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1. Introduction
The San Andreas Fault (SAF) is a right-lateral, strike-slip, transform fault system that accommodates most of the 
northward motion of the Pacific plate along the western boundary of the North American plate. It is renowned 
for its large (M > 7), infrequent earthquakes on several major fault segments. But a ∼150 km-long SAF segment 
between San Juan Bautista and Parkfield, as well as the northward sister faults of the Calaveras-Hayward system, 
lack historic earthquakes with M > 7. Instead, they are characterized by frequent earthquakes of small to moder-
ate magnitude (M1−4) and high rates (up to 35.9 ± 0.5 mm/yr) of continuous or episodic aseismic creep (Jolivet 
et al., 2015; Tocher, 1960) (Figure 1). In creeping faults, tectonic strain is released in a quasi-steady motion, thus 
reducing their potential for large earthquakes. The creeping sections of the SAF do not show any observable 
heat flow anomaly due to frictional heating, consistent with a model of a mechanically weak fault within strong 
country rock (Sass et al., 1997). Although there has been little agreement about the underlying mechanisms that 
cause aseismic creep in the SAF, it appears that aqueous fluids play a critical role (Becken et al., 2011; Irwin & 
Barnes, 1975; Moore & Lockner, 2013; Pili et al., 2011). A recent magnetotellurics survey identified a deeply 
rooted zone of anomalously low electric resistivity with connected sub-vertical zones of low resistivity near the 
SAF northwest of Parkfield, indicating the presence of pathways for considerable quantities of aqueous fluid into 
the fault (Becken et al., 2011). While a high pore-fluid pressure within the fault would be a simple and plausible 
means of causing aseismic creep (Fulton & Saffer, 2009; Irwin & Barnes, 1975), the pore pressure within parts 
of the creeping fault, for example, at the San Andreas Fault Observatory at Depth (SAFOD), is not elevated 
compared to that of the country rock (Zoback et al., 2011). Another potential cause of aseismic slip is fluid-assisted 
pressure-solution creep, which has recently been identified in SAFOD samples. This process may account for as 
much as 20 mm/yr of creep in the SAF (Gratier et al., 2011), but rates of aseismic creep are significantly higher in 
some parts of the SAF system (Jolivet et al., 2015), calling for an additional or a different mechanism to account 
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for its full extent. The spatial relationship between the occurrence of aseismic creep and outcrops of serpentinite 
along the SAF and associated sister faults was first recognized in the 1960s (Allen, 1968). Serpentinite exhibits 
velocity-strengthening behavior at slow slip rates (Reinen et al., 1994). However, the constraints from heat flow 
and stress orientation of the creeping sections at depths ≥3 km are inconsistent with the high frictional strength 
of serpentinite at depth as the primary cause for aseismic creep in the SAF (Moore & Rymer, 2007), unless 
serpentinite is altered to even weaker phyllosilicates (Moore & Lockner, 2013). The low friction coefficients and 
velocity-strengthening properties of phyllosilicates including talc, saponite and corrensite have recently been 
found together with serpentine in SAFOD fault gouge (Lockner et al., 2011; Moore, 2014). However, the more 
abundant corrensite and other clay minerals in the SAFOD fault gouge are stable only at relatively low tempera-
tures, making it unlikely for them to be present at depths greater than 3–4 km (Lockner et al., 2011) where creep 
rates are highest and talc, chlorite, and amphibole would be stable (Jolivet et al., 2015; Moore et al., 2018).

Fluids infiltrating the SAF system below the seismogenic zone are predominantly a mixture of H2O and CO2, as 
indicated by the compositions of fluids from springs and fluid inclusions (Barnes et al., 1973; Pili et al., 2011). 
Their isotopic signatures suggest a deep source with contributions from the mantle and from metamorphic devol-
atilization of crustal lithologies that have been accreted to the western North American margin during collision 
and subduction of the Farallon plate. Where serpentinite is exposed to CO2-rich aqueous fluids it can undergo 
complete carbonation to form silica-carbonate rock (Figure 2, Beinlich et al., 2012; Hansen et al., 2005; Klein & 
Garrido, 2011; Menzel et al., 2018). But silica-carbonate rock typically does not form directly at the expense of 
serpentinite, except possibly at very low temperatures (15°C–50°C) where serpentine seems to co-exist stably with 
quartz (Streit et al., 2012). At higher temperatures carbonation proceeds in a series of dissolution-precipitation 
reactions that turn serpentinite first into soapstone, a rock that is mainly composed of talc and magnesite, here 
represented by their simplified Mg-endmembers

