
HAL Id: hal-04829090
https://hal.science/hal-04829090v1

Submitted on 13 Dec 2024 (v1), last revised 16 Dec 2024 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons CC0 - Public Domain Dedication 4.0 International License

Analyzing Semantic Faithfulness of Language Models via
Input Intervention on Conversational Question

Answering
Akshay Chaturvedi, Swarnadeep Bhar, Soumadeep Saha, Nicholas Asher,

Utpal Garain

To cite this version:
Akshay Chaturvedi, Swarnadeep Bhar, Soumadeep Saha, Nicholas Asher, Utpal Garain. Analyzing
Semantic Faithfulness of Language Models via Input Intervention on Conversational Question Answer-
ing. Computational Linguistics, 2024, 50 (1), pp.119-155. �10.1162/coli_a_00493�. �hal-04829090v1�

https://hal.science/hal-04829090v1
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
https://hal.archives-ouvertes.fr


Analyzing Semantic Faithfulness of
Language Models via Input Intervention on
Conversational Question Answering

Akshay Chaturvedi∗
IRIT, Université Paul Sabatier, Toulouse,
France

Swarnadeep Bhar
IRIT, Université Paul Sabatier, Toulouse,
France

Soumadeep Saha
Indian Statistical Institute, Kolkata,
India

Utpal Garain
Indian Statistical Institute, Kolkata,
India

Nicholas Asher
IRIT, Université Paul Sabatier, Toulouse,
France

Transformer-based language models have been shown to be highly effective for several NLP tasks.
In this paper, we consider three transformer models, BERT, RoBERTa, and XLNet, in both small
and large versions, and investigate how faithful their representations are with respect to the
semantic content of texts. We formalize a notion of semantic faithfulness, in which the semantic
content of a text should causally figure in a model’s inferences in question answering. We then
test this notion by observing a model’s behavior on answering questions about a story after
performing two novel semantic interventions—deletion intervention and negation intervention.
While transformer models achieve high performance on standard question answering tasks,
we show that they fail to be semantically faithful once we perform these interventions for a
significant number of cases (∼ 50% for deletion intervention, and ∼ 20% drop in accuracy
for negation intervention). We then propose an intervention-based training regime that can
mitigate the undesirable effects for deletion intervention by a significant margin (from ∼ 50%

to ∼ 6%). We analyze the inner-workings of the models to better understand the effectiveness
of intervention-based training for deletion intervention. But we show that this training does
not attenuate other aspects of semantic unfaithfulness such as the models’ inability to deal
with negation intervention or to capture the predicate-argument structure of texts. We also
test InstructGPT, via prompting, for its ability to handle the two interventions and to capture
predicate-argument structure. While InstructGPT models do achieve very high performance on
predicate-argument structure task, they fail to respond adequately to our deletion and negation
interventions.
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Story Once upon a time, in a barn near a farm house, there lived
a little white kitten named Cotton. Cotton lived high up
[...] farmer’s horses slept. But Cotton wasn’t alone in her little
home above the barn, oh no.

Conversation What color was Cotton? white
History Where did she live? in a barn
Question Did she live alone?
Prediction no

Table 1: An example from CoQA data set (Reddy, Chen, and Manning 2019). XL-
Net (Yang et al. 2019) correctly predicts no for the question “Did she live alone?". How-
ever, it still predicts no when the rationale (i.e., text marked in bold) is removed from
the story (i.e., deletion intervention).

1. Introduction

Transformer-based language models such as BERT (Devlin et al. 2019), RoBERTa (Liu
et al. 2019b), etc. have revolutionized natural language processing (NLP) research,
generating contextualized representations that provide state of the art performance
for various tasks like part of speech (POS) tagging, semantic role labelling etc. The
transfer learning ability of these models has discarded the need for designing task-
specific NLP systems. The latest incarnation of language models have now excited both
the imagination and the fears of researchers (Black et al. 2022; Castelvecchi 2022) and
journalists in the popular press; the models and chatbots based on them seem to be able
to do code, argue and tell stories, but they also have trouble distinguishing fact from
fiction.1

Given their successes and their hold on the public imagination, researchers are
increasingly interested in understanding the inner workings of these models (Liu et al.
2019a; Tenney et al. 2019; Talmor et al. 2020). In this paper, we look at how a fundamental
property of linguistic meaning we call semantic faithfulness is encoded in the contextual-
ized representations of transformer-based language models and how that information
is used in inferences by the models when answering questions. A semantically faithful
model will accurately track the semantic content of questions and texts on which the
answers to those questions are based. It is a crucial property for a model to have,
if it is to distinguish facts about what is expressed in a text or conversation from
fiction or hallucination. We will show that current, popular transformer models are not
semantically faithful.

This lack of semantic faithfulness highlights potential problems with popular lan-
guage models trained with transformer architectures. If these models are not seman-
tically faithful, then they will fail to capture the actual semantic content of texts.
Operations that we develop in the body of the paper can be used to dramatically
alter text content that these language models would not find, leading to errors with
potentially important, negative socio-economic consequences. Even more worrisome is
the instability that we have observed in these models and their occasional failure to

1 Here is a sample of stories from the New York Times: ‘The New Chatbots Could Change the World. Can
You Trust Them?’ (NYT Dec. 10, 2022; ‘Meet GPT-3. It Has Learned to Code (and Blog and Argue)’, NYT,
Nov 24,2020; ‘The brilliance and the weirdness of ChatGPT’, NYT, Dec. 5, 2022.

2



Chaturvedi et al. Semantic Faithfulness of Transformer-based models

keep predicate argument structure straight; if these models cannot reliably return infor-
mation semantically entailed by textual content, then we can’t rely on their predictions
in many sensitive areas. Yet such systems are being deployed rapidly in these areas.

In the next section, we discuss the virtues of semantic faithfulness and preview re-
sults of experiments that shed light on a model’s semantic faithfulness. In Section 3, we
discuss the related work. In Section 4, we turn to the data set and the transformer models
that we will use in examining semantic faithfulness. In Sections 5 and 7, we introduce
two types of interventions on texts, deletion and negation interventions, that show that
the machine learned models we investigated lack semantic faithfulness. In Section 6,
we discuss a kind of training that can help models acquire semantic faithfulness at least
with respect to deletion intervention. In Section 8, we look at how models deal with
predicate argument structure and with inferences involving semantically equivalent
questions. Once again we find that models lack semantic faithfulness. In Section 9,
we analyse semantic faithfulness of InstructGPT (Ouyang et al. 2022) via prompting.
Finally, we conclude in Sections 10 and 11.

2. The fundamentals: semantic faithfulness

The property of interest is semantic faithfulness. It relies on a basic theorem of all formal
models of meaning in linguistics: the substitution of semantically equivalent expres-
sions within a larger context should make no difference to the meaning of that context.

2.1 The definition of semantic faithfulness

Let ||= represent the intuitive answerhood relation between a question Q and answers
φ, ψ to Q, where those answers follow from the semantic content of a story or text T
or model of its meaning MT . Let |= represent semantic entailment as defined in formal
semantics—e.g., in (Dowty, Wall, and Peters 1981).
Definition [Semantic faithfulnesss]: If T |= φ↔ ψ, and T |= Q↔ Q′, then MT is a
semantically faithful model of T iff:

MT , Q ||= φ iff MT , Q ||= ψ (1)

and

MT , Q ||= ψ iff MT , Q
′ ||= ψ (2)

Note that if T |= Q↔ Q′ and T |= φ↔ ψ, then by the substitution of equal semantic
values, it follows in formal semantics that T,Q ||= φ iff T,Q′ ||= ψ.

