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Abstract

When engaging in collaborative tasks, humans
efficiently exploit the semantic structure
of a conversation to optimize verbal and
nonverbal interactions. But in recent “language
to code” or “language to action” models,
this information is lacking. We show
how incorporating the prior discourse and
nonlinguistic context of a conversation situated
in a nonlinguistic environment can improve
the “language to action” component of such
interactions. We finetune an LLM to predict
actions based on prior context; our model,
Nebula, doubles the net-action F1 score over
the baseline on this task of Jayannavar et al.
(2020). We also investigate our model’s ability
to construct shapes and understand location
descriptions using a synthetic dataset.

1 Introduction

High level building agents use conversation in a
collaborative task to combine information about the
extant conversation, the world, and prior actions
to execute new instructions. Such agents interpret
messy or vague language, produce actions, then
reassess the situation, ask questions or take in
corrections from other agents to optimize their
actions. Successful collaborative conversations are
vital for efficiently performing complex interactive
tasks. In this paper, we study the messy language
of ordinary human collaborative conversation, and
how a large language model can learn to execute
instructions from such conversations. We isolate
several factors that affect this task.

The first factor is the interaction between
linguistic and nonlinguistic contexts. Previous
work has shown that at least some context is needed
to understand and carry out conversationally
given instructions (Jayannavar et al., 2020). We
improve on that work by first establishing a
baseline by using the entire exchange up to an
instruction i as a context for an LLM to interpret

i. Our LLM model, Nebula (Neural builder with
Llama), trained on the Minecraft Dialogue Corpus
(MDC) (Narayan-Chen et al., 2019), achieves net-
action F1 scores that is almost double of Jayannavar
et al. (2020). Using the Minecraft Structured
Dialogue dataset (MSDC) (Thompson et al.,
2024b), which provides semantic relations between
MDC dialogue moves and nonlinguistic actions, we
show that particular discursive components of the
linguistic and nonlinguistic context are necessary
and sufficient for the LLM to understand an
instruction to the degree provided by the baseline.

Analysing Nebula’s output reveals two other
factors that adversely affect its performance.
An instruction in the MSDC has two basic
components: a description of a shape in terms
of four parameters—numbers of components,
colors, arrangement and orientation—and the
description of a location where the shape should
be placed. Human Architects often use analogies
to everyday objects that may be challenging to
process; in addition, shape descriptions are often
underspecified, meaning that one could perform
the instruction correctly in various ways. Location
descriptions in the Minecraft world are also quite
difficult to process and highly underspecified. For
example, put a tower in a corner could be correctly
located in any of the four corners of the Minecraft
board. We address this problem in two ways: first
by further finetuning Nebula on a synthetic dataset
to improve its performance in building basic shapes
and locating them appropriately; and secondly, and
more importantly, by revising the evaluation metric
used by Jayannavar et al. (2020) to reflect more
realistically the semantics of location expressions.
We show that, on our synthetic dataset, Nebula
achieves high accuracy as per our intuitive metric
in performing basic instructions.

The main contributions of this work are: (i) to
show that finetuning Llama-3-8B (Dubey et al.,
2024) on the entire prior history of the action-



prediction task Nebula doubles the net-action F1
score on the Minecraft dataset as compared with
the Neural Builder of Jayannavar et al. (2020); (ii)
to show that training on Narrative arcs achieves
comparable results with baseline Nebula, and that
training on narrative arcs performs better than the
instruction-action-instruction input template used
by Jayannavar et al. (2020); (iii) to highlight the
drawbacks of the evaluation metric (i.e., net-action
F1), and propose and test a new metric on our
synthetic datasets.

After some preliminaries and discussion of prior
work (Section 2), we present our model, Nebula,
and its baseline performance in Section 3, and then
a necessary and sufficient discourse feature to get
scores equivalent to the baseline in Section 4. In
Section 5, we explain several issues associated with
the Minecraft corpus. We try to address these issues
in Section 6, where we explain our evaluation
metric for underspecified instructions, as well as
experiments on our synthetic datasets. We conclude
in Section 7.

