
HAL Id: hal-04828454
https://hal.science/hal-04828454v1

Preprint submitted on 10 Dec 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Discovery of necklace-like links made of dislocations
Pawel Pieranski, Maria Helena Godinho

To cite this version:
Pawel Pieranski, Maria Helena Godinho. Discovery of necklace-like links made of dislocations. 2024.
�hal-04828454�

https://hal.science/hal-04828454v1
https://hal.archives-ouvertes.fr


1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

Discovery of necklace-like links made of
dislocations
Pawel Pieranskia,2 and Maria Helena Godinhob

This manuscript was compiled on December 8, 2024

Complex knotted and at the same time linked entanglements of linear topological defects

such as vortices in superfluids, disclinations in nematics or dislocations in cholesterics can

be generated during symmetry-breaking phase transitions or by mechanical perturbations.

In superfluids and in nematics, such dense entanglements are known to untie, by rewiring

of their crossings, into independent unknots that finally shrink and collapse. We point out

that in cholesterics confined in gaps with variable thickness, the decay of initially dense

entanglements of dislocations can be incomplete. Instead of leading to the defect-less state it

produces a new category of necklace-like links which consists of many minimal loops tethered

on kinks of much larger cargo loops. We show in particular how a necklace with T minimal

loops is generated by rewiring of a two components tangle [2T] with numerator closure. This

process conserves the linking number T.

Dislocations | Knots | Links | Topological metadefetcs | Cholesterics | ...

For topological reasons, the linear topological defects (1,
2) such as vortices in superfluids (3, 4), disclinations in

nematics (5–7) or dislocations in cholesterics (2, 7, 8) must
form closed loops when they do not end on surfaces.

From the mathematical point of view, these loops, consid-
ered as one-dimensional lines embedded in a three-dimensional
space, can be equivalent to unknots, knots, or links (9, 10).

The symmetry-breaking normal fluid → superfluid,
isotropic liquid → nematic and isotropic liquid → cholesteric
phase transitions are known to generate knotted and at the
same time linked entanglements of, respectively, vortices,
disclinations and dislocations.

Decay of such topologically complex entanglements at-
tracted much attention both from the theoretical and ex-
perimental points of view and, among others, the following
two questions were raised (4, 11): (1°) What is the terminal
state of the decay ? (2°) What is the topological pathway
leading to it ?

Decay of the entangled vortices in superfluids and of

disclinations in nematics into the defect-less ground

state

Previous studies of disclinations in nematics (12, 13) (see also
the SI Appendix section ”Topological decay of entanglements
of disclinations in nematics”) and of vortices in superfluids
(4, 11, 14) (see the SI Appendix section ”Topological decay
of entanglements of superfluid vortices”) have shown that,
inside a simply connected bulk, arbitrarily knotted and linked
entanglements are rewired into systems of independent loops
that finally collapse. The paradigmatic conclusion of these
studies is thus that the topological decay of the entangled
linear topological defects leads to the defect-less ground state.

Decay of the entangled dislocations in cholesterics into

the necklace state

In this paper we will point out that the decay of the dense
entanglements of dislocations in cholesterics of pitch p confined
inside a cylinder/cylinder gap is incomplete because it leads
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Fig. 1. Generation of the necklace state by a dilation-compression strain pulse. a) Geometry of the experiment: cylindrical mica sheets separated by the distance hmin. b) The

dilation-compression strain pulse. c-h) Pictures taken in a microscope. c) The initial ground state made of concentric circular dislocations. N is the number of full cholesteric

pitches contained between the mica sheets. d) Reduction of the diameter of the cholesteric droplet after a sudden increase by ∆h of the minimal gap thickness hmin between

the mica sheets. e) Droplet after a sudden compression restoring the initial thickness. It contains a dense tangle of dislocations generated by the strain pulse. f) After 6 minutes

of relaxations the droplet seems to be again in the ground state made of concentric circular dislocations. g) At higher magnification, 11 minimal loops tethered on circular

dislocations become apparent in the rectangular area defined in (f). h) Close-up view of the two minimal loops pointed with red arrows in the picture (g). The total number of the

minimal loops in the picture (f) is of the order of 200. (Sample composition: 0.86% of 15CB in 5CB.)
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Fig. 2. Geometry of the necklace state.

a) View in a microscope of a necklace

made of one circular cargo loop charged

with five minimal loops. b) Perspective

view of the necklace. The minimal loops

are tethered on +p kinks which in a first

approximation can be seen as vertical screw

dislocations of length p. c-e) The diameter

of the minimal loops is of the order of the

cholesteric pitch p : Dmin ≈ p. It varies

with the concentration c15CB of the chiral

compound CB15 in the nematic 5CB: (c)

c15CB = 0.4%, (d) c15CB = 0.86%

(e) c15CB = 3.4%. e) Occurrence (very

scarce) of the Solomon configuration of the

necklace state. The minimal loop indicated

by the arrow is tethered on the cargo loop

in a different manner detailed in the Figure

4a.
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not the defect-less ground state but to a more complex state,
represented in Figures 1 and 2, in which large dislocation loops
called cargo loops) carry numerous small loops, of the same
radius rml ≈ p/2, called minimal loops. For obvious reasons
we dubbed it the necklace state.