2Mg3Si2O5(OH)4 + 3CO2(��) = Mg3Si4O10(OH)2 + 3MgCO3 + 3H2O

serpentine talc magnesite
 (1)

followed by the formation silica-carbonate rock

Mg3Si4O10(OH)2 + 3CO2(��) = 4SiO2 + 3MgCO3 + H2O

talc quartz magnesite
 (2)

Figure 1. Map illustrating the spatial relationships between numerous serpentinite outcrops, CO2-rich springs, silica-carbonate rocks and aseismic creep along the 
San Andreas Fault system. As the dismembered nature of these outcrops suggests, the mapped surface distribution of serpentinite does not necessarily represent its 
subsurface distribution. In addition to surface outcrops of serpentinite, its presence in the subsurface has been inferred from regional-scale geophysical surveys (McPhee 
et al., 2004; Watt et al., 2014). Mercury deposits in California are commonly associated with magnesite deposits and silica-carbonate rock, making them a useful 
indicator for complete carbonation of ultramafic rocks. Mapped outcrops of ultramafic rocks and locations of mineral deposits are from the USGS Mineral Resources 
database (https://mrdata.usgs.gov/mrds/geo-inventory.php), while locations of CO2-rich springs are from Irwin and Barnes (1975). SF = San Francisco, SJB San Juan 
Bautista, HO = Hollister, NI = New Idria, TM = Table Mountain, PF = Parkfield.
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(Beinlich et al., 2012; Hansen et al., 2005; Klein & Garrido, 2011; Menzel 
et al., 2018). These and other studies provide firm evidence for the forma-
tion of soapstone as an intermediate reaction product that is superseded by 
silica-carbonate rock (Böhlke, 1989; Griffis, 1972).

It is important to note that reactions  1 and  2 do not require any addition 
of silica from quartzo-feldspathic country rocks. Instead, the key aqueous 
species necessary for these reactions to proceed is CO2, which is strongly 
enriched in fluids (through metamorphic devolatilization at depth) associated 
with the SAF system (Barnes et al., 1978). Indeed, in addition to CO2-rich 
springs and serpentinite, numerous outcrops of silica-carbonate rock are 
found between Parkfield and San Juan Bautista and north of Hollister, that 
is, in parts of the San Andreas fault system where rates of aseismic creep are 
highest (Figure 1). Prominent examples of silica-carbonate rock exposures 
include the Mount Jackson, Culver-Baer, and New Almaden mines, which 
represent mercury deposits of (past) economic value (Bailey et  al.,  1973). 
Henderson  (1969) referred to these mineralizations as “serpentinite type 
mercury deposits.” Countless mercury deposits in California are associated 
with ultramafic rocks (Figure 1) and their distribution can be used as a proxy 
for silica-carbonate alteration. Likewise, the numerous magnesite deposits 
associated with ultramafic rocks are another indicator of silica-carbonate 
alteration (Figure  1). Both mercury and magnesite mineralizations appear 
to  align with the direction of faulting in California and faults represent major 
pathways for CO2-rich aqueous fluids (Figure  1). While most magnesite 
surface deposits were formed in the geological past, locations of CO2-rich 
springs associated with ultramafic rocks may pinpoint sites of ongoing 
carbonation in the San Andreas Fault zone at depth.

2. Fluid Speciation and Reaction Path Modeling
Speciation calculations and reaction path models were computed using 
CO2-rich fluids from Soda Spring fluids (39°24'27.3"N 122°58'22.0"W), 
Wilbur Springs (39°02'19.3"N 122°25'14.9"W), and Seigler Springs 
(38°52’33.6”N 122°41’16.8”W) reported in Barnes et al.  (1973). We used 
the software code EQ3/6, version 8.0 with a customized thermodynamic data-
base for aqueous species, pure minerals, and solid solutions assembled using 
the software code SUPCRT92 (Helgeson et al., 1978; Johnson et al., 1992; 
Klein et al., 2009, 2013; McCollom, 2000; Shock & Helgeson, 1988; Shock 
et al., 1989; Wolery, 1992; Wolery & Jove-Colon, 2004). The EQ3/6 data-
base contains log K values for temperatures from 0°C to 400°C in 25°C 
increments. Geothermal gradients in the SAF are relatively well constrained 
in the Parkfield area and range from 27 to 40°C/km (Williams et al., 2004), 
suggesting that the temperature of fluids entering the SAF near the base of 
the crust may be as high as 600°C. The depth of the seismogenic zone varies 
from less than 10 km in the Geysers-Clear Lake area to 15 km between San 
Juan Bautista and Parkfield. Accordingly, temperatures of fluids in the seis-
mogenic zone are likely between ∼100°C and 400°C, depending on the local 

