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Abstract: Intelligent vehicles are constantly 
increasing their automation levels; thus, it is 
necessary to ensure that such vehicles operate under 
conditions designed to guarantee safe operation. This 
paper proposes a method to address this challenge 
using the Operational Design Domain (ODD) concept 
and vehicle onboard real-time monitoring. The 
proposed method comprises a framework that 
estimates the state of the Operational Domain (OD) 
while considering measurement uncertainty to 
determine whether the vehicle is operating within its 
ODD. This method utilizes fuzzy sets to represent the 
vagueness of real-world driving environments. We 
also introduce a taxonomy-based approach to 
formally define ODDs with respect to vehicle 
capabilities, independent of the architecture. The 
approach is demonstrated through simulation use 
cases, by monitoring the vehicle's OD at runtime and 
determining when it operates outside its defined 
ODD. The results pave the way for the introduction of 
verifiable safety rules based on OD membership 
degrees. 

Keywords: Operational Safety, Intelligent Vehicles, 
Operational Design Domain, Uncertainty 

1. Introduction 

Defining and limiting the operational conditions of 
automated systems is a way to guarantee their safe 
operation. The operational design domain (ODD) 
concept is often used, either during the design phase 
of the V cycle, to define the environment in which the 
designed system should be able to operate, or during 
the operation phase, as specifications describing the 
operational domain (OD) in which the system can 
evolve. This is a transparent way to specify minimum 
safety requirements for systems, that can be 
understood by both various non-technical end users 
like regulators and by experts. It is defined by [1] as 
"Operating conditions under which a given driving 
automation system or feature thereof is specifically 
designed to function, including, but not limited to, 
environmental, geographical, and time-of-day 
restrictions, and/or the requisite presence or absence 
of certain traffic or roadway characteristics." 
For example, a valet parking system could be 
designed to operate in an indoor or outdoor parking 
lot, but not on the road. A SAE level 3 [1] traffic jam 

pilot could be designed for driving in slow traffic, 
during the day, in favorable weather conditions. 
This technical paper, based on recent works 
published in [2], focus on the role of the ODD concept 
as a safety guarantee for intelligent vehicles and how 
it can act as a safeguard for complex mobile systems 
when combined with real-time monitoring of their OD. 
ODD Monitoring or OD Monitoring is the task of 
determining, whether or not a system is operating in 
the domain for which it was designed. This monitoring 
can be performed: in advance, during the mission 
planning phase, using a priori information; and/or 
during vehicle navigation, using real-time information. 
This paper is centred on the use of these real-time, 
often uncertain, measurements to infer the state of the 
OD relative to the ODD. 
ODD descriptions are useful tools to describe the 
capabilities of a system through the situation it can 
manage. The ODD is often used to describe the 
suitable operating conditions for a system. This is 
done via documents, tables, etc. However, this use 
remains generally abstract. 
This paper aims to contribute to the development of a 
formal framework for defining and monitoring the 
ODD through two contributions: 

1. A formal description of the ODD. 
2. The monitoring of the ODD, at runtime, using 

uncertain observations. 
We will first look at the literature on the topic of ODD 
monitoring in Section 2, before presenting the ODD 
description method in Section 3. Then, the proposed 
method to monitor uncertain OD attributes is 
presented in Section 4 and the results in Section 5. 

Figure 1: Funtional architecture 
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2. Related works 

Related works can be grouped into 4 categories: ODD 
monitoring, ODD identification, ODD description, and 
ODD attributes. This work is based on [3] and uses 
the methodology provided to build an ODD monitoring 
system. It focuses mainly on ODD monitoring, and 
secondly on ODD description and attributes. The 
ODD will be considered as already identified. 

Several works have approached ODD monitoring. [4] 
addresses the need for functional boundaries (i.e. an 
ODD) and a methodology to define them for driving 
systems. [5] addresses the restriction of the ODD 
based on the degraded capabilities of the system. [6] 
recognizes that the monitoring task should be divided 
based on the type of ODD attributes and that different 
strategies may be applied. [7] monitors the ODD of a 
2D laser-based localization algorithm by using 
machine learning (ML) algorithms to look at the 
extracted feature first. It verifies if the inputs contain 
distinguishable information that the localization 
system can use. [8] presents a functional architecture 
for reasoning with known system capabilities and 
environment monitoring. Each capability has a 
contract with preconditions and guarantees. A 
dependency tree therefore exists between 
capabilities, so that when one of them becomes 
unavailable, those downstream also lose their 
guarantees. An Operational Domain Monitor (ODM) 
is used to retrieve external information used as input 
to determine the service quality of a capacity. 