2 Related Work

MDC Narayan-Chen et al. (2019) construct a
corpus of two person dialogues situated in a
simulated Minecraft environment. The dialogues
record conversations about collaborative tasks, in
which an Architect and a Builder cooperate to
build sometimes complex 3-dimensional shapes
out of blocks of six different colors. The Architect
provides instructions, while the Builder is tasked
with translating these instructions into actions.
The Builder sometimes asks questions, and the
Architect may correct themselves or the Builder, or
both, concerning both linguistic and nonlinguistic
moves. The corpus accurately reflects the variety
and complexity of actual cooperative conversation.
Details on the MDC are in Table 1. The corpus
has also led to related work on conversational
interactive agents (Kiseleva et al., 2022; Mohanty
et al., 2023; Madge and Poesio, 2024).

Instructions to code: Neural Builder and
variants The MDC (Jayannavar et al., 2020)
incentivizes the development of an algorithm that
can predict sequences of actions from instructions.
The actions involved basic moves of placing or
removing blocks from certain positions in the
environment. Jayannavar et al. (2020) train a
model consisting of a GRU (Cho et al., 2014)
to handle textual input coupled with a CNN to

Figure 1: The Neural Builder (Jayannavar et al., 2020)
takes as input the sequence i_n a_n i_n + 1 and the
worldstate to predict the subsequent action sequence.

integrate information from the current state and a
GRU to predicted an action sequence. Although
they experiment with several training regimes, the
best performance comes from one in which a
sequence of conversational moves after some action
sequence, assumed to be instructions are given to
the model, are followed by the next action sequence
of the Builder, followed by the next sequence of
linguistic moves are input to the model to predict
the subsequent action sequence (See Figure 1).

The net-action F1 metric evaluates a model’s
prediction based on the exact color and coordinate
match between the model’s predicted sequence
and Builder’s gold action sequence. In
general, Jayannavar et al. (2020) show that the
problem of predicting action sequences from
natural language instructions in naturally occurring
dialogue remains extremely challenging. Their
Neural Builder has net action F1 of 0.20 on the
MDC test set.

Shi et al. (2022) propose a somewhat different
task from Jayannavar et al. (2020); they try to
predict when the Builder should execute an action
and when they should instead ask for a clarification
question. To this end, they annotate all Builder
dialogue moves with a taxonomy of dialogue acts.
They then specify a single specific action under the
execution label instead of a sequence of actions.
Thus, their set-up is not directly comparable to that
of Jayannavar et al. (2020).

Bonial et al. (2020, 2021) add dialogue acts
to Minecraft utterances, but they do not evaluate
the effect of these dialogue acts on the Neural
Builder’s predictions of actions. Dialogue acts are



Train+Val Test Total
Original MDC

# Dialogues 410 137 547

MSDC

# Dialogues 407 133 540
# EDUs 17135 5402 22537
# EEUs 25555 7258 32813
# EEUs
squished 4687 1473 6160
# Relation
instances 26279 8250 34529

Table 1: MDC and MSDC characteristics. EDU and
EEU refer to elementary discourse unit, and elementary
event units respectively.

a partial step towards a full discourse structure:
they provide labels for various dialogue moves, but
the full discourse structure that we propose to use
involves relations between moves. These relations
are important as they tell us how to link different
parts of, for instance, an instruction into a coherent
whole. As we aim to demonstrate in this paper,
discourse structure can help to clean up datasets for
training and thereby improve training.

MSDC Thompson et al. (2024b) provide
full discourse annotations for the MDC, known
as the Minecraft Structured Dialogue Corpus
(MSDC), using the discourse theory and annotation
principles of SDRT (Asher, 1993; Asher and
Lascarides, 2003) extended to a multimodal
environment, in which both nonlinguistic actions
and discourse moves can enter into semantic
relations like Elaboration, Correction, and
Narration (Hunter et al., 2018; Asher et al., 2020).
They follow annotation practices given for the
STAC corpus (Asher et al., 2016). Thompson
et al. (2024b) also adapt the parser from Bennis
et al. (2023) to predict discourse structures for the
MDC with relatively high reliability. Statistics on
the MSDC are in Table 1.