A semantically faithful machine learning model of meaning and question answer-
ing bases its answers to questions about T on the intuitive, semantic content of T and
should mirror the inferences based on semantic consequence: if T’s semantic content
doesn’t support an answer φ to question Q, then the model shouldn’t provide φ in
response to Q; if T’s semantic content supports an answer φ to question Q, then the
model should provide φ in response to Q. Furthermore, if T is altered to T ′ so that
while T,Q ||= ψ, T ′, Q 6||= ψ, a semantically faithful model should replicate this pattern:
MT , Q ||= ψ, but MT ′ , Q 6||= ψ. Thus, semantic faithfulness is a normative criterion that
tells us how machine learning models of meaning should track human linguistic judg-
ments, when textual input is altered in ways that are relevant to semantic meaning and
semantic structure.
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Linguistic meaning and the semantic consequence relation |= are defined recur-
sively over semantic structure. Thus, semantic faithfulness provides an important win-
dow into machine learning models’ grasp of semantic structure and its exploitation
during inference. If a model is not semantically faithful, then it doesn’t respect semantic
entailment. This in turn means that the model is not capturing correctly at least some
aspects of semantic structure. Semantic structure includes predicate argument structure
(i.e. which object described in T has which property) but also defines the scope of
operators like negation over other components in the structure. Semantic structure
also links semantic faithfulness with inference, as we exploit that structure to define
valid inference. The lack of semantic structure can cause the model to perform invalid
inferences.

2.2 A remark on language models and formal semantics

Semantic faithfulness makes use of a traditional notion of semantic consequence, which
itself seems divorced a priori from the distributional view of semantics present in
language models. However, the two are not far apart. In fact they are complementary.
(Asher 2011) argues for a complementary level of type-theoretic meaning that roughly
corresponds to distributional semantics. In a similar vein, (Fernando 2004) provides a
semantics of temporal expressions. But the relation between the distributional view and
that of formal semantics is more than complementary. Inspired inter alia by (Reynolds
1974), (Asher, Paul, and Venant 2017) provides a model of language in terms of a
space of finite and infinite strings. Many of these strings are just jumbles of words but
the set also includes coherent and consistent strings that form meaningful texts and
conversations. This subset of coherent and consistent texts and conversations allows us
to define the semantics and strategic consequences of a conversational move in terms
of its possible continuations. LMs find their place rather naturally (Fernando 2022).
As LMs are transformer based, trained language models, they provide a probability
distribution over possible continuations. Thus, they are sensitive to and can predict
possible continuations of a given text or discourse.

When defined over the appropriate set of strings, a semantic consequence relation
for continuation semantics subsumes |=, as defined in denotational, truth conditional
semantics under certain mild assumptions (Reynolds 1974). (De Groote 2006; Asher and
Pogodalla 2010) extend this result to modern, so called “dynamic” formal semantics for
texts and conversations (Kamp and Reyle 1993; Asher 1993). Thus, continuation seman-
tics is at least with respect to semantic consequence a natural and non-conservative
extension of truth conditional semantics,

Continuation semantics also provides a more notion of meaning that is more refined
than that provided by truth conditional semantics. Consider, for instance, the set of most
probable continuations for (1-a). They are not the most probable continuations for (1-b).

(1) a. If we do this, 2/3 of the population will be saved.
b. If we do this, 1/3 of the population will die.

(1-a)’s most likely continuations would focus perhaps on implementation of the plan;
(1-b)’s most likely continuations would focus on how to mitigate the effect of the action
or to search for other alternatives. Thus, while (1-a) and (1-b) are semantically equivalent
with respect to denotational, truth conditional semantics, they do not generate the
same probability distribution over possible continuations and so have arguably distinct
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meanings in a continuation semantics that takes the future evolution of a conversation
or text into account. Thus in principle continuation semantics as practiced by LMs
can in principle capture a finer grained semantics than denotational truth conditional
semantics, as well as pragmatic and strategic elements of language.

For an LM to be semantically faithful and to produce coherent texts and conversa-
tions, it must learn the right probability distribution over the right set of strings. That
is, it has to distinguish sense from nonsense, and it has then to recognize inconsistent
from consistent strings, incoherent from coherent ones. If it does so, then the LM will
have mastered both |= and the more difficult to capture notion of semantic coherence
that underlies well-formed texts and conversations. If it does not do so, it will not
be semantically faithful. The fact that continuation semantics subsumes the logical
consequence relation |= of formal and discourse semantics reinforces our contention
that semantic faithfulness based on such a semantics should be a necessary constraint
for adequate meanings based on continuations or meanings based on distributions.
Semantic faithfulness is not only a test for an adequate notion of meaning but it also
offers a road towards training LMs to better reflect an intuitive notion of semantic
consequence and coherence.

In designing experiments to test semantic faithfulness and LM model inference
then, we need to pay attention to continuation semantics and how possible interven-
tions can affect discourse continuations. Our interventions exploit the and the semantics
of continuations. We need to do this, because LMs are sensitive to continuations and can
detect low probablity continuations. Simple insertions of materials to affect semantic
content threaten to not end up testing the inferences we want to test but rather signal
an LM’s sensitivity to low probability continuations. Continuation semantics provides
a rationale for human in the loop constructions of interventions that respect or shift
semantic content and continuations (Kaushik, Hovy, and Lipton 2019; Gardner et al.
2020).

2.3 A summary of our contributions

We show that transformer representations of meanings are not semantically faithful,
and this calls into question their grasp of semantic structure. We detail three types of
experiments in which we show large language models fail to be semantically faithful: in
the first case, transformers “hallucinate” responses to questions about texts that are not
grounded in their semantic content; in the second, models fail to observe modifications
of a text that renders it inconsistent with the model’s answer to a question about the
original text; in the third, we show that models don’t reliably capture predicate argu-
ment structure. These are serious problems, as it means that we cannot offer guarantees
that these sophisticated text understanding systems capture basic textual, semantic
content. Hence, simple semantic inferences cannot be fully trusted. We analyze the
reasons for this and suggest some ways of remedying this defect.

To investigate semantic faithfulness of a model M , we look at inferences M must
perform to answer a question, given a story or conversation T and a conversation
history containing other questions. Table 1 shows an example. We look at question
answering before and after performing two new operations, deletion intervention and
negation intervention, that affect the semantic content of T .

Deletion intervention removes from T a text span conveying semantic information
necessary and sufficient given T for answering a question with answer ψ. We call the
text conveying the targeted semantic information the rationale. T itself supports ψ as an
answer to Q—in the formalism of equation 1, T,Q ||= ψ. But post intervention T , call
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it d(T ), does not: d(T ), Q 6||= ψ. The semantic content of d(T ) no longer semantically
supports ψ. A semantically faithful model MT should mirror this shift: MT , Q ||= ψ but
Md(T ) 6||= ψ—which accords with human practice and intuition.

Negation intervention modifies a text T into a text n(T ) such that n(T ) is incon-
sistent with ψ, where ψ was an answer to a question supported by the original text.
In the formal terms we have used to defined semantic faithfulness, T,Q ||= ψ but
n(T ), Q ||= ¬ψ. One simple instance of negation intervention would insert a negation
with scope over the Q targeted semantic information. But this is not the only or even
the primary way; in fact such simple cases of negation intervention amount to only
10% of our interventions. To preserve S’s discourse coherence and style, changing the
content of a text so as to flip the answer in a yes/no questions typically requires other
changes to S. To consider a simple example, suppose that in Table 1, we consider as our
question Q: was Cotton white? Performing negation intervention on the rationale, there
lived a little white kitten named Cotton, led us to replace the rationale with two sentences:
there lived a little kitten named Cotton. Cotton was not white.

