
HAL Id: hal-04828751
https://hal.science/hal-04828751v1

Submitted on 11 Dec 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Implementing the Principle of Least Administrative
Privilege on Operating Systems: Challenges and

Perspectives
Eddie Billoir, Romain Laborde, Ahmad Samer Wazan, Yves Rütschlé,

Abdelmalek Benzekri

To cite this version:
Eddie Billoir, Romain Laborde, Ahmad Samer Wazan, Yves Rütschlé, Abdelmalek Benzekri. Im-
plementing the Principle of Least Administrative Privilege on Operating Systems: Challenges and
Perspectives. Annals of Telecommunications - annales des télécommunications, 2024, 79 (11-12),
pp.857-880. �10.1007/s12243-024-01033-5�. �hal-04828751�

https://hal.science/hal-04828751v1
https://hal.archives-ouvertes.fr

Implementing the Principle of Least Administrative Privilege

on Operating Systems: Challenges and Perspectives

Eddie Billoir1,3*, Romain Laborde1, Ahmad Samer Wazan2, Yves Rütschlé3,
Abdelmalek Benzekri1

1 IRIT, Université de Toulouse, CNRS, Toulouse INP, UT3, Toulouse, France.
2Zayed University, Academic City, Dubai, United Arab Emirates.

3Airbus Protect, 37 Avenue Escadrille Normandie Niemen, Blagnac, 31700, Occitanie,
France.

*Corresponding author(s). E-mail(s): eddie.billoir@airbus.com;
Contributing authors: romain.laborde@irit.fr; ahmad.wazan@zu.ac.ae;

yves.rutschle@airbus.com; abdelmalek.benzekri@irit.fr;

Abstract

With the new personal data protection or export control regulations, the Principle of Least Privilege
is mandatory and must be applied even for system administrators. This article explores the different
approaches implemented by the main operating systems (namely Linux, Windows, FreeBSD and
Solaris) to control the privileges of system administrators in order to enforce the Principle of Least
Privilege. We define a set of requirements to manage these privileges properly, striving to balance
adherence to the Principle of Least Privilege and usability. We also present a deep analysis of each
administrative privilege system based on these requirements and exhibit their benefits and limitations.
This evaluation also covers the efficiency of the currently available solutions to assess the difficulty
of performing administrative privileges management tasks. Following the results, the article presents
the RootAsRole project, which aims to simplify Linux privilege management. We describe the new
features introduced by the project and the difficulties we faced. This concrete experience allows us to
highlight research challenges.

Keywords: Access Control, Principle of least privilege, Operating system, Administrative privileges, Linux,
Windows, FreeBSD, Solaris

1 Introduction

The Principle of Least Privilege (POLP) is an
engineering process that involves understanding
users’ responsibilities to grant them only the min-
imum permissions required to accomplish their
tasks using computer systems [1]. This principle

applies to all users, especially those responsi-
ble for system administration, who often possess
administrative privileges directly or indirectly.

On the one hand, POLP is essential from a
security point of view to minimise the potential
attack surface and reduce the damage in case of
a security breach. It is the cornerstone of mod-
ern security models such as the zero-trust security
strategy [2], which sets least privilege as one of

1

its core principles. On the other hand, POLP is
also mandatory to comply with regulations re-
lated to personal data (e.g., GDPR [3]) or export
control [4].

Historically, the operating systems (OS) were
designed to have one administrator, but today
new hybrid usage of IT devices, either Per-
sonally Owned/Company-enabled or Corporate-
Owned/Personally Enabled, requires fine-grained
administrative privileges to prevent unlawful ac-
cess to personal data. The co-administration of
devices within the organisation or outsourcing to
third parties is another illustration of this need.
Although high-end proprietary software solutions
may be able to meet these requirements, OSs are
not designed to ensure POLP compliance accord-
ing to the Zero-Trust Architecture and the related
regulations.

In an operating system, administrative privi-
leges can be assimilated into a set of permissions
given to processes by OSs to execute critical
tasks such as adding a new user to the OS. The
POLP requires allocating distributed administra-
tive privileges to different processes even when
one administrator manages the device. However,
as processes can have permissions and processes
can start another process, the operating system
should permit processes and their administrators
to control and delegate these permissions through
the system.

In this article, we define the 8 first require-
ments of an ideal administrative privileges system
for an operating system and compare the compli-
ance of multiple modern OS with the identified re-
quirements. Additionally, we assess the efficiency
of each requirement for each OS in terms of usabil-
ity. We selected Windows, GNU/Linux, FreeBSD,
and Solaris for our study to cover a wide range of
operating systems prevalent in various computing
environments. MacOS was not included in this list
because the kernel privilege feature implemented
in the MacOS XNU kernel is restricted to Manda-
tory Access Control Framework (MACF) modules.
The MACF module in XNU is a kernel compo-
nent that provides a framework for implementing
mandatory access control in macOS, allowing de-
velopers to define custom access control policies
and enforce rules on system resource interactions.
MACF is a fork of security modules that came
from BSD. However, the MACF privilege feature

may not be compiled on the system [5]. Addi-
tionally, the features books state that the latter
is not present in the system [6]. It is believed
that this feature is only accessible to Apple kernel
developers.

Some experimental operating systems, such as
sel4, the KeyKOS family of operating systems
or object-capability systems [7], provide interest-
ing security mechanisms for administrative rights
management following the object-capability secu-
rity model [8]. However, our research focuses on
operating systems widely deployed in the industry
which is not the case of these alternative systems.

This article is an extension of our work previ-
ously presented at the CSNet 2023 conference [9],
which only focused on the Linux operating system.
To the best of our knowledge, this work is the first
to i) propose a comprehensive list of requirements
for comparing the administrative privilege mech-
anisms of current modern operating systems and
ii) evaluate the internal mechanisms implemented
by four major OS (Linux, FreeBSD, Windows and
Solaris). These requirements are influenced by the
previous research done by Miller et al. [8] that we
revised, adapted and completed to address current
OS designs. Furthermore, our requirements also
consider the different stakeholders involved in the
POLP enforcement: the system designers, the sys-
tem developers and the system administrators. In
addition, we present the RootAsRole project that
enhances the management of the administrative
privileges in Linux while adding more compliance
with the POLP requirements.

The rest of this article is structured as follows.
Firstly, in Section 3, we introduce the purpose
of administrative privilege and present 8 require-
ments that can be used for comparing different
operating systems. Then, in Section 4, we evalu-
ate the compliance of each operating system with
these requirements and assess their efficiency in
meeting them. Section 5 presents the RootAsRole
project, which is improving privileges manage-
ment and tries to address usability (Efficiency)
issues on Linux OS. Furthermore, this section
highlights some of the difficulties the project is
encountering during implementation. Finally, we
conclude the article and present some ideas for
future work.

2

2 Related Work

In 2005, Krohn et al. [10] presented “Asnix”, an
imaginary operating system following the object-
capability security model [11]. However, their
analysis did not explore Linux’s capabilities due
to challenges faced by Linux for years. Subsequent
developments in Linux have resolved these issues,
enabling further exploration of Linux capabilities
in subsequent research.

Hallyn et al. [12] presented using Linux Capa-
bilities as a working solution for addressing POLP
challenges. While this work demonstrated the ef-
fectiveness of the Linux capability model, it also
highlighted the ongoing difficulties in its practical
implementation.

Linux capabilities have primarily been used
for enhancing container isolation [13]. Despite
these improvements, vulnerabilities in containeri-
sation and isolation technologies have been iden-
tified [14–16], due to Linux capabilities issues.
To solve these challenges, the Linux community
has developed new tools and software for more
effective management of Linux capabilities [17,
18].

Managing Linux capabilities is still a challenge.
In [9], we tested different approaches for auto-
matically mapping Linux capabilities within the
kernel source code to the syscalls, but they pro-
duced inconclusive results. In parallel, Md Mehedi
Hasan et al. worked on this specific topic and pre-
sented an interesting solution to map capabilities
with their respective syscalls manually [19]. They
demonstrated the ability to conduct static and
dynamic analyses to extract syscalls from an Ex-
ecutable and Linkable Format (ELF) binary and
identify their required and optional capabilities
using the said map. Furthermore, they committed
to updating this map manually in line with kernel
evolutions. With those features, their tool named
‘Decap’ can substitute setUID-bit privileged pro-
grams to reduced capabilities set on extended
attribute binaries. This tool is an interesting so-
lution but the mapping between capabilities and
syscalls is done manually which limits the re-
productibility of their approach to other kernel
versions. In addition, the task is laborious and
prone to errors.

3 OS administrative
privileges management

3.1 What are administrative
privileges?

The kernel is the main component of an operating
system. It is mainly responsible for:

• The management of processes. Features in-
clude scheduling the execution of multiple
processes or tasks and managing the creation
and termination of processes.

• The memory management. The kernel pro-
vides a virtual memory space for each process
and allocates and de-allocates memory space.

• The management of the file system. The ker-
nel handles the file system access and file
permissions.

• The management of devices. The kernel in-
cludes drivers enabling software and hard-
ware device communication and handling
interruptions.

