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Operational Design Domain Monitoring with Uncertain Measurements

Thibault Charmet1,2, Véronique Cherfaoui1, Javier Ibanez-Guzman2, Alexandre Armand2

Abstract— The increasing automation in Intelligent Vehicles
(IVs) necessitates robust safety measures. This paper proposes
a method to address this challenge using the concept of
Operational Design Domains (ODDs) and real-time monitoring.
We present a framework for calculating an Operational Domain
(OD) membership degree that accounts for measurement un-
certainties and fuzzy boundaries within the ODD. This method
utilizes fuzzy sets to represent the vagueness of real-world
driving environments. Additionally, we introduce a taxonomy-
based approach for formally defining ODDs independent of
the vehicle’s architecture. Our approach is demonstrated in
simulation, by monitoring the vehicle’s OD in real-time and by
determining when it exits its defined ODD. The results pave
the way for verifiable safety rules based on OD membership
degrees.

I. INTRODUCTION

Intelligent vehicles (IV) increasingly feature higher levels
of automation. As a result, there is much concern across
industry and academia regarding operational safety. While
there is no consensus yet on the most reliable way to
validate advanced driver-assistance systems (ADAS) and
autonomous driving systems (ADS), several methods exist,
such as scenario-based testing and real-time operational
domain (OD) restriction based on the specification of the
operational design domain (ODD). In our case, we focus
on the role of the ODD concept as a safety guarantee for
IVs and how it can act as a safeguard for complex mobile
systems when combined with real-time monitoring of their
OD. The ODD concept is often used, either during the design
phase of the V cycle, to define the environment in which
the designed system should be able to operate, or during
the operation phase, as specifications describing the OD in
which the system can evolve. This is a transparent way to
specify minimum safety requirements for systems, that can
be understood by both various non-technical end users like
regulators and by experts. It is defined by [1] as ”Operating
conditions under which a given driving automation system or
feature thereof is specifically designed to function, including,
but not limited to, environmental, geographical, and time-
of-day restrictions, and/or the requisite presence or absence
of certain traffic or roadway characteristics.” For example,
a valet parking system could be designed to operate in an
indoor or outdoor parking lot, but not on the road. A SAE
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level 3 [1] traffic jam pilot could be designed for driving in
slow traffic, during the day, in favorable weather conditions.
ODD descriptions are useful tools to describe the capabilities
of a system through the situation it can manage. The ODD is
often used to describe the suitable operating conditions for a
system. This is done via documents, tables, etc. However, this
use remains generally abstract. This paper aims to contribute
to the development of a formal framework for defining and
monitoring the ODD.

A. Operational Design Domain Monitoring

Operational Design Domain Monitoring or Operational
Domain Monitoring is the task of determining, whether
or not a system is operating in the domain for which it
was designed. This monitoring can be performed: 1) in
advance, during the mission planning phase, using a priori
information, 2) in a dynamic manner, during the trip, using
live information.

1) Monitoring from a priori information: Before the trip,
the available map and a priori information can be used to
anticipate which sections of the trip will be outside the ODD.
Generally speaking, this concerns information such as the
structure of the road network, road geometry, and known
areas (geofencing, school zones, etc.). It can also include
traffic and other density/probability information that can be
aggregated by a cloud service. In this case, it is possible to
anticipate, and in the case of a level 3 system, to return the
driving task to the user at the appropriate moment.

2) Monitoring from live information: On the other hand,
some information cannot be anticipated, or only to a limited
extent, due to its nature. This may involve road users, who
are only detected once they are in range of the vehicle’s



sensors, erroneous a priori information, or other dynamic
information such as environmental conditions. Moreover,
the observation of these elements is uncertain, and this
uncertainty must be taken into account to determine whether
the environment in which the system is evolving is outside
the ODD. In this category are: road users and objects, ob-
served behaviors, operational constraints, the state of various
connectivity services, GNSS, etc., as well as environmental
conditions such as weather, visibility, luminosity, particular
situations, and events like roadworks.

It is clear that certain attributes can be considered as both
a priori and live, depending on the nature of the information
source. As pointed out in [2], multiple strategies could be
used to process different types of attributes. Live information
is challenging. As they need to be measured by sensors, they
are dynamic, generally have high uncertainty, and cannot be
anticipated very early. Therefore, this will be the subject of
this paper.