In general, negation intervention tests whether an ML model is sensitive to semantic
consistency. A semantically faithful model should no longer answer Q with yes post
negation intervention. Once again negation intervention exploits the notion of semantic
faithfulness. We should observe a shift in the ML model’s behavior after negation
intervention on a text T , n(T ): supposing that on T,Q ||= ψ, a semantically faithful
model MT should be such that MT , Q ||= ψ but Mn(T ) 6||= ψ.

Deletion and negation interventions allow us to study the models’ behavior in a
counterfactual scenario. Such counterfactual scenarios are crucial to understanding the
causal efficacy of the rationale in the models’ inferring of the ground truth answer for
a given question (Schölkopf 2019; Kusner et al. 2017; Asher, Paul, and Russell 2021).
Scientific experiments establish or refute causal links between A and B by seeing what
happens when A holds and what happens when ¬A holds. Generally, A causes B only
if both A and B hold and the counterfactual claim, that if ¬A were true then ¬B would
also be true, also holds. So if we can show that a model MT is such that MT , Q ||= ψ
and T,Q ||= ψ but also such that Mß(T ), Q ||= ψ and i(T ), Q 6||= ψ—i.e., i(T ) no longer
contains information α (originally in T ) that linguistically supports ψ as an answer to
Q—then we have shown that α is not causally involved in the inference to ψ.

We perform our experiments on CoQA (Reddy, Chen, and Manning 2019), a con-
versational question answering data set. The CoQA data set includes for each question
an annotated rationale that human annotators determined to provide the ground truth
answers to questions and from which ideally the answer should be computed in a
text understanding system. The bold text in Table 1 is an example of a rationale. We
exploited these annotated rationales to study the language models’ behavior under
our semantic interventions. More precisely, we ask the following question: Do language
models predict the ground truth answer even when the rationale is removed from the story under
deletion intervention or negated under negation intervention?

The surprising answer to our question is “yes”; popular language models based
on state of the art transformer architectures continue to predict the same answers
after deletion intervention and negation intervention as they did on the original text.
Such models are not semantically faithful. Intuitively, a model should not make such a
prediction post deletion or post negation intervention, since the content on which the
ground truth answer should be computed, i.e. the rationale, is no longer present in the
story. Our interventions show that the rationale is not a cause of the model’s computing
the ground truth answer; at least they are not necessary for computing the answer.
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This strongly suggests that such language models are not guaranteed to be semantically
faithful, something we establish in greater detail in Sections 5 and 7.

In a third set of experiments in Section 8, we query the models directly for their
knowledge of predicate argument structure in texts. We construct sentences with two
objects that each have a different property. We then perform two experiments. In the
first, simple experiment, we simply query the model about the properties those objects
have. In some cases, some models had trouble even with this simple task. In a second
set of experiments, we query the model with two distinct but semantically equivalent
yes/ no questions. This experiment produces some surprising results where models
have trouble answering semantically equivalent questions in the same way, once again
indicating a lack of semantic faithfulness. Formally we have:

• two questions, Q,Q′,

• |= Q↔ Q′ and

• T,Q ||= ψ iff T,Q′ ||= ψ

• but it’s not the case that
MT , Q ||= ψ iff MT , Q

′ ||= ψ.

Working with base and large variants of three language models, BERT (Devlin et al.
2019), RoBERTa (Liu et al. 2019b), and XLNet (Yang et al. 2019), on the CoQA data
set (Reddy, Chen, and Manning 2019), we make the following five contributions:

1. We show that, despite the models’ high performance on the CoQA data
set, they wrongly predict the ground truth answer post deletion
intervention for a large number of cases (∼ 50%).

2. We show that a simple intervention-based training strategy is extremely
effective in making these models sensitive to deletion intervention without
sacrificing high performance on the original data set.

3. We quantitatively analyze the inner-workings of these models by
comparing the embeddings of common words under the two training
strategies. We find that under intervention based training, the embeddings
are more contextualized with regards to the rationale.

4. For negation intervention, we show that all the models suffer a ∼ 20%
drop in accuracy when the textual support is negated in the story.

5. We show that, in general, the models have difficulty in capturing predicate
argument structure by examining their behavior on paraphrased
questions.

6. We also test the ability of InstructGPT (Ouyang et al. 2022) (i.e.
text-davinci-002 and text-davinci-003) to tackle the two interventions and
capture predicate-argument structure via prompting. For the two
interventions, InstructGPT models also displays similar behavior as the
other models. With regards to predicate argument structure, the models
achieves very high performance. However, for certain cases, the models do
exhibit inconsistent behavior as detailed in Section 9.
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3. Related work

There has been a significant amount of research analyzing language models’ behavior
across different NLP tasks (Rogers, Kovaleva, and Rumshisky 2020). Probing has been
a popular technique to investigate linguistic structures encoded in the contextualized
representations of these models (Pimentel et al. 2020; Hewitt and Liang 2019; Hewitt
and Manning 2019; Chi, Hewitt, and Manning 2020). In probing, one trains a model
(known as a probe) which takes the frozen representations of the language model as
input, for a particular linguistic task. The high performance of the probe implies that
the contextualized representations have encoded the required linguistic information.

In particular, predicate argument structure has been a subject of probing (Conia
and Navigli 2020, 2022). Though most, if not all, of the effort is devoted to finding
arguments of verbal predicates denoting actions or events using semantic role labeling
formalisms (Chi, Hewitt, and Manning 2020; Conia and Navigli 2020). Little effort to
our knowledge has been made in the literature to investigate the grasp of predicate
argument structure at the level of the formal semantic translations of natural language
text—which includes the arguments of verbal predicates but also things like adjectival
modification.

One major disadvantage of probing methods is that they fail to address how this
information is used during inference (Tenney, Das, and Pavlick 2019; Rogers, Kovaleva,
and Rumshisky 2020). Probing only shows that there are enough clues in the represen-
tation so that a probe model can learn to find, say the predicate argument from the
language model’s representation. It tells us little as to whether the model leverages that
implicit information in reasoning about textual content. Our experiments are designed
to do the latter.

Another approach to understanding the inner workings of language models studies
their behavior at inference time. Elazar et al. (2021) explores an intervention-based
model analysis, called amnesic probing. Amnesic probing performs interventions on the
hidden representations of the model in order to remove specific morphological informa-
tion. In principle one could extend this approach to other kinds of linguistic information.
Amnesic probing is unlike our work, in which the interventions are performed on the
input linguistic content and form. Balasubramanian et al. (2020) showed in related work
that BERT is surprisingly brittle when one named entity is replaced by another. Sun et al.
(2020) showed the lack of robustness of BERT to commonly occurring misspellings.

For the task of question answering, a Transformer-based language model with
multiple output heads is typically used (Hu et al. 2019). An output head caters to
a particular answer type. Thus, the usage of multiple output heads allows the model
to generate different answer types such as span, yes/no, number, etc. Geva et al.
(2021) studied the behavior of non-target heads, i.e., output heads not being used for
prediction. They showed that, in some cases, non-target heads are able to explain the
models’ prediction generated by the target head. Schuff, Adel, and Vu (2020) analyzed
the question answering models which predict answer as well as an explanation. For
such models, they manually analyzed the predicted answer and explanation to show
that the explanation is often not suitable for the predicted answer. Their methodology
is in contrast to our work, since we simply argue that the model uses the rationale for
predicting the answer if it is sensitive to deletion intervention.