• The communication and synchronization be-
tween processes. The kernel provides Inter-
Process Communication features, a network
stack implementation and synchronisation
mechanisms like semaphore and mutex.

• The security management. The kernel pro-
vides security features to protect the previous
items.

System calls, or syscalls, are specific entry
points that enable processes to perform a range of
dedicated tasks, such as reading or writing files,
initiating new processes, and more[20, 21]. These
calls are an essential feature of operating system
kernels that facilitate efficient and secure com-
munication between processes and the underlying
system resources.

Figure 1 The Linux kernel source code to bypass file ac-
cess control

Operating System administrative privileges
are a set of advanced permissions that allow users
to access kernel services that can impact the

3

entire system. These privileges are required to per-
form specific actions, such as binding a system
TCP port with a number less than 1024, alter-
ing the expected behaviour of the OS kernel, or
bypassing protection mechanisms like file system
access control rules. These privileges are manda-
tory for administration tasks; usually, the “root”
or “administrator” owns all the administrative
privileges.

For example, Figure 1 is an extract of the
Linux kernel source code that allows a process
with the CAP DAC OVERRIDE administrative
privilege to bypass the file-system access control
mechanism for directories (lines 418-420). As a re-
sult, this enables root processes with this privilege
to perform any action on any directory.

3.2 OS administrative privileges
enforcement architectures

Figure 2 Permission-based enforcement architecture

An OS can implement different strategies
to enforce administrative privileges: the pure
permission-based strategy, the pure capability-
based strategy, and a combination of permission-
based and capability-based strategies. In a pure
permission-based system (Figure 2), privilege de-
cisions are taken at request time. In this case,
when a user space process performs a syscall (e.g.,
ProcessB executes syscallA in step 3), a request
will be made to a security module for each re-
stricted section of code of the kernel to check
whether or not the process can benefit from the

Figure 3 Capability-based enforcement architecture

specific associated functionality (Step 4). The se-
curity module will make decisions based on a
security policy previously specified by the security
administrators (Step 5) and return its decision to
the restricted service (Step 6). The second way
to manage these administrative privileges is called
the capability-based approach. This approach dis-
tributes capabilities that grant privileges through
processes (Figure 3). In this case, administrative
privilege decisions are made during process cre-
ation. Each process owns a set of capabilities
inherited from its parent and maintained by the
kernel. A process can retrieve its list of capabili-
ties and revoke a subset of its capabilities. When
ProcessA creates ProcessB (Step 1), the secu-
rity module calculates the capabilities of ProcessB
based on the ProcessA’s capabilities and poten-
tial external policies (Step 2). It stores them in a
dedicated structure provided by the kernel (Step
3). When ProcessB executes a syscall (Step 5), a
request is sent to the security module to check if
the process owns the required capabilities (Step
6). The security module can then check the capa-
bilities of the calling process from the dedicated
kernel structure (Steps 7 and 7’) to provide its
decision.

In the first approach, the system needs to
process a decision for each request, whereas the
decision is made at process creation and needs
to be maintained in memory in the second ap-
proach. Thus, permission-based systems require
more processing, while capability-based systems
need more memory to store decisions. However,
both approaches are interesting, and some so-
lutions combine decisions from multiple security
modules[22].

4

3.3 OS administrative privileges
requirements

We propose 8 requirements to define an ideal OS
administrative privileges system. Dynamic priv-
ileges management requirements were adapted
from [8]. They allow us to compare the different
mechanisms implemented by operating systems.
These requirements consider two system elements:
a program (or its instantiation as a process) and a
thread. A program possesses the capability to ex-
ecute another program, thereby substituting the
current process image with a new one. Similarly,
a thread can duplicate itself to generate a new
thread. Both of these activities establish a hierar-
chical relationship. For instance, a parent program
executes a child program, while a parent process
duplicates its child process. The requirements are
explained below:

A. Granularity

Figure 4 Privilege Granularity representation

Since POLP is about minimising the priv-
ileges, the initial focus is on Granularity,
shown in Figure 4. Indeed, POLP cannot
be implemented if the kernel provides only
coarse-grained privileges. Therefore, one ad-
ministrative privilege must refer to one action
on one kernel service. The granularity re-
quirement is not achieved if an administrative
privilege covers multiple actions on objects.
For instance, if a privilege permits bypass-
ing both read and write file access controls,
it should be split into two separate privi-
leges, one for action read and one for action
write. Additionally, we evaluate the precision

of action verbs; for instance, “perform admin-
istration tasks” is vague and covers multiple
kernel services. Permission “Change the time
zone” is more precise, specifying one specific
action on a particular kernel service.

B. Uniqueness

Figure 5 Privilege Uniqueness representation

Our second requirement is Uniqueness,
which means the same access cannot be
granted by two different privileges. For exam-
ple, Figure 5 shows on the left side that both
privileges A and B grant an “exec” access;
this example creates a dilemma on which
privilege is least privileged. Ensuring unique-
ness avoids such issues. Proving Uniqueness
is challenging [9], but it is easy to detect
a counter-example. Checking directly in the
documentation or source code can detect a
non-unique privilege set.

C. Enforcement Objects

The operating system must efficiently
grant privileged access by specifying enforce-
ment objects. For instance, privileges can be
enforced at the user level when assigning
privileged users. Here, the enforcement ob-
ject is the users. Adminstrative privileges can
be enforced on diverse objects (e.g., user ID,
group ID, file) to support POLP, ensuring
a balanced approach between security and
usability.

D. Dynamic Initialisation

5

Figure 6 A program starts another program with fewer
privileges

Dynamic initialisation requires the ability
to grant specific privileges when new pro-
grams are executed (i.e., when the current
process image is replaced with a new pro-
cess image), allowing on-the-fly management
of program dependencies, such as launching a
background service with reduced permissions
when triggered by a user-initiated action, see
Figure 6.

E. Init Authorisation Verification

Figure 7 A program attempts to launch another program
with two privileges, but the administrator grants only one.

To validate Dynamic Initialisation, admin-
istrators must be able to inspect and curtail
privileges granted during program initialisa-
tion, such as reviewing and adjusting access
rights assigned to a newly instantiated appli-
cation, see Figure 7. For the POLP objective,
we specify that this requirement should only
reduce inherited privileges and not grant new
ones.

F. Dynamic Delegation

Dynamic delegation means enabling
threads (or processes) to delegate a privilege
to a new thread or a new sub-process that
allows privileges to be turned on/off at any
time (see Figure 8). However, these privileges

Figure 8 A thread starts another thread with fewer priv-
ileges

should not be enabled by default. Threads
must explicitly activate the required priv-
ileges to specify the minimum time-of-use
and thus align with the POLP objective.

G. Self-Revocability

Figure 9 A thread revokes a privilege to itself

The self-revocability requirement allows a
thread to permanently revoke a privilege for
itself, preventing a new thread or new sub-
process from obtaining these privileges, see
Figure 9.

By incorporating Self-Revocability and Dy-
namic Delegation requirements, a thread can
adhere to the POLP for operating system
privileges. For instance, consider a process
initially possessing three privileges. If this
process spawns three sub-processes, each in-
heriting one privilege, and subsequently, the
parent process revokes its privileges, it results
in a process tree where only the child pro-
cesses retain privileges. Significantly, these
child processes are limited to using their re-
spective privileges, and none of them can
wield multiple privileges, as the parent pro-
cess has revoked them, as presented in
Figure 10.

H. Mandatory Runtime Revocation

6

Figure 10 POLP applied by parent-revoking and Dy-
namic Delegation

Figure 11 Revocation triggered by kernel event that re-
vokes a privilege of a thread

This requirement allows an administrator
or system to verify and revoke privileges for
any thread at any time. This feature can
be useful for a system that needs to dy-
namically restrict access to privileges and
implement a dynamic separation of privi-
leges. This requirement further elaborates on
POLP and addresses specific security needs.
For instance, on Linux, the use of multiple
privileges can create vulnerabilities [23]. Re-
voking the other privileges when one of them
is used can be an effective security measure.

3.3.1 Usability Considerations

While these requirements offer valuable security
properties, they do not guarantee usability [24].
Security services must be user-friendly for de-
velopers, administrators, and even inexperienced
users. However, previous requirements items con-
cern developers and administrators. We will not
consider that an inexperienced user can enrol in an
administrator job, as we evaluate Efficiency and
not the Learnability. For Efficiency, we assess the
number of steps needed to complete a task [25].
These steps could include typing a command line,
a mouse click, configuring a value in a file, or
writing one line in the source code of a program.
For this comparison, we distinguish two roles:
Administrator and Developer. This distinction is
based on the unique considerations for programs
created by developers and the responsibilities of
administrators overseeing them.

