N
N

N

HAL

open science

From Communities to Interpretable Network and Word
Embedding: an Unified Approach

Thibault Prouteau, Nicolas Dugué, Simon Guillot

» To cite this version:

Thibault Prouteau, Nicolas Dugué, Simon Guillot. From Communities to Interpretable Network and
Word Embedding: an Unified Approach. Journal of Complex Networks, 2024, 12 (6), 10.1093/com-

net/cnae034 . hal-04829653

HAL Id: hal-04829653
https://hal.science/hal-04829653v1
Submitted on 10 Dec 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

https://hal.science/hal-04829653v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

From Communities to Interpretable Network and Word Embedding: an
Unified Approach

THIBAULT PROUTEAU AND NICOLAS DUGUE*
Université du Mans, Laboratoire d’Informatique de 1’ Université du Mans (LIUM), avenue
Olivier Messiaen, 72085 Le Mans CEDEX 9, France
*Corresponding author: nicolas.dugue @univ-lemans.fr

AND

SIMON GUILLOT
Université du Mans, Laboratoire d’Informatique de 1I’Université du Mans (LIUM), avenue
Olivier Messiaen, 72085 Le Mans CEDEX 9, France
INaLCO, ERTIM, 65 rue des Grands Moulins, 75214 Paris, France

[Received on 26 November 2024]

Modeling information from complex systems such as humans social interaction or words co-occurrences
in our languages can help to understand how these systems are organized and function. Such systems can
be modeled by networks, and network theory provides a useful set of methods to analyze them. Among
these methods, graph embedding is a powerful tool to summarize the interactions and topology of a
network in a vectorized feature space. When used in input of machine learning algorithms, embedding
vectors help with common graph problems such as link prediction, graph matching, etc. In Natural
Language Processing (NLP), such a vectorization process is also employed. Word embedding has the
goal of representing the sense of words, extracting it from large text corpora. Despite differences in
the structure of information in input of embedding algorithms, many graph embedding approaches are
adapted and inspired from methods in NLP. Limits of these methods are observed in both domains.
Most of these methods require long and resource greedy training. Another downside to most methods is
that they are black-box, from which understanding how the information is structured is rather complex.
Interpretability of a model allows understanding how the vector space is structured without the need
for external information, and thus can be audited more easily. With both these limitations in mind,
we propose a novel framework to efficiently embed network vertices in an interpretable vector space.
Our Lower Dimension Bipartite Framework (LDBGF) leverages the bipartite projection of a network
using cliques to reduce dimensionality. Along with LDBGF, we introduce two implementations of
this framework that rely on communities instead of cliques: SINr—-NR and SINr-MF. We show that
SINr-MF can perform well on classical graphs and SINr—NR can produce high-quality graph and word
embeddings that are interpretable and stable across runs.

Keywords: graph embedding; word embedding; interpretability

1. Introduction

Network science provides versatile tools to model the organization of real-world systems. Instances of
real-world systems that can be modeled with graphs are varied. Such systems include biological net-
works modeling how protein interact in a living organism, social interactions on online social networks

2 of 40 T. PROUTEAU, N. DUGUE, S. GUILLOT

or in workplaces, geographical organization with road and railroad networks, the organization of an
online encyclopedia with connection between its pages, scientific publication systems with collabora-
tion networks, etc. Network science and graphs provide a general framework to represent interactions
between items regardless of the type of structure described, but also to extract significant information
about the organization of the systems modeled. For instance, from the biological network structure,
one might want to uncover groups of similar highly intertwined proteins. Furthermore, from a social
network, one may predict how many friends a user might have. Such tasks increasingly rely on machine
learning algorithms that use a vectorized representation in input. This is where representation learning
comes into play, what is commonly called graph embedding or node embedding, namely projecting
nodes in a vector space that encompasses as well as possible graph topology from local, to more distant
interactions and organization. Multiple methods have proposed solutions to the task of graph embedding
to automatically extract vector representations of nodes. Among the methods later detailed in Section 2,
we can cite Deepwalk [66] and Walklets [67] for random walks based approaches, HOPE [60] and
VERSE [87] for matrix factorization approaches, and LouvainNE [5], based on community detection.

Although graph embedding allows summarizing the topology of a graph in a vector, embedding
data was first popularized for words in the form of word embedding. Word embedding aims at modeling
semantic proximity from unstructured text data with a few dimensions. These representations also allow
limiting the number of dimensions needed to convey the semantics of a large lexicon. Word embedding
and network embedding are said to stem from the distributional hypothesis, first introduced by linguist
Z. S. Harris in 1954 with the following remark: “linguistic items with a similar distribution have a
similar meaning” [36]. A few years later, in 1957, J. R. Firth contributed to the distributional hypothesis
with the famous ”You shall know a word by the company it keeps”. Following this hypothesis, word
embedding models rely on the context in which words appear, and graph embedding methods may rely
on random walks to generate sequences of vertices that can be considered sentences. This kinship is
further highlighted by the Skip-Gram algorithm employed in Word2vec [53] for word embedding, and
also in Deepwalk [66] and Walklets [67] for graph embedding. Yet, graph embedding methods
could also be applied to word co-occurrence networks, leveraging graph topology for representation.
In such networks, vertices represent words and edges their co-occurrence. Tang et al. [84] and Yang
et al. [90] introduced methods that can embed jointly from network structure and word information.
Unlike [84, 90], our method does not simultaneously learn graph embeddings and word embeddings but
provides a unified pipeline that can derive graph embeddings and word embeddings.

Furthermore, embedding techniques have limits, they are usually computationally expensive, param-
eter dependent, and lead to dense latent spaces in which dimensions are not interpretable. Dependency
on parameters means that multiple models may need to be trained untils the optimal set of hyperpa-
rameters is found. Efficiency of computation is critical to reduce the environmental impact of artificial
intelligence (Al) in the context of global warming. It is a growing concern in academia, with studies by
Strubell et al. [82], Lannelongue et al. [43] and Patterson et al. [63] advocating for more consideration
of the environmental impact of models. Lastly, interpretability is another critical feature to gain insight
into the internal organization of the complex system described. For example, how the sense of a word
is composed or what are the dynamics of collaboration in a co-authorship network. Interpretability is
also a key challenge to building trustworthy Al systems [77], especially in sensitive applications such
as legal or medical NLP [38, 58]. Interpretability is for instance, useful to uncover, characterize, and
potentially mitigate biases (gender, race, age biases for instance) propagated from data, and thus enforce
fairness in Al systems, such as discussed in the survey of Choudhary et al. [19] for machine learning on
graphs.

Based on this kinship between graph embedding and word embedding and the need for more effi-

FROM COMMUNITIES TO INTERPRETABLE NETWORK AND WORD EMBEDDING 3 0f 40

cient, and interpretable representation learning algorithms, we introduce a network embedding frame-
work that may be applied to many types of networks. In particular, we address graph and word
embedding with the same, unified graph framework. We are considering word co-occurrence networks
extracted from text corpora in the case of word embedding. The Lower Dimension Bipartite Framework
(LDBGF) we introduce is a theoretical framework that relies on a bipartite projection of the network
to extract the vertex embeddings. This bipartite projection is a tangible graph object, which makes it
interpretable, and thus easy to audit. We then describe two implementations that fit within the LDBGF
framework, and that are based on communities in networks: SINr—NR and SINr—MF. The first one,
SINr-NR is based on an ad hoc measure of connectivity between vertices and communities. On the
other hand, SINr—-MF is fully unsupervised and relies on gradient descent to derive a vector space.
These methods allow extracting interpretable representation directly correlated with the communities
detected in the network. Our experiments are designed to demonstrate the capacities of models to
embed information at three scales: microscopic (vertex and neighbors), mesoscopic (community) and
macroscopic (whole network), and on a specific application to word co-occurrence networks.
Our contributions are the following:

* A theoretical framework (LDBGF) to embed network vertices in a sparse interpretable space.
Methods within this framework may be implemented in various ways.

» Two implementations of the LDBGF leading to interpretable vectors based on communities: SINr—NR
(Node Recall) and SINr—MF (Matrix Factorization).

* A thorough evaluation of the performances of our implementations on classical tasks against
state-of-the-art methods across network theory, showing their relevance.

* SINr-NR runs in linear time and does not require many computational resources: it is the most
efficient approach of the two we implemented.

* An evaluation on the interpretability of SINr—NR regarding words.

» Experiments demonstrating the performance and stability of SINr—NR across trainings in com-
parison with other word embedding approaches.

OUTLINE. Since graph embedding methods have found inspiration in their word embedding counter-
parts, we introduce in Section 2 related work on graph and word embeddings. In this paper, we focus on
interpretability by design, subsequently we introduce motivations for interpretability and related meth-
ods in Section 2.2. To introduce our novel graph embedding framework, in Section 3 we present the
philosophy behind our framework through a series of visualizations on an airport network of the United
States of America. In section 4 we present the theoretical LDBGF framework and two implementations
of the latter based on community detection : SINr—-NR and SINr-MF, a matrix factorization approach.
Experiments are presented in Section 5 and divided in two parts. In the first series of experiments, we
assess the performance of our community-based approach on tasks at the microsopic, mesoscopic, and
macroscopic-levels. The second series of experiments assesses the performance of our method on the
specific application to word co-occurrence networks. Our final experiments in Section 5.3.2 assess the
interpretability of word embeddings. Finally, Section 6 comments on the field of possibilities opened by
LDBGF and its implementations.

4 of 40 T. PROUTEAU, N. DUGUE, S. GUILLOT

2. Related Work
2.1 Embedding Methods

WORD EMBEDDINGS. Graph embedding methods have been heavily influenced by algorithms devel-
oped in NLP [66]. Word embedding aims at uncovering a latent vector space in which to project
words, providing a more synthetic representation of a word than a co-occurrence matrix (with a lower
dimension) while encompassing semantic information. These representations are then used as input by
classifiers, mostly neural architectures, to solve various tasks such as named entity recognition, part-of-
speech-tagging, sentiment analysis or machine translation.

The first approaches to train word embeddings were the matrix factorization based. Those are
directly connected to the distributional hypothesis: they factorize the word co-occurrence matrix. The
literature usually defines co-occurrences inside a corpus using a sliding window parameterized by a
certain size. All words within the window are said to co-occur. In the case of NNSE [55], the co-
occurrence matrix is factorized using sparse coding to enforce interpretability. For G1oVe [65], the log
co-occurrence is factorized, and the loss function is weighted by the co-occurrence frequency. Levy et
al. applied Singular Value Decomposition (SVD) to word co-occurrence matrices after having applied
Positive Mutual Information on it to consider the significance of these co-occurrences [48]. These meth-
ods perform well on similarity and analogy benchmarks and have been popular representations as input
to a wide range of machine learning systems such as classifiers or translation systems.

With Word2vec, Mikolov et al. [53] consider a different approach: the task of training word embed-
ding is seen as self-supervised. Indeed, they train a logistic regression on the dot product of word
embeddings: the sigmoid is supposed to be close to 1 when words co-occur, and to O when they do
not. This method has drawn a lot of attention and was extended to improve its robustness. For instance,
fastText is based on sub-words and allows extracting word embeddings for words that have not been
encountered in the training corpus [8]. These methods lack flexibility to represent polysemous words,
since they provide a single vector per type, Tian et al. [86] introduced a multi-prototype approach
providing one vector per sense. Such multi-prototype approaches paved the way for contextualized
representations that provide one vector per occurrence.

Language models such as Devlin et al.’s BERT [22] with its self-supervised transformer architecture
have gained in popularity since they provide such contextualized representations. Transformers archi-
tectures implement self-attention mechanisms, where words with similar representations in the same
sequence are considered to attend each other. The representation of a word is then a mixture of its
embedding and of the embeddings of the words attending to it, allowing its contextualization. Training
such architectures is usually performed by predicting masked words from their contexts, or predicting
the next sentence. Subsequent transformer-based models adapted from BERT include RoBERTa [50]
which alters key hyperparameters and training objectives, such as removing next-sentence prediction;
both T5 [71] and GPT-3 [12, 57] use large transformer architectures to build what is now named Large
Language Models (LLM).

NODE EMBEDDING. Node embedding approaches try to embed the local neighborhood of a node and
nodes with similar roles in the graph closely together. They are frequently evaluated on classical tasks
such as: link prediction, node classification or graph reconstruction. Earliest approaches to network
embeddings applied dimension reduction techniques such as IsoMap with multidimensional scaling
(MDS) [85], LLE [74] or Laplacian Eigenmap [4]. Then, graph embedding fed from advances
made to methods in NLP. Word2vec has influenced the field, leading to methods that adopt random-
walk sampling strategies with the Skip-Gram model, namely Deepwalk [66], Walklets [67] and

FROM COMMUNITIES TO INTERPRETABLE NETWORK AND WORD EMBEDDING 5 of 40

node2vec [33]. Itis worth noting that the Skip-Gram model is implicitly related to matrix factorization
of a word-context matrix [47, 53]. Multiple approaches make use of matrix factorization to obtain
node representations: LINE [84] optimizes for first and second order proximity and can jointly extract
embeddings from network structure and text; GraRep [14] factorizes k-step transition matrices between
nodes; Liu et al. [49] extend non-negative matrix factorization (NMF') to run online and scale to larger
graphs; HOPE [60] factorizes multiple matrices of similarity measures to preserve high-order proximity
in the network; GVNR [10] is an adaptation of GloVe to node embedding that better handles non-
co-occurrence of items; finally, VERSE [87] tries to reconstruct the distribution of a chosen similarity
measure for each vertex using a single layer neural network.

Some algorithms focus specifically on preserving community structures: Wang et al. [89] adapt
NMF to incorporate community structures’ representations; Rozemberczki et al. [75] introduce GEMSEC
combining Skip-Gram objectives with vertex clustering to preserve community information. Not with
the specific goal of preserving communities, but still using community structures. Bhomwick et al. [5]
leverage the hierarchical structure of the Louvain community detection algorithm to learn embeddings
of subgraphs in each level and afterward combine these representations to derive a vertex representation.

Alike the emergence of neural models in NLP, neural approaches related to Graph-Convolutional
Networks (GCN) and Graph Neural Networks (GNN) appeared to deal with graph embedding. Notably,
SDNE [88] makes use of autoencoders to preserve first- and second-order proximity; DNGR [15] also uses
deep autoencoders to capture non-linearity in graph and embed nodes. Neural methods are described
more extensively in the survey by Makarov et al. [52].

COMPUTATIONALLY EXPENSIVE AND NOT INTERPRETABLE. Despite high enthusiasm of the com-
munity, neural models need larger amounts of data to train ever-growing models. Although not needing
to be retrained from scratch, large transformers models (340M parameters for BERT, 11B for T5 and
175B for GPT-3) still need to be trained and tuned once on a large corpus before they can be fine-
tuned on task or domain-specific data. Their training has a significant environmental impact. Strubell
et al. [82] draw attention to the key impacts of the race towards ever-larger pretrained models: training
large language models emits large amounts of CO; from the energy consumed and requires access to
compute unavailable to some researchers. Lannelongue et al. [43] and Patterson et al. [63] introduce
methods to compute the carbon footprint of NLP models and formulate recommendations to gain effi-
ciency both in terms of implementation and computing infrastructure. In this line of work, we focus on
designing low compute approaches to solve both word and graph embedding tasks.