Researchers in prior work have also studied the behavior of the model on manipu-
lated input texts (Balasubramanian et al. 2020; Sun et al. 2020; Jia and Liang 2017; Song
et al. 2021; Belinkov and Bisk 2018; Zhang et al. 2020). However, they usually frame the
task in an adversarial scenario and rely either on an attack algorithm or complex heuristics
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for generating manipulated text. The objective in such work is to fool the model with
the manipulated text so that the model changes its predictions whereas a human would
not change the prediction in the face of the manipulated data.

In contrast, deletion intervention is a simple content deletion strategy; it is not de-
signed to get the model to shift its predictions in cases where a human would not.
It’s not designed to trick or fool ML models. Deletion intervention manipulates the
text to test how the deletion of content affects inference; ideally both humans and the
ML model should shift their predictions in a similar way given a deletion intervention.
Nevertheless, it is also reasonable to expect a model that was successfully attacked in
an adversarial setting to be sensitive to deletion intervention.

With respect to negation intervention, researchers have examined the effects of
negation and inference at the sentential level on synthetic datasets (Naik et al. 2018;
Kassner and Schütze 2020; Hossain et al. 2020; Hosseini et al. 2021). Our aim is more
ambitious; we study how transformer models encode both the content C in a text and
content C ′ in a negation-intervened text that is inconsistent with C. Using negation
intervention, we test how replacing C with C ′ affects inference in natural settings. As
with deletion intervention, we offer another way of changing the meaning of texts that
should make both humans and semantically faithful models change their predictions.
There is similar work relevant to negation intervention—on contrast set data and also
counterfactual data (Kaushik, Hovy, and Lipton 2019; Gardner et al. 2020). The datasets
on which Kaushik, Hovy, and Lipton (2019); Gardner et al. (2020) operate are less
complex discursively than the CoQA dataset. The CoQA dataset also allows us to look
more closely at what the models are actually sensitive to in a longer text or story. We
return to this issue in more detail in Section 7. In general, interventions are an important
mechanism to build counterfactual models as Kaushik, Hovy, and Lipton (2019) also
argue. These are important for understanding causal structure (Schölkopf 2019; Kusner
et al. 2017; Barocas, Hardt, and Narayanan 2019).

4. Specifications of the data set and models

We now describe the CoQA data set and the architecture of the three language models
used for this work along with implementation details.

4.1 The CoQA data set

The CoQA data set consists of a set of stories paired with a sequence of questions based
on the story. To answer a particular question, the model has access to the story and
previous questions with their ground truth answers—this is the conversation history.
The data set contains questions of five types: yes/no questions, questions whose direct
answer is a number, alternative or option questions (e.g., do you want tea or coffee?,
questions with an unknown answer, and questions whose answer is contained in a span
of text. The span answer type accounts for majority of the questions (> 75%). The data
set also contains a human annotated rationale for each question. The training set contains
∼ 8K stories and∼ 0.1M questions; the development set contains 500 stories and 7, 983
questions. Since the test set is not publicly available, we report the performance of the
three models across different experimental settings on the development set.

9
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4.2 Models

We conducted experiments on base and large variants of three Transformer-based lan-
guage models— BERT (Devlin et al. 2019), RoBERTa (Liu et al. 2019b) and XLNet (Yang
et al. 2019). To predict the answer for the ith question, Qi, for a given story S, the
three models use previous questions along and their ground truth answers from the
conversation history. The input for the three models for the story, S, and question, Qi,
is as follows.

XLNet : [S <sep> Qi−2Ai−2Qi−1Ai−1

Qi <sep> <cls> ]

BERT/RoBERTa : [ <cls> Qi−2Ai−2Qi−1Ai−1Qi

<sep> S <sep> ]

where <sep> token is used to demarcate the story and the question history, <cls> is a
special token, and Aj denotes the ground truth answer for the question, Qj . In the rest
of the paper, we refer to the string Qi−2Ai−2Qi−1Ai−1Qi as question context.

We adopted the publicly available XLNet model for this paper2. The model contains
output heads for unknown, yes, no, number, option, and span. Each output head is fed
with a concatenation of the CLS embedding and contextualized embeddings of the story
weighted by the predicted start probabilities to predict a score.

For BERT and RoBERTa, we implemented the rationale tagging multi-task model
described in Ju et al. (2019). Unlike XLNet, the two models are trained on question
answering as well as on the rationale tagging task. Furthermore, for a question, the
two models can predict yes, no, unknown, and span. As a result, the two models predict
span for 78.9% of the questions in the development set, whereas XLNet predicts span
for 75.8%. For span prediction, the start and end logits for the answer are predicted
by applying a fully connected layer to the contextualized representation of the story
obtained from the last layer of the model.

The rationale tagging task requires predicting whether a token t ∈ S belongs to the
rationale. Let ht ∈ Rd denote the contextualized embedding obtained from the last layer
for token t. The model assigns a probability pt for t to be in the rationale as follows.

pt = σ(uReLU(V ht)) (3)

where u ∈ R1×d, V ∈ Rd×d, ReLU is the rectified linear unit activation function, and
σ(.) denotes the sigmoid function. An attention mechanism is then used to generate a
representation, qL, as shown below.

2 https://github.com/stevezheng23/mrc_tf
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Story Characters: Sandy, Rose, Jane, Justin, Mrs. Lin
[...]
Jane: Sandy, I called you yesterday. Your mother told me
[...] This year is very important to us.
Sandy:(Crying) My father has lost his job, and we have
no money to pay all the spending.
[...]
Jane: Eh...I hear that Sandy’s father has lost his job, and
Sandy has a part-time job.

Question Who was unemployed?
Prediction Sandy’s father

Table 2: An example from CoQA data set where the rationale (shown in bold) is not
necessary to answer the question. The question can be answered using the italicised
text.

p′t = pt × ht (4)

at = softmax(w1ReLU(W2p
′
t)) (5)

qL =
∑
t

at × p′t (6)

where w1 ∈ R1×d, W2 ∈ Rd×d. Let hCLS ∈ Rd denote the CLS embedding obtained from
the last layer. hCLS is concatenated with the embedding qL. The concatenated embed-
ding is then used in BERT and RoBERTa to generate a score for yes, no, and unknown
respectively.

4.3 Implementation details

We implemented the three language models in PyTorch using the Huggingface li-
brary (Wolf et al. 2020). The models were finetuned on the CoQA data set for 1 epoch.
The base variant of the three models was trained on a single 11 GB GTX 1080 Ti GPU,
whereas the large variant was trained on a single 24 GB Quadro RTX 6000 GPU. The
code for this work along with the additional dataset created as part of studying negation
intervention and predicate-argument structure will be made publicly available.

