represented in (a).

(a) Direct method. (b) Basis-derived method. (c) Relative errors.

Figure 6: Comparison of the total order SMs for x8 obtained with the direct and basis-
derived methods. In (c), the color scale values correspond to percentages of the direct
method result represented in (a).

To summarize the contribution of each input variable over the variance of
outputs, the Generalized Sensitivity Index (GSI) can also be calculated (Eq.
4.2). Figure 7 shows the first-order and total indices, where the bootstrap
method was also employed. Averaging through all the output domain, it is
possible to make some remarks. First, the variables x6 and x8 are the most
influential due to their high total index. Second, x3 and x5 are influential
just while interacting with other variables; otherwise their main effects are
negligible. On the other hand, x2, x4, x7 and x8 are defined almost completely
by their main effect. Finally, x1 is not influential, neither in its main effect
nor in its interactions with other variables. The same results were obtained
by Perrin et al. (2021).
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Figure 7: Generalized Sensitivity Indices of input variables.

Using Proposition 3 considering the given parameters (N = 5000, m = 7
and L = 4096), the theoretical gain is CostDW/CostBD = 330, i.e. the basis-
derived approach is approximately 330 times faster than the dimension-wise
approach. The practical computational gain was measured and is approx-
imately 30 times faster for the basis-derived approach. Two factors can
explain this 10-fold difference, especially those related to the implementa-
tion of the code: the specificity of the coding language and the hardware.
About coding, some operations were executed in native Python and others
in functions based on lower-level and more efficient languages (such as C
and FORTRAN), which can degrade performance. For example, the “de-
coding” procedure in the dimension-wise approach is supposed to be, in
theory, the most dominant term in CostDW (cost of 4mNL, compared to the
pick-freeze cost of 8NL). However, using a highly efficient scalar product
function (numpy.dot), it corresponds to half of the practical CostDW at max-
imum. Since the other terms cannot perform as efficiently, some disparities of
practice with theory may occur. About the hardware, the simulations were
performed in two setups: 1) AMD Ryzen 7 6800H 3.2 GHz with 16 logical
processors; and 2) Apple M3 with 8 cores (used in all simulations). The first
setup provided a cost ratio 2 times greater (approximately 60) than the sec-
ond setup, although the second setup was faster in absolute computational
time. It shows that the hardware can also affect the practical computational
costs.
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4.2. Idealized gradual dam-break flows of non-Newtonian fluids

This section presents the GSA study of the idealized case of gradual
dam-break flow of non-Newtonian fluids. An idealized gradual dam-break
flow consists of a known volume of material inside a reservoir delimited by
the walls and a gate, which is lifted with a finite velocity and the material
flows downstream a horizontal plane or channel (Fig. 8) (Matson and Hogg,
2007; Ancey and Cochard, 2009; Liu et al., 2016).

Figure 8: Schematic of the idealized gradual dam-break case with boundary conditions
and input variables.

This application is relevant to many areas of engineering in the con-
text of evaluating rheological properties and physical characteristics of non-
Newtonian materials, such as fresh concrete, mud, gels, food, etc. We refer
to Chhabra and Richardson (2011); Irgens (2014); Balmforth et al. (2014)
for further details of non-Newtonian behavior of fluids. While rheological
properties are usually assessed by equipment called “rheometers”, alterna-
tive techniques have been developed and studied, providing acceptable results
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with less costs (Clayton et al., 2003; Pereira and Maciel, 2021; Sáo et al., 2021;
Gao and Fourie, 2015b; Balmforth et al., 2007). For each technique, particu-
lar geometric characteristics (e.g. maximum distance and/or maximum fluid
height) are related to rheological properties through empirical correlations
or analytical models (Pashias et al., 1996; Pereira et al., 2022). In this con-
text, the case presented herein is important since it consists on the physical
basis of relevant alternative rheometry techniques, such as the “slump test”
(Clayton et al., 2003; Pereira and Maciel, 2021; Pereira et al., 2022), “mini-
slump test” (Pashias et al., 1996; Gao and Fourie, 2015a) and the “Bostwick
consistometer” (Balmforth et al., 2007; Minussi and Maciel, 2012).

We aim to apply the contribution of this work to study the influence of
input variables (initial height, fluid properties and lifting dynamics) of the
problem over a chosen quantity of interest: the position of the wavefront
over time. In that way, we can obtain sensitivity indices along the entire
time series, allowing us to have insights about the phenomena considering
lifting dynamics, fluid characteristics and initial geometry.