B. Contribution and outline

The objective of this paper is to propose a method for
estimating the degree of membership of a system’s observed
operational domain (OD) to its ODD (See Figure 1). This
degree of membership, ranging from 0 to 1, is used to
decide whether or not the system is within its ODD. It takes
into account the uncertainty of the observations made. We
also introduce the possibility of using fuzzy sets to model
the numerical attributes of an ODD, as a tool to better
represent the vagueness of real-world boundaries. In order to
do that, we present a method for representing and formally
defining an ODD textually, representing the known limits of
a driving system, independently of the system’s architecture.
This definition is based on a set of attributes of the driving
environment (road network, road users, weather conditions,
etc.), organized in the form of a taxonomy.

We validate this method in simulation by monitoring, in
real-time, the operational domain of a vehicle, and deter-
mining when it leaves a defined ODD. The result takes
the form of a degree of OD membership to the ODD, that
depends on the uncertainty of the observed environment and
fuzzy boundaries. To illustrate it, two simple use cases are
presented, including one inspired by an accident scenario.
Potential applications for meta-decision will be discussed
using the transition-of-control (ToC) fallback required in
level 3 ADS as an example.

We will first look at the literature on the topic of ODD
monitoring in Section II, before presenting the ODD de-
scription method in Section III. Then, the proposed method
to monitor uncertain OD attributes is presented in Section
IV and the results in Section V. Our results show that this
approach allows to define verifiable rules in order to monitor
the domain of operation of driving systems.

II. RELATED WORKS

Related works can be grouped into 4 categories: ODD
monitoring, ODD identification, ODD description, and ODD

attributes. This work is based on [3] and uses the methodol-
ogy provided to build an ODD monitoring system. Several
works have approached ODD monitoring. [4] addressed
the need for functional boundaries (i.e. an ODD) and a
methodology to define them for driving systems. [5] address
the restriction of the ODD based on the degraded capabilities
of the system. [2] recognizes that the monitoring task should
be divided based on the type of ODD attributes and that
different strategies may be applied. [6] monitor the ODD of
a 2D laser-based localization algorithm by using machine
learning (ML) algorithms to look at the extracted feature
first. It verifies if the inputs contain distinguishable infor-
mation that the localization system can use. [7] presents
a functional architecture for reasoning with known system
capabilities and environment monitoring. Each capability has
a contract with preconditions and guarantees. A dependency
tree therefore exists between capabilities, so that when one of
them becomes unavailable, those downstream also lose their
guarantees. An Operational Domain Monitor (ODM) is used
to retrieve external information used as input to determine
the service quality of a capacity. [8] employs a statistical
approach to identify risky situations by computing their
level of compliance with fuzzy requirements. The approach
aggregates the values of relevant characteristics of situations
from fleet logs. A level of acceptable risk can be defined to
accept the most unlikely occurrences. The values are then
compared to the requirements to obtain a compliance score
between 0 and 1.

Other works are focused on the upstream task of identi-
fying the limits of given systems, that is to say, their ODD.
[9] does out-of-ODD research via counter example trained
machine learning (ML). [10] assess the ODD of lane support
system (LSS) in different weather and road conditions. [11]
uses a scenario based approach to quantify risk and identify
some ODD attributes, demonstrating it using two learning-
based agents.

The task of ODD monitoring requires the ODD to be
described first. It should be noted that there is no single way
of representing the ODD in the literature. Works like [12],
[13] are based on ODD descriptions. Either using domain
specific language or YAML-based descriptions. [14] pro-
posed a two-level language to describe the ODD. The ODD
description is represented by a structured natural language
that can be converted into a SQL-like, machine-interpretable
formal language. Other projects like OpenODD are under
conception [15].

Similarly, since these descriptions are based on attributes
of the ODD representing elements of the environment, sev-
eral works have been organizing them as a taxonomy of
elements [16], [17], [18], [19] and more recently [20], [21].
[22] provides an extensive survey of the literature around
ODD, including ODD monitoring.

No work has yet explored how to use uncertainty from
perception and situation assessment to compute the mem-
bership of the OD to the ODD. In order to quantify risk,
accurate uncertainty quantification and propagation from the
perception systems to downstream systems is essential. Thus,
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like other systems, the ODD monitoring output should be
representative of the uncertainty from the input. This work
focuses mainly on ODD monitoring, and secondly on ODD
description and attributes. The ODD will be considered as
already identified.