For experts in liquid crystals, at a first sight, the patterns
of dislocations in Figures 1c and f are nothing else but the
widely known Grandjean-Cano patterns (8, 15, 16) made of
dislocations parallel to lines of equal thickness h(x, y) = const.
Inside the gap between the cylindrical mica sheets of the
same radius of curvature Rm (see Figure 1a), they are circular
because h(x, y) ≈ hmin +(x2 +y2)/(2Rm) = hmin +r2/(2Rm).

In samples with the cholesteric pitch p < 1µm, the minimal
loops are so small that they cannot be resolved in an optical
microscope. For this reason, probably, the necklace state
remained hidden from identification for decades.

Genesis of the necklace state

The knotted and at the same linked dense entanglements of
dislocations can be generated either through the isotropic-
cholesteric phase transition as mentionned above or by a
dilation-compression pulse-like perturbation (see Figures 1a
and b) applied to the cholesteric layer confined between
cylindrical surfaces. The case of the thermal genesis is more
complicated to analyze because two types of dislocations
with Burgers vectors b=p and b=p/2 (defined in the SI
Appendix Section ”Two types of dislocations”) are generated
simultaneously. We will consider it in the SI Appendix Section
”Topological decay of entanglements of dislocations produced
by the Isotropic-Cholesteric phase transition”. As in the second
case of the mechanical excitation only the b=p dislocations
are generated, we consider it here.

Generation of dense entanglements of dislocations by a

dilation-compression strain pulse. The strain pulse, applied
to the ground state of the cholesteric layer confined between
the crossed cylindrical mica sheets (see Figures 1a and b),
starts by an increase +∆h of the gap thickness . This results
in a reduction of the diameter of the droplet (see Figure 1d)
which must conserve its volume. In a first approximation, the
elongation of the droplet in the z direction is accompanied by
a converging radial (Poiseuille) flow in the (x,y) plane that
convects the dislocation loops. Simultaneaously, the cholesteric
helices are stretched in the z direction. For example, in the
center of the droplet where N = 2, the pitch p increases from
hmin/2 to (hmin + ∆h)/2. Typically, when ∆h ≈ 20hmin, the
pitch p is elongated by the factor of the order of 20 which is
more than enough to trigger both the undulation instability
and the nucleation of dislocation antiloops (17, 18). In practice,
the texture of the droplet is perturbed so much that it looses
its initial transparency (see Figure 1c).

The subsequent compression −∆h restores the diameter
of the droplet but not its initial transparency because the
compressive strain generates a dense entanglement made
exclusively of the b = p dislocations (defined in the SI Appendix
Section ”Two types of dislocations” ). In this entangled state,
initially, the total length of dislocations per unit area is larger
than that of the ground state by a factor of the order of 100.

Elastic relaxation, topological decay of the entanglements

of the b = p dislocations into the necklace state. After 6
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Fig. 3. Director field in the vicinity of a minimal loop tethered on a kink of a cargo loop

(see the Appendix Section ”Diameter of the minimal loops”).

minutes of relaxation driven by the orientational elasticity
of the cholesteric, the topological decay of the entanglement
apparently restores the ground state (see Figure 1f) of the
cholesteric droplet. However, a higher magnification (see
Figure 1g) unveils numerous small circular loops of the same
size, Dmin = 14µm (see Figure 1h), tethered on the circular
concentric dislocations of the initial ground state.

Features of the necklace state

Geometry of the necklace state, cargo loops. The most
important feature of the necklace state well visible in Figures
2b and 3 (see also Figure S5 of the SI) is that the circular
minimal loops are tethered on quasi vertical segments of the
cargo loop called kinks + p (16, 19).

The cargo loops of the necklace state keep their large cir-
cular size thanks to the elastic interaction with the cylindrical
mica sheets imposing the planar anchoring in the x direction.
In equilibrium (minimum of the distortion energy), their radii
are given by (10)

r2
N ≈ 2Rmp

(

N −
1

2
−

hmin

p

)

[1]

where hmin is the minimal thickness of the gap, Rm is
the radius of curvature of the cylindrical mica sheets and
N=1,2,3,... is the index of dislocation loops. This equation is
valid when the tension of dislocations can be neglected (10)
i.e. when the radius rN of cargo loops is much larger than the
thickness h of the gap between the mica sheets.