For program’s Developers, we are looking at
two levels of implementation: userland API and
kernel-internal API. If the goal can be achieved
in userland, counting the steps using syscalls
is straightforward. If it requires using a kernel-
internal API, we cannot determine the number
of steps because it involves processes beyond our
current scope, like comparing the kernel recompi-
lation process. It’s also possible that there isn’t a
kernel-internal API designed for our goal, neces-
sitating a complex kernel modification from the
start. For this article, our initial focus is on the im-
plementation of program requirements, including
Dynamic Initialisation, Dynamic Delegation and
Self-Revocability. According to the previous para-
graph, as we evaluate Efficiency, we specifically
analyse the number of source code lines necessary
for their fulfilment. To ensure a fair comparison,
we only count lines of code in the C language.
We use the cloc tool to count C code lines in our
examples [26].

For administrators, Linux, FreeBSD, and So-
laris kernels do not independently handle user
interaction. Therefore, our comparison utilises a
basic GNU/Linux setup with minimal user inter-
action tools for Linux capabilities. We consider
FreeBSD and Solaris only minimal installations.
This article examines the availability of compre-
hensive tools to configure proposed services. This
assessment determines the number of actions an
administrator requires to enforce the designated

7

Enforcement Objects. Additionally, we analyse the
Efficiency in configuring Mandatory Runtime Re-
vocation and Init Authorisation Verification, con-
sidering the number of commands involved. When
an operating system does not comply with require-
ments, we explore its feasibility by a developer,
considering the criteria outlined in the preceding
paragraphs.

4 OS privileges management
implementations

4.1 Linux Capabilities

Linux divides the privileges associated with the
superuser into distinct units called capabilities.
These capabilities enable privileges to be assigned
to individual applications or tasks without the
need for them to run with root, the superuser ac-
count. They initially expressed in implementing
the POSIX 1003.1e draft standard [27]. However,
this draft was withdrawn, allowing Linux kernel
developers to modify, maintain and enhance it.

4.1.1 Linux Requirements evaluation

The Linux capabilities can grant access to ker-
nel services or bypass some security policies.
As an example, CAP NET BIND SERVICE is
a capability that is needed to bind a socket
on TCP/UDP ports between 1 and 1024, and
CAP DAC OVERRIDE allows bypassing the
DAC file-system access control. Due to the cur-
rent implementation slot limit, Linux decided
that CAP SYS ADMIN is an overridden capa-
bility that does not define any scope; this de-
cision was offering flexibility for kernel design-
ers to manage capability definitions and keeping
a better performance goal [28]. Regarding our
Granularity requirement, there is an important
issue with Linux. Out of the CAP SYS ADMIN
case, we can observe that CAP NET ADMIN and
CAP SYS RESOURCE also allow many actions
on the system without a capability for each of
them. While these actions may be very specific,
they share multiple use cases. However, we can
also read that CAP WAKE ALARM is a privi-
lege needed only to wake up the system based
on a timer, which is very specific in contrast to
previous ones. Based on this information, we can

say that Linux has an inconsistent granularity be-
cause some privileges are general and overloaded,
and some are very precise without valid docu-
mentation justification. Even the documentation
explains that there are mistakes in capabilities
assignation management [29].

Our previous work [9] showed that the re-
quirement for Uniqueness was not fully met. This
is because some privileges have the same ac-
cess. For instance, CAP DAC OVERRIDE and
CAP DAC READ SEARCH privileges have over-
lapping access, and their lack of fine granularity
and uniqueness is evident. The former privilege
allows bypassing reading, writing, finding, execut-
ing, and many more actions on the file system,
while the latter enables bypassing reading and
finding any file on the system. Although this de-
sign makes sense in specific use-case scenarios,
such as finding text occurrences on the entire
system, choosing a specific privilege for this par-
ticular use-case is historical.

The Linux capability system relies on two En-
forcement Objects: identity and file. Identities like
user or group identifiers can be used as enforce-
ment objects using the PAM ‘pam cap.so’ module
to grant privileges to user sessions. Binary files
are enforcement objects using Linux extended at-
tributes that grant them privileges. Any other
criterion may be an additional software layer to
these enforcement objects. For example, RootAs-
Role is our current software that implements a
Role-based Access Control model to increase the
Linux credentials manipulation usability, includ-
ing the Linux Capabilities. However, the privileges
are granted to the binary through extended at-
tributes, making file-system compatibility depen-
dent.

The kernel maintains 5 sets of capabilities in
memory to manage POLP dynamically: Effective,
Permitted, Inherited, Ambient, and Bounding.
These sets define the state of the discretionary
and mandatory privilege policy. With Effective,
Permitted and Bounding sets, developers can use
privileges with a time-of-use criterion and dis-
tribute them across the child threads. These three
sets comply with Dynamic Delegation and Self-
Revocability requirements. With Inherited, Ambi-
ent and Bounding sets, developers and adminis-
trators can determine how privileges should be
inherited when executing another binary. These

8

three sets comply with Dynamic Initialisation
requirement.

However, these sets do not fulfill Init Autho-
risation Verification requirement because admin-
istrators cannot refuse capabilities inheritance.
Administrators can implement this feature using
a Linux Security Module (LSM). LSM is a manda-
tory access control feature that makes decisions on
access control to all resources and features in the
kernel. An LSM can use the bprm creds from file
hook1. An LSM hook is a specific point within
the Linux kernel where security modules can inter-
cept and control system calls or other operations
to enforce security policies. However, this hook is
not accessible through the SELinux or AppArmor
LSMs. An administrator would thus have to rely
on a new LSM. There are two ways to create
an LSM on Linux: one with enhanced Berkley
Packet Filter feature (BPF LSM) and one through
kernel development and recompilation. However,
the BPF LSM is exclusively read-only, not allow-
ing a process to edit capabilities. The last option
is to develop and recompile the kernel with this
new LSM; as a consequence, we can say that the
kernel does not comply with Init Authorisation
Verification requirement.

Also, Linux theoretically complies with
Mandatory Runtime Revocation as LSM can
intercept most events on the kernel and deny priv-
ilege requests. SELinux and AppArmor, however,
do not modify the credentials structure, so they
do not allow administrators to revoke capabilities
granted at initialisation.

4.1.2 Linux Usability evaluation

For a Developer’s program, Dynamic Initialisa-
tion is automatic, as the original program may
be initiated directly with correct Inheritable priv-
ilege sets. Additionally, this manner completely
complies with Dynamic Delegation rule, which
privilege should not be enabled by default. How-
ever, if the automatic way is inappropriate for the
program use cases, a program may need to add
privilege in the Ambient set. libcap library is the
recommended way to perform it [30]. Figure 12
presents how to raise ambient capabilities before

1The bprm creds from file hook allows editing inherited
capabilities when a program calls a binary

Figure 12 Set ambient capabilities before executing pro-
gram

running ‘execve()’. This implementation needs 14
lines of C code without the ‘execve()’ call.

Figure 13 A clearing Effective Set function from current
capabilities sets

Concerning the Dynamic Delegation require-
ment, it is also automatic on Linux; as a developer
decides to create a thread, Linux duplicates the
caller capabilities sets. However, if they are ef-
fective in the caller, sub-processes will also have
theirs, which does not automatically comply with
our requirements. To be fully compliant, a devel-
oper must clear the Effective set before creating a
sub-thread; see Figure 13 above. As we explained
in Section 3.3.1, the example is iterating through
all capabilities as they need to be cleared individ-
ually with this API. This example needs 21 lines
of C code.

9

Figure 14 Proper and permanent capabilities revocation

Concerning Self-Revocability, the program will
need CAP SETPCAP privilege as a prerequisite
to revoke its privileges. This prerequisite is for
a specific security reason [31]. Furthermore, to
prevent any privileges from being granted in any
other way after revocation, Linux requires to turn
on multiple security bits to the current process
credentials (Line 24 on Figure 14). Thus, revoca-
tion is definitive. In Figure 14, we summarised the
implementation for this article’s clarity; a proper
implementation would require memory and error
management (and more header includes). The en-
tire implementation of this code is about 58 lines
of code.

auth optional pam_cap.so

Figure 15 Line to invoke pam cap.so during PAM au-
thentication in PAM configuration files

cap_net_raw alice

Figure 16 Line to grant Alice the CAP NET RAW priv-
ilege in pam cap.so capability.conf file

As we introduced users/groups in Enforcement
Objects, to grant a capability to a user, an ad-
ministrator needs to add the ‘pam cap.so’ module
to the authentication configuration in Figure 15,
then configure a line to define which privilege to

grant to Alice. So there are 3 steps to grant a priv-
ilege to a user: 1 for the module initialisation, 1
for specifying granted privileges and one to specify
the username or group name.

setcap "cap_net_raw=ep" /bin/ping

Figure 17 Command to grant cap net raw to ping pro-
gram

As we introduced programs in Enforcement
Objects, an administrator needs to perform the
‘setcap’ command with the capabilities to grant
them to a program (see Figure 17). Following the
same calculation, there are 3 steps: one for the
command syntax, one for the privileges and one
for the binary path.

Now, we evaluate how system administrators
can implement Init Authorisation Verification;
however, its current implementation is not feasi-
ble, as detailed in the previous section. For ad-
ministration developers, fulfilling this requirement
entails creating an entire legacy LSM (Linux Se-
curity Module). Quantifying the number of steps
necessary is challenging due to the substantial
work involved in meeting this requirement. Fur-
thermore, considering that an LSM operates on
the kernel side, the feasibility is deemed to be
challenging.