LLMs in robotics Parallel to this work, there has
been an increasing amount of research in aiding
virtual or real robots with tasks by using LLMs
to provide translations from natural language
instruction to code that programs the robot to
perform the relevant actions (Liang et al., 2023;
Singh et al., 2023; Yu et al., 2023). This research

Figure 2: An excerpt from MDC. The Builder interrupts
the action sequence by asking a question.

is directly relevant to our work, as we use LLMs
to go from natural language to a pseudo-code of
pick and place statements. However, whereas
Liang et al. (2023); Singh et al. (2023); Yu
et al. (2023) focus on optimizing the translation
from instructions, typically one instruction, to
various different coding paradigms, we focus
on how linguistic and nonlinguistic interactions
affect the resulting action sequence. As our
results and previous results on the MDC show,
producing actions from interactive conversation
with frequently underspecified instructions, which
are also dependent upon the discourse and
nonlinguistic contexts for proper interpretation, is
a much more challenging task than translating well
crafted unambiguous instructions into code. In
addition, we show that to predict a relevant action
from the current instruction in+1 in the MDC
environment, it is not sufficient to use a context
of just the penultimate instruction in and previous
action sequence an.

3 Nebula: an LLM for Predicting Action
Sequences

We’ve seen that Jayannavar et al. (2020)’s Neural
Builder performs poorly as per their evaluation
method, i.e., net-action F1. The training scheme
of Jayannavar et al. (2020) assumes, in effect,
that Architect instructions and the Builder actions
which fulfill these instructions follow one another
in a regular succession. A consequence of this
assumption is that actions are individuated by
the conversational turns that immediately precede
and follow them, and likewise that a new action
sequence is initiated whenever there is a linguistic
move of any kind. Neural Builder predicts
actions from a preceding context containing an



instruction, and the instruction just before it, and a
representation of the builder moves in between:
inanin+1 predicts an+1. Additionally, Neural
Builder is provided a worldstate representation (See
Figure 1).

But this is not realistic, as these bits of text don’t
always yield a well-formed instruction or even an
underspecified one. In addition, often actions and
instructions occur simultaneously. We might have
a clarification question from the Builder in between
two action sequences that are in fact carrying out
the same action as in Figure 2. Builders in the
MDC frequently ask questions with respect to
the initial instruction about the actions they are
currently carrying out; answers to those questions
may affect the actions, but it doesn’t mean that
there are two distinct series of actions pertaining to
two distinct instructions, one before the question
and its response and one after. In addition,
the Builder sometimes starts to build before the
instruction sequence is complete; intuitively, the
initial actions form a coherent action sequence
with the actions that are subsequent to the further
instruction. These observations show that the
assumptions of Jayannavar et al. (2020) about how
actions are individuated are too simple.

The shape and position of the structure, intended
by the initial instruction, can change or be
made more precise by different conversational
moves. Hunter et al. (2018) note that different
conversational moves can help conceptualize
actions differently. For example, in many
Minecraft sessions, an initial instruction gives the
Builder an action type that might be realized in
many different ways. Something like build a tower
of 5 blocks is an action type for which a concrete
realization would have to specify the color, and
perhaps the nature of the building blocks, as well
as a location. As the conversation evolves and
unless the Architect corrects their instruction, the
type of action to be performed becomes more and
more specified.

A simple baseline alternative to the scheme
proposed by Jayannavar et al. (2020) that addresses
these difficulties is to see how a model performs
with the complete prior conversation and action
sequences up to the predicted action. This was not
an option for Jayannavar et al. (2020)’s model, but
more recent LLMs are capable of doing this.

We use Llama-2-7B, Llama-2-13B and Llama-3-
8B models to take as context all the conversation

Dataset Llama-2-7b Llama-2-13b Llama-3-8b
Validation 0.292 0.323 0.398

Test 0.326 0.338 0.392

Table 2: Net-Action F1 scores on Minecraft Validation
and Test set for predicting action sequences for LLMs
using the entire preceding linguistic and non linguistic
actions in the game

and action sequences up to action sequence
an to predict an. We finetune Llama on the
MDC’s (Jayannavar et al., 2020) training set. All
the models are finetuned for 3 epochs using QLoRA
method (Dettmers et al., 2023). Table 2 shows
the net-action F1 scores on the validation and test
set of MDC. All the finetuned LLMs significantly
improve scores in comparison with the 0.20 F1
score of Neural Builder (Jayannavar et al., 2020).
Llama-3-8B essentially doubles the baseline score
of 0.20. In the rest of this paper, we refer to Llama-
3-8B finetuned on MDC as Nebula. The finetuned
model, Nebula, and the synthetic datasets used
in Section 6 are available here1. Table 6 in the
Appendix provides details of computing resources
and the hyperparameters for finetuning.