Furthermore, neural and matrix factorization approaches produce representation spaces that are not
interpretable. To counter this lack of interpretability, multiple methods were developed to investigate
models’ decisions. LIME [73] is a surrogate model to explain the results of a classifier, SHAP [51]
proposes a method to analyze the contribution of individual features to a decision. These method-
ologies can outline what led a model to a prediction, but in a post-hoc manner—on top of the model
audited or once it has been extracted. Post-hoc interpretability is a step in the right direction. How-
ever, the model explained is still intrinsically a black box. Furthermore, it is another model to train
explaining the first one, making this solution more expensive to compute. Models with interpretabil-
ity by design rather than post-hoc allow interpretability of the representation without the need for an
additional model to generate explanations of its internal logic. This is what differentiates interpretable
methods from explainable methods. According to Rudin et al. [77], interpretable methods should be
preferred where possible. Following this distinction between interpretable and explainable methods,
we define interpretable approaches as methods whose dimensions can be audited by design without
post-hoc processing. We detail in the next subsection the related work considering interpretability.

6 of 40 T. PROUTEAU, N. DUGUE, S. GUILLOT

2.2 Model-Intrinsic Interpretability

As stated by Rudin et al. [77], interpretability of a system is often defined by opposing it to explain-
ability, which is considered as the post-hoc explanation of a system’s decisions. But some authors also
define interpretability for systems as their ability to produce meaningful outputs understandable by non-
expert users [11]. Both of these definitions are complementary, and we embrace both of them in this
work.

Interpretability of an embedding space is commonly defined in the literature [55, 83] as the capacity
for humans to make sense of the dimensions in the embedding space produced. These dimensions can be
seen as themes, described by a consistent set of words. These dimensions can thus be seen as semantic
features of words, each word being represented by a small set of these features. Most embedding
methods do not provide interpretable embedding spaces according to this definition. There is a common
denominator to most interpretable methods, as first introduced with NNSE [55]:

1. high dimensionality of the latent space uncovered. It is motivated by the difficulty to represent
the meaning of a large lexicon about many distinct topics with only a few dimensions, and thus a
few semantic features.

2. sparsity of the vectors and dimensions. This is directly connected to the high-dimensionality
property. To have dimensions that can act as semantic features, these dimensions should be
semantically consistent, and thus only a subset of the vocabulary is supposed to take part in this
dimension, leading to sparseness.

3. non-negativity of the values. It is not computationally efficient to store negative features alongside
positive ones, and psycholinguistic experiments show that it is also not cognitively efficient [46,
61].

Early on, Murphy et al. [55] introduce an interpretable word embedding model, Non-negative sparse
embedding (NNSE) which factorizes a word co-occurrence matrix, producing a 1000-dimension vector
space. This space is bigger than the classic 300-dimension models for Word2vec. Furthermore, as the
consequence of a /1 regularization, NNSE embeddings are sparse. Faruqui et al. [27] later introduced
Sparse Overcomplete Word Vectors (SPOWV) that builds on the improvements achieved by G1oVe and
Word2vec. In concrete terms, from pretrained Word2vec or GloVe vectors, SPOWV applies reg-
ularizations to sparse code the vectors in an overcomplete space. Dimension of the resulting space is
larger than that of the pretrained vectors, from 300 dimensions for the pretrained vectors to 500-3,000
dimensions in the resulting space. Subramanian et al.’s SPINE [83] also derives sparse interpretable
word embeddings from pretrained vectors using sparse auto-encoders with losses specifically enforcing
sparsity. Panigrahi et al. [62] introduce Word2Sense, a generative model based on Latent Dirichlet
Allocation extracting dimensions that act as senses and represents words as a probability distribution
over these senses.

Regarding node embeddings, interpretability is also a concern: Duong et al. [24] use a min-cut loss
to uncover thematic groups of nodes in graphs and iGNN introduced in Serra et al. [78]. A method
conjointly to learn a node embedding along with a textual explanation. Authors of this paper introduced
a new framework for interpretable node embedding: Lower Dimension Bipartite Graph Framework
(LDBGF) [69]. It is a theoretical framework relying on bipartite representations of graphs to uncover a
latent representation space. The first implementation of this framework in Prouteau et al. [69] leverages
communities, efficiently detected using Blondel et al.’s Louvain algorithm [6], and relations between
nodes and communities to derive sparse interpretable node representations. Each dimension of the vec-
tor space is related to a dense community of nodes that should exhibit similarities. SINr-NR and

FROM COMMUNITIES TO INTERPRETABLE NETWORK AND WORD EMBEDDING 7 of 40

SINr-MF that we introduce in this paper also implement LDBGF, and are thus in keeping with other
methods leveraging communities [5, 24, 75, 89], while focusing on using communities for interpretabil-
ity [70]. For textual data, it is in particular in direct filiation with the method introduced by Chen et
al. [18] that leverages community detection in keyword co-occurrence networks to extract meaning.

Our model is part of the effort to propose models requiring less computational power and more
interpretability. Despite less visible than neural models, which have become rather ubiquitous and
become larger and larger, there is still a whole body of research aiming for alternative interpretable
latent spaces [24, 27, 55, 69, 75, 83]. Since our focus is on interpretability of the model while keeping
cost and complexity of computation low, we will not be considering deep neural network approaches
relying on transformers and graph-convolutional neural networks in the remainder of this work.

The main advantage of interpretability is the opportunity to visualize how information flows and
is structured in a model. As a way to get across the intuition behind our LDBGF framework and its
SINr-NR and SINr-MF implementations, we start with a simple use case: representing airports and
domestic connections within the United States.

3. A visual introduction: embedding U.S. airports

To present the philosophy behind LDBGF that we will more formally introduce Section 4, we first
consider a use case based on an airport network of domestic flights in the United States of America.
From a graph standpoint, we can represent the network of airports in multiple ways. The simplest way
to build such a graph is to connect any two airports between which a direct route exists. The graph can
be weighted in numerous manners according to the number of daily flights, the number of passengers or
the distance between airports. However, for the sake of simplicity and because most plane rotations are
bidirectional, we consider an undirected and unweighted graph G = (V,E) of US airports with V the set
of vertices representing the airports, E the set of edges representing the existence of a flight between two
airports. Graph G is drawn over a map of the USA in Figure 1 and shows the sheer number of domestic
connections between airports.

Our goal is to derive a representation that is able to embed how an airport is connected. We assume
that there is a hierarchy among airports: international airports act as hubs to smaller, mostly domestic
airports. For example, if you wish to fly out of Santa Fe Regional Airport (SAF), New Mexico to Harry
Reid International Airport (LAS), Las Vegas, Nevada, chances are you are going to transit through
Phoenix Sky Harbor International Airport (PHX), Arizona. Relying only on a visual representation
is intricate, and the underlying hierarchy is challenging to highlight, it is thus difficult to distinguish
the busiest airports from those having fewer inbound and outbound flights. Furthermore, we wish to
encapsulate more than just connectivity between airports, namely the spatial structure of the network
and how flights between airports connect states. The question is thus: how can one derive a visual
representation of each airport in the network that encompasses its medium haul (domestic) connectivity
as well as its local (state-level) neighborhood?

To that end, let us cluster together the airports of the network based on the state they are located
in. By doing so, we obtain fifty groups of airports, each of those corresponding to a U.S. state. Then,
by considering the connectivity of each airport to each state instead of one-to-one connection, we can
encapsulate local and broader patterns of connectivity. More precisely, we quantify the strength of
connectivity of an airport to a state by considering the proportion of airports reached in that state over
the total of airports that are served. We thus obtain a visual representation that displays the patterns of
connectivity of each airport. The higher the value for a state, the stronger the connection of the airport
to the latter.

8 of 40 T. PROUTEAU, N. DUGUE, S. GUILLOT

FIG. 1: An airport network of the United States of America (size of vertices proportional to their
degrees).

Let us demonstrate the relevance of this visual representation through two examples. We can first
consider two airports on the east coast of the USA: Albany International Airport (ALB), NY and John
Glenn International Airport (CMH) in Columbus, IL. Connections between ALB and CMH are pre-
sented in Figure 2 a, c. These two airports do not play a major role in their respective states of New
York and Illinois but a role of hub for domestic and international flights. The distribution of these air-
ports over the states in Figure 2 b, d is similar, mostly to airports in the northeast, midwest and south of
the country. On top of the connectivity to each individual state, the color gradient reveals another level
of hierarchy related to the different regions of the west, southwest, midwest, southeast and northeast.
From the distribution of connectivity in Figure 2 a, c, ALB and CMH are primarily connected to airports
in the East to Midwest region.

EXTRACTING VECTORS. This pipeline to extract these visual representations is, in fact, a node embed-
ding approach. It can derive node embeddings that are interpretable by design: each component of the
vector space constructed is related to a state where airports are located. The representation is a measure
of the strength of connection between an airport and each state, thus providing a representation in lower
dimension than the one provided by the full network, over a tangible structure—the partition of airports
grouped by state. Moreover, vectors are sparse, as not every airport is connected to every state. These
embeddings are inexpensive to compute and produce visually interpretable vectors. The question we
will attempt to answer is the following: how can such a pipeline be applied to all kinds of networks to
produce sparse interpretable embeddings?

The representation of the nodes from the airport network is achieved through the usage of an inter-
mediary grouping of the nodes. By grouping nodes into clusters, the graph could be represented in a
bipartite form. In the case of our airport network, the partition of airports according to their respective
state produces a bipartite graph with airport nodes and state nodes. Other graphs exhibit a natural bipar-

9 of 40

FROM COMMUNITIES TO INTERPRETABLE NETWORK AND WORD EMBEDDING

aurely aure
puejs| apoyy puejs| apoyy
INd1322UU0D @ INd1328UU0D
I sy:esnydessefy 8 I syosnydessep
allysdweH maN W allysdweH maN
uowi, uouLd
M‘_m\sm_w\/n_ mu W_mgm_m\/n_
I fos19(maN ° B fosi9(manN
I pueifien = R I puelien
4 I eiuen|Asuuad m m Il eiuen|Asuuad
= I 1.0\ MON - o I oA MON
o euljoed yinos A(n\ & euljoied ynos
=
= I uijoied yloN o < I cuij0/eD Y1OoN
ki L [V 5] %] I o167
n elulbiIA 1S9 m =} elulbaiA 31sem
S I ;o = T I 04
5 I c15.059 = < I e16.050
= I o0 g © B 010
o eweqely o 2 eweqely
8 299ssauuaL = m | EESEINNENR
m Apnuay £ M Apnusy
= euelpu| L 5 euelpu|
< [uebiyoin RS = [uebipoi
~ 1ddississip > %] iddississiy
e sioul||| = 3 sioul|||
= 1oul = o 1oul
..M UISUOISI o =) UISU0dSIM
— eueisino < = eueisinot
< sesuexly Gy nw sesuedly
= 1INOSSIN © LNOSSI
g o > on Mol
= emo| = = e
5 [ejosauulin 2 m [ejosauuliy
g sexal 51 e [sexaL
] ewoyepo m = ewoyepo
© sesuey =] o sesuey|
2] o Q
= 02IX3|\ MON 151 - 02IX3|N MaN
= opelojo) .m = opeltojo)
m eseigaN = = eyseigaN
— ejoyeq yinos bS] [ejoded Yyinos
S e10eq YuoN = — ej03eq YuoN
euozuy w L euozuy
yein = yein
BuiwoAm ° BuIOAM
euejuow m euejuop
epenan m epeAsN
oyep| oyep|
EIIES) o) I euioyied
uobalo uobalo
uoibulysep uolbulysem
llemey llemen
eysely ejsely
n o n o n o wn o
— = Q e — — < Q
o o o o o o o o
sabpa |e303 Jo uoipodold sabpa |e303 Jo uoipodold

(d) Distribution of the connectivity of Columbus Airport (CMH) to US states.
F1G. 2: Flights connected to Albany and Columbus and distribution of connections towards states.

10 of 40 T. PROUTEAU, N. DUGUE, S. GUILLOT

tite organization: co-authorship networks are naturally bipartite, as authors are connected by papers
they co-publish, social networks are also bipartite, friends are connected by their school, family, firm,
etc. In our case, the partition of airports according to their respective state is an approximate attempt at
projecting the original graph as bipartite. Indeed, projecting back the bipartite graph to a one-mode form
would yield edges absent from the original network. Based on this approximation, we detail our node
embedding framework in Section 4. Grouping similar nodes in clusters is at the heart of the LDBGF phi-
losophy of its two implementations we introduce in this paper: SINr—NR and SINr-MF that produces
sparse and interpretable node representations.

4. Algorithmic Framework
4.1 Intuition behind LDBGF

Embedding techniques aim at providing a lower-dimensional representation of data that encompass
structural properties of the units to be represented. More specifically, graph embedding provides repre-
sentations of nodes in a graph while retaining topological properties. We introduced the Lower Dimen-
sion Bipartite Graph Framework (LDBGF), a node embedding framework aimed at producing sparse and
interpretable vectors in Prouteau et al. [69]. The intuition behind LDBGF originates from the observation
by Guillaume and Latapy [34] that all graphs can be represented by a bipartite structure. Some networks
lend themselves more naturally to a bipartite representation, like a co-authoring network G = (T, L E)
connecting the set of authors L to the set of papers T they co-signed. Retrieving the unipartite graph
is as easy as projecting the bipartite graph using the T-nodes—adding an edge between any pairs of L
nodes representing two authors that collaborated.

The LDBGF approach illustrated in Figure 3 assumes that a latent low-dimensional bipartite structure
can be found to represent a graph in a low-dimensional space. A direct consequence of this representa-
tion is a strong intrinsic interpretability of the embedding space produced. Indeed, nodes are represented
by their connectivity to the T-nodes from the bipartite structure that are tangible objects. Guillaume and
Latapy [34] use cliques in the T-part of the bipartite graph, as presented in Figure 3c. As the goal with
the LDBGEF is to represent nodes in a lower-dimension space, we enforce the number of T-nodes to be as
low as possible. In our example, the adjacency matrix of the bipartite graph G’ (3b) is of lower dimen-
sion than that of the original graph G (3d). Obviously, a dimension reduction may only be observed if
the number of cliques is lower than the number of vertices. In that setting, the LDBGF is related to an
EDGE CLIQUE COVERING problem, namely finding the minimum number of cliques to cover the set of
edges [25]. This problem is known to be NP-Hard. Thus we need an alternative to cliques to produce
embeddings with low compute requirements.