5. Deletion Intervention and Results

In this section, we explain the operation of deletion intervention. Deletion intervention is
an operation that removes the rationale of a questionQ from the story. For a few instances
in the CoQA data set, we found that the annotated rationale for Q was not necessary
for answering Q, because the sentences following the rationale contained the relevant
information for supplying an answer toQ. One such instance is shown in Table 2. In our
experiments, we did not find any instance where the sentences preceding the rationale
contained the necessary information for answering the question. To avoid problems
with such examples containing redundancies, given an original story (OS), we created
two additional data sets:

11
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Model Data set F1 EM unk%

BERT-base
OS 76.1 66.3 1.97
TS 77.2 67.1 2.18

TS-R 55.6 48.2 1.98

BERT-large
OS 80.7 71.1 2.01
TS 81.6 72.1 2.32

TS-R 63.6 57.8 3.79

RoBERTa-base
OS 80.3 70.8 1.95
TS 80.8 71.1 2.64

TS-R 55.5 51.1 16.92

RoBERTa-large
OS 87.0 77.7 1.74
TS 86.8 77.3 2.72

TS-R 59.9 55.7 22.36

XLNet-base
OS 82.5 74.8 1.08
TS 82.1 74.2 1.11

TS-R 53.5 48.0 14.0

XLNet-large
OS 86.3 78.9 0.86
TS 85.6 78.5 2.58

TS-R 48.1 44.3 31.68

Table 3: EM, and F1 score of the models when trained solely on the original story (OT
training strategy).

1. TS: In this data set, we truncate the original story (OS) so that the
statement containing the rationale is the last statement. We refer to this
data set as TS (short for truncated story). The stories in TS do not
reduplicate elsewhere information in the rationale.

2. TS-R: Given TS, we perform deletion intervention by removing all the
sentences containing the rationale. The cases where the rationale begins
from the first sentence itself are discarded. For questions where the model
predicts a span, we add the ground truth answer (if not already present)
post deletion intervention. This is necessary since for the span type
questions, the model can only predict the ground truth answer if it is
present in the story. As an example, consider the question “Where does
Alan go after work?" and the story “Alan works in an office. He goes to a
nearby park after work." (rationale shown in bold). In this case, TS-R will
be “Alan works in an office. park." Since TS-R doesn’t contain the
information necessary for answering the question, the model should
predict unknown for such instances.

We trained the models on the OS data set and evaluated them on the three afore-
mentioned data sets. We refer to this training strategy as OT (short for original training).
Table 3 shows EM (exact match), F1, and the percentage of unknown predictions (unk
%) of the models on the three data sets. As we can see from the table, for the data sets OS
and TS, the performance of all the models is pretty similar. The performance drops for
TS-R which shows some sensitivity to deletion intervention. However, all the models still
achieve an EM of ∼ 50% which is intuitively way too high for a semantically faithful
model. We believe this shows that the models rely on superficial cues for predicting the
answer; for example, in the presence of a question like “What color was X?" it searches
for a color word not too far from a mention of X. We also find that, for TS-R, the unk %
for RoBERTa, XLNet is significantly higher than BERT.

12
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Model Data set F1 EM unk%

BERT-base
OS 76.4 67.2 3.82
TS 77.7 68.0 7.93

TS-R 5.7 5.4 93.08

BERT-large
OS 78.8 69.8 4.20
TS 80.1 70.7 7.34

TS-R 5.4 5.1 94.25

RoBERTa-base
OS 81.2 71.6 2.86
TS 81.9 72.0 5.20

TS-R 5.5 5.3 94.25

RoBERTa-large
OS 86.2 76.9 2.66
TS 86.3 76.7 4.01

TS-R 5.1 5.0 95.34

XLNet-base
OS 81.3 74.2 4.63
TS 79.6 72.4 10.87

TS-R 6.6 6.4 93.86

XLNet-large
OS 83.1 75.8 5.10
TS 81.0 74.1 10.69

TS-R 5.6 5.5 95.42

Table 4: EM, and F1 score of the models under intervention-based training (IBT training
strategy).

Model Strategy F1 EM

BERT-base OT 38.0 31.5
IBT 42.7 38.1

BERT-large OT 40.9 34.9
IBT 47.4 42.5

RoBERTa-base OT 41.1 35.1
IBT 45.9 40.9

RoBERTa-large OT 46.4 40.7
IBT 55.4 50.5

XLNet-base OT 43.7 38.7
IBT 52.8 48.6

XLNet-large OT 48.3 43.7
IBT 59.2 55.1

Table 5: Off the shelf performance (EM, and F1 score) of the models on SQUAD dataset.
IBT performs significantly better than OT as this dataset contains ∼ 50% unanswerable
questions.

6. Intervention-based Training

To enhance the sensitivity of the language models on TS-R, we propose a simple
intervention-based training (IBT). In this training strategy, we train the model on the three
data sets simultaneously. For OS and TS, the model is trained to predict the ground
truth answer, whereas, for TS-R, the model is trained to predict unknown. Note that the
models are trained for same number of epochs under both the training strategies.

Table 4 shows the performance of the models on the three data sets. First, we
observe that for the data sets OS and TS, the training strategy IBT is at par with the
strategy OT. From the table, we can see that the performance of the models drops
significantly on TS-R. Furthermore, all the models have very high unk % (> 90%) on TS-
R. Thus, IBT is able to make the models highly sensitive to deletion intervention. We also
found that, for span type questions in TS-R, when the ground truth answer is not added
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at the end, the models trained under IBT still have a higher unk % (> 70%) compared
to models trained under OT where the unk % varies from ∼ 20% to ∼ 45%. Hence, the
models trained under IBT do not solely rely on this cue to predict unknown.

To further substantiate this claim, we look at off-the-shelf performance of the
models trained under both strategies on SQUAD dataset (Rajpurkar, Jia, and Liang
2018). Table 5 shows the off-the-shelf performance on SQUAD development set of all the
models under the two training strategies. From the table, we can see that IBT performs
significantly better than OT. This is because SQUAD contains ∼ 50% unanswerable
questions. For such questions, the models trained under IBT predict unknown more often
than their OT counterpart.

6.1 In-depth Analysis of Intervention-based Training

In this section, we study the inner-workings of these models in order to explain the
effectiveness of intervention-based training against deletion intervention. As mentioned
in § 4.2, CLS embedding plays a crucial role in predicting an answer to a particular
question. Hence, to begin with, we look at the cosine similarity (cossim) between CLS
embeddings of OS and TS under the two training strategies (OT and IBT). Similarly,
we also look at tge cossim between CLS embeddings of OS and TS-R under the two
training strategies (OT and IBT). Figures 1 and 2 show the histogram of cossim on the
development set for RoBERTa-large. In Figure 1, we see that the two histograms follow
a similar pattern. The cossim is very high for almost all the cases. This is interesting
since it shows that even if a significant chunk is removed from the story, it doesn’t affect
the CLS embedding in any meaningful way. However, in Figure 2, there is a drastic
difference between the two histograms. Whereas the histogram for the OT strategy still
follows a similar pattern as before, the histogram for IBT shows a significant drop in
cossim. This shows that, for most of the cases under IBT, the CLS embedding is heavily
affected once the rationale is removed from the story.

This effect is not only local to the CLS token but rather is observed for all the input
tokens. To show this, we look at the cosine similarity of common tokens of OS and
TS under the two training strategies, and similarly, the cosine similarity of common
tokens of OS and TS-R under the two training strategies. Figures 3 and 4 show the
corresponding histogram for RoBERTa-large. Here also, we can see that the cosine
similarity of common tokens in OS and TS is very high for both training strategies. Once
again, the model’s representation of the common words doesn’t seem to be affected by
the removal of large parts of the textual context; this indicates either that the model
finds the larger context irrelevant to the task or it might not be capable of encoding long
distance contextual information for this task.