III. ODD DESCRIPTION

A. High and low level ODD description

An ODD description must contain the information needed
to define all the operating conditions under which a system
has been designed. Or, under Closed-World Assumption [23],
all the operating conditions under which a system has not
been designed for. Even with automatic ODD identification
methods, the ODD description should always be easily
readable by non-technical users and experts. On the other
hand, ODD monitoring requires the ODD description to be
machine-readable. Thus, the role of ODD description is to
allow for the most human-readable formal description that
can be machine evaluated. A statement like ”Can’t drive
faster than 30 km/h with low or worse visibility.” will be
written as follows:

reject target_speed > 30 and visibility <= low

As such language cannot be directly machine interpreted, a
lower level description is required. Tools like Xtext or its
heir Langium allow parsing high-level custom languages,
called Domain Specific Language (DSL), and converting
them in lower level languages or data structures. Here, the
”low-level” ODD description will take the form of a JSON
structure that contains all the information needed to describe
the ODD statements. In Figure 2, there is a sample of
the human-readable ”high-level” and its equivalent machine-
readable ”low-level” JSON description. In this paper, the
simplest human-readable format will be used to illustrate
ODD statements.

B. ODD description syntax

Syntactically, an ODD is a list of statements, accepting
or rejecting a type of OD. Two types of ODD descriptions
could be used: permissive and restrictive. In a permissive
description, every OD is accepted by default and each
statement starts with ”reject” to add additional constraints.
We could have the following statements: ”Heavy rain or
worse is not OK.” ”Highways in low or worse visibility are
not OK.”

reject rain.intensity >= heavy
reject road_importance in [motorways] and

visibility <= low

Restrictive description, are the opposite, no OD is accepted
by default, and each statement adds a valid OD. In this paper,
only permissive descriptions will be used.

In statements, a type of OD is represented by a combina-
tion of expressions. Each expression verifies that an attribute
in the environment belongs to an interval or a list of possible
values.

Note, we could use an expression/condition pair like
”reject Expression when Condition” or ”if Condition reject
Expression” but this is equivalent in terms of logic to
”reject Expression and Condition”. In an ODD statement,
the starting keyword ”reject” means ”if Expression then
out-of-ODD”. Thus, adding a condition is equivalent to
extending the expression with ”and condition”: ”if Condition
and Expression then out-of-ODD”.

The ”low-level” ODD description is the same as the ”high-
level”, except it is organized as a JSON structure. Each
statement is composed of a status (reject or accept), and one
or many expressions. The expressions are organized hierar-
chically as an abstract syntax tree (AST). This is a structure
easy to evaluate during execution, used to save the operators
to be applied between expressions and their priorities (see
Section IV-D for the evaluation). Each expression contains
an OD attribute name, and the value, interval, fuzzy interval,
or list to compare the OD attribute value to during execution.

C. ODD attributes taxonomy

The ODD attributes taxonomy is a tree-like structure
allowing to define the different attributes used in ODD
description and OD representations. This is the first step in
creating a semantic relationship between the named elements
of the environment and their machine representation. The
second step is to have functions to observe/measure the said
attribute as detailed in Section V-A. In practice, this is a
YAML file organizing OD attributes and their metadata in
a tree structure. It is based on multiple works, including
existing taxonomies [16], [17], [18], [19]. Each attribute is
unique, and can be identified by its path in the taxonomy.
When this is unambiguous, the name of the attribute or the
last elements of the path can simply be used. For example,
visibility is the shorthand for:

att.environmental_conditions.visibility

and rain.intensity for:

att.environmental_conditions.weather.\
precipitation.rain.intensity

Each attribute is enriched with different types of infor-
mation. Firstly, descriptive information such as the name,
description, and metric (for numerical attributes) is used to
define as precisely as possible what the attribute represents
and how it should be measured. For example, the difference
can be made between the rain intensity detected directly
by a rain sensor and that received by weather information.



Next comes the type of attribute. This can be numerical
values (visibility, distances, etc), single-choice groups (type
of lane markings, road, etc), multiple-choice groups (type
of road users in sight, etc), and Booleans (pedestrian inter-
action, etc). In this paper, only numeric attributes will be
addressed. However, most of the techniques presented will
also work with the other attribute types. Numeric attributes
will have two other information items. Firstly, the maximum
range that the value can take (e.g. [0,∞] for a distance).
Secondly, a list of categories, describing common presets
for some attributes. For example, ”visibility in [low]” will
be equivalent to ”visibility in [(244,805)]”. The advantage
of this approach is that the high-level ODD descriptions are
simplified, improving usability while maintaining the benefits
of numeric representations, such as order (poor < low <
moderate < good).