4 Using Discourse Structure to Improve
Nebula

The ideal way to model collaborative, instructional
interactions like those featured in the MDC is
to have two simultaneous, interleaved processes
that interact with each other. On one hand,
there is the evolving conversational structure
that conceptualizes the nonlinguistic actions; on
the other, there is the sequence of actions that
also affects continuations of the conversational
structure.

This interleaved process is modeled by the
discourse structure provided by the MSDC
of Thompson et al. (2024b). The MSDC shows
a large scale pattern of Narrative arcs. These arcs
delimit portions of discourse structure linked by
a Narration relation. Each portion begins with an
instruction in from the Architect, terminates with
an action sequence am, and involves a negotiation
between the Architect and the Builder about the
action sequence to be performed.

The negotiation may be extremely short, where
the arc just contains a single instruction and
resulting (correct) action in, am. But it can also
contain a complex negotiation involving a number

1https://huggingface.co/linagora/Nebula

https://huggingface.co/linagora/Nebula


Figure 3: Excerpt of a Narrative arc from the MSDC.
Here the arc is purple and connects the instruction in
Architect turn one to the following instruction in turn
five.

of discourse moves that serve to elaborate or clarify
the initial instruction. In this way, the content
of a single instruction in may evolve over many
discourse moves. Further, if the initial builder
actions are incorrect, this will prompt corrective
moves by the Architect and subsequent revisions
by the Builder, leading to longer collaborative
negotiations until the Builder carries out the
action sequence that satisfies the Architect’s initial
instruction.

Figure 3 illustrates a long negotiation enclosed
by a Narrative arc. The instruction in the first
turn results (in green) in a Builder action sequence
in turn two. The Builder then asks a question to
confirm that the actions in turn two were correct.
The Architect replies to the question by correcting
(in red) the actions in turn two, which then results
in a corrective action sequence in turn four.

Guided by the assumption that these Narrative
arcs contain all the contextual information—the
initial instruction and all subsequent discourse
moves—that is needed to predict the correct
actions, we use the Narrative arcs provided by

Model Validation Test
Nebula+N 0.363 0.380

Nebula+N/N 0.349
Nebula+N/inanin+1 0.311

Table 3: Net-Action F1 scores on Minecraft validation
and test sets for predicting action sequences for LLMs.
Nebula+N refers to Nebula trained on Narrative arcs.
The next two rows look at those 254 examples in the test
set where inanin+1 has less content than the associated
Narrative arc. Nebula+N/N gives score of Nebula+N on
these samples when worldstate and narrative arc is given
as input. Similarly, Nebula+N/inanin+1 gives score of
Nebula+N on the same samples when worldstate and
inanin+1 is given as input.

the MSDC to assign the previous context to each
action sequence in the MDC. Since the arcs are
automatically recoverable to a relatively high
degree by the parsers discussed in Thompson et al.
(2024a,b), we make the expedient choice to use the
gold arcs to test our assumption.

We finetune Llama-3-8B on the MDC training
set using instruction-action pairs, where the
instruction is only the conversation within the
Narrative arc up to the present instruction in+1 in
the pair, not the entire conversation history, which
we fed to baseline Nebula. Since Neural Builder
supplements attenuated contexts with a worldstate
representation (see Section 3) we also include a
“worldstate” at the beginning of the Narrative arc in
terms of net place actions. We refer to the resulting
model as Nebula+N (Nebula trained on Narrative
arcs).

Table 3 shows scores on the validation and test
sets of the MDC for Nebula+N. We can see that the
scores are comparable with Nebula, 0.38 compared
to 0.39 F1, (see Llama-3-8B in Table 2). This
provides evidence that the discourse information
present in a Narrative arc is sufficient for action
prediction within that arc.

The majority of the Narrative arcs are shorter
than or of equivalent length to their inanin+1

counterparts used to train the Neural Builder (1321
out of 1575 samples in the test set). Going on
length alone, it is reasonable to assume Narrative
arcs and inanin+1 are interchangeable. However,
if Narrative arcs are not only sufficient but
also necessary for action prediction, then in the
254 samples where Narrative arc is longer than
inanin+1 we would expect Nebula+N to perform
better on those samples when given the Narrative



arc. And this is the case.
In Table 3, we compare the performance

of Nebula+N when worldstate along with the
Narrative arc is given as input (denoted as
Nebula+N/N), with Nebula+N when worldstate
along with inanin+1 is given as input (denoted
as Nebula+N/inanin+1). As we can see, the score
for Nebula+N/inanin+1 is considerably lower than
Nebula+N/N. This provides evidence that Narrative
arcs play a crucial role, in that the information they
provide is both necessary and sufficient for action
prediction in the MDC.