4.2.1. Data acquisition

Data obtained in this work was produced by 2D numerical simulations
using ANSYS Fluent r20.0, which employs the Finite Volume Method to
discretize and solve the system of equations of continuity and momentum
from fluid mechanics. Figure 8 shows the computational domain and bound-
ary conditions. Structured quadrangular meshes with ∆x = 5 × 10−4 m
of resolution were used and the Layering technique was applied to address
the moving boundary (lifting gate) (Gao and Fourie, 2015a; Pereira et al.,
2022). The multiphasic model Volume of Fluid (VoF) was used to model
different phases by introducing the variable Volume Fraction α(·) (α1 = 0 for
air, α2 = 1 for test fluid, where α1 + α2 = 1) and to track the free surface of
the test fluid (0 < α2 < 1) (Gopala and Van Wachem, 2008). To model the
non-Newtonian fluid rheology, the regularized Bingham model was employed
(Bird et al., 1983; Balmforth et al., 2014; Gao and Fourie, 2015a), whose
constitutive equation in apparent viscosity η form is given by:

η =

{
τc
γ̇c

(
2− γ̇

γ̇c

)
+ µB if γ̇ ≤ γ̇c

τc
γ̇
+ µB if γ̇ > γ̇c

(4.4)

where τc is the yield stress, µB is the plastic viscosity, γ̇ is the shear rate
and γ̇c is the critical shear rate. We considered γ̇c = 10−3 s−1, which is
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sufficient to regularize the viscosity (Gao and Fourie, 2015a; Pereira et al.,
2022).

Five input variables were considered: rheological properties τc and µB,
density ρ, initial height H and lifting velocity VL. The variables were con-
sidered uniformly distributed as shown in Tab. 3. The minimum and maxi-
mum values of rheological properties and density are based on the literature
(O’Brien and Julien, 1988; Major and Pierson, 1992; Sosio et al., 2007; Blight,
2009; Sarsby, 2000). For lifting dynamics and initial height, we explored very
low/high velocities and low/high aspect ratios given the fixed unitary volume
of 0.26 m2 and the prototypical dimensions of the domain.

Variable Distribution
τc U(0.1, 200) Pa
µB U(0.01, 15) Pa.s
ρ U(1000, 2650) Kg.m-3

VL U(0.01, 1) m.s-1

H U(0.2, 1) m

Table 3: Input variables and their distributions.

A pure Monte-Carlo approach was used to generate an initial DoE of size
130. Then, the DoE was enriched with a Latin Hypercube sample, producing
a final sample of size 226. The sample size was limited by the computational
cost of each simulation. The simulations were performed and the quantity
of interest evaluated was the wavefront position (runout) over time, or xf ×
t. Each output is composed of a sequence of xf data points irregularly
spread over time. To make this sequence regular, a linear interpolation was
applied to each output. Finally, 226 curves were produced, formed by regular
sequences of 5 000 interpolated points over time. Therefore, in this case, the
number of output dimensions is L = 5000.

4.2.2. Results and discussion

The same procedure applied in Subsec. 4.1 was employed herein: outputs
of the DoE were expanded through PCA (m = 10 accounting for more then
99.9% of the total variance) and the resulting basis coefficients were meta-
modeled using GPR. To evaluate the accuracy of the predictions provided
by metamodels, we defined 11 DoEs (100 ≤ nT ≤ 200, in steps of 10) and
calculated the respective Q2 metrics (Eq. 4.1), as Figure 9 shows. The curves
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refer to the bootstrap median (20 bootstrap replicates) and only the most
accurate set of metamodels (nT = 200) presents the 1st and 3rd quartiles
area, for visualization reason. It is observable that the Q2 score increases by
increasing the size of the DoE, until approximately nT = 170. For nT > 170,
the Q2 score curves remain without significant variation. These score curves
present Q2 ≈ 0.8 in early instants of time because of large variation of data in
these instants; then, they increase to Q2 ≈ 0.92, showing these values during
the entire remaining time series. We consider it as an acceptable prediction
score and we chose nT = 200 to carry out the analysis.

Figure 9: Accuracy of the prediction according to the Q2 metric. The curves correspond to
the bootstrap median and the shaded region is the area between the 1st and 3rd quartiles
of the bootstrapping set (20 bootstrap replicates). A zoomed plot from times t = 0 and
t = 5 s is presented for better visualization of initial time instants. For visualization
reasons, the shaded region is shown just for the DoE of size 200.

For the GSA, PF samples of size 5 000 were generated and the Sobol’ in-
dices were computed using Definition 4, i.e. using the basis-derived approach.
The bootstrap method was used to quantify the uncertainty related to the
PF sample size. For this, 50 replicates were used, allowing us to obtain the
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median and standard deviation of each SM. Figure 10 shows the entire time
series of first-order (dashed lines) and total Sobol’ indices (continuous lines)
for each input variable over the runout xf . It is globally observed that the
plastic viscosity µB is most influential variable in most of the time series, fol-
lowed by the yield stress τc, initial height H, density ρ and finally the lifting
velocity VL. It shows that the rheological properties of the fluid are, in fact,
important for the runout, which shows the link between the dam-break flow
and estimation of rheological properties.