4.1.3 Linux conclusion

In summary, Linux lacks a well-defined set of priv-
ileges, posing challenges for the overall system.
Nevertheless, the operating system incorporates
noteworthy security mechanisms that dynamically
allow programs to manage their privileges under
administrator authorisation. However, these se-
curity mechanisms could be enhanced to permit
more control and usability for administrators.

4.2 Solaris Capabilities

Solaris presents an interesting approach for dis-
tributing root privileges to Solaris users. Their
approach has been stable since it was defined in
2003. The approach adopted the role-based access
control model for defining roles that Solaris users
can assume. RBAC implementation for Solaris dif-
fers from the NIST standard proposed by David F.
Ferraiolo and al [32]. Indeed, RBAC Solaris roles

10

assign a set of profiles. A profile on Solaris is a set
of permissions. So, roles assign a set of subsets of
permissions instead of just a set of permissions. In
this OS, the root account is a role that users can
assume. More precisely, roles are special user ac-
counts that cannot log in; thus, each role has an
associated password that can be shared by a group
of actors that share the same role.

4.2.1 Solaris Requirements evaluation

Privileges Objects criteria

file privileges, proc exec Filename, Wildcarded File
net privaddr Network port, Range of ports
proc setid Username, Uid, Uid range

Table 1 Available privileges extension in Solaris 11.4

In Solaris 11.4, the latest version, there are
90 privileges. They are finer-grained than Linux
(e.g., discretionary file access control privileges
that are adequately separated) but still regroup a
list of actions that can be imprecise. For example,
there is the sys config privilege that has an im-
precise description with “various system configu-
ration tasks” term that does not precisely describe
which action an administrator can perform on the
system. However, administrators can refine some
resources for some privileges with more precision.
For example, administrators can limit the use of
net privaddr (which allows any program to bind
to a port less than 1024) to port 80 and TCP pro-
tocols. This mechanism applies to every privilege
associated with specific object types such as users,
network ports, and files as described in Table 1.
Thus, it allows precise privilege usage contexts.
However, this feature does not solve the granu-
larity issue of other unprecise privileges. However,
with better granularity than Linux, Solaris still
has an incorrect Granularity. Given that Granu-
larity is incorrect and it is related to Uniqueness,
we cannot know if Uniqueness is reached.

Solaris presents a different approach to man-
aging privileges. Instead of storing privileges in
the extended attributes of the executable, So-
laris provides administrators with a set of cen-
tral databases (user attr, prof attr, exec attr and
auth attr) for enforcing privileges based on a user

or roles only. Indeed, it is impossible to grant priv-
ileges to a group directly; the only way to do it is
through a role.

From the kernel point of view, Solaris defines
4 privilege sets for each process: Effective set,
Permitted set, Inheritable set, and Limit set. Ef-
fective and Permitted sets are handled in the same
manner as Linux. However, Inheritable and Limit
sets are calculated differently during the ‘exec()’
call. This implementation complies in a very sim-
ilar way to Linux, thus leading to an equivalent
compliance in dynamic privilege management.

On Solaris, Trusted Extension is the mecha-
nism to manage mandatory multi-level security
policy and general mandatory access controls on
the kernel. However, it does not dynamically man-
age Mandatory Runtime Revocation because their
policy is fixed through “zones” that cannot be
modified at runtime [33].

4.2.2 Solaris Usability evaluation

Figure 18 set inheritable privileges on current process

For a developer’s program, as Linux does, Dy-
namic Initialisation occurs automatically when
the original program is initiated directly with the
correct inheritable privilege sets. Unlike Linux,
it is automatically set to the Effective set, en-
abling privileges by default, which does not fully
comply with our requirements. If the automatic
method is unsuitable for the program’s use case,
the program may need to adjust privileges in the

11

inheritable set, managed through the ‘setppriv()’
syscall. Figure 18 illustrates how to adjust inheri-
table privileges. In Solaris, unlike Linux, a process
has a default set of privileges, and implementing
this example would also remove ’basic’ privileges,
which are required to perform many ‘basic’ actions
that are not specific to administrative tasks (e.g.,
create a sub-process). The code for this example
consists of 19 lines in C.

As for Linux,Dynamic Delegation is automatic
and does not fully comply with our requirements.
To achieve full compliance, developers must clear
their Effective set before creating a sub-thread.
This requirement can be done similarly to the ap-
proach shown in Figure 18. The subtle difference is
to remove lines 16-19 and set PRIV EFFECTIVE
instead of PRIV INHERITABLE in the ‘setp-
priv()’ syscall. Without these lines, the modified
example is 15 lines of C code.

Figure 19 Revoke privileges on current process

Concerning Self-Revocability, Figure 19 re-
moves every set’s privileges. This example requires
19 lines of code, similar to previous requirements.

usermod -K defaultpriv=basic ,net_privaddr alice

Figure 20 Command to grant net privaddr to user alice

As we introduced the user in Enforcement
Objects, to grant a capability to a user, an admin-
istrator needs to perform the ‘usermod’ command
by specifying parameters as shown in Figure 20.
So there are 3 steps: 1 for the command syntax,
1 for the user name, and lastly, the privileges to
grant.

Figure 21 Role r tcpdump creation, assigned to ebilloir,
to perform tcpdump with net rawaccess

As we introduced Roles in Enforcement Ob-
jects, Figure 21 shows how to create a ‘right
profile’ that designates tcpdump binary with
net rawaccess privilege. This right profile is as-
signed to a new role named ‘r tcpdump’, then
being assigned to ebilloir. This example allows
ebilloir to switch to this role and use tcpdump.
This screen does not show that it requires setting
the r tcpdump password. Following each user-
input screen line, it needs :

Line 1. 2 steps
Line 2. 1 step
Line 3. 2 steps
Line 4. 2 steps
Line 5. 2 steps
Line 6. 1 step
Line 7. 1 step
Line 8. 1 step
Line 9. 4 steps
Line 10. 3 steps
The following lines are just for testing pur-

poses. In total, 19 steps are required to set up a
Role on Solaris. Adding the missing ‘sudo passwd
r tcpdump’ command is 2 additional steps, and
changing the password is 2 steps, as you need to
provide and confirm the password. In total, there
are 23 steps.

12

Finally, we did not find an API for Program
Enforcement Object, Init Authorisation Verifica-
tion and Mandatory Runtime Revocation, as the
kernel source code is not available.

4.2.3 Solaris conclusion

Solaris privileges are more accessible than Linux
because Enforcement Objects are centralised and
mandatory. They are more usable than Linux
because of their more precise Granularity but
less understandable than Linux because of their
imprecise documentation. These implementation
mechanisms make our administrator usability bet-
ter than Linux but still need significant effort to
make them easy to use.

4.3 Microsoft Windows Privilege
Constants

For Microsoft Windows products, we are eval-
uating Windows 10/11 Pro. Windows 10/11
Home editions don’t have the necessary tools
for our comparison; we explain that below in
Section 4.3.2. Also, we don’t consider Windows
Server products as the main difference between
them is that they are local-only solutions for
Windows 10/11 and distributed solutions with
many additional distributed access control models
for Windows Server. As these additional models
are accessible only through OS network direc-
tory services, they are not considered in this
comparison. Microsoft Windows utilises “privilege
constants” [34]. These privileges serve as criteria
for permissions in different access control mod-
els, as presented by Microsoft through tools like
“Local Security Policy” for individual systems or
“Local Group Policy Editor” for the distributed
version.

4.3.1 Windows Requirement
evaluation

While Windows privileges exhibit a relatively fine-
grained set of privileges, we did not notice any
evident granularity issue on their documentation.
Windows present 36 privileges linked to a specific
user-level use case (e.g., “Back up files and direc-
tories”). Windows being closed-source, we cannot
assess it. These privileges rely on finer-grain priv-
ileges that are unavailable from the user’s point of

view. Thus, we can also not evaluate the Unique-
ness requirement at this stage. However, Gran-
ularity is sufficient for general Windows system
usage. Indeed, suppose user Alice wants to back
up her system. In that case, Alice needs the Se-
BackupPrivilege without worrying about another
privilege because the system will be in a particular
state that allows its entire backup.

On Windows, the Identity is the unique en-
forcement type for privilege management. A Win-
dows Identity can be a User, Group, Computer
system or Service. When a privilege is bestowed
on an identity, it possesses every privilege for ev-
ery initiated session. This exclusive feature poses a
challenge in the context of the POLP, as adminis-
trators are compelled to preemptively grant users
a broad range of privileges or implement an inter-
face script to change the user identity to perform
tasks temporarily. Another challenge is managing
the authentication of every specific identity for
every case.

In conclusion, while privileged identity is an in-
teresting solution for specialised cases, making it a
unique and general solution is laborious for admin-
istrators who want to respect POLP and prevent
privilege escalation. This approach implies that
unless the administrator’s team manages a heavy
business privilege access management process,
most will adhere to the standard administrator
configuration and not manage these privileges. So,
this unique object enforcement negatively impacts
the administrator’s usability.