IV. ODD MONITORING

As mentioned in Section III-B, an ODD is described as
a set of statements, each of which adds a constraint (in the
case of a permissive description) or a valid OD (in the case
of a restrictive description).

Each statement is composed of expressions, separated
by Boolean operators. The value of an expression can be
evaluated using a membership function, which will depend
on the nature of the value and the interval.

A. Membership function definition

The membership value µatt of an expression, represents the
degree to which the value x ∈ R of an attribute att belongs
to a union of intervals Iatt =

⋃n
i=1[ai,bi]. For numerical

attributes representing measurements with no uncertainties,
the membership function µatt : R→{0,1} is defined by:

∀x ∈ R,
{

µatt(x) = 1 if x ∈ Iatt
µatt(x) = 0 else. (1)

B. Membership function for uncertain observations

The particularity of live information is that it always comes
with a level of uncertainty linked to its measurement. Here,
uncertain values will be represented as a normal distribution.
To determine how much the value lies within an interval, the
sum of the areas under the curve is computed for each sub-
interval within it. Let the function fatt be the probability
density function of the Normal distribution representing the
value x of an attribute att. The membership function µatt :
R2 → [0,1] is defined by:

µatt(x) =
n

∑
i=0

∫ bi

ai

fatt(x) dx (2)

C. Membership function with fuzzy intervals

To represent the vagueness of the real world, we intro-
duce the possibility of defining fuzzy intervals in the ODD
description. In classical set theory, an element either belongs
or does not belong to a set. In fuzzy set theory [24], an
element can belong to a set with a certain membership degree
between 0 and 1. This membership degree is assigned using
a membership function. Instead of a classical interval like

Fig. 3. Fuzzy interval. ac and bc are the core of the interval, inside which
the membership value is 1. as and bs are the support of the interval, outside
which the membership value is 0. µI :R→ [0,1] is the membership function
of a value x to a fuzzy interval I = [as,ac,bc,bs].

Boolean Fuzzy Symbol
NOT(x) 1 - x ¬x

AND(x,y) MIN(x,y) x∧ y
OR(x,y) MAX(x,y) x∨ y

TABLE I
FUZZY LOGIC OPERATORS SORTED BY PRECEDENCE. ¬ HAS PRIORITY

OVER ∧ WHICH HAS PRIORITY OVER ∨.

[a,b], it would be a trapezoidal fuzzy interval characterized
by the quadruple [as,ac,bc,bs] of real numbers [25]. Here,
only trapezoidal fuzzy intervals are used, but this could
extend to any kind of fuzzy interval (Figure 3).

For measurement values without uncertainty, the member-
ship function µatt : R→ [0,1] of the value x of an attribute
att to an interval Iatt =

⋃n
i=1[asi ,aci ,bci ,bsi ] is defined by :

µatt(x) = µIatt (x) = max(µI(x),∀I ∈ Iatt) (3)

For uncertain measurement values, the membership func-
tion µatt : R2 → [0,1] is defined by :

µatt(x) =
n

∑
i=0

∫ bsi

asi

µIatt (x). fatt(x) dx (4)

D. Uncertain statement evaluation using fuzzy logic

Using the statement’s expressions values just computed,
the complete statement can be evaluated. As the measures
feeding the expressions are uncertain, the resulting member-
ship value will be between 0 and 1 (i.e. not classic booleans).
To combine these values using Boolean operators, fuzzy
logic can be used. In fuzzy logic, values, instead of being
true or false, are real numbers between 0 and 1, representing
degrees of truth. This is an extension of classical logic,
allowing the propagation of measurement uncertainty and
the fuzziness of intervals to the result. See table I for the
fuzzy logic operators used. The various expressions of the
statement are organized in an abstract syntax tree. This is
a tree representing the structure of the logical relationships
between the expressions, defined in the high-level language
using operators and parentheses. For real-time evaluation,
once the membership values of the expressions have been
computed, they are combined, taking into account this struc-
ture and the precedence of logic operations.