geothermal gradient. The speciation calculations and reaction path models depicted in Figure 3 were calculated 
assuming a maximum geothermal gradient of 40°C/km at hydrostatic conditions within the fault. For exam-
ple, at 200°C this corresponds to 5  km depth and a hydrostatic pressure of 50  MPa. To facilitate compari-
son of saturation states of predicted mineralogies at different temperatures, all models were calculated for a 
constant pressure of 50 MPa. Because changes in pressure below 100 MPa have a negligible effect on equilib-
rium constants, small changes in temperature can compensate changes in pressure (Klein & Garrido,  2011). 
We used the B-dot equation with hard-core diameter and B-dot and Debye–Hückel parameters from reference 

Figure 2. Completely carbonate altered ultramafic rocks composed of 
magnesite and quartz from New Idria (a) and New Almaden (b). Mosaics 
of thin section photomicrographs in plane (a) and crossed polarized (b) 
transmitted light. Inserts are hyperspectral Raman maps depicting the 
distribution of magnesite (Mgs, yellow), quartz (Qtz, blue), and mixed 
analyses of poorly crystalline magnesite, quartz, and oxide minerals (green). 
Few spectra were not identifiable due to a low signal-to-noise ratio (brown). 
Maps were acquired with a computer-controlled Horiba LabRam HR confocal 
Raman microscope at Woods Hole Oceanographic Institution using a green 
(532 nm) laser, 100 μm slit, 150 μm confocal hole, 50% optical filter, 600 
grooves/mm grating, and a 100 x objective, and motorized stage. The step size 
was 5 μm and the acquisition time was 0.6 s per spot. Spectra were processed 
using LabSpec6 and minerals were identified using the RRUFF spectral library 
(Downs, 2006).
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(Wolery & Jove-Colon, 2004). Activity coefficients for neutral species were 
set to one, except for non-polar gaseous species, for which the activity coef-
ficients of CO2 (Drummond, 1981) were adopted. Solid solutions used in the 
thermodynamic reaction path models include the primary minerals olivine 
(with the end-members forsterite and fayalite), orthopyroxene (enstatite and 
ferrosilite), and clinopyroxene (diopside and hedenbergite), as well as the 
secondary minerals serpentine (chrysotile, greenalite, kaolinite, cronstedtite), 
brucite (Mg-brucite and ferroan brucite), talc (talc and minnesotaite). The 
composition of the solid starting material used for the reaction path models 
is 80 mol% olivine (molar forsterite:fayalite = 9:1), 10 mol % orthopyroxene 
(enstatite:ferrosilite = 9:1), and 10 mol% clinopyroxene (diopside:hedenber-
gite = 9:1). The Soda Spring fluid composition was speciated at 17°C and 
then heated to 100°C and 200°C at 50 MPa. Solid reactant was added in small 
increments to the heated fluid to assess changes in the predicted equilibrium 
mineral assemblage for water-to-rock mass ratios (w/r) between 10 and 2000 
(Figure 3).

3. Talc Saturation and Soapstone Formation at Depth
We elucidate possible connections among serpentinite, CO2-rich aqueous 
fluids, and silica-carbonate rock in the creeping sections of the SAF system 
using thermodynamic calculations. First, we calculated the saturation states 
of major minerals found in serpentinite, soapstone and silica-carbonate rock 
for aqueous fluids from Soda Spring at elevated temperatures (Figure  2a) 
to assess whether carbonation is an ongoing process at seismogenic depths 
within the fault. Consistent with previous results, our calculations suggest that 
spring fluids are saturated with quartz and magnesite (i.e., silica-carbonate 
rock) at ambient surface temperatures (Barnes et  al.,  1973). However, at 
temperatures between 50°C and 400°C talc is the most strongly supersat-
urated mineral, suggesting that it is the most likely mineral to precipitate. 
Between 50°C and 100°C magnesite is the second most supersaturated 
mineral. Other supersaturated minerals at higher temperatures are serpentine, 
olivine, and brucite. For comparison, we also calculated the saturation states 
of minerals in aqueous fluids from Wilbur and Seigler springs, which yield 
essentially the same results, with talc being the most supersaturated mineral 
at temperatures between ca. 50°C and 400°C.