4.2 Community detection

Communities can be considered a relaxation of cliques, so instead of trying to solve an EDGE CLIQUE
COVER problem, we address a community detection problem. Let us consider an (un)directed (un)weighted
graph G = (V,E,Q), V being the set of vertices, E the set of edges and Q the set of weights associated
to each edge (u,v) € E|u,v €V, n = |V| and m = |E| are respectively the number of vertices and edges
in G. We define the neighborhood of a vertex u as N(u) and the degree of such a vertex as d(u) = |N(u)|,
the weighted degree of a vertex u is such that d,,(u) =Y ,c N(v) $2u,v- A community structure of G is a
partition ¢ = {Cy,...,C;},1 < j < nof V into subsets such that the intracommunity density of edges in
subgraph G[C;] is dense and the intercommunity density of edges between C; and C; is scarce.

FROM COMMUNITIES TO INTERPRETABLE NETWORK AND WORD EMBEDDING 11 of 40

—_—0 = O =0 O QK
—_——_0 = OO0 oo W
— O~ OO0 oo OO
S == =0 00O\

cooco~~~olc
cooco~—~0o =~
cooco =0~ —
coo~o~r~r—lw

(b) The adjacency matrix <7 of G. The dimension of the
(a) A graph G = (V,E) with 8 vertices and 12 edges. vector for each vertex is |V | = 8.

o' BO Bl B2 B3
0 1 0 0 0
1 1 0 0 0
@ @ @ @ 2 1 0 0 0
3 1 1 0 0
4 0 1 1 0
5 0 0 1 1
6 0 0 0 1
7 0 0 1 1

0 a o 0 o e 0 o (d) Adjacency matrix of bipartite graph G’. The dimen-

(c) Projection of G into bipartite graph G’ = (T, L, E’) sion of the vector for each vertex is the number of cliques
with the minimum number of cliques to cover E. (4) used to cover the edges.

F1G. 3: Illustration of the LDBGF', vertices are linked to the cliques they belong to.

Communities can be uncovered in a myriad of networks, Girvan and Newman [32] show for example
that social and biological networks boast such community structures.

To detect communities in this paper, we use the Louvain algorithm introduced by Blondel et
al. [6]. relying on modularity to detect communities. The Louvain algorithm has been extensively
used thanks to its quasi-linear time complexity and unsupervised nature without parameters.

Although very efficient, the Louvain algorithm suffers from the resolution limit related to the
modularity optimization that is employed. Indeed, the resolution limit is such that communities smaller
than a certain size might be difficult to uncover by optimizing modularity and can lead to badly con-
nected communities—communities might be internally disconnected [29]. To counter the resolution
limit, the modularity can be parameterized with multi-resolution parameter y. The y parameter [39] acts
as a bias to increase the weight associated to the probability of the two nodes being connected based
solely on their degree. This allows to parameterize the Louvain algorithm and control the granularity
of communities.

4.3 SINr-NRand SINr—-MF: community-based approaches to implement LDBGF

In Prouteau et al. [69], we introduced SINr as an implementation of LDBGF that circumvents the com-
plexity of the EDGE CLIQUE COVER by supplanting cliques with communities. Community detection,
even on large graphs, can be performed very efficiently thanks to the low algorithmic complexity of
detection methods. In this paper, we introduce implementations of LDBGF:

1. SINr-NR (Node Recall), an improvement of SINr that relies on the community structure detected
with the Louvain algorithm using multiscale resolution and an ad hoc method to measure the

12 of 40 T. PROUTEAU, N. DUGUE, S. GUILLOT

strength of connection between each vertex and each community;

2. SINr-MF (Matrix Factorization) leverages gradient descent to find the matrix allowing the tran-
sition from the graph adjacency matrix to the community membership matrix also extracted with
the Louvain algorithm using multiscale resolution.

We tried several community detection algorithms, as it is central in both these implementations of
LDBGEF. Notably, Label Propagation [72] (LP), Infomap [7], OSLOM [42], and Louvain [6].
Although efficient, LP leads to many small communities for some applications of the framework, lead-
ing to vectors of higher dimension than with other algorithms. Infomap is known to perform better but
is slower than Louvain and LP, so is OSLOM. Although Louvain presents some challenges related
to the resolution limit, it performs better than other algorithms we tested on evaluation tasks and is a
lot more time-efficient. We ultimately chose to implement these approaches with Louvain. Further-
more, the number of communities can be controlled with the multiscale () parameter in the modularity
measure, and we will see Section 5 that it is important.

SINR-NR. To derive embeddings from a graph with SINr-NR as illustrated in Figure 4, one first
need to detect its communities. Applying the Louvain method to a graph G produces a partition of the
graph’s vertices (4a) which is used to build an embedding vector for each vertex. Based on the partition
in communities, SINr—NR weights the vector using the node recall (NR) measure introduced in Dugué
et al. [23] that is equivalent to Lancichinetti et al.’s embeddedness [41] of a vertex in its community.
With SINr—-NR, we are essentially quantifying the distribution of weighted degree of a vertex u towards
each community C; (4b). Given a vertex u, a partition of the vertices € = {Cy,...,C j}, and C; the iy,
community so that 1 < i < j, the node recall of u considering the jth community is :

dCi(”) . _
4 w1thdci(u)7vezcti9uv 4.1)

Upon computing NR for one vertex over all the communities, one obtains a vector representing the
vertex considered. When computed for all vertices in the graph, we obtain the embedding model. The
embedding vectors are thus sparse (4c), since not every vertex is connected to a node in every community
previously uncovered, their dimension is linear with the number of communities.

NR,’(M) =

SINR-MF. The second implementation of LDBGF we introduce in this paper does not rely on an ad
hoc measure of strength of connection such as NR. We named it SINr—-MF for Matrix Factorization:
it attempts to factorize the adjacency matrix 7 of a graph G into the product of two matrices U and
C, the community membership matrix extracted using Louvain. In our case, the matrices ./ and C
are known. By letting gradient descent handle the optimization of U we hope to avoid the ad hoc NR
measure of SINr—NR and obtain .2/, an approximation of the graph at hand in the space described by
C. The goal of SINr-MF is thus to minimize the difference between .7 and the product of U and C in
the following model:

SINt-MF(G) = argmin(MSE(.«7,UCT)) (4.2)
U

This optimization is performed by gradient descent using a Mean Squared Error (MSE) loss.

FROM COMMUNITIES TO INTERPRETABLE NETWORK AND WORD EMBEDDING 13 of 40

o F b= 6 5o

(a) A graph G = (V,E) partitioned in two (b) Bipartite projection of G into graph G’ = (T, L, E’) along the com-

communities. munities. Weight on the edges is the NR value regarding the commu-
nity—the proportion of neighbors in that community.

co Cl

0 1 0

1 1 0

2 1 0

3 0.75 0.25

4 0.33 0.66

5 0 1

6 0 1

7 0 1

(c) Adjacency matrix of G, each row is a STNr—NR embedding.

FIG. 4: Tllustration of SINr—NR, vertices are represented based on the communities they are linked to.

The code for these implementations is available on GitHub! and has been implemented using Python
and the efficient Networkit library of Staudt et al. [81].

The next section evaluates thoroughly the ability of SINr—NR and SINr—MF at embedding graph
properties at different levels. To do so, we consider multiple tasks, including link prediction, vertex
degree regression or label prediction. We also deal with NLP tasks and evaluate the interpretability of
our approach on textual data.

5. Experiments

Properties of complex networks may be analyzed at different levels. We distinguish three: microscopic,
mesoscopic and macroscopic. These levels correspond to the scale at which we examine the network,
from local interaction of individual vertices (microscopic) to larger structures within the network such
as communities or motifs (mesoscopic), to the network as a whole (macroscopic).

Embeddings are meant to project data in a vector space that encompasses their relations and organi-
zation. Subsequently, well-formed graph embeddings should carry over structural characteristics from
the original graph. We evaluate the propensity of graph embedding methods to encapsulate key topo-
logical information from the network at these three levels in the following sections. We first consider
the microscopic level, the goal is to assess the capacity of vectors to model local interactions between
vertices with experiments such as link prediction, vertex degree regression or vertex clustering coeffi-
cient regression. At the mesoscopic level, our experiments are targeted towards intermediate structures
such as communities and include: vertex clustering, vertex classification. Regarding the macroscopic
level, which relates to the graph as a whole, we evaluate the capacity of embedding to model PageRank

"https://github.com/SINr-Embeddings

14 of 40 T. PROUTEAU, N. DUGUE, S. GUILLOT

through PageRank score regression.

We then focus on the specific application of our method to word co-occurrence network to derive
word embeddings. We demonstrate that our approach is relevant in this context through two evalua-
tions: pairwise word similarity, and word categorization. Furthermore, we study the stability aspect of
our algorithms when it comes to word embeddings.

Following these experiments aimed at measuring the capacity of graph embedding methods to grasp
graph topology, we also evaluate our approach on interpretability of words embeddings from the vectors
space. Finally, most embedding methods are notoriously non-deterministic when it comes to producing
vectors. Since it is a desirable feature in interpretable settings, we also evaluate the stability of SINr—-NR
against Word2vec and SPINE.

We chose five real-world graphs composite in fields and sizes (n = |V | and m = |E|) for our exper-
iments. The variety in network sizes allows studying the scalability of our approach regarding the
downstream evaluation tasks. For the sake of our experiments, we consider each graph as undirected
and extract their largest connected component.

a. Citeseer (Cts; n=2,110; m = 3,720) and Cora (n = 2,485; m = 5,069) are networks of
scientific citations.

b. Email-eu (Eu; n = 986; m = 16,687) is a sender-recipient email network within an European
research institution.

c. arXiv (n=17,903; m = 196,972) is a co-authorship network of articles published on ArXiv in
the Astrophysics category between January 1993 and April 2003.

d. Facebook (Fb; n=63,392; m = 816,831) is a graph of user friendships from Facebook.

To assess SINr—NR and SINr—-MF we also introduce state-of-the-art methods if applicable to the
evaluation task being performed. Our main source for graph embedding models was the karateclub
library implemented in Python. However, it did not include Graph Neural Network approaches that are
state-of-the-art for some graph-related tasks. We selected Deepwalk (DW) and Walklets (WL) that
are based on random walks. HOPE factorizes similarity matrices. VERSE relies on a single layer neural
network to preserve similarity between vertices. LouvainNE [5] relies on hierarchical community
detection to derive node embeddings. The implementations for Deepwalk, Walklets and HOPE
are provided by the karateclub library implemented in Python. LouvainNE and VERSE are the
implementations provided by the authors respectively in C and C++. The default parameters of the
implementations are kept for each node embedding baseline, nodes are embedded in 128 dimensions.
For SINr-MF, the number of epochs is set to 3000 with stochastic gradient descent and a learning rate
of 5¢73. For SINr—NR and SINr-MF, the y parameter that impacts the number of communities is
discussed in the results in Section 5.2.1.

5.1 Run-time

Before proceeding with experiments at the three levels previously introduced, let us consider the com-
pute time required for each method. Methods with a low run-time are more energy efficient and also
valuable for end users since they do not need to wait for lengthy computation before exploiting a vector
space. Furthermore, as discussed in Section 2, we aim to design an approach with low environmental
impact, the literature having demonstrated the high CO, emissions of recent large architectures. We
thus compute the wall time and CPU time required by each model on each of our baseline over ten runs
and present the averaged results in Table 1.

FROM COMMUNITIES TO INTERPRETABLE NETWORK AND WORD EMBEDDING 15 of 40

SINr—-NR SINr—-MF DW WL HOPE LouvainNE VERSE
Cora 0.04/0.04 8/161 10/36 16/31 0.22/9 0.10/0.09 83/331
Eu 0.11/0.11 3/50 5/13 8/14 0.55/20 0.09/0.08 34/138
Cts 0.03/0.03 6/123 8/22 14/25 0.19/7 0.05/0.04 69/274
arxiv 1.5/1.5 1.2K/20K 289/580 435/812 25/600 0.79/0.72 610/2.4K
Fb 6.7/6.7 6.5K/116K 414/822 646/1.2K 61/638 3.1/2.8 2.8K/11K

Table 1: Average run-time (left) and total CPU time (right, with parallelism) in seconds over 10 runs.

Run-time is computed with two Intel Xeon E5-2690 v2 3.00GHz CPU : 20 cores, 250Go RAM.

SINr—-NR’s run-time is the lowest among graph embedding methods implemented in Python. Even
on larger graphs, its run-time is inferior to its counterparts by a few orders of magnitude. When we
take into account LouvainNE which is implemented in C, even on the largest graph, Facebook (Fb),
SINr-NR is only a few seconds behind. HOPE is the second best algorithm in terms of run-time in the
Python category. SINr—MF on the other hand, is relatively efficient on smaller graphs. However, on
larger graphs, it reaches a point where it is not sustainable compared to other methods. It is, however,
important to note that SINr—-MF was purposefully trained using CPUs instead of GPUs, which are far
more efficient at processing matrices. Still, because of its run-time, we do not consider SINr—-MF in
the rest of this paper when dealing with NLP because of the size of textual graphs. We still thoroughly
evaluate the approach on all the graphs tasks.

5.2 Assessment of the quality of vertex embedding

5.2.1 Microscopic-Level

LINK PREDICTION. Let G = (V,E) be an undirected graph, U the universal set containing @

possible edges in V and E -y \ E. The link prediction task is set up as a binary classification of edges
into two classes, either existing or absent. A classifier is trained to detect whether an edge is likely to
exist or appear in the graph at hand.

As in [33, 52, 87], we randomly select pairs of vertices at the extremities of edges from the graph
(20%) into a test set. Subsequently, these edges are removed from the graph under the constraint of not
increasing the number of components. The remaining edges in G are part of the training set. Embedding
vectors for each model are trained using the train set only. The set of negative examples for the link
prediction is sampled in EC with similar proportions to the positive train and test sets. An XGBoost
classifier is then trained to discriminate between existing and non-existing edges for a given pair of
nodes. The representation used in input of the classifier for an edge (u,v) is the Hadamard product
between the two embedding vectors of vertices # and v in each model. The task is performed 50 times
for each network and each model, and the average accuracy is presented in Table 2. For this task, we
also consider Heuristics (HTS), a feature engineered method relying on heuristics features that was
shown to be very efficient. As in Sinha et al. [80], the features involved are the following : Common
Neighbors, Adamic Adar, Preferential Attachment, Jaccard Index and Resource Allocation Index.

Overall, both SINr-NR & SINr-MF are on par with competing methods, especially on small
networks. SINr—-NR is consistently better than HOPE and Deepwalk (DW) across all networks and
close to Walklets (WL). The matrix factorization approach SINr—MF is leading on the two smallest
networks (Cora & Cts) closely followed by SINr-NR. It seems that SINr—MF is less efficient when
networks become larger, but SINr—NR remains competitive with the leading method Heuristics
(HTS) even on networks of higher magnitude.