For common tokens in OS and TS-R, however, there is a stark contrast between the
two training strategies. For OT, the cosine similarity of common words still remain high
but for IBT, the cosine similarity drops by a large margin. This shows that, under IBT, the
embeddings of the input tokens are more contextualized with respect to the rationale.
Due to this, under IBT, the word embeddings get significantly altered once the rationale
is removed from the story. Similar to RoBERTa-large, other models also exhibit similar
pattern of cosine similarity for CLS and common tokens, as shown in Tables 6 and 7.
From Table 6, we can see that, for all the models, cossim(hOS

CLS , h
TS−R
CLS ) for IBT is much

lower than the corresponding cosine similarity for OT; whereas cossim(hOS
CLS , h

TS
CLS)

is similar for both the strategies. Similarly, Table 7 shows that, for all the models,
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Figure 1: RoBERTa-large: Histogram plot of cosine similarity between CLS embedding
for OS and TS under two training strategies (OT on left and IBT on right).

0.2 0.4 0.6 0.8 1
0

100

200

300

cossim(hOS
CLS , h

TS−R
CLS )

fr
eq

OT

−0.2 0 0.2 0.4 0.6 0.8 1
0

50

100

150

200

250

cossim(hOS
CLS , h

TS−R
CLS )

fr
eq

IBT

Figure 2: RoBERTa-large: Histogram plot of cosine similarity between CLS embedding
for OS and TS-R for the two training strategies (OT on left and IBT on right).
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Figure 3: RoBERTa-large: Histogram plot of cosine similarity between common tokens
of OS and TS for the two training strategies (OT on left and IBT on right).

cossim(hOS
t , hTS−R

t ) for IBT is much lower than the corresponding cosine similarity for
OT; whereas cossim(hOS

t , hTS
t ) is similar for both the strategies.

From a more conceptual perspective, the sensitivity to the rationale in IBT suggests
that IBT is providing the kind of instances needed to confirm the counterfactual, were the
rationale not present, the model would not answer as it does when the rationale is present. Thus,
at a macro level, attention based models can locate spans of text crucial to determining
semantic content through particular forms of training.
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Figure 4: RoBERTa-large: Histogram plot of cosine similarity between common tokens
of OS and TS-R under two training strategies (OT on left and IBT on right).

Model
OT IBT

cossim(hOS
CLS , h

TS
CLS ) cossim(hOS

CLS , h
TS−R
CLS ) cossim(hOS

CLS , h
TS
CLS ) cossim(hOS

CLS , h
TS−R
CLS )

BERT-base 0.99± 0.02 0.97± 0.03 0.96± 0.07 0.33± 0.34
BERT-large 0.99± 0.02 0.98± 0.04 0.95± 0.12 0.42± 0.31

RoBERTa-base 0.96± 0.04 0.92± 0.08 0.94± 0.06 0.55± 0.22
RoBERTa-large 0.97± 0.06 0.88± 0.10 0.95± 0.07 0.47± 0.21

XLNet-base 0.99± 0.03 0.95± 0.09 0.97± 0.06 0.27± 0.33
XLNet-large 0.98± 0.04 0.89± 0.15 0.98± 0.05 0.53± 0.21

Table 6: Cosine similarity (mean± std) of CLS embeddings for the two training strate-
gies.

Model
OT IBT

cossim(hOS
t , hTS

t ) cossim(hOS
t , hTS−R

t ) cossim(hOS
t , hTS

t ) cossim(hOS
t , hTS−R

t )

BERT-base 0.99± 0.04 0.94± 0.07 0.96± 0.06 0.66± 0.22
BERT-large 0.99± 0.04 0.94± 0.06 0.98± 0.04 0.71± 0.21

RoBERTa-base 0.99± 0.04 0.95± 0.06 0.97± 0.05 0.75± 0.20
RoBERTa-large 0.99± 0.03 0.95± 0.06 0.98± 0.04 0.74± 0.19

XLNet-base 0.96± 0.08 0.90± 0.13 0.96± 0.08 0.57± 0.40
XLNet-large 0.94± 0.14 0.86± 0.24 0.94± 0.15 0.52± 0.44

Table 7: Cosine similarity (mean± std) of common tokens for the two training strategies.

7. Negation Intervention

In this section, we detail our experiments on negation intervention. Negation interven-
tion investigates possible causal dependencies of a model’s inferences based on logical
structure, in particular the scope of negation operators. As we said in Section 2, the
idea behind negation intervention is to alter a text with an intervention n such that
T,Q ||= ψ iffn(T ), Q ||= ¬ψ.

For negation intervention, we randomly sampled 275 yes-no questions. We appro-
priately modified the rationale in the truncated story (i.e., TS) for these samples in order
to switch the answer from yes to no and vice-versa. Table 8 shows the effect of negation
intervention on the models. In the table, Org-Acc refers to accuracy of the model on the
original sample, Mod-Acc refers to accuracy of the model post negation intervention
(i.e., with respect to the modified ground truth answer), and Comb-Acc refers to the
percentage of cases where the model answered correctly for both original and modified
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Model Org-Acc Mod-Acc Comb-Acc
BERT-base 78.2 58.9 41.5
BERT-large 84.7 65.1 52.0

RoBERTa-base 81.8 61.8 47.6
RoBERTa-large 94.2 72.7 67.3

XLNet-base 85.1 64.7 52.0
XLNet-large 90.2 68.7 59.6

Table 8: Effect of Negation intervention on different models.

sample. Table 8 shows a ∼ 20% drop in accuracy for all the models when we compare
Org-Acc and Mod-Acc. This significant drop highlights the inability of the models to
handle negation intervention. The low Comb-Acc scores of the models further highlight
this fact. Switching to the IBT regime provided no significant difference. This indicates
that another type of training will be needed for these models to take into systematic
account the semantic contributions of negation.

A natural option is to train over negated examples and non negated examples. Kass-
ner and Schütze (2020) performs such an experiment and concludes that transformer
style models do not learn the meaning of negation. And Hosseini et al. (2021) provides
a particular training regime that seems to improve language models’ performance on
the data set of negated examples introduced by Kassner and Schütze (2020).

Nevertheless, while Kassner and Schütze (2020)’s conclusion is compatible with our
findings, we are not sanguine that Hosseini et al. (2021)’s training regime will improve
model performance on the operation of negation intervention. The interventions we
needed to make to induce the appropriate shifts in answers often depended on quite
important shifts in material. Simple insertions of negation often seemed to us to disrupt
the coherence and flow of the text; these disruptions could provide superficial clues for
shifting the model’s behavior in a task. To give an example, here is a rationale from one
of the stories in the CoQA dataset:

(2) A law enforcement official told The Dallas Morning News that a door was
apparently kicked in

Given the question, Was the house broken into? (the original answer was yes), we changed
the rationale to:

(3) A law enforcement official told The Dallas Morning News that a door was open,
leaving the possibility that the killers had been invited in

to get a negative answer to the question.
In this intervention, we didn’t insert a negation but rather changed the wording

to get a text inconsistent with the original answer. More generally, in only 72 out of 275
cases of Negation Intervention (26 %), we added or removed "no/not". And within these
72 cases, only around 25 cases featured the simple addition/removal of "no/not"—e.g.
the replacement of six corn plants to but no corn plants. In the rest of the cases, although
we added/removed "no/not", we made more substantive changes to the story. Here is
one example, where the question was, did the wife console the boy? The original rationale
was as follows:

(4) "Robert Meyers said his wife tried to help Nowsch. "My wife spent countless
hours at that park consoling this boy," he said.
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We changed this to:

(5) Robert Meyers said his wife did not try to help Nowsch. "My wife spent countless
hours at that park tormenting this boy," he said.