As permissive descriptions have intervals describing val-
ues out of the ODD, an additional negation is applied on ”re-
ject” statements. This way, the ODD membership associated



with any statement uniformly represents how much an OD
is in an ODD. The final ODD membership is a conjunction
of all the statement values:

re ject A
re ject B

}
re ject A and B

E. Evaluation smoothing

Although the measurements used to find attribute values
are generally filtered (e.g. Kalman filter, etc.), the values
obtained may still fluctuate too much. This can lead the
monitoring system to be unstable, often creating brief ”out
of ODD” alerts. To smooth the membership value and make
it independent of its update frequency, a sliding window
average is used, based on the measurement time. Considering
an arrangement Q = ((t0,µ(t0)), . . . ,(tn,µ(tn)) (like a queue)
composed of n pairs (t,µ(t)). µ(t) is a membership value
and t its recorded time. t0 is the oldest recorded time.
The arrangement average is the sum of the memberships,
weighted by the time between each record, divided by the
total time between the first and the last record.

µavg =
1

tn − t0

n

∑
i=1

(ti − ti−1)×µ(ti) (5)

The downside is that longer window length will increase the
”reaction” time to events. The advantage is that it provides a
time threshold, thereby preventing the generation of alerts
for events that are shorter than this threshold. It adds a
temporal aspect to the description, ”it takes N seconds before
leaving the ODD”. Thus, the length of the window should
be adapted to the fluctuating nature of the attributes. A slow-
changing, but highly uncertain attribute should have a longer
time window, while a fast-changing less uncertain attribute
a short time window.

F. Time to exit the ODD (TTE)

One application of the membership computation is to use
the membership value of the predicted attributes to determine
how long the system will take to exit the ODD.

The notion of time to exit the ODD (TTE) is introduced,
representing the estimated time for the system’s OD to leave
the ODD. The TTE value simply corresponds to the mini-
mum time before a membership falls below a threshold. This
low threshold represents, under which membership values the
system is considered ”out-of-ODD”. This threshold can be
regarded as a hyperparameter that determines the prudence
of the TTE estimation. Values close to 0 indicate that a
system is only considered ”out of the ODD” when it is almost
certainly out. Inversely, values close to one correspond to a
conservative estimation of the TTE. In the same way that
the Time To Collision (TTC) can be used to make driving
decisions , the TTE can be used as an input to make meta-
decisions regarding when to use a given system.

V. RESULTS

A. Experimental setup

The method presented has been tested in simulation using
Carla Simulator [26] which will serve as the environment

for the system (Figure 1). Since the measurements made
directly in Carla are perfect, uncertainty will be added to the
measurements. If we define x as the true value, the measured
uncertain value x̃ can be expressed as:

x̃ ∼ N (x+ ε,σ2
u ) (6)

Where ε ∼ N (µe,σ
2
e ) is the measurement error, which

is normally distributed with variance σ2
e and bias µe. It

represents the discrepancy between reality and the measured
value, i.e. random error and systematic error. σ2

u is the
measure uncertainty, the expected error of the measure. This
is often estimated using the statistical dispersion of measured
values against a ground truth.

For the various use cases presented below, the error,
uncertainty are available in the table II.

Parameters ego loc. bus loc. vis.
Measurement variance σ2

e 0.5 0.5 10
Measurement bias µe 0.5 0.5 0

Measurement uncertainty σ2
u 2 2 10

TABLE II
ERROR AND UNCERTAINTY VALUES FOR THE ATTRIBUTES USED IN THE

TWO USE CASES. THE ATTRIBUTES ARE THE EGO LOCATION, BUS STOP

LOCATION, AND VISIBILITY

B. Statement evaluation from uncertain observations

To illustrate the statement evaluation from uncertain obser-
vations, let’s take a simple use case in which the ego vehicle
moves along a road approaching a bus stop. The ODD rule
used by monitoring is, ”The distance to the closest on-lane
bus stop cannot be less than 20 m”.

reject bus_stop_on_lane_distance in [(0,20)]

Figure 4 shows membership variation due to the mea-
surement error from both ego and bus stop location being
propagated to the computed distance. With the time-based
sliding windows (of 0.5 second) smoothing the result, and
because the ego speed is almost constant, the curve is similar
to a sigmoid from a cumulative distribution function. This is
expected, as the membership values are computed from the
area under the curve of the distance uncertainty distribution,
and the distance decreases at an almost constant rate. The av-
erage membership reaches a value of less than 0.5 about 0.2
seconds after the ground truth. This threshold corresponds
to an estimate similar to the one that would be obtained by
using only the mean of the measured distribution. A confi-
dent threshold of 0.05 can also be considered. The system
will be ”out-of-ODD” 1 s after the ground truth but with
greater confidence. Inversely, conservative thresholds greater
than 0.5 will give early ”out-of-ODD” signals. Regarding the
standard membership, for both the 0.5 and 0.05 thresholds,
two ”out-of-ODD” signals happened, while only one with
the averaged membership, thus limiting the number of ”out-
of-ODD” alerts.