16 of 40

T. PROUTEAU, N. DUGUE, S. GUILLOT

| SINr-NR SINr-MF || HTS DW WL HOPE LouvainNE VERSE
Cora 0.845 0.850 0.728 0.708 0.773 0.760 0.827 0.809
Eu 0.860 0.798 0.885 0.790 0.876 0.847 0.752 0.852
Cts 0.877 0.879 0.755 0.736 0.820 0.832 0.863 0.859
arXiv 0.930 0.893 0.980 0.912 0.954 0.914 0.847 0.957
Fb 0.915 0.892 0.930 0.859 0.920 0.900 0.847 0.917
Table 2: Average accuracy for the link prediction task over 50 runs.
] 0.881
085 s + SINFNR e
Ly SINr-MF Y.,
0.801 M 0.861 v Ty
Y YYY \»r <
0 Ty 0
© 0.751 Y ©0.841
35 Y 3
g Y g
Y
0.701 Y.
18 0.821
0.65 v v SIN-NR
. 1 Y
0.804 SINr-MF
5 1012030 50 100 200 1 5 1012030 50 100 200
y resolution y resolution
(a) Cora (b) Email-EU
y 7Y + SIN-NR « facebook ‘
J Y .
0.92 T . SINr-MF 400 arxiv
Y . § + email .
0.901 .
> Y, S 300+ citeseer R
© Y g * Cora .
4 Y — A
g 088 e £ 200 :
< o . *
0.861 Y £ . ot s
2 100/ .
Y LN
0.841 Pta
O‘ A
5 10132030 50 100 200 12345 10 15 20
y resolution y resolution

FIG. 5: Average accuracy (over 50 runs) on Link Prediction according to y with SINr—NR in yellow
and SINr-MF in blue for Cora, Email-EU and ArXiv. Average number of dimensions of our models

(c) arXiv

(d) Average number of dimensions according to 7.

(over 50 runs) according to the 7y is given in (d).

The only parameter of our methods is the y multi-resolution parameter inherited from Louvain,
which allows controlling the dimension of vertex embedding vectors. Higher values of 7y result in

FROM COMMUNITIES TO INTERPRETABLE NETWORK AND WORD EMBEDDING 17 of 40

vectors of higher dimension. Depending on the size of the network at hand, it might be beneficial
to have more dimensions in the embedding space to better represent the complexity of the network
structure. To that end, we plot Figure 5 the accuracy on the link prediction task according to the ¥ value
for Louvain. For the smallest network Cora, the maximum accuracy is reached for a 7y value of 1.
Our intermediary Eu network admits a maximum accuracy when 7y is 3 for SINr—-NR when SINr-MF
needs more dimensions to reach its highest accuracy on link prediction, setting the y between 10 and 20.
On arXiv, the best accuracy is reached with a 7y set to values around 5. A good rule of thumb is that the
larger the graph is, the more dimensions are needed to represent vertices’ interactions and thus a higher
v value needs to be chosen. As a consequence of these results, the y value chosen for Cora, Citeseer
and Eu is 1, when 7y is set to 5 for arXiv and Facebook for all the experiments on these networks.
We also consider the number of dimensions of our models according to y. As a direct consequence of
its definition, increasing gamma mechanically increases the number of communities, and thus number
of dimensions. However, as one can see in Figure 5d, when 7 is set to 1, for the small networks, the
number of dimensions is lower than 128, it is actually 8 for Email-EU, 33 for Cora and 43 for Citeseer.
With 5 for arXiv and Facebook, it is close to 128 (respectively 128 for arXiv and 140 for Facebook), the
number of dimensions chosen for the competing approaches.

VERTEX DEGREE REGRESSION. In order to evaluate the capacity of embedding models to encapsu-
late information local to a vertex, we proceed to predict the degree of vertices in the graph. From an
undirected graph G, we first learn vertex embeddings. Then, a linear regression is trained from the
embedding, the target value for each vertex is extracted from the degree sequence of G. The set of
vertices is split randomly, with 80% of the vertices in the training set and the remaining 20% in the test
set. Regression is performed 50 times for each model and the average R-squared (R?) coefficient of
determination is presented in Table 3 to measure the goodness of fit.

| SINr-NR SINr-MF || HOPE Deepwalk Walklets LouvainNE VERSE
Cora 1.000 -0.586 0.773 -0.122 -0.028 -0.067 0.227
Cts 0.998 -0.077 0.741 0.140 0.342 0.037 0.010
Eu 1.000 0.022 0.990 0.388 -0.783 -5.183 0.869
arXiv 1.000 0.543 0.937 0.419 0.725 0.144 0.585
Fb 1.000 0.647 0.935 0.358 0.766 0.091 0.706

Table 3: Average (50 runs) R? for vertex degree regression.

Vertex degree regression results presented in Table 3 put SINr—NR ahead of all models. HOPE
is second and VERSE third, with varying performances across networks. SINr—MF achieves subpar
performances on Cora, Citeseer and Email-eu but is in keeping with VERSE on arXiv and
Facebook. Random walk based methods seem to underperform at embedding degree in their repre-
sentations on small networks. LouvainNE embeddings are unable to help with the prediction of vertex
degrees.

For the datasets considered, performances of SINr—NR on the degree regression may be the direct
consequence of the ad hoc embedding weighting method employed. Measuring the relative distribution
of weighted degree of each vertex over the network community structure is an indirect encoding of a
vertex degree. The more values in the embedding are diffuse, the higher the potential degree of the
vertex is, since it is connected to many vertices in varying communities. On the other hand, it appears
that STNr—MF matrix factorization approach is not efficient at embedding vertex degrees. SINr—MF is

18 of 40 T. PROUTEAU, N. DUGUE, S. GUILLOT

less prone to embedding degree information, since it aims at finding the transition matrix between the
network’s adjacency matrix and the community membership matrix.

CLUSTERING COEFFICIENT REGRESSION. Another aspect of local organization is the connectivity
among neighbors of a vertex, measured by the clustering coefficient. Similarly to the degree regression
experiment previously introduced, we compute the clustering coefficient of each vertex in the graph and
learn a linear regression model from the vector representation of each graph and each model. The results
presented in Table 4 are the average R? determination coefficient over 50 runs with a random 80% train
20% test split.

| sINC-NR SINr-MF || HOPE Deepwalk Walklets LouvainNE VERSE
Cora 0.007 0.027 -0.161 0.0001 -0.020 0.052 -0.001
Cts 0.003 -0.411 -0.493 -0.015 -0.006 -0.950 0.001
Eu 0.060 -0.011 -0.012 0.065 -1.756 -35.379 -0.078
arXiv 0.247 0.236 0.126 0.325 0.344 0.036 0.260
Fb 0.027 0.046 0.017 0.132 0.167 0.009 0.036

Table 4: Clustering coefficient regression, average R? over 50 runs.

On average, the determination coefficient scores for the clustering coefficient prediction are low.
SINr-NR is the sole model to always present a positive R? coefficient regardless of the network. It
seems it is difficult to come with a hard conclusion on small networks (Cora, Cts and Eu) where R?
values are really low and performance is variable from one network to the other. On larger networks,
random walk based methods obtain more encouraging results, followed by VERSE, and the two imple-
mentations, SINr—NR and SINr—MF. None of the models manage to emerge as a clear contender for
vertex clustering coefficient prediction.

From these observations, one can only wonder why the clustering coefficient cannot be easily pre-
dicted from the vertex embedding when degree is a property well embedded in their representation.
Clustering coefficient is a measure of the connection among vertex neighbors and is thus rather local to
a vertex. However, this interaction is happening at an edge away from the node considered and might be
harder to model in the representation. Random walk based models might capture more of this structure
on larger graphs with many edges.

MICROSCOPIC-LEVEL MODELING. Micro-scale performances of SINr—NR on link prediction and
vertex degree prediction show that it is efficient at embedding local information. In the case of SINr—MF,
performances are more varied over our three micro-scale tasks. Although SINr—-MF performs satisfac-
torily on link prediction, its lack of performances on verfex degree regression and vertex clustering
coefficient regression outlines its limitations at embedding local information from the vertices.

Moving on from microscopic-level information, we now want to take a step back and evaluate the
capacity with which SINr-NR and SINr-MF approaches are able to carry mesoscopic properties.

5.2.2 Mesoscopic-Level

In this section, to evaluate the ability of our approaches to embed mesoscopic information, we cluster
and classify vertices into communities in graphs.

FROM COMMUNITIES TO INTERPRETABLE NETWORK AND WORD EMBEDDING 19 of 40

Communities are intermediate structures between the vertex and the graph as a whole, making them
interesting objects to study the capacity of a model to embed mesoscopic-level information. In our first
experiment, we proceeded in an unsupervised manner before adopting a supervised approach in the
following experiment. There is scrutiny around the evaluation of community detection and trying to
predict so called “ground-truth” communities. The partitions of nodes we use are based on metadata
associated with each node. Yet, metadata-based communities may not match the communities detected
by a community detection algorithm [16, 21]. This may be the consequence of diverse factors: metadata
is not relevant to the network structure, metadata and uncovered partition may capture different aspects
of topology, or the network may not exhibit a community structure [45, 64]. However, in our case, we
do not evaluate community detection but rather the ability to find a clustering of nodes in groups. This
task is performed with a clustering algorithm applied to the vectors and a classifier. Thus, we can per-
form our experiment, with the caveat that partitions based on metadata may not correspond to partitions
that would be detected by community detection algorithms. A second argument could be made against
such an evaluation when working with community-based embeddings. However, although STNr—NR
and SINr-MF work with the community structure to derive a representation, they weight the relations
to the latter and do not retain the entirety of community membership.

VERTEX COMMUNITY CLUSTERING. Cora, Citeseer and Email—-eu have known ground-truth
community structures that allow studying whether communities are encoded in embedding vectors.
Following the spectral clustering method [79], we first construct an affinity matrix based on cosine sim-
ilarity between all pairs of vertices. Using the affinity matrix alleviates the discrepancies in dimensions
across embedding methods since the clustering is performed on a V x V matrix. The average Normalized
Mutual Information (NMI) [40] score over 50 runs for each network with a known community structure
and each method is presented in Table 5.

| SINr-NR SINr-MF || HOPE Deepwalk Walklets LouvainNE VERSE
Cora 0.364 0.047 0.368 0.020 0.296 0.311 0.435
Cts 0.331 0.112 0.322 0.009 0.177 0.147 0.406
Eu 0.567 0.266 0.682 0.703 0.670 0.644 0.698

Table 5: Spectral clustering results based on embedding similarity. Average NMI over 50 runs between
ground truth labels and predicted clusters.

Regarding unsupervised detection of communities, scores for SINr—NR are close to that of HOPE.
SINr-MF does not allow to cluster the embeddings efficiently into communities from the similarity
between embeddings. Contrary to Deepwalk, all models seem not to show great discrepancies across
networks even though it is the best performing model on Email-eu. VERSE shows abilities to learn
useful vectors for community clustering. Although SINr-NR has low results on Email-eu, it man-
ages to be respectively third and second-best model on Cora and Citeseer. The major lesson drawn
from these scores is that detecting communities from the similarity between embedding is a complex
task. Thankfully, we can also adopt a classification approach to the detection of communities.

VERTEX COMMUNITY CLASSIFICATION. Community prediction can also be performed in a super-
vised manner with the help of a classifier. In this setting, we choose the XGBoost classifier previously
used for the Link Prediction task (Section 5.2.1). The classifier is trained using 80% of the vertices’

20 of 40 T. PROUTEAU, N. DUGUE, S. GUILLOT

embeddings and their respective community labels, the remaining 20% of vertices is used as a test set.
The experiment is run 50 times, and we present in Table 6 the averaged accuracy.

| SINr-nr SINr-MF || HOPE Deepwalk Walklets LouvainNE VERSE
Cora 0.752/0.786 0.716/0.786 0.799 0.719 0.852 0.831 0.850
Cts 0.690/0.718 0.685/0.694 0.718 0.630 0.758 0.722 0.758
Eu 0.432/0.719 0.222/0.604 0.721 0.686 0.700 0.672 0.656

Table 6: Vertex classification results, average accuracy over 50 runs. For SINr—NR and SINr-MF, the
first number corresponds to ¥ = 1 when the second is when y = 5.

Regarding supervised node community labeling, Walklets is the best performing model. On
smaller networks (Cora and Citeseer), SINr—NRis ahead of Deepwalk and SINr—MF has similar
performances. More globally, SINr—NR, HOPE and LouvainNE have performances within a range of
eight points and can be said to perform equally. However, a more significant gap between the baseline
methods and SINr’s two approaches appears on Email-eu (Eu). These results would indicate that
SINr—-NR doesn’t manage to grasp community membership as well as other methods on a network with
far more edges and fewer vertices than Cora and Citeseer.

However, when we slightly increase the y value for community detection on this task, we obtain
more dimensions in the representation space and results improve. When we set Yy =5, SINr-NR
and SINr-MF results on Cora respectively jump to 0.786 when they increase to 0.718 and 0.694
on Citeseer. The strongest increase is observed for Eu where changing to a y value of 5 leads to
respective accuracy results of 0.719 and 0.604 for SINr—NR and SINr—MF thus making SINr—NR the
second-best model. The y parameter has an undeniable impact on performance for vertex community
classification as for link prediction and illustrated in Figure 5.

MESOSCOPIC-LEVEL MODELING. Our evaluation of mesoscopic-level information in graph and word
embeddings shows that models are capable of embedding more distant structures and context than just
the vertex and its neighborhood. Although clustering vertices from the similarity between vectors is a
complex task on which most models do not perform, classifying vertices into communities from their
embeddings is possible. This indicates that signal from the community structure is present in represen-
tations. It is especially true for SINr—NR that rely on community structure.

5.2.3 Macroscopic-Level

PAGERANK SCORE REGRESSION. From a microscopic perspective, PageRank [9] can be used to
study the local properties of a vertex and its neighbors. As a local measure, it may help to gain insight
into the flow of information or the influence within the network. From the macroscopic perspective,
PageRank provides a measure of the importance of vertices in the network and may help to identify
influential or central vertices that take part in the structure and function of the network.

Similarly to the experiments in Section 5.2.1 and 5.2.2, we employ a linear regression with the
objective of predicting the PageRank score of each vertex of the network from its vector representation.
The average R? coefficient of determination over 50 runs is presented in Table 7.

PageRank’s regression results give a clear advantage to SINr—NR that outperforms all other meth-
ods. HOPE is the second-best method for predicting PageRank, followed by VERSE. Except for the
Facebook (Fb) network, Deepwalk, Walklets, LouvainNE and SINr—MF perform poorly on

FROM COMMUNITIES TO INTERPRETABLE NETWORK AND WORD EMBEDDING 21 of 40

SINr-NR SINr-MF || HOPE Deepwalk Walklets LouvainNE VERSE
Cora 0.980 -0.610 0.697 -0.191 -0.026 -0.092 0.185
Cts 0.949 -0.176 0.346 -0.050 0.182 -0.123 -0.125
Eu 0.991 0.013 0.959 0.347 -0.960 -0.271 0.856
arxiv 0.955 0.518 0.736 0.295 0.693 0.039 0.520
Fb 0.961 0.618 0.739 0.213 0.720 0.017 0.652

Table 7: PageRank vertex regression results: average R> over 50 runs.