For the other 203 out of 275 cases (74%), there were lexical changes and substantial
changes to the rationale to preserve stylistic consistency.

Thus the simple addition/removal of "no/not" cases numbered around 25 cases
(∼ 10%). In general, the models were able to switch their answers on such cases. Out of
73 cases, where Roberta-large answered the question for the original story correctly and
didn’t switch the answer post negation intervention, there are only 6 trivial cases.

The inferences involved in negation intervention are thus quite complex and go be-
yond the recognition of a simple negation. A mastery of such inferences would indicate
a mastery not only of negation but of inconsistency, which would be a considerable
achievement for a machine learned model. So simply alerting the model to the presence
of negation will not suffice to guarantee reasoning ability with negation.

The alternative is to create a corpus with many more negation intervention exam-
ples. We remark that it was difficult to construct the requisite data so as to meet our
view of negation intervention. We did this for almost 300 examples, but we would need
a lot more examples for fine tuning.

8. Predicate Argument Structure

In this section, we study whether the models stay faithful to simple cases of predicate
argument structure. As we already mentioned in the introduction, we propose two
types of experiments. In the first simple experiment, we ask a question Q about the
properties of objects in a text T . Given an answer ψ such that T,Q ||= ψ, we expect that
for a semantically faithful model MT that MT , Q ||= ψ.

The second set of experiments is more involved. Formally, it involves the following
set up. Given:

• two questions, Q,Q′,

• T |= Q↔ Q′

we should predict

T,Q ||= ψ iff T,Q′ ||= ψ

To test for semantic faithfulness in these contexts, we devised synthetic, textual data
for these experiments. We used five different schemas:

1. The col1 car was standing in front of a col2 house.

2. They played with a col1 ball and col2 bat.

3. The man was wearing a col1 shirt and a col2 jacket.

4. The house had a col1 window and a col2 door.

5. A col1 glass was placed on a col2 table.
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Model Org-Acc Mod-Acc
BERT-base 50.0 (100.0) 69.4 (59.8)
BERT-large 95.2 (51.0) 77.3 (27.3)

RoBERTa-base 51.0 (99.0) 70.0 (78.5)
RoBERTa-large 99.4 (49.4) 95.0 (45.0)

XLNet-base 50.6 (6.0) 50.8 (0.7)
XLNet-large 75.2 (74.8) 79.8 (36.3)

Table 9: Effect of question paraphrasing on different models. Org-Acc, and Mod-Acc de-
note accuracy on original and modified paraphrased question respectively. The number
in bracket denote percentage of cases where the model predicted “no" as the answer.

where col1 and col2 denote two distinct colors. Using these 5 schemas and different
color combinations, we constructed a dataset of 130 stories. For each story, we have 4
questions. (2 “yes" and 2 “no" questions). As an example, for the story, “The blue car was
standing in front of a red house.", the 2 “yes" questions are “Was the car blue?" and “Was
the house red?"; and 2 “no" questions are “Was the car red?" and “Was the house blue?".
Thus, we have a total of 520 questions. The Org-Acc in Table 9 shows the accuracy
of the models on these questions and indicates a huge variance in accuracy across the
models. We observed that BERT-base predicted no for all questions, and RoBERTa-base
predicted no for most of the questions, while XLNet-base mostly predicted “yes”. For
the large models, RoBERTa-large and BERT-large achieved very high accuracies. We
note, however, that this dataset is very simple.

These results indicate that the small models really didn’t do much better than
chance in answering our yes/ no questions; hence either they didn’t capture of the
predicate argument structure of the sentences, or they could not use that information
to reason to an answer to our questions. They failed on the most basic level. The large
models fared much better, but this in itself didn’t suffice to determine a causal link
between the predicate argument information and the inference to the answers.

Probing further, we then examined how the models fared under semantically
equivalent questions. Q′ is semantically the same as (≡) Q given context C iff they
have the same answer sets in C (Bennett 1979; Karttunen 1977; Groenendijk 2003).
In our situation, the context is given by the text T . Thus, we have T |= Q↔ Q′ and
T,Q ||= ψ iff T,Q′ ||= ψ. IfMT is semantically faithful and T |= Q↔ Q′, then we should
have MT , Q ||= ψ iff MT , Q

′ ||= ψ. To construct semantically equivalent questions, we
paraphrased the initial question in our data set, i.e., “Was the car red?" to “Was there a
red car?". This resulted in new set of 520 questions for the 130 stories. The Mod-Acc
in Table 9 shows the accuracy of the models on the modified questions. Apart from
XLNet-base which predicted “yes" for most of the modified questions and RoBERTa-
large which retains it high accuracy, all the other models behave very differently from
before. The accuracy of BERT-large drops drastically on these very simple questions,
while BERT-base and RoBERTa-base perform significantly better on modified questions
as they no longer mostly predict “no". For XLNet-large, while the two accuracies are
similar, the model goes from predicting mostly “no" to mostly “yes". This contrast in
behavior, as shown in Table 9, indicates that these models are unstable and lack seman-
tic faithfulness on this task. There are two possible explanations; either the semantic
structure of the two questions is not exploited in inferring an answer or the predicate
argument structure of the text is not exploited in the context of one of the questions.

To further investigate our models’ behavior with respect to questions, we tested
their ability to handle semantically equivalent questions using CoQAR dataset (Brabant,
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Model EM/F1 Match% IoU
BERT-base 61.8/72.0 54.9 0.16
BERT-large 67.2/77.1 61.5 0.18

RoBERTa-base 66.6/76.7 63.1 0.19
RoBERTa-large 74.2/84.4 72.9 0.26

XLNet-base 70.0/78.1 64.2 0.14
XLNet-large 75.0/83.4 70.3 0.19

Table 10: EM, and F1 score of the models on CoQAR dataset along with Match% and
IoU.

Model EM F1
text-davinci-002 46.4 58.5
text-davinci-003 28.0 45.6

Table 11: EM and F1 score for the two InstructGPT models on TS-R dataset.

Lecorvé, and Rojas Barahona 2022). This dataset modified the original CoQA dataset by
paraphrasing each question in CoQA to three semantically equivalent questions. While
the questions in CoQAR are not conversational in nature, we found that our models
performed better when the question context was provided as input. Table 10 shows
the performance of the models on the CoQAR development set. In the table, Match%
denotes the percentage of cases where the model gave the exact same answer for all
the three variants of the question. For the unsuccessful cases (i.e. where the model gave
different answers for the three question variants), we also report IoU which denotes the
number of common tokens divided by the total number of unique tokens in the three
predicted answers. The table shows that, in significant number of cases, the models do
not give the exact same answer for the three question variants as indicated by the low
Match%. Moreover, for such unsuccessful cases, the three answers vary significantly as
highlighted by low IoU scores.

9. Analyzing InstructGPT via prompting

In this section, we report on the behavior of InstructGPT (Ouyang et al. 2022) using
OpenAI API on our two interventions, namely deletion and negation intervention, and
our dataset for predicate argument structure. We looked at two InstructGPT models:
text-davinci-002 and text-davinci-003. For the two interventions, we proceeded similarly
to our approach with the other models: we provided the story, the question context
(i.e. two previous question with their ground truth answer), and the current question
as input prompt. For predicate argument experiment, we only provided the story and
current question in our input prompt, as shown below:

The man was wearing a blue shirt and a red jacket.