[9] employs a statistical approach to identify risky 
situations by computing their level of compliance with 
fuzzy requirements. The approach aggregates the 
values of relevant characteristics of situations from 
fleet logs. A level of acceptable risk can be defined to 
accept the most unlikely occurrences. The values are 
then compared to the requirements to obtain a 
compliance score between 0 and 1. 

The task of ODD monitoring requires the ODD to be 
described first. It should be noted that there is no 
single way of representing the ODD in the literature. 
Works like [10] are based on ODD descriptions. Either 
using domain specific language or YAML-based 
descriptions. [11] proposed a two-level language to 
describe the ODD. The ODD description is 
represented by a structured natural language that can 
be converted into a SQL-like, machine-interpretable 
formal language. Other projects like OpenODD are 
under conception [12].  

Similarly, since these descriptions are based on 
attributes of the ODD representing elements of the 
environment, several works, presented in [3] have 
been organizing them as a taxonomy of elements and 
more recently [13], [14]. 

No work has yet explored how to use uncertainty from 
perception and situation assessment to compute the 
membership of the OD to the ODD. In order to 

quantify risk, accurate uncertainty quantification and 
propagation from the perception systems to 
downstream systems is essential. Thus, like other 
systems, the ODD monitoring output should be 
representative of the uncertainty from the input. 

3. ODD description 

An ODD description language (see Figure 1) is 
presented to formally define an ODD textually. It 
represents the known limits of a driving system, 
independently of the system's architecture. This 
definition is based on a set of attributes of the driving 
environment (road network, road users, weather 
conditions, etc.), organized in the form of a taxonomy. 

3.1. High and low level description of the ODD 

An ODD description must contain the information 

needed to define all the operating conditions under 

which a system has been designed. Or, under 

Closed-World Assumption [15], it must contain all the 

operating conditions under which a system has not 

been designed for. 

Even with automatic ODD identification methods, the 

ODD description should always be easily readable by 

non-technical users and experts. On the other hand, 

ODD monitoring requires the ODD description to be 

machine-readable. Thus, the role of ODD description 

is to allow for the most human-readable formal 

description that can be machine evaluated. A 

statement like "Can't drive faster than 30 km/h with 

low or worse visibility." will be written as follows: 

 reject target_speed > 30 
and visibility <= low  

As such language cannot be directly machine 

interpreted, a lower level description is required. 

Tools like Xtext or its heir Langium allow parsing high-

level custom languages, called Domain Specific 

Language (DSL), and converting them in lower level 

languages or data structures. Here, the "low-level" 

ODD description will take the form of a JSON 

structure that contains all the information needed to 

Figure 2: The two levels of ODD description. The 
high-level description goal is to be as readable as 

possible while being usable to generate a lower-level 
version that is directly machine-readable. 
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describe the ODD statements. In Figure 2, there is a 

sample of the human-readable "high-level" and its 

equivalent machine-readable "low-level" JSON 

description. In this paper, the simplest human-

readable format will be used to illustrate ODD 

statements. 

3.2. Syntax of the ODD description 

Syntactically, an ODD is a list of statements, 

accepting or rejecting a type of OD. Two types of ODD 

descriptions could be used: permissive and 

restrictive. In a permissive description, every OD is 

accepted by default and each statement starts with 

"reject" to add additional constraints. We could have 

the following statements: 

"Heavy rain or worse is not OK." 

"Highways in low or worse visibility are not OK." 
 

 reject rain.intensity >= heavy 

 reject road_importance in [motorways] and  

visibility <= low  

Restrictive descriptions are the opposite, no OD is 

accepted by default, and each statement adds a valid 

OD. In this paper, only permissive descriptions will be 

used. In statements, a type of OD is represented by a 

combination of expressions. Each expression verifies 

that an attribute in the environment belongs to an 

interval or a list of possible values. 