PageRank prediction. SINr—NR’s domination on PageRank prediction may be correlated to its ability
to predict degree. As a matter of fact, PageRank score is influenced both by the degree of a vertex at the
microscopic level but also by the importance of its neighbors in the network. Both of these properties
are at the heart of SINr—NR where we distribute the degree over the community structure using the
neighbors of the vertex in different communities. Thus, the stronger a value for a community may be,
the more it may contribute to the PageRank score of a vertex. Subsequently, SINr-NR and HOPE to a
lesser extent, can embed the PageRank, a node feature that relies on the global topology of the graph.

5.3 Application to word co-occurrence networks for word embedding

So far, all our experiments were performed on data naturally inclined to a graph representation. How-
ever, one of our main goals with this paper is to design a method that also allows representing words
meanings from large corpora, i.e., extracting word embeddings. Furthermore, working with text extends
the field of possibilities regarding intrinsic model evaluation—internal structure of the vector space—and
also interpretability that is more easily auditable with words’ semantics.

WORD CO-OCCURRENCE NETWORKS. Word co-occurrence graphs are extracted from large textual
corpora. To construct them, a sliding context window is applied over the sentences, allowing to sample
the contexts of our vocabulary. Let a weighted network G = (V,E,). In our context, V is the set of
vertices representing words in set L the lexicon extracted from the corpora. E is the set of edges such
that two vertices u# and v representing two words wy,, w, € L are connected when they appear in vicinity
of each other within the context window. The edge weight m,, € € is the count of how many times w,
and w, have been observed together.

To limit the number of vertices in the co-occurrence graph, we apply several preprocessing steps.
To avoid preprocessing some words, we keep a list of exceptions, but we filter out words with less
than three characters as a proxy of stop words (e.g., a, or) that do not carry sense. We also filter
words appearing less than 20 times and chunk named entities under a single type and lowercase the
vocabulary (e.g., “Emperor Julius Caesar” becomes “emperor_julius_caesar’). Before constructing a
co-occurrence graph from the co-occurrence matrix <7, we apply an additional filtering step. Using the
Pointwise Mutual Information measure (PMI), we remove co-occurrences which appear less than they
would by chance. To do so, we calculate the PMI using the following rule for words w,,,w, € L :

cooc(wy,wy)

p(Wu;WV): Yy ¥ COOC(WiaWj) -
wi€Lw;eL

o oce(wa) (5.2)

u Y. occ(wi) |

wi€L

22 of 40 T. PROUTEAU, N. DUGUE, S. GUILLOT

. p(Wu;WV)

o _ 07 if lOg(‘p(WL‘)Xp(W‘*’)) <0 (53)

(u,v) .
cooc(wy,wy), otherwise

with cooc(w,,w,) the number of co-occurrences between w, and w,, occ(w,) the number of occur-
rences of w,. In essence, the PMI acts as a threshold to limit the number of edges to only the rel-
evant co-occurrences and helps to better detect communities. Apart from these preprocessing steps,
the SINr—NR pipeline remains unchanged. We first detect communities and then measure the rela-
tive distribution of the degree of each vertex u € V representing a word w,, € L over the communities.
By extension, we can see communities in co-occurrence networks as clusters of related words that co-
occur frequently together and are thus semantically intertwined. This semantic relatedness among words
within communities is at the heart of the interpretability of SINr—NR as we demonstrate in Section 5.4.

5.3.1 Assessment of the performance of graph-based word embeddings

Since text can also be represented with word co-occurrence graphs, we show the versatility of SINr—NR
with the task of word embedding. As SINr—-MF optimizations are hardly scalable for text (see Table 1),
we will only consider STNr—NR for word co-occurrence networks. The word embeddings produced are
then evaluated on classical intrinsic evaluation tasks for distributional models in NLP: word similarity
and concept categorization. We first introduce the process to create and embed words with SINr—-NR,
which is different from the one we described in Prouteau et al. [69]: it runs faster, leads to robust rep-
resentations (see Section 5.3.2), and using the y parameter, provides flexibility. Then, we evaluate the
performances of this word embedding model against classical word embedding methods, some relevant
graphs approaches and also a framework producing interpretable embeddings.

EXPERIMENTAL SETUP: DATA AND COMPETING APPROACHES. Co-occurrence networks can be
constructed from any collection of texts. We employed two corpora that are composite in genre, open
and readily available to the public.

a. Open American National Corpus (OANC) [56] is the text part of the collection in contemporary
American English, with texts from the 1990s onward. The corpus contains 11 million tokens prior
to preprocessing and 20,814 types (vocabulary) for 4 million tokens after preprocessing.

b. British National Corpus (BNC) [20] is the written part of the corpora from a wide variety of
sources to represent a wide cross-section of British English from the late 20" century. The raw
corpus contains 100 million words. After preprocessing, the corpus is reduced to 40 million
occurrences for a vocabulary of 58,687 types.

The baseline models we selected aim at representing a diversity of approaches to embedding words.
Since our approaches leverage graph techniques to embed text, we also include two methods not specif-
ically designed for word embedding but for graph embedding applied to word co-occurrence networks.
The classical word embedding methods include Word2vec [53], a pioneering model to embed words,
SPINE, a method based on autoencoders to provide interpretable word embeddings and SINr-NR,
our unified method able to embed both networks and words. The two graph embedding approaches
applied to text we selected are: HOPE, that is factorization-based—it is thus similar in philosophy to
GloVe [65]— and LouvainNE that derives embeddings from a hierarchy of communities obtained
with Louvain —because it uses Louvain hierarchy. Approaches based on a combination of ran-
dom walks and Word2vec (Walklets and Deepwalk) are not relevant to this task: Word2vec can

FROM COMMUNITIES TO INTERPRETABLE NETWORK AND WORD EMBEDDING 23 of 40

be directly computed on the corpus. Word2vec, HOPE and LouvainNE are of dimension 300 for
both corpora. With SINr—NR, our interpretable models have respectively 4,460 and 8,454 dimensions
on OANC and BNC [70]. The competing rival approach SPINE, has 1,000 dimensions as advised by
Subramanian et al. [83].

To evaluate performance of words’ representations, we have on our hand classical intrinsic evalu-
ation tasks. They are intrinsic in the sense that they rely solely on the embeddings in isolation over
extrinsic which aims at evaluating the performances of a representation over a downstream task (e.g.,
text classification, named entity recognition, machine translation). The first one is pairwise word simi-
larity.

WORD SIMILARITY. The word similarity evaluation stems from the early work of Osgood et al. [59]
and later Rubenstein and Goodenough [76] in psycholinguistics to test the distributional hypothesis.
These experiments were later reintroduced by Baroni et al. [2] as a way to evaluate the quality of
distributional representations. The task relies on human constructed and annotated datasets containing
pairs of words. Each pair of words is given a score by annotators: the higher the score, the more similar
the two words presented are. For example, we could expect animals such as “elephant” and “cat” to
be closer to each other than to the tool hammer”. The word similarity evaluation process is illustrated
in Figure 6. A score for a pair of words in the evaluation dataset is compared to the value of cosine
similarity for the same pair in the word embedding model. The Spearman Correlation between the
series of similarities given by humans and according to the cosine similarity in the model is then used as
a quality metric for the vector space. Thus, the word similarity assess the quality of the neighborhood
of the vectors: tiger and lion, or other words with a high similarity score, should indeed be close in the
representation space. But it also evaluates the existence of a larger structure in the vector space. Since
datasets are comprised of word pairs within a spectrum of scores, they allow observing some kind of
distance between immediate neighborhoods : lion and tiger may be very close, but cat should not be
very far, and dog may follow, or at least be much closer than hammer.

wi wo human rating cosine_sim(wy, wp)
tiger cat 7.35 Spearman 0.73
plane car 6.31 Correlation 0.65
drink mother 2.85 9 0.20
forest graveyard 1.85 0.12

F1G. 6: Example of word similarity rating from the MEN dataset and cosine similarity between vectors.

Datasets used to evaluate word similarity are the following:

a. MEN [13] is composed of 3,000 pairs selected among the 700 most frequent words in UkWac and
Wackypedia corpora. Ratings were collected on Amazon Mechanical Turk.

b. WS353 [28] WordSim-353 contains 353 noun pairs.

c. SCWS [37] Stanford Contextual Word Similarity dataset comprises 2003 pairs of mixed part-of-
speech with senses sampled from WordNet [54].

All three datasets comprise pairs of words both representing word similarity (approximately synonymy,
or at least substitutability like “’cat” and “feline”) and word relatedness (much broader, encompasses

24 of 40 T. PROUTEAU, N. DUGUE, S. GUILLOT

pairs like “cup” and “coffee”). However, the datasets differ regarding the parts of speech included:
WS353 only includes nouns, while MEN and SCWS include nouns, verbs and adjectives.

OANC MEN WS353 SCWS
Word2vec 0.43 0.50 0.46
SPINE 0.33 0.38 0.44
SINr—-NR 0.39 0.44 0.39
HOPE 0.33 0.43 0.39
LouvainNE 0.29 0.37 0.23
BNC MEN WS353 SCWS
Word2vec 0.72 0.65 0.57
SPINE 0.66 0.57 0.54
SINr—-NR 0.66 0.62 0.54
HOPE 0.53 0.54 0.53
LouvainNE 0.28 0.36 0.25

Table 8: Average Spearman correlation over 10 runs for MEN, WS353 and SCWS word similarity
datasets.

Word similarity values in Spearman correlation are averaged over 10 models trained with each corpus
and presented in Table 8. For SPINE, the best results regarding the 4k epochs of training are kept, as
shown in Figure 7. The average correlation values are rather close across models and datasets. The gap
between interpretable models—SPINE and SINr-NR —and Word2vec is at most of 7 points. The
gap is even tighter on our larger corpora BNC. SINr—NR and SPINE remain very close to Word2vec.
These results strongly suggest that one can build interpretable representations that still perform close to
dense embedding models such as Word2vec. Regarding graph-based approaches, HOPE also performs
very well on OANC with results similar to those of SPINE. However, it does not scale up with the higher
number of co-occurrences of BNC, results are lower than those of SPINE and SINr—NR. LouvainNE
achieved good performances on other tasks, but on this task, results may not reflect the true performances
of the algorithm, its implementation being only able to deal with unweighted graphs. The textual graphs,
being weighted, LouvainNE is disadvantaged.

Results achieved by SINr—NR on a text-oriented task thus show its versatility regardless of the
type of information modeled by the network. SINr—NR results are indeed better than those of SPINE
on MEN and WS353, the other interpretable approach, and are always better than those of HOPE and
LouvainNE, the other graph-based approaches.

Furthermore, if we consider the run-time as shown in Table 9, SINr—NR results are also convincing.
Even if the approach is slower than Word2vec on BNC, it actually requires less compute (CPU time).
And we shall recall that the total run-time of SINr—NR is the sum of times required to extract the
co-occurrence network and to train the embeddings. It is thus interesting to note that for 10 runs of
SINr—-NR (for instance to tune y), the co-occurrence matrix run-time is considered only once, and
it is thus actually faster than Word2vec (3,658s for SINr—-NR and 4,890s for Word2vec). When
compared to SPINE (4k epochs as preconised by the authors), the competing interpretable approach,
SINr—NR is far more time-efficient. First, SPINE uses dense vectors such as Word2vec and make
them interpretable, its run-time thus includes the one of Word2vec. Furthermore, the k-sparse auto-

FROM COMMUNITIES TO INTERPRETABLE NETWORK AND WORD EMBEDDING 25 of 40

» psl v 1] <« men ws353 scwsJ
451 ¥ 0.44 4
AL
401 0.42
s 0.40 1
3.0 4 0.38
"
§25{ v 0.36

3] ""W,' 0.341
A L
el et
R

1.5 0.32 1 _:w<“
1.0 0.301
o 0.281 «

0 500 1000 1500 2000 2500 3000 3500 4000 0 500 1000 1500 2000 2500 3000 3500 4000

epochs epochs
(a) Losses on OANC (b) Similarity results on OANC
» psl v o] <« men ws353 scwsJ
0 ¥ 0067 Mt rnccecesescas
T S
i b
< i
s 0.62
v
v 0.60
4 v
e 0.58
A4
0.56
>
15 - A ASAAARED LA
s 0.54 s ARSI
052 +
10 4
0 500 1000 1500 2000 2500 3000 3500 4000 0 500 1000 1500 2000 2500 3000 3500 4000
epochs epochs
(c) Losses on BNC (d) Similarity results on BNC

FIG. 7: Average losses and similarity results for SPINE for 10 runs on 4k epochs. psl stands for Partial
sparsity loss that controls interpretability, rl for reconstruction loss that controls performance.

encoding of the dense vectors to make them interpretable requires quite some time. For OANC, the total
CPU time required to run the 4k epochs of SPINE is 1,000 times the one required for SINr—NR. In
Figure 7, the losses seem to indicate that 4,000 epochs are required, but similarity results may indicate
that 1,000 is enough. In such a case, SPINE’s run-time would be divided by four, which still makes it
above the runtime of SINr—NR, our interpretable approach, by a large margin. If one considers run-
times of the competing graph approaches on the textual data in Table 10, the results are also interesting.
LouvainNE is the fastest approach, but it does not succeed in achieving good results for this similarity
task. HOPE which is the best competing graph approach regarding similarity results, runs ten times
slower than SINr-NR, demonstrating the ability of SINr—NR to deal with graphs and textual data
efficiently.

To further evaluate STNr—NR’s abilities to model text data, we now consider a concept categoriza-
tion evaluation.

26 of 40 T. PROUTEAU, N. DUGUE, S. GUILLOT

OANC BNC
CPU time run-time CPU time run-time
Word2vec 175 49 1805 489
SPINE 50k 15k 130k 36k
Graph extraction 6 7 188 188
+ SINr—NR training 38 34 383 347
= SINr—NR total 44 41 571 535

Table 9: Average total CPU time and run-time in seconds over 10 runs. Run-time is computed with
four cores on Intel Xeon E5-2690 v2 3.00GHz CPU. For SPINE, ’k” indicates kilo-seconds. SINr—NR
total is the sum of SINr—NR training (SINr-NR column) and of the co-occurrence matrix computing

(co-occ column).

OANC BNC
CPU time run-time CPU time run-time
SINr-NR 38 34 383 347
LouvainNE 3 3 16 16
HOPE 492 425 3799 3748

Table 10: Average total CPU time and run-time in seconds over 10 runs. Run-time is computed with
four cores on Intel Xeon E5-2690 v2 3.00GHz CPU. The time required to compute the co-occurrence

graph is not included, figures only reprent the training time.