Regarding Dynamic privilege management,
the Windows API allows programs to spawn
another subprogram with duplicated privileges,
which the parent can further restrict before
spawning the child program. This complies with
Dynamic Initialisation and Dynamic Delegation
requirements. Also, programs can reduce privi-
leges with the ‘AdjustTokenPrivileges()’ function,
which complies with the Self-Revocability require-
ment.

While Linux users can grant or restrict priv-
ileges to sub-programs, Windows links privileges
to the user identity and thus offers no mecha-
nism for the user to manage privileges of their
programs. In other terms, it is impossible for an
administrator to revoke a privilege at any time
during a process or to reduce inherited privileges
to a new subprogram. So, Windows does not com-
ply with Mandatory Runtime Revocation and Init

13

Authorisation Verification requirements. Indeed,
Windows only allows Identity type enforcement as
the only way to manage “Privileges Constants”.

4.3.2 Windows Usability evaluation

In Windows, achieving Dynamic Initialisation and
Dynamic Delegation is possible through the use
of the ‘CreateRestrictedToken()’ function, while
Dynamic Revocation can be accomplished using
‘AdjustTokenPrivileges()’. John Viega and Matt
Messier present many examples in their “Secure
Programming Cookbook for C and C++” book
section 1.2[35]. If we implement their pseudo-code
with basic error handling (printing the error and
returning in case of an error), the C code re-
quired for Dynamic Initialisation and Dynamic
Delegation amounts to 56 lines. Moreover, Dy-
namic Revocation necessitates approximately 34
lines.

Figure 22 pseudo-code Function to turn a privilege on or
off

Additionally, for a Dynamic Delegation, like
other OS by default, a privilege can be enabled
and disabled. Turning a privilege on and off could
be made by using examples provided by Microsoft,
that are available on their website[36]; a simplified
pseudo-code is shown in Figure 22.

In Windows, there are multiple ways to en-
force privileges. In a Microsoft environment with
Windows Server, administrators can utilise Global

Figure 23 Local Security Policy window

Policy Objects (GPOs) to enforce these objects
across the entire Active Directory, the Microsoft’s
centralised directory service for managing multiple
systems.

For Windows 10/11 Pro, administrators can
easily access security policies by pressing ‘Win-
dows + R’, typing ‘secpol.msc’, and pressing
enter. However, this method may not be avail-
able for specific Windows Home editions, which
require additional steps (beyond the scope of this
explanation).

Now, let us consider the process of granting
the “SeDebugPrivilege” to the local user Alice. To
accomplish this, an administrator needs to follow
these steps:
1. Right-click on the “Debug programs” privi-

lege
2. Left-click on “Property”
3. Left-click on “Add User or Group”
4. Left-click on “Advanced”
5. Left-click on “Find Now”
6. Double-click on Alice’s username
7. Left-click on “OK”
8. Left-click on “Apply”
9. Finally, left-click on “OK”

14

This entire process involves 12 steps. However,
it requires repeating the 9 last steps for each
privilege needed.

4.3.3 Windows conclusion

Finally, Windows offers minimal management of
a well-defined set of privileges. While developers
have many features to manage their privileges, ad-
ministrators need more control and tools. In other
words, if a malicious program owns a privilege,
it can do whatever it wants, and administrators
cannot take effective action on the program unless
they kill it.

4.4 FreeBSD Privilege

In 2006, FreeBSD introduced a privilege feature
as a fine-grained access control criterion. Since its
implementation, around 235 privileges have been
added. These privileges are typically labelled as
“PRIV COMPONENT ACTION” or describe an
action related to a feature or component. Unlike
previously evaluated operating systems, FreeBSD
does not store privileges in the process credentials
structure. Instead, each privilege is requested and
evaluated by security modules that hook into the
‘priv check’ privilege request. While mechanisms
are in place in the kernel to implement these privi-
lege checks, they are not, in fact, currently used. It
is up to the system administrator to define a policy
using a security module. However, their website
has a remark on the capability-based model fea-
tures and decided not to risk editing the current
implementation to this new model[37]. As ex-
plained in Section 3.2, one model is not better than
the other. Furthermore, in 2012, FreeBSD imple-
mented Capsicum, an Object-capability security
model that supports fine-grained user-sandboxing
features[38]. It is not intended for administrative
task management, so it is not included in our
paper comparison.

4.4.1 FreeBSD Requirements
evaluation

In terms of Granularity, FreeBSD aims to be
the most fine-grained possible. Privilege requests
are minimised in their source code, often occur-
ring within a single function or specific condition.
This design allows kernel developers to define a
privilege precisely by examining the source code.

However, for Uniqueness, as explained in Require-
ment B., it is difficult to check, and we did not
notice any uniqueness issues in the source code.
So, we believe it may be reached.

FreeBSD security modules determine whether
to grant or deny privileges directly from every
kernel information. The outcome depends on the
specific implementation of the security module.
In FreeBSD, the SEBSD module[39], inspired by
SELinux on Linux, aims to follow a similar de-
sign. Despite SEBSD being inactive for over a
decade, its properties from FreeBSD implementa-
tion are noteworthy. It exclusively manages privi-
leges through SEBSD configuration, serving as the
sole mechanism for enforcing security policies on
the system. As a result, there is no specific En-
forcement Object on the FreeBSD system. Indeed,
SEBSD could arbitrarily decide to give privi-
leged access because of a whole security context,
while another security module can choose another
criterion.

As processes do not have an API to do it, they
cannot initiate, delegate or revoke them, thus set-
ting Dynamic initialisation, Dynamic delegation,
Self revocability, Init Authorisation Verification
impossible. However, Mandatory Runtime Revo-
cation is fully compliant as the decision is made
at each request and configurable through security
modules.

4.4.2 FreeBSD Usability evaluation

FreeBSD relies on its security modules for configu-
ration but lacks a universal method for managing
privileges in common scenarios. Consequently, as
developers or administrators, it is challenging to
determine the steps needed to meet our require-
ments. FreeBSD does offer kernel APIs for secu-
rity modules to implement generic Enforcement
Objects, adhere to Init Authorisation Verifica-
tion and Mandatory Runtime Revocation require-
ments. However, achieving Dynamic Initialisation,
Dynamic Delegation, or Self-Revocability is not
directly available using an API. Indeed, creating
such API also requires managing third-party pro-
grams to utilise this API, which is not included by
default in the system.

15

Table 2 Comparison between OS of multiple privilege management requirements

Windows 11H2 Linux 6.7 FreeBSD 14 Solaris 11.4

Granularity yes
(use-case based)

no yes
(kernel-based)

no

Uniqueness possible no possible unknown
Enforcement Objects User/Group/

Service
User/Group,
File

None1 User, Role

Dynamic Initialisation yes yes no yes
Init Authorisation Verification no no no no
Dynamic Delegation yes yes no yes
Self-Revocability yes yes2 no yes
Mandatory Runtime Revocation no partial yes no
1 Without TrustedBSD, no objects are associated with these privileges
2 It can completely turn off all granting mechanisms

Table 3 Usability (Efficiency) comparison between OS for requirements

Windows 11H2 Linux 6.7 FreeBSD 14 Solaris 11.4

User/Group Enforcement Object 12 Steps1,2 3 Steps kernel API 3 Steps
Program Enforcement Object N/A 3 Steps kernel API N/A
Role Enforcement Object N/A kernel API kernel API 23 Steps
Dynamic Initialisation 56 C lines 14 C lines no API 19 C lines
Init Authorisation Verification no API kernel API kernel API no API
Dynamic Delegation 56 C lines 21 C lines no API 18 C lines
Self-Revocability 34 C lines 58 C lines no API 18 C lines
Mandatory Runtime Revocation no API kernel API kernel API no API

1 This includes Service Enforcement Object
2 For each privilege

4.4.3 FreeBSD conclusion

FreeBSD’s approach is interesting; it allows a
well-defined and scalable privilege set without per-
formance issues. However, it misses a by-default
ability for programs to manage these privileges
and the administrator’s authorisation. Indeed,
without these features, privileges are only stati-
cally managed for specific use cases, making the
operating system security exclusive for security
system designers, which is not forcibly the purpose
of this operating system.

4.5 Final analysis

Finally, every OS has at least one interesting ap-
proach to managing administrative privileges. We
summarize the results of our requirements eval-
uation in Table 2. On Windows, the granularity
approach is based on use-case, while on FreeBSD,

it is based on kernel needs; this shows two com-
plementary approaches. Indeed, we could imagine
an OS that develops a set of privileges at the ker-
nel level and one at the use-case level. This design
could permit kernel developers to respect POLP
at their level and administrators to have a more
straightforward set of privileges that can be tai-
lored with specific kernel privileges. Additionally,
the administrator should easily configure use-
case-level privileges by selecting the kernel-level
privileges without having to modify the kernel.
This would allow one to customise the system’s
use cases to their usage. Uniqueness is challenging
to prove; however, we found Uniqueness issues in
Linux documentation and source code. Other op-
erating systems may comply with Uniqueness, but
we still need to find an algorithm to prove it.