The "low-level" ODD description is the same as the 

"high-level", except it is organized as a JSON 

structure. Each statement is composed of a status 

(reject or accept), and one or many expressions. The 

expressions are organized hierarchically as an 

abstract syntax tree (AST). This is a structure easy to 

evaluate during execution, used to save the operators 

to be applied between expressions and their priorities 

(see Section 4.4 for the evaluation). Each expression 

contains an OD attribute name, and the value, 

interval, fuzzy interval, or list to compare the OD 

attribute value to during execution. 

3.3. Taxonomy of the ODD attributes 

The ODD attributes taxonomy is a tree-like structure 

that allows the definition of the different attributes 

used in the ODD description and OD representations. 

This is the first step in creating a semantic relationship 

between the named elements of the environment and 

their machine representation. The second step is to 

have functions to observe/measure the said attribute 

as detailed in Section 5.1. In practice, this is a YAML 

file organizing OD attributes and their metadata in a 

tree structure. It is based on multiple works, including 

existing taxonomies presented in [3]. Each attribute is 

unique and can be identified by its path in the 

taxonomy. When this is unambiguous, the name of 

the attribute or the last elements of the path can 

simply be used. 

For example, visibility is the shorthand for: 

att.environmental_conditions.visibility 

Each attribute is enriched with different types of 

information. Firstly, descriptive information such as 

the name, description, and metric (for numerical 

attributes) is used to define as precisely as possible 

what the attribute represents and how it should be 

measured. For example, the difference can be made 

between the rain intensity detected directly by a rain 

sensor and that received by weather information. 

Next comes the type of attribute. This can be 

numerical values (visibility, distances, etc), single-

choice groups (type of lane markings, road, etc), 

multiple-choice groups (type of road users in sight, 

etc), and Booleans (pedestrian interaction, etc). In 

this paper, only numeric attributes will be addressed. 

However, most of the techniques presented will also 

work with the other attribute types. Numeric attributes 

will have two other information items. Firstly, the 

maximum range that the value can take (e.g. [0, ∞] 

for a distance). Secondly, a list of categories, 

describing common presets for some attributes. For 

example, "visibility in [low]" will be equivalent to 

"visibility in [(244,805)]". The advantage of this 

approach is that the high-level ODD descriptions are 

simplified, improving usability while maintaining the 

benefits of numeric representations, such as order 

(poor < low < moderate < good). 

4. ODD monitoring 

A method is presented to estimate the degree of 
membership of a system's observed operational 
domain (OD) to its ODD (See Figure 1). This degree 
of membership, ranging from 0 to 1, is used to decide 
whether the system is within its ODD. It considers the 
uncertainty of the observations made. We also 
introduce the possibility of using fuzzy sets to model 
the numerical attributes of an ODD, as a tool to better 
represent the vagueness of real-world boundaries. 
As mentioned in Section 3.2, an ODD is described as 
a set of statements, each of which adds a constraint 
(in the case of a permissive description) or a valid OD 
(in the case of a restrictive description). Each 
statement is composed of expressions, separated by 
Boolean operators. The value of an expression can 
be evaluated using a membership function, which will 
depend on the nature of the value and the interval. 

4.1. Membership function definition 
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The membership value μatt an expression, represents 

the degree to which the value x ∈ R of an attribute att 
belongs to a union of intervals Iatt = ⋃ [ai, bi]

n
i=1 . For 

numerical attributes representing measurements with 
no uncertainties, the membership function μatt: R →
{0,1} is defined by: 
 

 ∀𝒙 ∈ ℝ, {
𝝁𝒂𝒕𝒕(𝒙) = 𝟏 if 𝒙 ∈ 𝑰𝒂𝒕𝒕

𝝁𝒂𝒕𝒕(𝒙) = 𝟎 else
 [1] 

4.2. Membership function for uncertain observations 
The particularity of live information is that it always 
comes with a level of uncertainty linked to its 
measurement. Here, uncertain values will be 
represented as a normal distribution. To determine 
how much the value lies within an interval, the sum of 
the areas under the curve is computed for each sub-
interval within it. 
Let the function 𝒇𝒂𝒕𝒕 be the probability density function 
of the Normal distribution representing the value 𝒙 of 

an attribute 𝒂𝒕𝒕. The membership function 𝝁𝒂𝒕𝒕 ∶ ℝ𝟐 →
[𝟎, 𝟏] is defined by: 
 