CONCEPT CATEGORIZATION. Concept categorization or word clustering is the text pendant of our
community clustering approach previously presented. Instead of communities, the goal of concept cate-
gorization is to properly cluster a subset of selected words from their embedding into preset categories.
Since the categories encompass basic-level concepts (cat and dog opposed to golden retriever and ger-
man shepherd), their assessment implies the existence of a larger structure than immediate proximity for
substitutable words : topical consistency in regions of the representation space. Categories in datasets
range from animals to feelings or legal documents to cite only a few. The datasets we chose, include:

a. AP [1] is a categorization dataset constructed with the goal of being balanced in class type, term
frequency and ambiguity. The dataset contains 21 different categories.

b. BLESS [3] contains 200 nouns (100 animate, 100 inanimate) from 17 categories (e.g. appliance,
bird, vehicle, vegetable).

c. ESSLI-2008 [26] datasets have been created for the shared tasks of Workshop on Distributional
Lexical Semantics that took place during the 2008 European Summer School in Logic, Language
and Information. Three datasets for concepts categorization were constructed with regard to three
tasks. ESSLLI-2a aims at grouping 44 nouns into semantic categories (4 animate, 2 inanimate).
ESSLLI-2b focuses on categorizing 40 nouns in three concreteness levels: low, moderate, high.
ESSLLI-2c evaluates the clustering of 45 verbs into 9 categories.

Clustering is operated on the embedding vectors of the words in each dataset provided by each
method. Words are thus clustered into categories from their vectors using the K-means and hierarchical
algorithms, only the best purity is retained and averaged. Concept categorization results are reported in

FROM COMMUNITIES TO INTERPRETABLE NETWORK AND WORD EMBEDDING 27 of 40

Table 11 and 12. Clustering performance is measured in purity between ground truth clusters in datasets
and detected clusters.

OANC SINr-NR || SPINE Word2vec || HOPE LouvainNE
AP 0.299 0.325 0.353 0.233 0.186
BLESS 0.402 0.376 0.411 0.276 0.225
ESSLLI-2c¢ 0.489 0.444 0.469 0.431 0.378
ESSLLI-2b 0.688 0.680 0.702 0.615 0.635
ESSLLI-2a 0.516 0.573 0.593 0.457 0.475

Table 11: Concept categorization purity scores over 10 runs for OANC.

BNC SINr-NR || SPINE Word2vec || HOPE LouvainNE
AP 0.541 0.567 0.589 0.396 0.183
BLESS 0.755 0.774 0.832 0.455 0.357
ESSLLI-2c¢ 0.580 0.538 0.594 0.489 0.329
ESSLLI-2b 0.708 0.703 0.700 0.738 0.675
ESSLLI-2a 0.786 0.732 0.798 0.630 0.543

Table 12: Concept categorization purity scores over 10 runs for BNC.

Categorization results on OANC, our smallest dataset show close purity results between all methods,
although Word2vec is leading on most datasets by a short margin. Methods not necessarily dedicated
to the task of word embedding perform lower. Overall, the purity scores on our smaller corpora are
lower than on BNC which contains more occurrences. On BNC, the trend is the same as on OANC:
SINr-NR, SPINE and Word2vec are very close to one another. HOPE and LouvainNE have subpar
performances except for HOPE on ESSLLI-2b for word concreteness level categorization.

5.3.2 Assessment of the stability of representations

Interpretability is one of the main objectives of SINr. With interpretability comes the ability to audit
a model and make conjectures based on its internal organization. Hypothesizing based on the internal
structure of a vector space is easier when the method used to embed data is relatively stable across
runs. Stability can either be in terms of neighbors in the embedding space, meaning that the geometry
of the projection space remains unchanged, or in the case of SINr—NR directly related to invariance in
the community structure. To investigate the stability of embedding models, we study Section 5.3.2 the
robustness of multiple methods.

Pierrejean [68] investigated the variance of neural methods to derive word embeddings. Word2vec
is notoriously unstable across runs and word neighborhoods may be distorted with consequences on
Word Similarity Evaluations. Instability impedes interpretability in the sense that we are not guaranteed
to get the same model across runs. To measure variability in models, we first evaluate the stability of
SINr-NR’s Louvain community detection, since it is the only random process in our algorithm. In a
second evaluation, we take a look at the variation of neighbors between models.

28 of 40 T. PROUTEAU, N. DUGUE, S. GUILLOT

COMMUNITY STRUCTURE STABILITY. Inconsistency in SINr—NR vectors may stem from Louvain’s
random iteration on vertices. As a result, communities may change between instances of SINr—NR.
Subsequently, with a change in community structure comes a change in the representation of items. To
that end, we evaluate the variation in community structure for 10 community structures that allowed
to extract SINr—NR vectors. We evaluate the pairwise Normalized Mututal Information (NMI) and
present the averaged NMI for all pairs of community structures in Table 13.

OANC BNC
NMI 0.967 0.959

Table 13: Average NMI comparing 10 community structures detected with Louvain on OANC and
BNC co-occurrence networks.

NMI values are high, meaning that despite randomness in Louvain order of iteration over the ver-
tices, community detection leads to similar partitions of the vertices. Preprocess described in Section 5.3
using PMI filtering may explain this. Similar partitions should lead to little variation in embedding space
geometry. More precisely, words neighborhoods in STNr—NR should not vary too much for two models
extracted from the same network. This is the subject of our next experiment on word nearest neighbors
variation.

WORD NEIGHBORHOOD VARIATION. We have previously seen that SINr—NR communities vary by
a small extent between instances of two models. Variation in neighborhoods was demonstrated for
other word embedding methods [68]. To evaluate this variation, we do a pairwise comparison of word
neighbors for 10 models. The Nearest Neighbor Variation [68] described in Equation 5.4 measures the
proportion of varying nearest neighbors between two models M; and M, for a number N of nearest
neighbors nn according to the cosine distance. For a word w, the Nearest Neighbor Variation (varnn)
score is:

B |nnAN,I1 ﬁnn%2|

N 54

varnnﬁfl1 M (w) =

In Figure 8, we can see the variation in instability varnn according to the distance at which we are
retrieving nearest neighbors, i.e., N in Equation 5.4. First and foremost, SINr—NR’s neighbors variation
between models is weak both on OANC and BNC. Word2vec is right in between SINr-NR and SPINE
in terms of variation with values between 0.38 and 0.50. SPINE’s word embedding neighbors vary a
lot more, with variation proportions being mostly over 0.8. The instability in SPINE could be expected,
SPINE is derived from a dense Word2vec space, which varies. Nearest neighbors remain similar for
SINr—NR even at a distance of 50. On the other hand, SPINE and Word2vec’s nearest neighbor
strongest variation seems to be located within the first 20 nearest neighbors.

Variation in neighbors between models can be detrimental to interpretability, as hypotheses drawn
from one model are not necessarily true on another model trained with the same algorithm and the same
data. Subsequently, stable representations are preferable for applications requiring to be audited, in the
context of digital humanities [31], and when using diachronic alignments [30, 35].

FROM COMMUNITIES TO INTERPRETABLE NETWORK AND WORD EMBEDDING 29 of 40

1.0 1.0
0.8 08
0.6 06
0.4 ® o o 04 ® o o
0.2 0.2

0.0 0.0

F1G. 8: Neighborhood instability (average varnn) according to the number of nearest neighbors in cosine
similarity for OANC (left) and BNC (right). Instability of: SPINE (orange) topmost values, Word2vec
(blue) middle values and SINr—NR (green) bottom most values for a pairwise comparison of 10 models.

5.4 Interpretability

After having thoroughly evaluated the performance of our approach for vertex embedding and word
embedding, we study the interpretability associated with the models produced. This is one of the main
perks of our approach with its low compute, we carefully evaluate it on text, since it is easy for humans
to interpret text labels.

WORD INTRUSION DETECTION. The question of interpretability is intertwined with human percep-
tion of dimensions’ coherence. Subsequently, an evaluation task specifically designed to evaluate dimen-
sion interpretability first appeared in Chang et al. [17] to evaluate the coherence of words describing
topics in fopic models. The word intrusion evaluation task aims at assessing the extent of a models’
dimension interpretability and has become the de facto evaluation of interpretability [27, 55, 70, 83].

The task is based on a simple principle: if a vector space is well structured, words that are seman-
tically close should lie close together. This is the distributional hypothesis. Now, for words to be close
in a space, chances are that their representation relies on common dimensions. That is where the word
intrusion becomes useful. If we select a dimension of the vector space and rank the words according
to their value on this dimension, according to our precedent hypothesis, words with the strongest val-
ues should be semantically related. Now, how can be assured that the words are related? We use an
“intruder”, a word selected at random among those with the lowest values on our dimension of inter-
est, but that is still strong on another dimension—to avoid picking too specific or rare of a word. If a
native speaker of a language can find the intruder among this set of words, then the top scoring word
of the dimension must possess some semantic consistency. This semantic consistency for dimensions
corresponds to interpretability for word embeddings.

We evaluate two models with such Word Intrusion protocol. The experiment is, as far as we know,
the first of its kind on a large French corpus. Our models (SPINE, SINr—NR) were trained on a news
corpus in French, it contains articles from the news outlet Le Monde (1987-2006), AFP (1994-2006) and
news articles crawled on the web (2007). The text is purposely lemmatized, named entities are chunked
under a single type and stop words are removed along with words occurring less than 10 times. Most

30 of 40 T. PROUTEAU, N. DUGUE, S. GUILLOT

named entities were removed to construct intrusion tasks as the corpora spans multiple decades, which
would rely too much on annotators’ general knowledge instead of semantics. The preprocessed corpus
contains 330M tokens and 323K words. We train a SPINE model which has 1,000 dimensions and
SINr—NR with 4,708 dimensions.

In our Word Intrusion protocol, each task is extracted as follows: first, we sample a dimension.
Then, we select the top 3 words having the highest values on the coordinate corresponding to this sam-
pled dimension. We also sample an intruder which is part of the lower 30% of values in the coordinate
and in the top 10% of another coordinate. In total, 200 dimensions were sampled for SPINE and
SINr-NR. For each word in the intrusion test, three possibilities are presented: (—, £, +). When anno-
tators can easily detect the intruder, they should select +. When annotators hesitate between two words,
they should select +. If the annotators find all the words consistent—everything seems coherent—they
should select —. This allows to analyze finely the interpretability of dimensions—hesitations, all coher-
ent words or no coherence. The intrusion tasks were served through a web interface on a Label-Studio
server. Table 14 presents a selection of intrusion tasks, and in Figure 9 we present an example of an
intrusion task in the interface.

Model Top Words Intruder
suffrace urne 1égislative colmatage
SPINE & (ballot box) (legislative) (sealing)
ferroviaire . . .
tramway . rail orientation
(rail)
réseau chaine groupe déclencher
SINr—-NR (network) (channel) (group) (trigger)
microprocesseur processeur garder
Intel .
(microprocessor) (processor) (to keep)

Table 14: Examples of tasks extracted for each model.

Quel est l'intrus ?

fille
m 2 13

grandeur
4] 5 (@ [

femme
7 8] [o]

épouse
[0] [a] [w]

F1G. 9: Example of a word intrusion task annotated. Among words: “daughter”, "size”, "woman”,
“wife”. The intruder is "height”.

FROM COMMUNITIES TO INTERPRETABLE NETWORK AND WORD EMBEDDING 31 of 40

The pool of annotators is composed of 19 master students in NLP. The participants have prior
knowledge of distributional models and are literate in French, with at least 4 months in France. They
evaluated 66 tasks in random order. Each task was solved by three or four participants.

SPINE SINr—-NR
IntruderOK 36% 35%
+ HesitateOK 56% 60 %
+ Consistent 57% 62%

Table 15: Positive results of the intrusion detection task.

In Table 15 we present the percentages of tasks for which the intruder was correctly detected
IntruderOK, the HesitateOK category corresponds to a hesitation between two words in which
the intruder is one of them. The Consistent category corresponds to tasks for which annotators
found consistency in terms of sense across all the words in the task. Percentages are cumulative. First
off, what we can see is that SPINE and SINr—NR are shoulder to shoulder on the IntruderOK
front. The percentages remain low, which indicates that the task is hard. In their paper, Subramanian et
al. [83] operated a similar experiment, but on a reduced vocabulary size of 15k words, which is much
lower than our 323k words. In such a case, Word2vec obtains a score of 26% that should be com-
pared to the 62% of SINr-NR. We can already see that by considering Int ruderOK, SPINE and
SINr-NR are ahead of Word2vec on a smaller English vocabulary. Furthermore, when we consider
the IntruderOK + HesitateOK + Consistent, we can see that SINr—NR performs better and
has more Consistent cases. It might be the consequence of the larger number of dimensions that
leads to redundancy in the dimensions.

In Table 16 we analyze further word intrusion evaluation results. We can see that SINr—NR has
fewer instances where the annotators were quite sure about an intruder but failed to predict the right one
(IntruderKO). On the other hand, SPINE manages to have fewer instances where subject hesitated
between two words and none of them was the intruder (HesitateKO). Lastly, there seems to be fewer
instances for SINr—NR where subject were not able to discern a semantic coherence among the words
they were presented with (No consistency).

SPINE SINr—-NR
IntruderKO 14% 12%
HesitateKO 10% 11%
No consistency 19% 15%

Table 16: Negative results of the intrusion detection task.

Regarding inter-annotator agreement, SPINE has the highest agreement, in 58% of cases, at least
two annotators agree on their decision. SINr-NR is just behind with 55%. When we consider the
three annotators, the percentages of agreement drop significantly, SPINE is leading with annotators
agreeing 21% of the time. SINr—NR has a lower three annotators agreement with only 13%. We also
computed Fleiss’ kappa: SPINE has a 0.26 k¥ and SINr—NR a 0.21 k. These agreements fall in the
fair agreement category. The low K scores further confirm the difficulty of the Word Intrusion detection
task. Furthermore, we voluntarily left more choices than the original evaluation task, thus potentially

32 of 40 T. PROUTEAU, N. DUGUE, S. GUILLOT

SPINE SINr-NR
58%, 21% 55%, 13%

Table 17: Inter-annotator agreements across all models presented and overall for the word intrusion
evaluation. For each model, the first value is the percentage of tasks where at least two evaluators
annotated similarly. The second value is the percentage of tasks where the three evaluators annotated
similarly.

lowering the potential for agreement.

To conclude on the word intrusion detection, we have shown that there is potential for interpretability
of word embeddings in SPINE and SINr—NR despite the complexity to evaluate. A more systematic
evaluation of models’ dimensions seems unlikely until we develop more automatic ways of evaluating
these models, as Lau et al. [44] introduce.

The potential of these models for visualization of dimensions and embeddings has been thus far
underexploited in this paper. We demonstrate in the next paragraph how interpretability can be used to
probe word representation.