16

We have observed that capability-based sys-
tems face challenges in managing dynamic privi-
lege assignments. This is because not all require-
ments for dynamic privilege management are met,
making it challenging for administrators to man-
age the system effectively. FreeBSD is the unique
permission-based system tested. It is unfortu-
nate that dynamic privilege management was not
implemented on it, as the design of a permission-
based system does not exclude the implementation
of every requirement.

Efficiency Usability results are presented in
Table 3. Linux has an extensible design that al-
lows it to meet almost any requirement, making
it advantageous compared to other operating sys-
tems. Otherwise, FreeBSD was not designed to
interact with users, even with minimal tools in-
stalled. Additionally, its system requires recompil-
ing for many requirements, a process that was not
evaluated. However, like Linux, FreeBSD has an
extensible design but requires a lot of kernel-level
development to meet the requirements. Finally, by
default, Windows requires its graphical interface
exclusively to perform administrator tasks. How-
ever, graphical tasks can easily multiply and may
require scripting to be accomplished effectively.
Those subtlety were not evaluated in these tests.

Considering these conclusions, we cannot say
that one operating system has a more complete
implementation of administrative privileges than
another, as their focuses differ.

5 The RootAsRole project:
Improving Linux
Capabilities management

In this section, we present RootAsRole, a new
security mechanism we developed for controlling
Linux capabilities at the user level. We describe
our goal and the latest improvements we in-
troduced to provide a useful tool that allows
fine-grained implementations of POLP. We also
highlight open questions.

Today, most Linux distributions propose the
sudo command to elevate privileges. sudo is a tool
that allows a system administrator to delegate
commands with potentially all root privileges to
users [40]. sudo includes many other security fea-
tures, but we will not elaborate on them. However,
sudo does not handle Linux Capabilities. Since

Figure 24 Design of role configuration model

no sophisticated and easy-to-use mechanisms were
available to manage capabilities, we developed
RootAsRole [41, 42] a new security module to con-
trol the Linux capabilities given to applications. In
addition, unlike sudo, which does not include any
access control model, we chose to implement the
Role-Based Access Control model (RBAC) that
consists of granting (and restricting) access per-
missions to roles, and then these roles are assigned
to users [43]. The RBAC model allows grouping
administrative privileges and tasks by roles. We
chose this model because it impels the implemen-
tation of POLP since tasks and duties must be
explicitly analysed to identify roles.

To implement least privilege more precisely
with RootAsRole, we took many initiatives to re-
solve design, usability and reliability issues for
users and administrators. To illustrate these con-
ceptual issues, we introduce a tiny web business
example. Let us consider user Alice, who man-
ages an Apache2 web server installed on a Linux
machine. Consequently, she should be allowed dif-
ferent tasks such as starting/stopping the web
server, modifying the configuration files, and many
more web application administration tasks. In ad-
dition, Alice is a web developer. So, she should
be able to add her code to the web server but
also use the command tcpdump to debug the new

17

web protocol she is implementing. We will develop
this example in the rest of this article to exhibit
the issues when implementing POLP and how we
partially handle them.

1 <role name="web_admin">

2 <actors >

3 <user name="alice"/>

4 </actors >

5 <task capabilities="cap_net_bind_service"

6 setuser="apache"

7 setgroups="apache">

8 <command >/usr/local/sbin/apache2ctl start</command >

9 <command >/usr/local/sbin/apache2ctl restart </command >

10 <command >/usr/local/sbin/apache2ctl reload </command >

11 <purpose >Manage the apache2 service </purpose >

12 </task>

13 ...

14 </role>

15 <role name="web_dev">

16 <actors >

17 <user name="alice"/>

18 <group names="softteam"/>

19 </actors >

20 <task capabilities="cap_net_raw ,cap_net_admin">

21 <command >/usr/bin/tcpdump </command >

22 <purpose >Debug HTTP responses </purpose >

23 </task>

24 ...

25 </role>

26 ...

Figure 25 A Sample RootAsRole policy for our webserver
example

5.1 Administrative issues

5.1.1 Making Linux capabilities and
POSIX DAC policies consistent

We developed a language that allows the admin-
istrators to specify which users can use which
commands with which capabilities. This language
extends the RBAC model to include capabilities
in the permissions assigned to roles. The imple-
mentation of our model is described in Figure 24.
In this model, actors, such as users or groups, are
assigned roles. Permissions are assigned to roles,
which are sets of commands, and grant Linux ca-
pabilities. We also require the administrator to
explicitly state the purpose of the permission as-
signment in a human-readable format to enhance
the maintainability of the policies. This new model
improves the initial one.

Figure 25 is the RootAsRole policy of the use
case described in the project presentation section.
This policy includes two roles: web admin and
web dev. The <actors> element inside the role
definition represents the user assignment relation.
Here, Alice has been assigned to both roles (see
lines 3 and 15). It is also possible to assign a Linux
group to a role like in line 16. Administrators

can specify the tasks assigned roles by includ-
ing them in <task> elements. Each task lists a
set of commands, and the associated permitted
Linux capabilities. For instance, role web admin

can use CAP NET BIND SERVICE (i.e., bind a port
less than 1024) for starting, restarting and reload-
ing the apache2 web server. This task is related to
managing the apache2 service as described in line
11.

In order to assign tasks to their users, admin-
istrators need to manipulate the entire credentials
context and environment variables sessions. For
example, Alice may need to change her effec-
tive user to a dedicated system user (e.g., user
apache) when configuring the apache2 web server
to be consistent with the DAC policy applied on
the file system. In the previous version of our
tool, RootAsRole managed the Linux capabilities
feature exclusively, resulting in inconsistencies be-
tween RootAsRole policies and DAC policies. So,
we implemented the effective user/group change
for a task. The tool also manages an environment
variable policy that applies a whitelist, a filter
list and a define/replace list. Other variables are
removed from the created session. According to
various vulnerabilities found on shells, the filter
list is a simple character filter, e.g., if the variable
contains ‘%’ or ‘/’ characters, then the variable
is filtered. This policy is similar to the sudo tool.
We noticed that sudo enables an administrator to
choose different algorithms for managing the envi-
ronment variable. However, most of them are not
recommended for use because of their potential
vulnerabilities, e.g., CVE-2014-9680, CVE-2014-
10070, and CVE-2014-0106, to name but a few.
This explains why we chose to implement only the
default one that is currently considered safe.

5.1.2 Capabilities are unknown by
administrators

We noticed that the documentation for Linux
capabilities is understandable for expert Linux de-
velopers, as they are easily contextualised with
the source code. On the other hand, adminis-
trators may struggle with it. Indeed, the Linux
usage manual describes some capabilities at the
developer’s level, but it does not explain their
precise administrative use cases nor their ex-
act purpose for each system call. For example,

18

alice@webserver :~$ capable -c "/usr/sbin/tcpdump"
tcpdump: enp1s0: You don ’t have permission to
capture on that device
(socket: Operation not permitted)

Here are all the capabilities intercepted for
this program :
cap_net_admin , cap_net_raw
WARNING: These capabilities aren ’t mandatory ,
but they can change the behavior of tested
program.
WARNING: CAP_SYS_ADMIN is rarely needed and can
be very dangerous to grant

Figure 26 Output of capable command for tcpdump

the CAP SYS PACCT capability has only “Use
acct(2).” for description. Therefore, it was chal-
lenging to configure a policy. To help administra-
tors in this task, we developed a tool called capable
that detects the requested capabilities for a spe-
cific command [41]. For example, Alice can use
capable to determine which capability is needed for
the tcpdump tool. Here tcpdump requires network
capabilities, which our tool identifies and displays
in Figure 26.

Capable uses extended Berkley Packet Filter
(eBPF) technology to hook into the capability
verification method of the kernel to collect what
capabilities are requested for all processes. It then
sets up an unprivileged namespace for the anal-
ysed application before running it. When filtering
with the namespace identifier, eBPF can identify
the privileges requested for the program. Any re-
quested privileges are printed to the console when
the program exits.

TIME UID PID TID COMM CAP
NAME
22:58:49 1000 27408 27408 capable 21
CAP_SYS_ADMIN

cap_capable +0x1 [kernel]
cap_vm_enough_memory +0x2b [kernel]
security_vm_enough_memory_mm +0x34 [kernel]
mmap_region +0x147 [kernel]
do_mmap +0x38d [kernel]
vm_mmap_pgoff +0xd2 [kernel]
elf_map +0x58 [kernel]
load_elf_binary +0x4cd [kernel]
search_binary_handler +0x90 [kernel]
__do_execve_file.isra .36+0 x5b1 [kernel]
__x64_sys_execve +0x34 [kernel]

Figure 27 bcc Kernel stack trace describing the problem-
atic capacity demand when using the capable tool in kernel
version v4.x

Figure 28 Condition assumption example in mlock Linux
feature.