 𝝁𝒂𝒕𝒕(𝒙) = ∑ ∫ 𝒇𝒂𝒕𝒕(𝒙) 𝒅𝒙
𝒃𝒊

𝒂𝒊

𝒏

𝒊=𝟎

 [2] 

4.3. Membership function with fuzzy intervals 

To represent the vagueness of the real world, we 
introduce the possibility of defining fuzzy intervals in 
the ODD description. In classical set theory, an 
element either belongs or does not belong to a set. In 
fuzzy set theory [16], an element can belong to a set 
with a certain membership degree between 0 and 1. 
This membership degree is assigned using a 
membership function. Instead of a classical interval 
like [𝐚, 𝐛], it would be a trapezoidal fuzzy interval 

characterized by the quadruple [𝐚𝐬, 𝐚𝐜, 𝐛𝐜, 𝐛𝐬] of real 
numbers [17]. Here, only trapezoidal fuzzy intervals 
are used, but this could extend to any kind of fuzzy 
interval (Figure 3). 
 

For measurement values without uncertainty, the 
membership function 𝛍𝐚𝐭𝐭: 𝐑 → [𝟎, 𝟏] of the value 𝐱 of 

an attribute 𝐚𝐭𝐭 to an interval 𝐈𝐚𝐭𝐭 =

⋃ [𝐚𝐬𝐢
, 𝐚𝐜𝐢

, 𝐛𝐜𝐢
, 𝐛𝐬𝐢

]𝐧
𝐢=𝟏  is defined by : 

 

 
𝝁𝒂𝒕𝒕(𝒙) = 𝝁𝑰𝒂𝒕𝒕

(𝒙) = 𝐦𝐚𝐱 (𝝁𝑰(𝒙), ∀𝑰

∈ 𝑰𝒂𝒕𝒕) 
[3] 

 

For uncertain measurement values, the membership 

function 𝝁𝒂𝒕𝒕 ∶ ℝ𝟐 → [𝟎, 𝟏] is defined by: 
 

 𝝁𝒂𝒕𝒕(𝒙) = ∑ ∫ 𝝁𝒂𝒕𝒕(𝒙). 𝒇𝒂𝒕𝒕(𝒙) 𝒅𝒙
𝒂𝒔𝒊

𝒃𝒔𝒊

𝒏

𝒊=𝟎

 [4] 

4.4. Uncertain statement evaluation using fuzzy logic 
Using the statement's expressions values just 
computed, the complete statement can be evaluated. 
As the measures feeding the expressions are 
uncertain, the resulting membership value will be 
between 0 and 1 (i.e. not classic booleans). 
To combine these values using Boolean operators, 
fuzzy logic can be used. In fuzzy logic, values, instead 
of being true or false, are real numbers between 0 and 
1, representing degrees of truth. This is an extension 
of classical logic, allowing the propagation of 
measurement uncertainty and the fuzziness of 
intervals to the result. See Table 1 for the fuzzy logic 
operators used. 
The various expressions of the statement are 
organized in an abstract syntax tree. This is a tree 
representing the structure of the logical relationships 
between the expressions, defined in the high-level 
language using operators and parentheses. For real-
time evaluation, once the membership values of the 
expressions have been computed, they are 
combined, taking into account this structure and the 
precedence of logic operations. 
 

Boolean Fuzzy Symbol 

NOT(x) 1 – x ¬𝒙 

AND(x,y) MIN(x,y) 𝒙 ∧ 𝒚 

OR(x,y) MAX(x,y) 𝒙 ∨ 𝒚 

Table 1: Fuzzy logic operators sorted by 
precedence. ¬ has priority over ∧ which has priority 

over ∨. 