SPINE SINr—-NR
glutathione, pancreas, gastroduodenal hypertriglyceridaemia, mellitus, porcine
insulin immunologically, hyperplasia, transgene aldosterone, aminotransferase, creatinine
insulin, sulphasalazine, interferon ulcerative, sulphasalazine, colitis
spoonfuls, parsnips, kebabs tbsp, oregano, diced
mint onion, basil, yogurt Gibson, gigged, charvel
dial, screams, vibration minted, minting, hoards

Table 18: Three (one per line) most activated dimensions for words “insulin” and “mint” and for each
dimension, three words with the strongest values on each dimension.

PROBING WORD SENSE. Interpretable embedding models lend themselves naturally to visual inter-
pretability. As we demonstrated in Section 3, we can visualize vectors of airports to better understand
their position within the network. Similarly, on word co-occurrence networks, and with the help of
interpretable models, we can visualize how our vector space is structured. We observed with the word
intrusion detection that well-formed vector spaces should exhibit dimensions on which words with the
strongest values are semantically related. A word’s representation is dependent on a subset of dimen-
sions which contribute to different extents to its representation. For instance, a sofa might be represented
by a dimension representing the fact that it is a seat, another one related to fabric, a third one related
to the living room etc. We can simply visualize the strongest coordinates for words and the strongest
words for these coordinates, as in the word intrusion detection tasks. In Table 18, we have selected the
three strongest dimensions for words “insulin” and "mint” on a SP INE model and also on a SINr—NR
model, both trained on BNC. The first thing that we can see is that the words on the top dimensions
make sense with one another. Naturally, insulin” is largely represented by medical and physiological
terms. More interestingly, “mint” has more variety in terms of topics, especially for SINr—NR. Indeed,
the first dimension is related to herbs and cooking. The second dimension is more surprising, since it

FROM COMMUNITIES TO INTERPRETABLE NETWORK AND WORD EMBEDDING 33 of 40

seems to be about guitar brands. However, we know that BNC contains classified ads for the sale of
guitars and “mint” is an adjective related to the condition of an object that may be used in classified ads.
The third-strongest dimension is related to the monetary aspect of “mint” and terms related to minting
money. This example shows the polysemy of the term that can be captured from the co-occurrences in
the corpus.

0.030

o
o
]
o

0.020

0.015

0.010

saupajelal Jo y3buans

0.005 %

0.000

gigged crohn diastolic du tbsp ylang mangoes mellitus aspartate minted
gibson probands systolic uraemic oregano clary sorbet porcine bilirubin minting
charvel ccpr clot atrophic diced cedarwood gammon insulin sms hoards

F1G. 10: Common dimensions labeled with their strongest words (horizontal axis) for four words (ver-

» 9 » 9

tical axis): "mint”, "thyme”, "insulin” and "diabetes” in a STNr—NR model trained on BNC.

Interpretability can also be exploited by visualizing common dimensions for multiple words. For
example, we would expect “cat” and "dog” to share dimensions but not "cat” and “hammer”. In
Figure 10 we present shared dimensions for words: “mint”, "thyme”, ”insulin” and “diabetes”. The
first thing we can see is that herbs do not seem to share strong dimensions with diabetes-related terms.
Secondly, “thyme” and "mint” share the same dimensions as in Table 18 but also dimensions about herbs

» 3

and wood sought after for their essential oils ("ylang”, "clary”, ”cedarwood’). Dimensions related to
“diabetes” and "insulin” are a mix of cardiovascular terms ("diastolic”, ”systolic”, ”clot”) and words
related to the production of “insulin” ("melitus”, “porcine”, "insulin”). We see that similar words
share dimensions.

We visualize shared dimensions at larger scale in Figure 11 where we plot the most (top half) and
least (bottom half) similar words according to cosine similarity based on the vector of “mint”. For
visualization purposes, we only plot the presence or absence of a value for the dimension and not
the magnitude of the value. We can see lines appearing at the top of the figure, which indicates that
dimensions are shared across neighbors in the vector space. We have zoomed in on two dimensions
of the matrix for which most 50 closest neighbors have values. We can see a clear line on these inset,
meaning that this shared dimension is used to characterize “mint” and its close neighbors. Furthermore,
among the word with the highest values on these components we find words related to cooking, citrus

fruits and spices.

Interpretability is useful in applications where we might wish to understand how the vector space
is structured. As with numerous qualitative tasks, interpreting vectors relies on human expertise to
evaluate and is highly dependent on the data at hand. It is rather straightforward to pick dimensions
or words from the embedding space and analyze them with prior knowledge of semantics and syntax.
Interpretability can also be leveraged with a more exploratory approach in mind when we ignore part of
a network structure. For instance, we might wish to explore economical or biological networks with the
goal of uncovering their structure.

34 of 40 T. PROUTEAU, N. DUGUE, S. GUILLOT

3216

i

5411

F1G. 11: Visualizing shared dimensions, vectors of 50 closest (top) and most distant (bottom) words to
”"mint” in a SINr—NR model trained on BNC. The two insets are dimensions on which all 50 closest

9

neighbors have values (white line). Strongest words on coordinate 1771: [’tbsp”, "oregano”, “diced”,

»

“dijon”]; 4026: [’rind”, “juice”, "lemon”, "cayenne’].

6. Conclusion

Vector representations from networks or text have permitted tremendous progress in the exploitation
and exploration of data. Thanks to increasingly powerful computational resources, we have seen the
emergence of methods able to ingest ever larger amounts of data. The main limitations of these methods
are the ecological impact of training large models on huge amounts of data, and also providing black-box
models that cannot be interpreted and audited.

To circumvent these issues, we introduced a new framework deriving interpretable vector represen-
tations from networks and demonstrated the philosophy behind our framework on an airport network of
the United States. The Lower Dimension Bipartite Graph Framework (LDBGF) we introduced aims to
alleviate these shortcomings by projecting a network to a bipartite form and use the relationship between
the vertices and the entities in the bipartite graph to compress information in vectors. Since LDBGF is
a framework, we propose in this paper two implementations: SINr-NR and SINr-MF. Both of these
methods rely on community detection with the Louvain algorithm to project a network into a bipar-
tite vertex-community relationship structure. Using this projection, SINr—NR uses the participation of
each community to the degree of each vertex to derive a vector. In the case of SINr—-MF, we aim to find
the transition matrix between the network’s adjacency matrix and the community-membership matrix
obtained after community detection. Our method is applicable to any data that can be represented as an
undirected network.

For the purpose of this paper, we relied on classical networks representing citations, email exchanges,
co-authorship and connections on social networks. We also carried out experiments on word co-
occurrence networks extracted from large collections of curated documents. We evaluated our SINr—NR
and SINr-MF approaches on classical quantitative evaluation tasks in each domain, namely NLP and
Network Science. We started by evaluating run time, SINr—NR is significantly faster than other graph
embedding methods implemented in the same programming language. We then thoroughly evaluated
the performances of SINr—NR and SINr—MF on three levels of organization of the networks: micro-
scopic, mesoscopic and macroscopic levels.

We started by probing microscopic-level information in networks with the classical link prediction
task. SINr—NR and SINr-MF are good representations to predict existing links and are close to other
methods designed specifically for the task. We also demonstrated that accuracy on Link Prediction can
be optimized if we tune the number of dimensions for our models depending on the size of the net-
work. Still at the microscopic-level, we also evaluated the capacity to predict degree of vertices from
vectors. On this task, SINr—NR is undoubtedly the best performing model across the board. However,

FROM COMMUNITIES TO INTERPRETABLE NETWORK AND WORD EMBEDDING 35 of 40

SINr-MF vectors are subpar in predicting vertex degree. SINr—NR success is probably because mea-
suring the participation of a community to the degree of a vertex is a good precursor for predicting the
degree of a vertex. Another vertex-level or micro-level characteristic is the clustering coefficient of a
vertex. Once again, we fitted a regression model to the clustering coefficient of our networks’ vertices.
Unlike degree prediction, we found clustering coefficient are harder to predict. Overall, we found that
none of the considered approaches properly predict clustering coefficient. However, SINr—NR still
managed not to show massive discrepancies in results across all networks used, contrary to its competi-
tors.

Stepping back from the microscopic-level, we investigated the capacity of SINr—NR and SINr-MF
to embed meso-scale information. For some networks in which we have ground truth community struc-
tures, we tried to reconstruct the partition in communities by clustering vertices from their embedding
vector. What we have found that, although it is a complex task in an unsupervised setting, SINr—NR
is on par with leading models on this task when SINr—MF cannot provide useful information. Switch-
ing from unsupervised to supervised community classification with the help of a classifier, we observed
lower results for our approaches. Upon closer inspection, tweaking the number of communities and thus
the dimension of vectors seems to increase classification performances. Overall, meso-scale information
is relatively well embedded from the network into the vector representation.

Ascending to the highest level of information organization, we reach the macroscopic-level. Macro-
scale information covers the whole network structure. To evaluate the extent of the macro-scale infor-
mation in SINr-NR and SINr-MF, we selected the PageRank score and tried to predict it for each
vertex in the network. PageRank is macroscopic in the sense that in a connected graph, every vertex
has, to some extent, an influence on the score of each other vertex. SINr—NR manages to include use-
ful information in its embedding to predict PageRank scores almost perfectly. However, SINr—-MF is
outdone by SINr—NR and other baselines.

Since text can also be represented using co-occurrence networks, we digress from our original sub-
ject of study to show the versatility of STNr—NR and its abilities to derive quality word embeddings. We
employ two quantitative evaluations that are well defined in NLP. Word similarity evaluation is the first
of our two quantitative experiments which measures the extent to which a model mimics similarities
between words for humans. SINr—NR’s results on word similarity demonstrate that although originally
a graph embedding model, it is a good fit for word embeddings. Furthermore, it has similar results
to SPINE, an interpretable word embedding method. Our second experiment on text is analogous to
community prediction, instead of communities, we try to cluster a subset of words into ontological
categories. Concept categorization results show that SINr—NR performs as well as SPINE and very
similarly to Word2vec.

Stable word representations are desirable in high stake applications, and guarantee that over the
course of multiple runs, the output remains coherent. We thus aimed to answer two questions. How
stable is our model over the course of multiple runs? Does it provide similar representations each
time? We studied stability in two ways. First, we computed the variation in community structures
across instances of SINr—NR. The results show that Louvain’s community detection in the case of
this approach uncovers roughly the same partition in communities each time. We also investigated the
variation in neighborhood for models extracted from our word co-occurrence networks. An interesting
finding is that SINr—NR presents very low variation for different runs on the same network, whereas
SPINE’s words neighborhoods change significantly.

We have seen through these quantitative evaluations that SINr—NR approaches can be good con-
tenders on classical evaluation tasks. Although necessary, performance is not the only criterion we are
interested in. Interpretability is a property that we encourage for sensitive applications of embedding

36 of 40 T. PROUTEAU, N. DUGUE, S. GUILLOT

methods, it opens up opportunities to understand models’ internal structure. We demonstrated, through
a human annotated word intrusion detection evaluation that SINr—NR performs as well as SPINE, the
state-of-the-art approach for word embedding interpretability. Despite these encouraging results, there
is still a long way to go for perfect interpretability of models by humans. Through visualizations, we
showed how dimensions can be interpreted relying just on the content and the values of vectors. These
visualizations show the potential of SINr—NR to embed polysemy of words appearing in various con-
texts. Furthermore, we also showed that close neighbors share similar dimensions of the embedding
space and that sense is modeled through a subset of dimensions from the vector space.

With all these experiments, we have thoroughly tested two implementations of LDBGF: SINr—-NR
and SINr-MF. Although interpretable models can underperform on some tasks, yet, SINr—NR seems
to be a well-rounded method to embed data. One could think that interpretability would come at the
cost of performance but in most cases, SINr-NR and less often, SINr—MF are on par with baseline
methods.

These performances open the way for further developments within the framework. The first one
would be to automatize interpretability evaluations, similarly to what was done by Lau et al. [44] for
topic modeling. So far, our approaches do not account for directedness in networks. More specifically,
for the text modality that we have studied, allowing SINr—NR to work with directed graphs would
enable the possibility for syntactic word embeddings based on a syntactic dependency graph. Further-
more, we would like to handle temporal networks with SINr—NR and provide diachronic embeddings.
The temporal word embeddings would benefit from the interpretability and stability characteristics of
SINr-NR, while opening new opportunities to follow and analyze phenomenons through time. This
is especially desirable for applications in semantic drift detection. Meanwhile, our methods have been
made available to the public to learn and interpret representations, as well as collaborate towards more
efficient and interpretable embedding methods.

Funding

This work was supported by Agence Nationale de la Recherche (ANR) through the DIGING project
[ANR-21-CE23-0010]. A CC-BY public copyright license has been applied by the authors to the present
document and will be applied to all subsequent versions up to the Author Accepted Manuscript arising
from this submission, in accordance with the grant’s open access conditions.

REFERENCES

1. Almuhareb, A. & Poesio, M. (2005) Concept learning and categorization from the web. In proceedings of the
annual meeting of the Cognitive Science society, volume 27.

2. Baroni, M., Dinu, G. & Kruszewski, G. (2014) Don’t count, predict! A systematic comparison of context-
counting vs. context-predicting semantic vectors. In ACL, pages 238-247.

3. Baroni, M. & Lenci, A. (2011) How we BLESSed distributional semantic evaluation. GEometrical Models of
Natural Language Semantics, pages 1-10.

4. Belkin, M. & Niyogi, P. (2001) Laplacian eigenmaps and spectral techniques for embedding and clustering.
Advances in neural information processing systems, 14.

5. Bhowmick, A. K., Meneni, K., Danisch, M., Guillaume, J.-L. & Mitra, B. (2020) LouvainNE: Hierarchical
Louvain Method for High Quality and Scalable Network Embedding. In WSDM, pages 43-51.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.
21.

22,

23.

24.

25.

26.

27.

28.

29.

30.

FROM COMMUNITIES TO INTERPRETABLE NETWORK AND WORD EMBEDDING 37 of 40

Blondel, V. D., Guillaume, J. L., Lambiotte, R. & Lefebvre, E. (2008) Fast unfolding of communities in large
networks. Journal of Statistical Mechanics: Theory and Experiment. arXiv: 0803.0476.

Bohlin, L., Edler, D., Lancichinetti, A. & Rosvall, M. (2014) Community detection and visualization of
networks with the map equation framework. Measuring scholarly impact: methods and practice, pages 3-34.
Bojanowski, P., Grave, E., Joulin, A. & Mikolov, T. (2017) Enriching Word Vectors with Subword Informa-
tion. Transactions of the Association for Computational Linguistics.

Brin, S. & Page, L. (1998) The anatomy of a large-scale hypertextual Web search engine. Computer Networks
and ISDN Systems, 30(1-7), 107-117.

Brochier, R., Guille, A. & Velcin, J. (2019) Global Vectors for Node Representations. In The World Wide Web
Conference, pages 2587-2593. arXiv:1902.11004 [cs].

Broniatowski, D. A. et al. (2021) Psychological foundations of explainability and interpretability in artificial
intelligence. NIST, Tech. Rep.