5 Problems with the MDC

In Minecraft, the Architect makes use of several
location descriptions. These descriptions are often
anaphoric to blocks placed in prior instructions,
such as place another block next to that one
(one that was placed on previous Builder turn);
locations are also sometimes vaguely designated
(towards the centre) or underspecified (in a corner,
along an edge, n blocks/spaces in from an
edge/from the centre). Although the Minecraft
environment presents (x, y, z) coordinates, the
human participants never used them. This could be
because, in the Minecraft environment, players can
move their avatars around the board to get different
perspectives, which makes it hard to establish an
absolute coordinate system.

As a result, the net-action F1 metric, which
evaluates a model’s action sequence based on
whether the block placements match exactly
in terms of block color and coordinates with
the corresponding gold builder action, is often
inappropriate. For instance, if the Builder puts
down a block at one corner after receiving the
instruction in a corner whereas Nebula chooses
another corner, the metric would give Nebula
zero credit whereas intuitively it still executed the
instruction correctly. To summarize, the net-action
F1 evaluation metric treats vague instructions
as completely precise ones, and considers one
instantiation of an instruction (i.e. the action
sequence of Builder in the gold data) to be the only
ground truth. Another related issue is highlighted
in Figure 2, where the action sequence for the
Architect’s instruction gets truncated by a question
from the Builder “there?”. In this case, for the
aforementioned instruction, only the first three
actions (place yellow -1 1 0, pick -1 1 0, place
yellow -1 4 0) constitute the ground truth.

Thus, the underspecified instructions with
multiple plausible instantiations, coupled with the
strict nature of the metric, puts an upper bound on
how much the net-action F1 score can improve on
this dataset. More importantly, it doesn’t reveal
what a model with a high F1 score actually does
learn. We attempt to answer this in the next section.

6 Evaluating Nebula on Synthetic Data

Given the issues associated with MDC and the
evaluation metric, we test baseline Nebula (i.e.,
the one trained on entire conversation history) on
simple scenarios using a more just metric. To do
so, we construct synthetic datasets at two different
levels. The goal of these datasets is to test what
basic shapes and location descriptors Nebula learns
after being trained on MDC. For the first level, we
test Nebula’s ability to construct simple shapes,
such as, square, row, rectangle, tower, diagonal,
diamond, cube of specific size and understand
location (i.e. corner, centre, edge) and orientation
descriptions (i.e. horizontal/vertical). We refer to
all these shapes as level-1 structures. The resulting
dataset, referred to as level-1 dataset, consists
of 1368 instructions. Some of these instructions
simply ask to construct a shape of specific size like
“Build a 3× 3 red square.”, while others are more
detailed, for example, “Build a 3×3 red horizontal
square at the centre.”

For rows/diagonals/towers, we vary size from 3
to 9. For squares, the size varies from 3×3 to 5×5.
For cubes, we only use 3× 3× 3. For rectangles,
we use sizes m × n, where m ̸= n, m × n < 30
and 4 <= m <= 8. For diamonds, we use two
variants to describe size “m blocks on a side” and
“axes 2m+1 long”, where 3 <= m <= 6. We use
orientation descriptions (i.e. horizontal/vertical)
for squares, rectangles, and diamonds.

To evaluate Nebula on these instructions,
we use simple binary functions is_square(C),
is_tower(C) etc. for each shape. These functions
take as input the predicted construction C and
returns True if C is the desired shape, and False
otherwise. For example, is_tower checks whether
all the blocks have the same value for X and Z
(as Y is the vertical dimension) and Y values are
distinct and form a sequence 1, 2, ..., n where n is
the number of predicted blocks.