As permissive descriptions have intervals describing 
values out of the ODD, an additional negation is 
applied on "reject" statements. This way, the ODD 
membership associated with any statement uniformly 
represents how much an OD is in an ODD. 
The final ODD membership is a conjunction of all the 
statement values: 
 

𝒓𝒆𝒋𝒆𝒄𝒕 𝑨 
𝒓𝒆𝒋𝒆𝒄𝒕 𝑩 

}  𝒓𝒆𝒋𝒆𝒄𝒕 𝑨 𝒂𝒏𝒅 𝑩 

4.5. Time to exit the ODD (TTE) 

Figure 3: Fuzzy interval. ac and 𝑏𝑐 are the core of 
the interval, inside which the membership value is 1. 

𝑎𝑠 and 𝑏𝑠 are the support of the interval, outside 
which the membership value is 0. 𝜇𝐼: ℝ → [0,1] is the 

membership function. 
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One application of the membership computation is to 
use the membership value of the predicted attributes 
to determine how long the system will take to exit the 
ODD. The notion of time to exit the ODD (TTE) is 
introduced, representing the estimated time for the 
system's OD to leave the ODD. The TTE value simply 
corresponds to the minimum time before a 
membership falls below a threshold. This low 
threshold represents, under which membership 
values the system is considered "out-of-ODD". 
This threshold can be regarded as a hyperparameter 
that determines the prudence of the TTE estimation. 
Values close to 0 indicate that a system is only 
considered "out of the ODD" when it is almost 
certainly out. Inversely, values close to one 
correspond to a conservative estimation of the TTE. 
In the same way that the Time To Collision (TTC) can 
be used to make driving decisions, the TTE can be 
used as an input to make meta-decisions regarding 
when to use a given system. 

5. Results 

To illustrate the presented method, two simple use 
cases are used, including one inspired by an accident 
scenario. Potential applications for meta-decision will 
be discussed using the transition-of-control (ToC) 
fallback required in level 3 ADS as an example. 

5.1. Experimental setup 
The method presented has been tested in simulation 
using Carla Simulator [18] which will serve as the 
environment for the system (Figure 1). Since the 
measurements made directly in Carla are perfect, 
uncertainty will be added to the measurements. 
If we define 𝑥 as the true value, the measured 

uncertain value �̃� can be expressed as: 
 

 𝒙 ∼ 𝓝(𝒙 + 𝝐, 𝝈𝝁
𝟐) [5] 

Where 𝜖 ∼ 𝒩(𝜇𝑒 , 𝜎𝑒
2) is the measurement error, which 

is normally distributed with variance 𝜎𝑒
2 and bias μ𝑒. It 

represents the discrepancy between reality and the 
measured value, i.e. random error and systematic 

error. σ𝑢
2  is the measure uncertainty, the expected 

error of the measure. This is often estimated using the 
statistical dispersion of measured values against a 
ground truth. For the various use cases presented 
below, the error, uncertainty are available in Table 2. 

Parameters ego loc. bus loc. vis. 

Measurement variance 𝜎𝑒
2 0.5 0.5 10 

Measurement bias 𝜇𝑒 0.5 0.5 0 

Measurement uncertainty 𝜎𝜇
2 2 2 10 

Table 2: Error and uncertainty values for the 
attributes used in the two use cases. The attributes 
are the ego location, bus stop location, and visibility. 

5.2. Statement evaluation from uncertain 
observations 

To illustrate the statement evaluation from uncertain 
observations, let's take a simple use case in which the 
ego vehicle moves along a road approaching a bus 
stop. The ODD rule used by monitoring is, "The 
distance to the closest on-lane bus stop cannot be 
less than 20 m". 
 
 reject bus_stop_on_lane_distance  

in [(0,20)]  
 

Figure 4 shows membership variation due to the 
measurement error from both ego and bus stop 
location being propagated to the computed distance. 
 

With the time-based sliding windows (of 0.5 second) 
smoothing the result, and because the ego speed is 
almost constant, the curve is similar to a sigmoid from 
a cumulative distribution function. This is expected, as 
the membership values are computed from the area 
under the curve of the distance uncertainty 
distribution, and the distance decreases at an almost 
constant rate. 
The average membership reaches a value of less 
than 0.5 about 0.2 seconds after the ground truth. 
This threshold corresponds to an estimate similar to 
the one that would be obtained by using only the 
mean of the measured distribution. 
A confident threshold of 0.05 can also be considered. 
The system will be "out-of-ODD" 1 s after the ground 
truth but with greater confidence. Inversely, 
conservative thresholds greater than 0.5 will give 
early "out-of-ODD" signals. 