To further assess fluid-rock interactions at depth, we computed two reaction 
path models for the reaction between heated Soda Spring fluid and serpenti-
nized peridotite at 100°C and 200°C (Figures 3b and 3c). In rock-dominated 
domains away from major fluid pathways, the predicted equilibrium mineral 
assemblage is dominated by serpentine with minor amounts of brucite, 
Ca-rich carbonate, and magnetite at both temperatures. Where fluid supply 
is high such as in veins and faults, the amount of serpentine decreases 
while Mg-rich carbonate and talc become the dominant minerals. At low 
temperatures, talc and carbonate (solid solution dominated by the magnesite 
component) represent a transient mineral assemblage and the reaction runs 
to completion forming silica-carbonate rock. These results strongly suggest 
that carbonation is an ongoing process and that soapstone indeed could form 
in the SAF at depth. However, at low temperatures, soapstone is an ephem-
eral reaction product within the alteration sequence, suggesting that it is not 
abundant or only temporarily present at shallow depth, consistent with the 
dominance of completely altered silica-carbonate rock in surface outcrops 
(Figure 1).

Figure 3. Modeling results illustrating the interactions between CO2-rich 
fluids and serpentinite in the San Andreas Fault (SAF). (a) Calculated 
saturation indices (log Q/K) for minerals in fluids from Soda Spring as a 
function of temperature using published fluid data (Barnes et al., 1973). (b and 
c) Predicted equilibrium mineral assemblage for the reaction of heated Soda 
Spring fluid with serpentinized peridotite as a function of the water-to-rock 
mass ratio (w/r) at 100°C and 200°C. Low w/r represents rock-dominated 
zones away from a fault, whereas high w/r represents fluid dominated zones 
closer to a fault (cf. Figure S1 in Supporting Information S1). For similar 
models that capture serpentinization reactions at lower w/r, please refer to 
Klein et al. (2009, 2013).
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4. Carbonation of Serpentinite and Aseismic Creep
The widespread occurrence of silica-carbonate rock and its close association with serpentinite, and talc-saturated 
CO2-rich springs in the San Andreas fault system provide compelling evidence for talc-formation due to mineral 
carbonation at the present day as well as in the geologic past. Talc is widely believed to be one of the weakest 
minerals in fault zones (Escartín et al., 2008; Moore & Lockner, 2008); however, depending on the availability of 
water, the frictional properties of talc are highly variable. Whereas water-saturated talc has a low fiction coeffi-
cient μ = 0.1–0.3 and pronounced velocity-strengthening behavior, room-dry talc has a significantly higher fric-
tion coefficient μ = 0.4–1 and velocity neutral or weakening behavior (Chen et al., 2017). Wet talc-bearing faults 
and their dry equivalents likely show contrasting seismic properties. Because heat flow measurements along the 
creeping sections of the San Andreas fault system constrain the apparent coefficient of friction of the fault to 
0.2 or less (d’Alessio et al., 2006), wet, talc-bearing faults could satisfy the strength limitations and explain the 
aseismic slip whereas dry talc could not. Its high frictional strength coefficient and velocity neutral or weakening 
behavior could indeed facilitate earthquakes. While it seems rather unlikely that active San Andreas faults are dry, 
the mechanical properties of completely silica-carbonate altered serpentinite may enable frequent earthquakes of 
small to moderate magnitude (den Hartog et al., 2014; Toppozada et al., 2002).

Because CO2-rich aqueous fluids and ultramafic rocks are particularly common in young orogenic belts and 
subduction zones (Barnes et al., 1978; Coleman, 1977; Reynard, 2013), the formation of talc via mineral carbon-
ation may play a critical role in controlling the seismic behavior of major tectonic faults around the world.

Data Availability Statement
The data that support the findings of this study are freely available from the United States Geological Survey 
Mineral Resource Data System (https://mrdata.usgs.gov/mrds/geo-inventory.php). Locations of CO2-rich springs 
are from Irwin and Barnes  (1975, http://doi.org/10.1130/0091–7613(1975)3<713:EOGSAM>2.0.CO;2). The 
compositions of CO2-rich spring fluids used for speciation calculations and reaction path models are from Barnes 
et al. (1973, https://doi.org/10.2113/gsecongeo.68.3.388). The model input and output files for this research are 
freely available at https://doi.org/10.5281/zenodo.6470879.
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