For an instruction, we first evaluate if
the predicted shape is correct. For correct
shapes, we evaluate whether the size/color and



Shape Total # ShapeAcc% SizeAcc% Loc-spec LocAcc% Orient-spec OrientAcc%

BL FT BL FT BL FT BL FT BL FT BL FT BL FT

Tower 504 504 100 99.0 100 100 378 377 56.0 42.0
Row 168 168 100 99.0 100 100 126 125 30.0 48.0
Diagonal 168 168 78.6 74.0 95.0 80.0 102 101 2.0 39.0
Rectangle 140 102 39.6 95.0 12.0 49.0 44 76 7.0 32.0 31 65 100 100
Square 216 144 59.3 89.0 96.0 100 88 93 26.0 45.0 75 86 81.0 100
Cube 24 24 58.3 100 85.0 100 8 18 37.0 66.0
Diamond 144 108 0 18.0 0 0 12 100

Total 1368 1218 73.0 87.0 83.0 90.0 746 790 38.0 46.0 106 163 86.0 100

Table 4: Evaluation of baseline Nebula (BL) and Nebula finetuned further on a part of synthetic data (FT), on
shapes and basic locations. ShapeAcc% gives percentage of cases where the given shape was correct. Additionally,
SizeAcc% denotes, for the correct shapes, percentage of cases where it is of the correct size; Loc-spec denotes, for
the correct shapes, how many have location specified; LocAcc% denotes location accuracy for such cases. We also
test rectangle and square for orientation (horizontal or vertical). Orient-spec denotes, for the correct shapes, the
number of cases where orientation is specified; and OrientAcc% denotes the orientation accuracy for the same.

location/orientation is correct (for instructions
where location/orientation was specified). For an
instruction with location description like Build a
red tower in a corner, the location is considered
correct if the predicted tower is in any of the four
corners.

Table 4 gives the result of baseline Nebula
(refer to BL in the table) on level-1 dataset. We
don’t report color accuracy, as Nebula always
gets the color correct. From the table, we can
see that Nebula already has a decent command
of basic shapes like towers, rows, and diagonals.
However, it struggles with shapes like rectangle,
square, cube, and diamond. It never correctly
constructs diamonds, which might be because
there are very few instances of diamonds in
MDC. For squares and rectangles which are
correctly predicted, the model scores very high
on orientation accuracy. However, the model has
quite low location accuracy across all the correctly
predicted shapes. The model rarely achieves an
accuracy of above 50%, even with our relaxed
evaluation method for locations.

We also evaluate the performance of Neural
Builder (Jayannavar et al., 2020) on our level-1
dataset. The results are shown in Table 7 of the
Appendix. Apart from rows and towers, Neural
Builder model fails to build any shape correctly.

As a second step, we look at Nebula’s ability to
understand location descriptions, in particular ones
that are anaphorically specified. To do so, we start
with an instantiation (randomly chosen from the set
of correct instantiations) for the 1368 instructions
in level-1 dataset. So, for a level-1 instruction such
as “Build a 3 × 3 red square.”, we have a 3 × 3

red square already present in the grid. Now given
a level-1 structure in the grid, we design level-2
instructions which require placing or removal of a
specific color block. For place instructions, we use
location descriptions like on top of, to the side of,
touching, and not touching. So an example of level-
2 place instruction is “place a blue block on top
of that.” where that refers to the level-1 structure
in the grid. Similarly, for removal instructions,
we have the simple instruction “remove a block”
and more complex instructions including location
descriptions like you just placed. We also have
additional location descriptions for certain level-
1 structures such as end for rows, diagonals; top,
bottom for towers; corner for cube; centre for cube,
odd-size squares and towers. An example of level-2
remove instruction is “remove the top block.” Both
level-1 and level-2 datasets were generated in an
automated fashion.

Similar to level-1, we evaluate Nebula on level-
2 dataset by making use of binary functions like
is_ontopof(b, C), is_touching(b, C) where C is
the level-1 structure already present in the grid
and b is the predicted block. For example, binary
function for on top of checks whether there is no
block in C which is directly above the block b, and
there is a block in C underneath block b.