Figure 10: Total and first-order SMs of all input variables. Total Sobol’ indices are
represented by solid lines, whereas first-order Sobol’ indices are represented by dashed
lines. The estimation error is assessed by boostrap with 50 replicates: lines correspond to
the mean and shaded regions to the first and third bootstrap quartiles.

However, it is clear that the sensitivity of each input variable depends on
time: in the beginning of the time series, VL and H are more influential than
in the end of the time series; conversely, τc becomes increasingly more influen-
tial later in the time series. Evaluating τc considering t → ∞, its increasing
influence is coherent with non-Newtonian fluid mechanics, since in steady
regime the material remains static and the yield stress is perfectly coun-
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terbalanced by hydrostatic pressure (Pashias et al., 1996; Gao and Fourie,
2015b; Pereira and Maciel, 2021). It means that the equilibrium position
depends strongly on the yield stress, which is corroborated by our analysis.

To evaluate the initial times, Fig. 11 shows the Sobol’ indices for 0 < t < 5
s. The behavior of VL and H makes physical sense. For VL, a fast lifting of
the gate releases more material, which ultimately affects the runout position
xf in the beginning of the time series; in later instants, this effect is counter-
balanced by viscous forces (µB and τc) and VL influence disappears. For H,
a higher value means more gravitational potential energy, also affecting xf ,
but its influence in later instants is only partially counter-balanced by viscous
forces.

Figure 11: A zoomed plot of Fig. 10 on the initial time instants of the time series.

The global influence of each input variable can be described by the Gen-
eralized Sensitivity Indices (GSI) using Eq. 4.2, as Fig. 12 shows. The GSI
values confirm that, indeed, µB and τc are the most influential parameters,
followed by H, ρ and VL. The slight difference between GSI and total GSI
indicate that interactions between variables are not strong; the same can be
concluded by checking the first-order and total SMs from Figs. 10 and 11.
We should note that the GSI analysis is not able to interpret locally (or in-
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stantaneously) the influence of each input variable, although it possesses a
clear advantage which is producing a concise index to describe globally the
influences.

Figure 12: Comparison between first-order Generalized Sensitivity Indices (GSI) and Total
GSI for each input variable.

The theoretical computational gain for the parameters given in this case
is CostDW/CostBD = 252, whereas the practical computational gain is ap-
proximately 35 faster for the basis-derived approach. The same observations
made for the computational costs of Campbell2D function can be applied
here.

5. Conclusion and future works

In this work, we employed a fast PF estimator of Sobol’ indices in the
context of high-dimensional output models with basis-expanded data, aim-
ing to compute Sensitivity Maps (SMs), called herein basis-derived approach.
Statistical estimation of Sobol’ indices was explored and formulas for closed
Sobol’ indices were given, with an immediate extension to Sobol’ indices
of any order and total Sobol’ indices. This estimator uses directly the ba-
sis coefficients and basis components, instead of using the original form of
data output (dimension-wise approach). It was proven that the basis-derived
approach involves much fewer operations in comparison with the dimension-
wise approach, hence “fast”, which allows to calculate both SM and their
associated bootstrap confidence bounds in a reasonable time. This advan-
tage also impacts the calculation of other quantities, such as the Generalized
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Sensitivity Index (GSI), which uses the covariance matrices calculated by the
method. Furthermore, this estimator is general and can be applied with any
basis expansion (e.g. wavelets, b-splines) and metamodeling techniques (e.g.
neural networks, Polynomial Chaos Expansion).

We applied the estimator in two applications, using the Principal Com-
ponent Analysis (PCA) and Gaussian Process Regression (GPR) techniques:
the analytical Campbell2D function and the idealized gradual dam-break
flow of non-Newtonian fluid. Overall, the coupled procedure of dimension-
reduction with metamodeling was capable of reducing the dimensionality of
outputs and of producing accurate results with less computational resources.
Moreover, the procedure worked with limited DoE size, in the order of 200,
which is particularly useful for high-cost simulations. The procedure allowed
us to apply the basis-derived PF estimator using a PF sample of sufficient
size to make reasonable analyses.

For the first application, the basis-derived PF method showed to be ca-
pable of recovering the theoretical SMs with an acceptable accuracy, while
performing less operations. For the second application, the method provided
the continuous time series of Sobol’ indices, which allowed us to better under-
stand the phenomena by checking the sensitivity of each input variable over
the output data. It was found that the influence of input variables change
considerably in function of time, which reflects the transient nature of the
phenomena. Non-newtonian characteristics of the fluid (plastic viscosity and
yield stress) represented the major source of contribution over the total vari-
ance and the lifting dynamics of the gate only contributed in initial times of
the flow.
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