In the previous version of RootAsRole, during
our experiments, we observed a recurring occur-
rence of the CAP SYS ADMIN capability (this ca-
pability grants many privileges) being requested.
This issue was due to the systematic and repeated
call of the cap vm enough memory() hook dur-
ing the memory allocation and process creation
stages; one such call stack trace is detailed in
Figure 27 using the bcc tool [44]. Fortunately, the
above problem has since been fixed in the Linux
kernel. Nevertheless, this problem highlighted the
possibility that certain capabilities might not be
requested at the appropriate stage in the kernel
algorithm. To ensure the reliability of our tool and
identify any misplaced capabilities within the ker-
nel, we developed a straightforward Clang plugin
that utilises Abstract Syntax Tree (AST) analy-
sis. The Clang AST represents the structure and
semantics of C/C++ code, serving the purpose
of analysis, transformation, and code generation.
Our plugin operates on the assumption that capa-
bilities should be the final condition checked, i.e.,
practically function capable(), which is called
to check capabilities, should be placed at the
end of the condition of the if statement that
implements the access control mechanism. For ex-
ample, Figure 28 is a part of Linux kernel code
for memory locking kernel feature. This feature is
useful mainly for technical and performance rea-
sons. Line 658 shows a condition where it firstly
evaluates the normal system usage; then it eval-
uates if the thread has the privilege to bypass
the IPC LOCK limit. This is a generalized prac-
tice observed on the kernel. Indeed, the function
capable() verifies namespaces capabilities and
checks the security capable() LSM hook that
could potentially affect the performance of the ker-
nel. This approach lets us know when a capability
is required because capable() is called when all
other access control systems deny access.

During our analysis of kernel v6.3, our plugin
detected 8 occurrences of noncompliance with the
practice. The plugin source code can be found in
a GitHub repository [45]. However, some calls do
not exist within a conditional statement, so this

19

work only covers 91% of the total calls (993 calls
in kernel v6.3).

5.2 User usability issue

One of the success factors of the command sudo
is its ease of use for final users who only require
to add sudo before the command they want to
execute. Sudo command allows users to run a com-
mand as a specific user other than the default
target user. However, this feature is rarely used.

sr -r web_dev -c /usr/bin/tcpdump

Figure 29 Substituting role (sr) command to use a role
for executing tcpdump, in RootAsRole versions 1 and 2

alice@webserver:~$ sr /usr/bin/tcpdump

Figure 30 New version of RootAsRole: Alice doesn’t need
to specify the role to activate

In the previous version, we required users to
explicitly express the role they want to activate to
execute a given command (see Figure 29). If users
are assigned to multiple roles, this requirement im-
pacts the users’ experience, making our security
mechanism hard to use for day-to-day tasks.

Consequently, we improved our tool to make
the explicit role specification optional, as in
Figure 30. However, this raises new questions, for
instance, when a user is associated with multiple
roles, allowing them to execute the same command
but with different capabilities. There are various
algorithms to find out the matching role for a
user and a command input. This issue has been
thoroughly studied in the context of firewall rules
analysis [46] to resolve shadowing, correlation and
redundancy anomalies.

We applied the following criteria for order
comparison:
1. Find all the roles that match the user ID as-

signment or the group ID and the command
input

2. Within the matching roles, select the one that
is the most precise and least privileged, such
as:
(a) user assignment is more precise than the

combination of group assignment

(b) the combination of group assignment is
more precise than single group assign-
ment

(c) exact command is more precise than
exact command with regular expression

(d) A role granting no capability is less priv-
ileged than one granting at least one
capability

(e) A role granting no dangerous capabil-
ity[23] is less privileged than one granting
at least one of them

(f) A role without a setuid is less privileged
than one with a setuid

(g) if no root is disabled, a role without ‘root’
setuid is less privileged than a role with
‘root’ setuid

(h) A role without setgid is less privileged
than one with setgid

(i) A role with a single setgid is less privi-
leged than one with multiple setgid

(j) if no root is disabled, a role with multiple
setgid is less privileged than one with set
root gid

(k) if no root is disabled, a role with root
setgid is less privileged than one with
multiple set gid, mainly using root group

If this algorithm does not resolve the conflict,
roles are considered equal (i.e., the only difference
is environment variables). In such cases, the user
must specify the role to be used with the ‘-r’ op-
tion. Regarding points (d) and (e), the choice of
least privilege is somewhat arbitrary. In our pre-
vious research, we tried to find a partial order
between Linux capabilities but could not find it[9].

6 Discussion and Future Work

We believe a formal model for administrative
privileges is required. Although formalising ac-
cess control for the file system was deeply studied
by the research community, administrative priv-
ileges in OS have not received such attention.
Jack B. Dennis and Earl C. Van Horn originally
developed the concept of privilege with broader
applicability beyond access control [47]. We think
their definition aligns with Lampson’s Identity Ac-
cess Control model [48]. Jack B. Dennis and Earl
C. Van Horn presented how to manage system
process capabilities. Lampson’s model presents a
general access control matrix, a Subject × Object
× Action (SOA) access control matrix. To define

20

an OS privilege precisely, it should be mappable
onto an SOA matrix where system processes are
referred to as subjects, the OS kernel features and
components are referred to as objects, and explicit
action verbs are referred to as actions. For exam-
ple, a text editor (subject) can bypass (action) the
discretionary file access control (object). This is
part of our Granularity requirement.

Furthermore, we think OS privileges can be
seen as service access control rather than a regular
access control model [49]. Regular access con-
trol allows or denies an action when requested,
while a service access control may not deny the
request but offer a different behaviour consider-
ing these privileges. For example, on Linux, if
a CAP SYS RESOURCE privileged process asks
the operating system to create a sub-process,
any resource limitations would be ignored, while
an unprivileged process would need to deal with
them. Also, to strengthen our comparison with
service access control, we can view the operat-
ing system as a service provider that proposes
different behaviours and sets security policies for
allowed privileges. For our future work, we are
considering formalising the notion of administra-
tive privilege to present a management model and
process that answers the initial problem: allowing
untrusted co-administrated operating systems.

7 Conclusion

POLP is a well-known and established security
principle. We studied different approaches to im-
plementing POLP on diversified operating sys-
tems and demonstrated that every OS has at
least one interesting approach to managing ad-
ministrative privileges. Windows approach has a
very simple and coherent administrative privi-
lege set. Linux implements security mechanisms
for ‘by default’ software usage and its extensible
features through its security modules. FreeBSD
implements better administrative privilege def-
inition based on Permission-based rather than
Capability-based access control. Solaris refined the
Linux Capabilities to add more administrative
control with RBAC, but the OS is less exten-
sible than Linux. Considering these conclusions,
we cannot say that one operating system has a
more complete implementation of administrative
privileges than another, as their focuses differ.

Our RootAsRole project is designed to im-
prove the efficiency of administrative privileges
management and usage on Linux. It also addresses
other POLP requirements by introducing a Role
Enforcement Object in Linux and a novel interac-
tive solution for “Init Authorisation Verification”
control tailored for administrators. However, we
have identified certain limitations, particularly
related to the user experience for both adminis-
trators and end users. Striking the right balance
between usability and POLP proves to be chal-
lenging, given the coarse-grained and non-unique
set of privileges involved. This conclusion aligns
with the findings from our comparison of operat-
ing systems.

Conflicts of Interests

The authors have no relevant financial or non-
financial interests to disclose.

References

[1] Saltzer, J., & Schroeder, M. (1975). The pro-
tection of information in computer systems.
Proceedings of the IEEE, 63 (9), 1278–1308.
https://doi.org/10.1109/PROC.1975.9939

[2] Rose, S., Borchert, O., Mitchell, S., & Con-
nelly, S. (2020, August). Zero Trust Archi-
tecture (tech. rep.). National Institute of
Standards and Technology. https://doi.org/
10.6028/NIST.SP.800-207

[3] Regulation (EU) 2016/679 of the European
Parliament and of the Council of 27 April
2016 on the protection of natural persons
with regard to the processing of personal
data and on the free movement of such data,
and repealing Directive 95/46/EC (Gen-
eral Data Protection Regulation) (Text with
EEA relevance). (2016, April).

[4] Regulation (EU) 2021/821 of the European
Parliament and of the Council of 20 May
2021 setting up a Union regime for the
control of exports, brokering, technical assis-
tance, transit and transfer of dual-use items
(recast). (2022, January).

[5] Xnu/bsd/kern/kern priv.c at
1031c584a5e37aff177559b9f69dbd3c8c3fd30a
· apple-oss-distributions/xnu. (n.d.).

21

https://doi.org/10.1109/PROC.1975.9939
https://doi.org/10.6028/NIST.SP.800-207
https://doi.org/10.6028/NIST.SP.800-207

[6] Levin, J. (2018). *OS internals. Volume 3:
Security & insecurity / by Jonathan Levin
(2nd edition). Technologeeks.com.

[7] Object-capability systems — ERights.org
Wiki. (n.d.).

[8] Miller, M. S., Yee, K.-P., & Shapiro, J.
(n.d.). Capability Myths Demolished, 15.