Figure 4: Value of the OD membership to the ODD 
over time. Memberships (light blue) is the 

membership evaluated from the uncertain 
measurement. Avg memberships (blue) is the 

same membership, averaged over the last 0.5 s. 
Memberships (ground truth) (green) is the 

membership evaluated from the real values. 



Page 6 / 8 

 

Regarding the standard membership, for both the 0.5 
and 0.05 thresholds, two "out-of-ODD" signals 
happened, while only one with the averaged 
membership, thus limiting the number of "out-of-
ODD" alerts. 
Using a trapezoidal fuzzy interval, a similar ODD 
statement could be: 

 reject bus_stop_on_lane_distance in  
[(0,0,15,25)]  

The second interval bound (15,25) means that, 
without considering uncertainty, the membership 
value will start to decrease 25 meters before the bus 
stop and reach 0 once closer than 15 meters. It can 
help to represent ODD description that can be 
subjective by nature. For example, the second 
interval bound (15,25) could be used to represent 
optimistic and pessimistic values. Combined with an 
adapted threshold, it can represent the prudence of 
the ODD exit estimation. A threshold close to 1 for a 
pessimistic estimation and close to 0 for an optimistic 
one. Thus, the time window where the ODD's 
membership decreases from 1 to 0 is wider (Figure 
6). In this context, using fuzzy intervals is convenient 
to represent subjective or imprecise numeric ranges. 

We saw here that in the presence of uncertain 
measured values, the membership computation 
provides a degree of truth for ODD exit, dependent on 
the localization uncertainty. The smoothed 
membership computation allows for a valid estimation 
of the true ODD membership while reducing the 
number of "out-of-ODD" alerts. Moreover, fuzzy 
intervals can be used to define an ODD description 
closer to the vagueness of the world. This result 
depends on two hyperparameters, the sliding 
windows average, and the ODD exit threshold. 

5.3. Time to exit the ODD (TTE) 

 
Using the same use case, based on the predicted 
future distances to the bus stop, the time to exit the 
ODD (TTE) can be estimated. Thus, it depends on the 
expected trajectory of the vehicle and the uncertain 
location of the bus stop. The TTE is the time until the 
first membership value goes below a given threshold. 
In Figure 7 the threshold is 0.05 giving a TTE of 3.8 
seconds. The prediction (light blue dashed line) has a 
stair shape because it is dependent on the vehicle 
location prediction from the local planner, which is 
discreet. Predicted memberships are the 
memberships computed from the predicted measured 
values (here the distance to the bus top). The 
predicted membership from ground truth (green 
dashed line) is the membership value of the predicted 
attribute values without uncertainty or error (no bus 
stop and ego localization uncertainty). The TTE is the 
time until the first membership value goes below the 
"Out of ODD" threshold. 
A meta-decision system could decide to deactivate 
the driving system and go back to manual driving 
when the TTE is low. For level 3 ADS, this is called a 
transition-of-control (ToC) fallback. Then, it can 
decide to trigger a minimal risk maneuver (MRM) like 
an emergency stop when the TTE is too low, or the 
ODD is left. This is represented by the background 
colors of the figure: white is the past, in green 
everything is fine, in yellow (TTE=2s) the driving 
system deactivation is requested, in red (TTE=0s) a 
minimal risk maneuver (MRM) is requested. 
Here, the times are given as an example to better 
illustrate the application. In practice, the expected 
time to hand over to the driver would likely be around 
30 seconds. While this is not a problem when based 
on a priori information (road network, etc), it is not 
always possible to obtain this level of anticipation with 
dynamic information (presence of pedestrians, 
distances, etc). 

Figure 6: Time to exit the ODD computed from 
predicted distance between the vehicle and the bus 

stop. 

Figure 5: Value of the OD membership to the ODD 
over time. Similar to Erreur ! Source du renvoi 

introuvable. except that the rejected interval for the 
distance with the bus stop has a fuzzy bound 

between 15 and 25 meters instead of just 20 meters. 
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5.4. Multi expression statements 
The second use case (Figure 8) is similar to a past 
ADAS accident [19]. In this accident, the perception 
system failed to recognize a stopped emergency 
vehicle in time. The emergency vehicle had 
emergency lights, during a foggy night, and the ego 
vehicle was cruising at high speed (87 kph). The 
emergency vehicle was finally detected 34 meters 
before impact. The perception failure was probably 
caused by a combination of factors, the flashing 
emergency lights, low luminosity and visibility being 
the main factors. 