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry,
G., Askell, A. et al. (2020) Language models are few-shot learners. Neurips, 33, 1877-1901.

Bruni, E., Tran, N. K. & Baroni, M. (2014) Multimodal Distributional Semantics. Journal of Artificial Intelli-
gence Research, 49, 1-47.

Cao, S., Lu, W. & Xu, Q. (2015) GraRep: Learning Graph Representations with Global Structural Information.
In CIKM, pages 891-900.

Cao, S., Lu, W. & Xu, Q. (2016) Deep neural networks for learning graph representations. In Proceedings of
the AAAI conference on artificial intelligence, volume 30.

Chakraborty, T., Cui, Z. & Park, N. (2018) Metadata vs. Ground-truth: A Myth behind the Evolution of
Community Detection Methods. In WWW’18, pages 45-46, Lyon, France. ACM Press.

Chang, J., Gerrish, S., Wang, C., Boyd-graber, J. & Blei, D. (2009) Reading Tea Leaves: How Humans
Interpret Topic Models. In Neurips, volume 22.

Chen, J., Zaiane, O. R. & Goebel, R. (2008) An Unsupervised Approach to Cluster Web Search Results
Based on Word Sense Communities. In International Conference on Web Intelligence and Intelligent Agent
Technology, volume 1, pages 725-729.

Choudhary, M., Laclau, C. & Largeron, C. (2022) A survey on fairness for machine learning on graphs. arXiv
preprint arXiv:2205.05396.

Consortium, B. (2007) British National Corpus, XML edition. Oxford Text Archive.

Dao, V.-L., Bothorel, C. & Lenca, P. (2017) Community detection methods can discover better structural
clusters than ground-truth communities. In ASONAM 17, pages 395-400, Sydney Australia. ACM.

Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. (2019) BERT: Pre-training of Deep Bidirectional Trans-
formers for Language Understanding. In North American Chapter of the Association for Computational Lin-
guistics, pages 4171-4186.

Dugué, N., Lamirel, J.-C. & Perez, A. (2019) Bringing a feature selection metric from machine learning to
complex networks. In Complex Networks and Their Applications VII, pages 107-118.

Duong, C. T., Nguyen, Q. V. H. & Aberer, K. (2019) Interpretable node embeddings with mincut loss. In
Learning and Reasoning with Graph-Structured Representations Workshop-ICML.

Erdoos, P., Faudree, R. & Ordman, E. T. (1988) Clique partitions and clique coverings. Discrete Mathematics,
72(1-3), 93-101.

ESSLLI (2008) Shared Tasks from the ESSLLI 2008 Workshop. Data & Description
http://wordspace.collocations.de/doku.php/data:esslli2008:start.

Faruqui, M., Tsvetkov, Y., Yogatama, D., Dyer, C. & Smith, N. A. (2015) Sparse Overcomplete Word Vector
Representations. In ACL, pages 1491-1500.

Finkelstein, L., Gabrilovich, E., Matias, Y., Rivlin, E., Solan, Z., Wolfman, G. & Ruppin, E. (2001) Placing
search in context: The concept revisited. WWW, pages 406-414.

Fortunato, S. & Barthélemy, M. (2007) Resolution limit in community detection. Proceedings of the National
Academy of Sciences, 104(1), 36-41.

Garg, N., Schiebinger, L., Jurafsky, D. & Zou, J. (2018) Word embeddings quantify 100 years of gender and

38 of 40 T. PROUTEAU, N. DUGUE, S. GUILLOT

31.

32.

33.

34.

35.

36.
37.

38.

39.

40.

41.

42,

43.

44.

45.

46.

47.

48.

49.

50.

51.

52,

53.

54.
5S.

ethnic stereotypes. Proceedings of the National Academy of Sciences, 115(16), E3635-E3644.

Gefen, A., Algee-Hewitt, M. A., McClure, D., Glorieux, F., Reboul, M., Porter, J. & Riguet, M. (2017) Vector
based measure of semantic shifts across different cultural corpora as a proxy to comparative history of ideas.
JADH 2017, page 12.

Girvan, M. & Newman, M. E. (2002) Community structure in social and biological networks. Proceedings of
the national academy of sciences, 99(12), 7821-7826.

Grover, A. & Leskovec, J. (2016) node2vec: Scalable Feature Learning for Networks. arXiv:1607.00653 [cs,
stat].

Guillaume, J.-L. & Latapy, M. (2004) Bipartite structure of all complex networks. Information processing
letters, 90(5), 215-221.

Hamilton, W. L., Leskovec, J. & Jurafsky, D. (2016) Cultural shift or linguistic drift? comparing two compu-
tational measures of semantic change. In EMNLP, page 2116.

Harris, Z. S. (1954) Distributional structure. Word, 10(2-3), 146—162. Publisher: Taylor & Francis.

Huang, E. H., Socher, R., Manning, C. D. & Ng, A. Y. (2012) Improving word representations via global
context and multipleword prototypes. In ACL.

Kim, M., Kim, J. & Johnson, K. (2023) Race, Gender, and Age Biases in Biomedical Masked Language
Models. In ACL, pages 11806-11815.

Lambiotte, R. (2013) Multi-scale modularity and dynamics in complex networks. In Dynamics On and Of
Complex Networks, Volume 2: Applications to Time-Varying Dynamical Systems, pages 125-141.
Lancichinetti, A., Fortunato, S. & Kertész, J. (2009) Detecting the overlapping and hierarchical community
structure in complex networks. New Journal of Physics, 11(3), 033015.

Lancichinetti, A., Kiveld, M., Saramiki, J. & Fortunato, S. (2010) Characterizing the Community Structure
of Complex Networks. PLOS ONE, 5(8), 1-8.

Lancichinetti, A., Radicchi, F., Ramasco, J. J. & Fortunato, S. (2011) Finding Statistically Significant Com-
munities in Networks. PLOS ONE, 6(4), 1-18.

Lannelongue, L., Grealey, J. & Inouye, M. (2021) Green Algorithms: Quantifying the Carbon Footprint of
Computation. Advanced Science, 8(12), 2100707.

Lau, J. H., Newman, D. & Baldwin, T. (2014) Machine Reading Tea Leaves: Automatically Evaluating Topic
Coherence and Topic Model Quality. In FACL, pages 530-539.

Lee, C. & Cunningham, P. (2014) Community detection: effective evaluation on large social networks. Journal
of Complex Networks, 2(1), 19-37.

Lee, D. D. & Seung, H. S. (1999) Learning the parts of objects by nonnegative matrix factorization. Nature,
401, 788-791.

Levy, O. & Goldberg, Y. (2014) Neural Word Embedding as Implicit Matrix Factorization. In Neurips, vol-
ume 27.

Levy, O., Goldberg, Y. & Dagan, 1. (2015) Improving distributional similarity with lessons learned from word
embeddings. ACL, 3, 211-225.

Liu, F, Yang, X., Guan, N. & Yi, X. (2016) Online graph regularized non-negative matrix factorization for
large-scale datasets. Neurocomputing, 204, 162—-171.

Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., Levy, O., Lewis, M., Zettlemoyer, L. & Stoyanov, V.
(2019) RoBERTa: A Robustly Optimized BERT Pretraining Approach. arXiv:1907.11692 [cs].

Lundberg, S. M. & Lee, S.-1. (2017) A unified approach to interpreting model predictions. Advances in neural
information processing systems, 30.

Makarov, 1., Kiselev, D., Nikitinsky, N. & Subelj, L. (2021) Survey on graph embeddings and their applica-
tions to machine learning problems on graphs. PeerJ Computer Science, 7, e357.

Mikolov, T., Chen, K., Corrado, G. & Dean, J. (2013) Efficient estimation of word representations in vector
space. In ICLR. arXiv: 1301.3781.

Miller, G. A. (1995) WordNet: A Lexical Database for English. Commun. ACM, 38(11), 39-41.

Murphy, B., Talukdar, P. P. & Mitchell, T. (2012) Learning effective and interpretable semantic models using
non-negative sparse embedding. In COLING, pages 1933-1950.

56.
57.

58.

59.

60.

61.
62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

77.

78.

79.

80.

81.

FROM COMMUNITIES TO INTERPRETABLE NETWORK AND WORD EMBEDDING 39 of 40

Nancy Ide, Randi Reppen, K. S. (2011) The Open ANC (OANC). ORTOLANG.

Neelakantan, A., Xu, T., Puri, R., Radford, A., Han, J. M., Tworek, J., Yuan, Q., Tezak, N., Kim, J. W., Hallacy,
C. et al. (2022) Text and code embeddings by contrastive pre-training. arXiv preprint arXiv:2201.10005.
Névéol, A., Dupont, Y., Bezancon, J. & Fort, K. (2022) French CrowS-Pairs: Extending a challenge dataset for
measuring social bias in masked language models to a language other than English. In ACL, pages 8521-8531.
Osgood, C. E., Suci, G. J. & Tannenbaum, P. H. (1957) The measurement of meaning. The measurement of
meaning. Univer. [llinois Press, Oxford, England. Pages: 342.

Ou, M., Cui, P, Pei, J., Zhang, Z. & Zhu, W. (2016) Asymmetric Transitivity Preserving Graph Embedding.
In SIGKDD, pages 1105-1114.

Palmer, S. E. (1977) Hierarchical structure in perceptual representation. Cognitive Psychology, 9(4), 441-474.
Panigrahi, A., Simhadri, H. V. & Bhattacharyya, C. (2019) Word2Sense: Sparse Interpretable Word Embed-
dings. In ACL, pages 5692-5705.

Patterson, D., Gonzalez, J., Le, Q., Liang, C., Munguia, L.-M., Rothchild, D., So, D., Texier, M. & Dean, J.
(2021) Carbon emissions and large neural network training. arXiv preprint arXiv:2104.10350.

Peel, L., Larremore, D. B. & Clauset, A. (2017) The ground truth about metadata and community detection
in networks. Science advances, 3(5), e1602548.

Pennington, J., Socher, R. & Manning, C. D. (2014) Glove: Global vectors for word representation. In
EMNLP, pages 1532-1543.

Perozzi, B., Al-Rfou, R. & Skiena, S. (2014) DeepWalk: Online Learning of Social Representations.
SIGKDD, pages 701-710. arXiv: 1403.6652.

Perozzi, B., Kulkarni, V., Chen, H. & Skiena, S. (2017) Don’t Walk, Skip! Online Learning of Multi-scale
Network Embeddings. In ASONAM, pages 258-265.

Pierrejean, B. (2020) Qualitative Evaluation of Word Embeddings: Investigating the Instability in Neural-
Based Models. PhD thesis, Université Toulouse 2 - Jean Jaures.

Prouteau, T., Connes, V., Dugué, N., Perez, A., Lamirel, J.-C., Camelin, N. & Meignier, S. (2021) SINr: Fast
Computing of Sparse Interpretable Node Representations is not a Sin!. In /DA, pages 325-337.

Prouteau, T., Dugué, N., Camelin, N. & Meignier, S. (2022) Are Embedding Spaces Interpretable? Results of
an Intrusion Detection Evaluation on a Large French Corpus. In LREC 2022, page 4414-4419.

Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S., Matena, M., Zhou, Y., Li, W. & Liu, P. J. (2020)
Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer. arXiv:1910.10683.
Raghavan, U. N., Albert, R. & Kumara, S. (2007) Near linear time algorithm to detect community structures in
large-scale networks. Physical Review E - Statistical, Nonlinear, and Soft Matter Physics. arXiv: 0709.2938.
Ribeiro, M. T., Singh, S. & Guestrin, C. (2016) "Why Should I Trust You?”: Explaining the Predictions of
Any Classifier. arXiv:1602.04938 [cs, stat].

Roweis, S. T. & Saul, L. K. (2000) Nonlinear dimensionality reduction by locally linear embedding. science,
290(5500), 2323-2326. Publisher: American Association for the Advancement of Science.

Rozemberczki, B., Davies, R., Sarkar, R. & Sutton, C. (2020) GEMSEC: graph embedding with self cluster-
ing. .

Rubenstein, H. & Goodenough, J. B. (1965) Contextual correlates of synonymy. Communications of the ACM,
8(10), 627-633.

Rudin, C. (2019) Stop explaining black box machine learning models for high stakes decisions and use inter-
pretable models instead. Nature machine intelligence, 1(5), 206-215.

Serra, G., Xu, Z., Niepert, M., Lawrence, C., Tino, P. & Yao, X. (2021) Interpreting Node Embedding with
Text-labeled Graphs. In IJCNN, pages 1-8.

Shi, J. & Malik, J. (2000) Normalized Cuts and Image Segmentation. IEEE Transactions on pattern analysis
and machine intelligence, 22(8).

Sinha, A., Cazabet, R. & Vaudaine, R. (2019) Systematic biases in link prediction: comparing heuristic and
graph embedding based methods. In Complex Networks, pages 81-93.

Staudt, C., Sazonovs, A. & Meyerhenke, H. (2014) NetworKit: An Interactive Tool Suite for High-
Performance Network Analysis. CoRR, abs/1403.3005.

40 of 40 T. PROUTEAU, N. DUGUE, S. GUILLOT

82.

83.

84.

85.

86.

87.

88.
89.

90.

Strubell, E., Ganesh, A. & McCallum, A. (2020) Energy and policy considerations for modern deep learning
research. In Proceedings of the AAAI conference on artificial intelligence, volume 34, pages 13693—-13696.
Subramanian, A., Pruthi, D., Jhamtani, H., Berg-Kirkpatrick, T. & Hovy, E. (2018) SPINE: SParse Inter-
pretable Neural Embeddings. In Thirty-Second AAAI Conference on Artificial Intelligence.

Tang, J., Qu, M., Wang, M., Zhang, M., Yan, J. & Mei, Q. (2015) LINE: Large-scale Information Network
Embedding. In WWW, pages 1067-1077.

Tenenbaum, J. B., Silva, V. d. & Langford, J. C. (2000) A Global Geometric Framework for Nonlinear Dimen-
sionality Reduction. Science, 290(5500), 2319-2323.

Tian, F.,, Dai, H., Bian, J., Gao, B., Zhang, R., Chen, E. & Liu, T.-Y. (2014) A probabilistic model for learning
multi-prototype word embeddings. In COLING, pages 151-160.

Tsitsulin, A., Mottin, D., Karras, P. & Miiller, E. (2018) VERSE: Versatile Graph Embeddings from Similarity
Measures. In WWW, pages 539-548. arXiv:1803.04742 [cs].

Wang, D., Cui, P. & Zhu, W. (2016) Structural Deep Network Embedding. In SIGKDD, pages 1225-1234.
Wang, X., Cui, P., Wang, J., Pei, J., Zhu, W. & Yang, S. (2017) Community Preserving Network Embedding.
Proceedings of the AAAI Conference on Artificial Intelligence, 31(1).

Yang, C., Liu, Z., Zhao, D., Sun, M. & Chang, E. Y. (2015) Network representation learning with rich text
information.. In IJCAI, volume 2015, pages 2111-2117.