[9] Billoir, E., Laborde, R., Wazan, A. S.,
Rütschlé, Y., & Benzekri, A. (2023). Im-
plementing the Principle of Least Privilege
Using Linux Capabilities: Challenges and
Perspectives. 2023 7th Cyber Security in
Networking Conference (CSNet), 130–136.
https://doi.org/10.1109/CSNet59123.2023.
10339753

[10] Krohn, M. N., Efstathopoulos, P., Frey, C.,
Kaashoek, M. F., Kohler, E., Mazières, D.,
Morris, R. T., Osborne, M., Vandebogart,
S., & Ziegler, D. (2005). Make least privi-
lege a right (not a privilege). Proceedings of
HotOS’05: 10th Workshop on Hot Topics in
Operating Systems, June 12-15, 2005, Santa
Fe, New Mexico, USA.

[11] Miller, M. S. (2006). Robust composition:
Towards a unified approach to access control
and concurrency control [Doctoral disserta-
tion, Johns Hopkins University].

[12] Hallyn, S. E., & Morgan, A. G. (n.d.). Linux
Capabilities: Making them work.

[13] Sun, Y., Safford, D. R., Zohar, M., Pen-
darakis, D. E., Gu, Z., & Jaeger, T.
(2018). Security namespace: Making linux
security frameworks available to containers.
USENIX Security Symposium.

[14] NVD - cve-2016-0728. (n.d.).
[15] NVD - CVE-2016-8867. (n.d.).
[16] NVD - CVE-2022-27649. (n.d.).
[17] Kang, H., Kim, J., & Shin, S. (2021). Mini-

Con: Automatic Enforcement of a Mini-
mal Capability Set for Security-Enhanced
Containers. 2021 IEEE International IOT,
Electronics and Mechatronics Conference
(IEMTRONICS), 1–5. https://doi.org/10.
1109/IEMTRONICS52119.2021.9422529

[18] Production-Grade Container Orchestration.
(n.d.).

[19] Hasan, M. M., Ghavamnia, S., & Poly-
chronakis, M. (2022). Decap: Deprivileging
Programs by Reducing Their Capabilities.
Proceedings of the 25th International Sym-
posium on Research in Attacks, Intrusions

and Defenses, 395–408. https://doi.org/10.
1145/3545948.3545978

[20] McKusick, M. K., Neville-Neil, G. V., &
Watson, R. N. M. (2015). The design and
implementation of the FreeBSD operating
system (Second edition). Addison Wesley.

[21] Bovet, D. P., & Cesati, M. (2006). Under-
standing the Linux kernel: From I/O ports
to process management (3. ed., covers ver-
sion 2.6). O’Reilly.

[22] Wright, C., Cowan, C., Morris, J., Smal-
ley, S., & Kroah-Hartman, G. (2002). Linux
security module framework. Ottawa Linux
Symposium, 8032, 6–16.

[23] Linux Capabilities. (n.d.).
[24] Frøkjær, E., Hertzum, M., & Hornbæk,

K. (2000). Measuring usability: Are effec-
tiveness, efficiency, and satisfaction really
correlated? Proceedings of the SIGCHI Con-
ference on Human Factors in Computing
Systems, 345–352. https://doi.org/10.1145/
332040.332455

[25] Rogers, Y., Sharp, H., & Preece, J.
(2023, March). Interaction Design: Beyond
Human-Computer Interaction (6th edition).
John Wiley and Sons.

[26] AlDanial. (2023, December). AlDanial/cloc.
[27] Security Working Group,

s. b. t. P. A. S. C. o. t. I. C. S. (1997,
October). Draft Standard for Information
Technology— Portable Operating Sys-
tem Interface (POSIX)— Part 1: System
Application Program Interface (API)—
Amendment #: Protection, Audit and
Control Interfaces [C Language].

[28] CAP SYS ADMIN: The new root
[LWN.net]. (n.d.).

[29] Capabilities. (n.d.).
[30] Capget(2) - Linux manual page. (n.d.).
[31] Fully Capable - The Ancient Sendmail Ca-

pabilities Issue. (n.d.).
[32] Ferraiolo, D. F., Sandhu, R., Gavrila, S.,

Kuhn, D. R., & Chandramouli, R. (2001).
Proposed NIST standard for role-based ac-
cess control. ACM Transactions on Infor-
mation and System Security, 4 (3), 224–274.
https://doi.org/10.1145/501978.501980

[33] Comparing SELinux with Solaris Trusted
Extensions. (n.d.).

22

https://doi.org/10.1109/CSNet59123.2023.10339753
https://doi.org/10.1109/CSNet59123.2023.10339753
https://doi.org/10.1109/IEMTRONICS52119.2021.9422529
https://doi.org/10.1109/IEMTRONICS52119.2021.9422529
https://doi.org/10.1145/3545948.3545978
https://doi.org/10.1145/3545948.3545978
https://doi.org/10.1145/332040.332455
https://doi.org/10.1145/332040.332455
https://doi.org/10.1145/501978.501980

[34] alvinashcraft. (2022, April). Privilege Con-
stants (Winnt.h) - Win32 apps.

[35] Viega, J., & Messier, M. (2003). Secure pro-
gramming cookbook for C and C++ (1st ed).
O’Reilly.
OCLC: ocm52861976.

[36] alvinashcraft. (2023, April). Enabling and
Disabling Privileges in C++ - Win32 apps.

[37] TrustedBSD - TrustedBSD POSIX.1e Priv-
ileges. (n.d.).

[38] Watson, R. N. M., Anderson, J., Laurie, B.,
& Kennaway, K. (2010). Capsicum: Practi-
cal capabilities for UNIX. Proceedings of the
19th USENIX Security Symposium.

[39] TrustedBSD - SEBSD. (n.d.).
[40] Sudo-project/sudo. (2023, May).
[41] Wazan, A. S., Chadwick, D. W., Venant,

R., Billoir, E., Laborde, R., Ahmad, L.,
& Kaiiali, M. (2022). RootAsRole: A secu-
rity module to manage the administrative
privileges for Linux. Computers & Security,
102983. https ://doi .org/10 .1016/ j . cose .
2022.102983

[42] Wazan, A. S., Chadwick, D. W., Venant,
R., Laborde, R., & Benzekri, A. (2021).
RootAsRole: Towards a Secure Alterna-
tive to sudo/su Commands for Home Users
and SME Administrators. In A. Jøsang, L.
Futcher, & J. Hagen (Eds.), ICT Systems
Security and Privacy Protection (pp. 196–
209). Springer International Publishing.

[43] Samarati, P., & de Vimercati, S. C. (2001).
Access Control: Policies, Models, and Mech-
anisms. In R. Focardi & R. Gorrieri (Eds.),
Foundations of Security Analysis and De-
sign (pp. 137–196). Springer Berlin Heidel-
berg.

[44] BPF Compiler Collection (BCC). (2023,
May).

[45] BILLOIR, L. ((2023, April). Kapable-clang-
sast.

[46] Abedin, M., Nessa, S., Khan, L., & Thu-
raisingham, B. (2006). Detection and Res-
olution of Anomalies in Firewall Policy
Rules. In E. Damiani & P. Liu (Eds.), Data
and Applications Security XX (pp. 15–29).
Springer. https : / / doi . org / 10 . 1007 /
11805588 2

[47] Dennis, J. B., & Van Horn, E. C.
(1966). Programming semantics for mul-
tiprogrammed computations. Communica-
tions of The Acm, 9 (3), 143–155. https://
doi.org/10.1145/365230.365252

[48] Lampson, B. W. (1974). Protection. ACM
SIGOPS Operating Systems Review, 8 (1),
18–24. https : //doi . org/10 . 1145/775265 .
775268

[49] Spence, D., Gross, G., de Laat, C., Farrell,
S., Gommans, L. H., Calhoun, P. R., Hol-
drege, M., de Bruijn, B. W., & Vollbrecht, J.
(2000, August). AAA authorization frame-
work. https://doi.org/10.17487/RFC2904

23

https://doi.org/10.1016/j.cose.2022.102983
https://doi.org/10.1016/j.cose.2022.102983
https://doi.org/10.1007/11805588_2
https://doi.org/10.1007/11805588_2
https://doi.org/10.1145/365230.365252
https://doi.org/10.1145/365230.365252
https://doi.org/10.1145/775265.775268
https://doi.org/10.1145/775265.775268
https://doi.org/10.17487/RFC2904

	Introduction
	Related Work
	OS administrative privileges management
	What are administrative privileges?
	OS administrative privileges enforcement architectures
	OS administrative privileges requirements
	Usability Considerations

	OS privileges management implementations
	Linux Capabilities
	Linux Requirements evaluation
	Linux Usability evaluation
	Linux conclusion

	Solaris Capabilities
	Solaris Requirements evaluation
	Solaris Usability evaluation
	Solaris conclusion

	Microsoft Windows Privilege Constants
	Windows Requirement evaluation
	Windows Usability evaluation
	Windows conclusion

	FreeBSD Privilege
	FreeBSD Requirements evaluation
	FreeBSD Usability evaluation
	FreeBSD conclusion

	Final analysis

	The RootAsRole project: Improving Linux Capabilities management
	Administrative issues
	Making Linux capabilities and POSIX DAC policies consistent
	Capabilities are unknown by administrators

	User usability issue

	Discussion and Future Work
	Conclusion

