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Contexte

How can translation efficiency be predicted from RNA features?
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Contexte

How can translation efficiency be predicted from RNA features?

STE (Stochastic Translation Efficiency) = a normalised measure of translation efficiency
constructed through artificial intelligence analysis.
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Example of feature
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Example of feature
m5C modification rate as a function of gene position
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Example of feature
Degradation rates
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Example of feature
Degradation rates
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Issues and challenges

• ∼ 450 features
• ∼ 6500 genes
• correlated and

redundant features
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Issues and challenges

• ∼ 450 features
• ∼ 6500 genes
• correlated and

redundant features

Hypothesis : Not all genes are equally influenced by RNA features in translation
efficiency prediction 5/11



Methods - Dimension reduction
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Methods - Dimension reduction

WORK IN PROGRESS

7/11



Methods - Clustering

WORK IN PROGRESS

Latent dimension 1

Latent dimension 2

Legend :
• NS Condition
• S10 Condition

Figure – Example of what we want Figure – Example of what we get
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Summary of Data Preprocessing

NS dataset Autoencoder S10 dataset
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Methods - Random Forest
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Conclusion

WORK IN PROGRESS

1 - DATA PREPROCESSING
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2 - ANALYSIS
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