Table 5 shows that baseline Nebula performs
quite well (refer to BL in the table), with the
exception of the instruction involving not touching
as location description. These results indicate
that Nebula has a good knowledge of basic
anaphoric location descriptions. Similar to level-
1 dataset, we look at the performance of Neural
Builder (Jayannavar et al., 2020) on the level-2



Instruction Total # Accuracy(%)

BL FT BL FT

Overall 1368 1259 80.4 89.6

Place...

on top of 178 178 74.2 79.7
to the side of 154 154 98.1 87.7
touching 176 120 99.4 93.3
not touching 187 134 7.5 97.8
Place Overall 695 586 67.9 88.7

Remove...

any block 234 234 95.3 94.4
block just placed 216 216 95.3 84.7
top block 44 44 100 100
bottom block 65 65 100 100
centre block 56 56 60.7 66.1
corner block 2 2 100 100
end block 56 56 96.4 100
Remove Overall 673 673 93.3 90.3

Table 5: Evaluation of baseline Nebula (BL) and Nebula
finetuned further on a part of synthetic data (FT), on
location descriptors for place and remove instructions.
The FT model performs considerably better for “not
touching” place instructions while remaining at-par for
other instruction types.

dataset. Table 8 in the Appendix shows that the
performance of the Neural Builder is considerably
worse than Nebula for all the location descriptors.

We then examine Nebula’s errors with on top
of. We find that the failure cases mostly were a
result of the model placing multiple blocks instead
of just one on the given level-1 structure. That is,
the model does not always understand a block as a
single block. In light of these cases, when we check
whether all the blocks in predicted b are on top of
C, the accuracy improves from 74.2% to 97.2%.
Thus, some of the difficulties Nebula had with
instructions come from what might be a limited
understanding of the semantics and pragmatics of
indefinite and numerical noun phrases. We provide
visual comparisons of Neural Builder and baseline
Nebula on level-1 and level-2 dataset examples in
Tables 9 and 10 of the Appendix.

6.1 Finetuning Nebula on Shapes and
Locations

Our evaluation on level-1 and level-2 data shows
that Nebula struggles with squares, rectangles,

diamonds, and “not touching” place instructions.
To tackle this, we use a subset of the two datasets
to augment the training data for Nebula. From
level-1 data, we take the following subset for
training: squares of size 3 × 3, diamonds of size
3 (or axes 5 spaces long), and rectangles of sizes
4× 3 and 5× 4. From level-2 data, we take those
“touching/not touching” instances where the level-
1 structure is square or rectangle. Out of total
363 instances for touching/not touching, there are
109 such instances. We then finetune Nebula by
combining the Minecraft training with this subset
of level-1 and level-2 data. The rest of the level-1
and level-2 data is used for testing.

Table 4 shows Nebula’s performance on the
level-1 test set after finetuning (refer to FT in the
table). As before, we find that Nebula always
got the color correct. From the table, we can see
that the shape accuracy improves significantly for
squares, rectangles, and diamonds in comparison
to baseline Nebula (BL in the table). Although
the location accuracy is still low, it improves in
comparison with baseline Nebula. Interestingly,
we also see that Nebula has perfect shape accuracy
on cube, although cube is not part of the training
set. Finally, for correctly predicted shapes, Nebula
achieves a perfect orientation accuracy.

Table 5 shows the results on the level-2 test
set for Nebula after finetuning. Here also, we
can see that Nebula’s accuracy remains very high
on almost all of the simple instructions with the
anaphoric location descriptions. Furthermore, its
accuracy increases drastically for “not touching”
instructions. This jump in accuracy is significant
enough to conclude that Nebula has learned the
concept of “contact”, at least for our synthetic
dataset. On the minecraft test set, we find that
Nebula’s performance remains high with a net
action F1 of 0.391. As we can see, these scores are
at-par with the baseline Nebula (refer to llama-3-8b
in Table 2).

7 Conclusions and Future Work

We introduce Nebula, an LLM based action
prediction model, for the Minecraft Dialogue
Corpus. As a baseline, Nebula uses the entire
Minecraft dialogue up to action an to predict
an. We show that this baseline doubles the
net action F1 scores of Jayannavar et al. (2020).
We then show that certain discourse structures
provide necessary and sufficient information for



inferring actions at-par with the baseline setting.
We also analyze Nebula’s errors on MDC and
provide additional finetuning to improve the
model’s ability to interpret underspecified shape
descriptions and anaphorically-specified locations
using our synthetic dataset. This allows us
to analyze the shortcomings of the net-action
F1 metric, and address them using a more
realistic evaluation metric. Our evaluation metric
captures the notion of relative location, but
leaves exact locations typically underspecified,
in accordance with our semantic intuitions. For
future work, we plan to explore metrics similar
to our relative location metric that can be applied
more generally, including on the MDC. Given
the improvement in performance of Nebula after
finetuning on our synthetic dataset, we hypothesize
that in a more controlled collaborative task, with
some pedagogical instructions to the Architect,
Nebula could contribute as a useful interface for
conversational robots that interact with humans.