Q: Was the jacket red?
A:

For deletion intervention, we calculated the EM and F1 score for the two models on
TS-R dataset. Table 11 shows these scores. As we can see from the table, text-davinci-002
achieves very high scores; for nearly ∼ 50% of cases the model continues to predict the
ground truth answer post deletion intervention. This pathological behavior is similar
to other models studied in this work. While text-davinci-003 does significantly better,
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Model Org-Acc Mod-Acc Comb-Acc
text-davinci-002 88.0 61.1 53.5
text-davinci-003 94.2 61.5 56.7

Table 12: Effect of Negation intervention on InstructGPT.

Figure 5: The text-davinci-002 model predicts correctly when an extra space (shown in
red) is added.

the scores are still on the higher side as the model is predicting ground truth answer
for ∼ 30% of the cases. Overall, these result showcase that InstructGPT models do not
respond appropriately to deletion intervention.

For negation intervention and similarly to Section 7, we looked at Org-Acc, Mod-
Acc, and Comb-Acc. Table 12 shows these results. From the table, we can see that both
the models suffer a significant drop in accuracy for negated questions in comparison
with original questions. Thus, similar to other models, InstructGPT fails to respond well
to negation intervention.

For predicate argument experiment, on the overall dataset of 1040 questions, text-
davinci-002 achieved an accuracy of 96.7% (i.e. total of 34 failure cases) with Org-Acc
of 99.6% and Mod-Acc of 93.8%. Interestingly, all the 34 failure cases in the original
predicate argument data set were “yes" questions. For such cases, in many instances,
we observed that adding an extra space to the prompt reverses the model’s prediction.
One such example is shown in Figure 5. As for text-davinci-003, the model achieved
perfect accuracy. Unlike text-davinci-002, we found that text-davinci-003 is stable in its
prediction with regards to extra spaces in the prompt. However, there were 14 cases
where text-davinci-003 predicted “not necessarily" instead of “no". The question in all
these cases was of the form “Was there a col2 car?" Note that we had 26 cases with
this question format and the model predicted “no" for the remaining 12 cases. This
showcases instability in model’s prediction for two very similar input prompts.

We also tested the model’s sensitivity to a contrastive set of examples in which we
inserted negations in our predicate argument data set sentences (e.g. “The blue car was
standing in front of a house that was not red." for the question “Was the house red?"). In
contrast to its performance on negation intervention, the InstructGPT models achieved
perfect accuracy on such negated examples. This further demonstrates that negation
intervention is different from the tasks given by Naik et al. (2018); Kassner and Schütze
(2020); Hossain et al. (2020); Hosseini et al. (2021).

10. Discussion

In conclusion, concerning our findings about predicate argument structure and logical
structure more generally, we address three points.
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1) Larger Transformer-based models have shown to generally perform better than
their smaller variants (Roberts, Raffel, and Shazeer 2020; Liu et al. 2019a). However,
some exceptions to this trend have also been observed (Zhong et al. 2021). Our ex-
periments show that with respect to the notion of semantic faithfulness, in general
sensitivity to semantic structure and content, larger models fare better in predicate-
argument experiments but not in our negation and deletion intervention experiments.
For deletion intervention, they are mostly worse-off than smaller models. Section 9
shows that InstructGPT also fails to tackle the two interventions in an efficient manner.

2) Is prompting really superior to fine tuning? Our prompting experiment with
InstructGPT allowed us to get results without fine-tuning. This is essentially zero shot
learning since no input-output pairs are provided in the prompt. However, for deletion
and negation intervention, we observed that InstructGPT models do not present an
advancement over other Transformer-based models with respect to behavior post these
interventions. Moreover, like Jiang et al. (2020); Liu et al. (2021); Shin et al. (2021), we
have found text-davinci-002 to be extremely sensitive to what should be and intuitively is
irrelevant information in the prompt. With regard to semantic faithfulness on predicate
argument structure, this shows an astonishing lack of robustness to totally irrelevant
material, even if text-davinci-002 scores very well on this data set. This brittleness is
telling; a semantically faithful model that exploits semantic structure to answer ques-
tions about which objects have which properties should not be sensitive to formatting
changes in the prompt. This indicates to us that even if predicate argument structure
questions are answered correctly, text-davinci-002 is not using that information as it
should. text-davinci-003 is stable to such insignificant changes in the prompt. However,
the model still shows instability in its predictions for two very similar prompts as
highlighted earlier. Once again, we have our doubts that the right information, i.e.
semantic structure, is being leveraged for the answer; if it were, text-davinci-003 would
answer in the same way for all the questions with "no" answers.

3) Extending semantic faithfulness beyond the question answering tasks in NLP.
The definition of semantic faithfulness in Section 2 is geared to testing the semantic
knowledge of LMs in question answering tasks. Question answering can take many
forms and is a natural way to investigate many forms of inference or exploitations of
semantic and logical structure. It also underlies many real-world NLP applications, like
chatbots, virtual assistants and web searches (Liang et al. 2022). Semantic faithfulness
can be extended to probe for a model’s inferences concerning artificial languages like
first order logic or any other formal language or programming language for which
there is a well defined notion of semantic consequence (|=). In such cases, the role
of the “text” in semantic faithfulness would be played by a set of premises, a logical
or mathematical theory, or code for an algorithm or procedure. Similar experiments
of deletion or negation intervention could in principle be performed in these settings,
which opens up a to us novel way of investigating LM models’ performance on tasks
like code generation (Chen et al. 2021; Sarsa et al. 2022). Alternatively, as suggested
by Shin and Van Durme (2021), exploiting formal logical forms may help with semantic
faithfulness.

11. Conclusion and Future Work

We have studied the semantic faithfulness of popular Transformer-based language
models for two input intervention strategies, deletion intervention, and negation in-
tervention, and with respect to their responses to simple, semantically equivalent ques-
tions. Despite high performance on the original CoQA data set, the models exhibited
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very low sensitivity to deletion intervention and suffered a significant drop in accuracy
for negation intervention. They also exhibited unreliable and unstable behavior with
respect to semantically equivalent questions (Q≡). Our simple intervention-based train-
ing (IBT) strategy made the contextualized embeddings more sensitive to the rationale
and corrected the models’ erroneous reasoning in the case of deletion intervention.

Our paper has exposed flaws in popular language models. In general, we have
shown that even large models are not guaranteed to respect semantic faithfulness.
This likely indicates that the models rely on superficial cues for answering questions
about a given input text. While IBT is successful at remedying models’ lack of attention
to logical structure in cases of deletion intervention, it doesn’t generalize well to the
other experimental setups we have discussed. We do not have easy fixes for negation
interventions or for the inferences involving predicate argument structure. This is be-
cause it is difficult to generate enough data through negation intervention to retrain the
model in the way we did for deletion intervention. Automating the process of negation
intervention while preserving a text’s discourse coherence and particular style remains a
challenge. In addition, our investigations concerning predicate argument structure and
responses to semantically equivalent questions have pointed to a serious failing but it
remains unclear why the models are behaving in an erratic or almost random fashion.
We plan to address this issue in future research.

Another limitation is that we have only shown three out of potentially myriad ways
in which language models might fail to capture semantic content. A general solution
to the problem of semantic unfaithfulness is something we have not provided in this
paper. However, we believe that key to solving this problem is a full scale integration of
semantic structure without loss of inferential power in the transformer based language
models, something we plan to show in future work.
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