In the use case we will be using, the difference is that 
only visibility is used as an aggravating factor for the 
perception capabilities. Visibility also progressively 
worsens as the vehicle enters the area. 
Knowing that the perception system is unable to 
correctly detect emergency vehicles in low visibility 
conditions, it would be possible to use the presence 
of other emergency vehicles, which would not 
otherwise be considered obstacles, as clues 
indicating an unsuitable domain of operation. This can 
then be described as a situation out of the ODD as: 
 
 reject vehicles.in_sight in  

[emergency_vehicles]  
and visibility <= low  

 
In Figure 9, as the vehicle enters a low visibility area, 
the expression value associated with visibility (in 
dotted light blue) starts to increase. This is because, 
in a reject statement, intervals represent rejected 
values. Thus, being in the interval decreases the 
statement membership. The yellow area represents 
when the visibility value becomes low according to the 
ground truth (solid green line). However, the 
statement's membership does not decrease because 
the expression associated with emergency vehicles 
being in sight is still 0. It is only when the system also 
has the first emergency vehicle in sight (dotted red 

line), that the ODD membership starts to rapidly 
decrease (red area). 
As soon as the conjunction of both the low visibility 
and the sight of the side emergency vehicle is 

observed, the monitoring system detects that this 
situation is out of the ODD. Then, depending on the 
system's level of autonomy, a transition-of-control or 
MRM can be triggered to avoid risky situations. Of 
course, there will not always be an emergency vehicle 
on the side in this type of situation, but this can be 
generalized to any element that can be used as a clue 
for unsuitable operating conditions, like warning 
triangles, warning lights, etc. 
With this example, we showed that ODD statements 
can be composed of multiple expressions, narrowing 
down the accepted or rejected situations to better 
correspond to the known limits of a system. 

6. Conclusion 

A method was presented to monitor live numerical 
ODD attributes (like dynamic elements, weather, road 
users, etc.), that often have uncertainty in their 
measures. The proposed odd monitoring system 
estimates the degree of ODD membership of a 
system, given uncertain observations of the OD. This 
degree of membership, ranging from 0 to 1, is used to 
decide whether or not the system operates within 
within its ODD. 
For this purpose, a formal way to describe an ODD 
was presented. It uses a high-level domain specific 
language (DSL) as a natural, human-readable format, 
which can be converted into a lower-level structured 
description, interpretable at runtime. 
This description can be composed of multiple 
expressions, referencing driving environment 
attributes organized as a taxonomy. 
Fuzzy intervals were also included in the ODD 
description and monitoring, as a tool to better 
represent the vagueness of real-world boundaries. 

Figure 7: Emergency vehicles use case. The ego 
vehicle (yellow) is driving straight past the first 

stopped emergency vehicle (red, on the side), and 
then toward a second emergency vehicle (red, in the 
lane) stopped on the road with emergency lights. In 
this use case, the combination of low visibility and 

the flashing lights of the emergency vehicles on the 
trajectory would be detected too late by a perception 
system not adapted for this type of situation. Here, 

the simulated detection range was 20 meters. 

Figure 8: The ODD membership only decrease when 
all the expressions are fulfilled. 
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Finally, two use cases allowed to illustrate how ODD 
description and monitoring can be used to safeguard 
complex systems in simulation and estimate the time 
to exit the ODD (TTE) from predicted observations. 
In the future, we plan to test this approach with real 
driving systems in order to have more realistic 
attribute values, as well as identify relevant ODD 
descriptions specific to each system. 
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8. Glossary 

ADAS: Advanced Driver-Assistance Systems 

ADS: Autonomous Driving Systems 

DSL: Domain Specific Language  

ML: Machine Learning 

MRM: Minimal Risk Maneuver 

ODD:  Operational Design Domain 

OD: Operational Domain 

ToC: Transition-of-Control 

TTE: Time to exit the ODD 