To go further, the matching of a membership curve to the
membership ground truth can be seen as an optimization task.



Fig. 4. Value of the OD membership to the ODD over time.
Memberships (light blue) is the membership evaluated from the uncer-
tain measurement. Avg memberships (blue) is the same membership,
averaged over the last 0.5 s. Memberships (ground truth) (green)
is the membership evaluated from the real values.

Fig. 5. Value of the OD membership to the ODD over time. Similar
to Figure 4, except that the sliding windows length has been reduced to
0.2 seconds. The Partially binarized memberships (orange) are
membership values equal to 1 when the average membership value is above
a high threshold (here 0.7), and equal to 0 when below a low threshold
(0.3).

Figure 5, shows that by tuning the sliding windows length
and by partially re-binarizing membership values close to 0
and 1, the curve difference with the membership ground truth
can be reduced.

Using a trapezoidal fuzzy interval, a similar ODD state-
ment could be:

reject bus_stop_on_lane_distance in [(0,0,15,25)]

The second interval bound (15,25) means that, without
considering uncertainty, the membership value will start
to decrease 25 meters before the bus stop and reach 0
once closer than 15 meters. It can help to represent ODD
description that can be subjective by nature. For example,

Fig. 6. Value of the OD membership to the ODD over time. Similar to
Figure 4, except that the rejected interval for the distance with the bus stop
has a fuzzy bound between 15 and 25 meters instead of just 20 meters.

the second interval bound (15,25) could be used to represent
optimistic and pessimistic values. Combined with an adapted
threshold, it can represent the prudence of the ODD exit
estimation. A threshold close to 1 for a pessimistic estimation
and close to 0 for an optimistic one. Thus, the time window
where the ODD’s membership decreases from 1 to 0 is wider
(Figure 6). In this context, using fuzzy intervals is convenient
to represent subjective or imprecise numeric ranges.

We saw here that in the presence of uncertain measured
values, the membership computation provides a degree of
truth for ODD exit, dependent on the localization uncertainty.
The smoothed membership computation allows for a valid
estimation of the true ODD membership while reducing the
number of ”out-of-ODD” alerts. Moreover, fuzzy intervals
can be used to define an ODD description closer to the
vagueness of the world. This result depends on two hyper-
parameters, the sliding windows average, and the ODD exit
threshold.

C. Time to exit the ODD (TTE)

Using the same use case, based on the predicted future
distances to the bus stop, the time to exit the ODD (TTE)
can be estimated. Thus, it depends on the expected trajectory
of the vehicle and the uncertain location of the bus stop. The
TTE is the time until the first membership value goes below
a given threshold. In Figure 7 the threshold is 0.05 giving a
TTE of 3.8 seconds. The prediction has a stair shape because
it is dependent on the vehicle location prediction from the
local planner, which is discreet. A meta-decision system
could decide to deactivate the driving system and go back
to manual driving when the TTE is low. For level 3 ADS,
this is called a transition-of-control (ToC) fallback. Then, it
can decide to trigger a minimal risk maneuver (MRM) like
an emergency stop when the TTE is too low, or the ODD
is left. In Figure 7, as an example, the transition-of-control
TTE threshold is 2 seconds (yellow area), and the MRM TTE
threshold is 0 seconds (red area). Here, the times are given



Fig. 7. Past value (light blue solid line) and predicted value (light blue
dashed line) of the OD membership to the ODD. Predicted memberships
are the memberships computed from the predicted measured values (here
the distance to the bus top). The predicted membership from ground truth
(green dashed line) is the membership value of the predicted attribute values
without uncertainty or error (no bus stop and ego localization uncertainty).
The TTE is the time until the first membership value goes below the ”Out
of ODD” threshold. An example of meta-decision based on the TTE is
represented by the background colors: white is the past, in green everything
is fine, in yellow (TTE=2s) the driving system deactivation is requested, in
red (TTE=0s) a minimal risk maneuver (MRM) is requested.

as an example to better illustrate the application. In practice,
the expected time to hand over to the driver would likely be
around 30 seconds. While this is not a problem when based
on a priori information (road network, etc), it is not always
possible to obtain this level of anticipation with dynamic
information (presence of pedestrians, distances, etc).