Limitations

The MSDC contains a great deal of discourse
information, including a full discourse structure
analysis. We only use some of this information.
Potentially, we could leverage more information
from this dataset to improve Nebula’s action
prediction performance. We also need to extend
our constraints to cover other frequent anaphoric
location descriptions in addition to on top of X and
to the side of X. Locutions like in front of/ behind,
underneath, hanging off, next to (X) all have
underspecified parameters of either orientation,
distance or direction that allow for several correct
placements, once X has been identified. We need
to evaluate Nebula on these expressions as well.
Finally, we need to reevaluate Nebula’s predictions
as well as the original builder actions in the MDC
with our more appropriate metric, which is suited to
the underspecified shape and location descriptions
used in the corpus.

Ethics Statement

Our work here has been to improve the
capacities of AI systems in interactive tasks where
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on collaborative actions. We see no direct ethical
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A Appendix

GPUs

4 NVIDIA Volta V100

Hyperparameters

Training epochs 3
batch size 4
optimizer Adam
learning rate 2e-4

learning rate scheduler
linear warm-up and
cosine annealing

warm-up ratio 0.03
gradient clipping 0.3
lora r 64
lora (alpha) 16
lora dropout ratio 0.1

lora target modules
Only Attention Blocks
(q_proj, v_proj)

quantization for Llama-3 4-bit NormalFloat

Table 6: Details on computing resources and
hyperparameters for finetuning Nebula.

Table 6 gives the hyperparameters used for
finetuning Nebula along with the computing
resources. We adapt the finetuning code from the
following repository2.

2https://github.com/mlabonne/llm-course/blob/
main/Fine_tune_Llama_2_in_Google_Colab.ipynb

https://github.com/mlabonne/llm-course/blob/main/Fine_tune_Llama_2_in_Google_Colab.ipynb
https://github.com/mlabonne/llm-course/blob/main/Fine_tune_Llama_2_in_Google_Colab.ipynb


Shape Total # ShapeAcc% SizeAcc% Loc-spec LocAcc% Orient-spec OrientAcc%

Tower 504 75.6 20.5 303 0 0 0
Row 168 97.6 16.6 126 32.5 0 0
Diagonal 168 0 0 0 0 0 0
Rectangle 140 0 0 0 0 0 0
Square 216 0 0 0 0 0 0
Cube 24 0 0 0 0 0 0
Diamond 144 0 0 0 0 0 0

Total 1368 39.8 19.4 429 9.5 0 0

Table 7: Evaluation of Neural Builder (Jayannavar et al., 2020) on shapes and basic locations. ShapeAcc% gives
percentage of cases where the given shape was correct. Additionally, SizeAcc% denotes, for the correct shapes,
percentage of cases where it was of the correct size; Loc-spec denotes, for the correct shapes, how many had location
specified; LocAcc% denotes location accuracy for such cases. We also tested rectangle and square for orientation
(horizontal or vertical). Orient-spec denotes, for the correct shapes, the number of cases where orientation was
specified; and OrientAcc% denotes the orientation accuracy for the same.

Instruction Total # Accuracy(%)

Overall 1368 50.9

Place...

on top of 178 60.1
to the side of 154 66.2
touching 176 98.3
not touching 187 0.5
Place Overall 695 55.1

Remove...

any block 234 88.5
block just placed 216 14.8
top block 44 2.3
bottom block 65 35.4
centre block 56 16.1
corner block 2 0
end block 56 73.2
Remove Overall 673 46.5

Table 8: Evaluation of Neural Builder (Jayannavar et al.,
2020) on location descriptors for place and remove
instructions.



Lvl-1 Instruction Neural Builder Nebula

Build a purple tower of size 3 at the centre.

Build a 3x3 purple square at the centre.

Build a diagonal of 3 purple blocks at an edge.

Build a 6x3 green rectangle at the centre.

Table 9: Comparison of Neural Builder (Jayannavar et al., 2020) and baseline Nebula on level-1 dataset.

World State + Lvl-2 Instruction Neural Builder Nebula

OK now remove the centre block.

OK now place a yellow block to the side of that.

OK now remove the top block.

OK now remove the bottom block.

Table 10: Comparison of Neural Builder (Jayannavar et al., 2020) and baseline Nebula on level-2 dataset.