D. Multi expression statements

The second use case (Figure 8) is similar to a past ADAS
accident [27]. In this accident, the perception system failed
to recognize a stopped emergency vehicle in time. The
emergency vehicle had emergency lights, during a foggy
night, and the ego vehicle was cruising at high speed (87
kph). The emergency vehicle was finally detected 34 meters
before impact. The perception failure was probably caused by
a combination of factors, the flashing emergency lights, low
luminosity and visibility being the main factors. In the use
case we will be using, the difference is that only visibility is
used as an aggravating factor for the perception capabilities.
Visibility also progressively worsens as the vehicle enters the
area.

Knowing that the perception system is unable to correctly
detect emergency vehicles in low visibility conditions, it
would be possible to use the presence of other emergency
vehicles, which would not otherwise be considered obstacles,
as clues indicating an unsuitable domain of operation. This
can then be described as a situation out of the ODD as:

reject vehicles.in_sight in [emergency_vehicles]
and visibility <= low

Fig. 8. Emergency vehicles use case. The ego vehicle (yellow) is driving
straight past the first stopped emergency vehicle (red, on the side), and then
toward a second emergency vehicle (red, in the lane) stopped on the road
with emergency lights. In this use case, the combination of low visibility
and the flashing lights of the emergency vehicles on the trajectory would
be detected too late by a perception system not adapted for this type of
situation. Here, the simulated detection range was 20 meters.

In Figure 9, as the vehicle enters a low visibility area,
the expression value associated with visibility (in dotted
light blue) starts to increase. This is because, in a reject
statement, intervals represent rejected values. Thus being
in the interval decreases the statement membership. The
yellow area represents when the visibility value becomes low
according to the ground truth (solid green line). However,
the statement’s membership does not decrease because the
expression associated with emergency vehicles being in sight
is still 0. It is only when the system also has the first
emergency vehicle in sight, that the ODD membership starts
to rapidly decrease (red area).

As soon as the conjunction of both the low visibility and
the sight of the side emergency vehicle is observed, the
monitoring system detects that this situation is out of the
ODD. Then, depending on the system’s level of autonomy, a
transition-of-control or MRM can be triggered to avoid risky
situations. Of course, there will not always be an emergency
vehicle on the side in this type of situation, but this can
be generalized to any element that can be used as a clue
for unsuitable operating conditions, like warning triangles,
warning lights, etc.

With this example, we showed that ODD statements can
be composed of multiple expressions, narrowing down the
accepted or rejected situations to better correspond to the
known limits of a system.

VI. CONCLUSION
The main objective of Operational Design Domain (ODD)

description and monitoring is to define transparent mini-
mum requirements for a system, in order to safeguard it
against known adverse operational conditions for which it
was not designed. In this paper, we proposed a method to
monitor live numerical ODD attributes (like dynamic ele-
ments, weather, road users, etc.), that often have uncertainty
in their measures. The proposed ODD monitoring system
estimates the degree of membership of a system’s uncertain
observed operational domain (OD) to its ODD. This degree
of membership, ranging from 0 to 1, is used to decide
whether or not the system is within its ODD. For this
purpose, a formal way to describe an ODD was presented.
It uses a high-level domain specific language (DSL) as a
natural, human-readable format, which can be converted into



Fig. 9. Value of the OD membership to the ODD over time (solid
lines). Value of the membership of the expressions composing the statement
over time (dotted lines). Low visibility memberships (dotted light
blue) are the values of the expression ”low visibility”. Values are close to
1 when the visibility is low. Em. veh. memberships (dotted red) are
the values of the expression ”emergency vehicle in sight”. Values are close
to 1 when emergency vehicles are in sight.

a lower-level structured description, interpretable at runtime.
This description can be composed of multiple expressions,
referencing driving environment attributes organized as a
taxonomy. Fuzzy intervals were also included in the ODD
description and monitoring as a tool to better represent the
vagueness of real-world boundaries. Finally, two use cases
were used to illustrate how ODD description and monitoring
can be used to safeguard complex systems in simulation,
and estimate the time to exit the ODD (TTE) from predicted
observations.

In the future, we plan to test this approach with real driving
systems in order to have more realistic attribute values and
to identify relevant ODD descriptions for given systems.
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