Geometry of the necklace state, minimal loops. Observations
of the minimal loops in three samples with different cholesteric
pitches (depending on the concentration of the chiral com-
ponent CB15) are summarized in Figures 2c-e. They show
that the diameter Dml = 2rml of the minimal loops is of
the order of the cholesteric pitch p which is smaller than the
thickness h. In this case, the interaction with the mica surfaces
is negligible so that such small dislocation loops of radius rml

Pawel Pieranski et al.                                                                                                                                     3
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Fig. 4. Conservation of the linking number during

the topological decay. a) The Solomon link 42

1

inside the necklace state in a sample with a

very large cholesteric pitch p ≈ 90µm. a-d)

Transformation of the Solomon link 42

1
into two

Hopf links 22

1
driven by a shear deformation. f-g)

Splitting of the 62

1
link into one Solomon 42

1
and

one Hopf 22

1
links. h-i) Splitting of the 82

1
link into

four Hopf 22

1
links.

should collapse if they were submitted only to the action of
the centripetal Laplace force

FLaplace = −T/rml [2]

due to their tension T . This is the case of very small loops
standing alone.

The minimal loops tethered on kinks of cargo loops (see
Figures 2 and 3) do not collapse because, as discussed in the
SI Appendix Section ”Diameter of minimal loops”, they are
submitted also to a repulsive interaction with kinks.

Stability of the necklace state. Like knots and links made of
dislocation loops, the necklace state is not stable but only
metastable. The minimal loops tethered on the +p kinks
are threatened by lethal encounters with the −p/2 kinks as
it is explained in the SI Appendix Section ”Absorption of
minimal loop due to a lethal encounter with a +p/2 kink”. In
practice, such encounters are very scarce so that in spite of its
metastability the necklace state is long-lived.

How the minimal loops are formed ?

In the Appendix Section ”Evolution of the number of minimal
loops” we report that the number of the tethered minimal
loops evolves during the decay of the entanglements. Details
of their birth are hidden at the beginning of the decay when
the density of dislocation is too high but it becomes possible
to identify them at the ultimate stage of the decay illustrated
by the Figure 4 which shows that very often several minimal
loops are born simultaneously.

Splitting of the Solomon link. The schemes drawn with blue
and red lines in Figures 4a and b show that this penultimate
configuration of the necklace state, in the absence of other
minimal loops, would be equivalent to the Solomon link 42

1.
A shear deformation applied to this Solomon configuration of
the necklace state transforms it into two Hopf links 22

1 well
visible in Figure 4d. This transformation is due to the splitting
(rewiring) of the red loop in Figure 4b into two red loops in
Figure 4c. Let us stress that in the absence of the shear and
of encounters with free kinks, the Solomon link can persist
indefinitely.

Splitting of the 62
1 link. Another peculiar configuration of the

necklace state is shown in Figure 4e. Here, the scheme drawn
with blue and red lines unveils the topology of the 62

1 link (in
the absence of other minimal loops). Contrary to the Solomon
configuration, this 62

1 configuration is unstable and occurs only
in a transitory manner during the decay sequence. The series
of three pictures in Figures 4e, f and g shows that it splits into
the Solomon 42

1 link and the Hopf 22
1 link.

Splitting of the 82
1 link. The third example of an n-tuple birth is

shown in Figures 4h-j. Here, the scheme drawn with blue and
red lines unveils the topology of the 82

1 link (in the absence
of other minimal loops). From geometrical point of view this
link can be seen as a helical tangle of two dislocations (17):
the blue one is a part of a large cargo loop while the red one
is a part of a much smaller loop tethered on the cargo loop in
complex manner.

4 Pawel Pieranski et al.
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Fig. 5. The screw dislocation with the Burgers

vector b = pez parallel to cholesteric helix axis

z. a) Singular version in which the director field

n = [cos ϕ, sin ϕ, 0] is parallel to the (x,y) plane

(22). b) Non-singular version in which the singularity

is removed thanks to the ”escape into the third

dimension” (23). Remarkably, it has the topology of

the necklace-like links reported in this paper.

Conservation of the linking number during splitting of the

[2T ] links into T [2] links. In terms of the Conway notation
(20, 21), in all above examples, the two components links [2T ]
with T=1,2,3,... made of 2-tangles with 2T horizontal twists
with numerator closure are rewired into necklaces made of T
minimal loops tethered on cargo loops.

As far as we know, this type of rewiring is new; it does not
involve as usual the crossings between the two components of
the [2T ] link but only one of the two components and results
in its splitting into smaller loops that remain linked with
the second component. In the example of Figure 4i, three
rewirings R1, R2 and R2 indicated with dotted circles split the
red component of the two-component link [8] = [2T ] with the
linking number T=4 into a five-components link made of T=4
red loops linked each once with the blue component. Let us
emphasize that the rewiring [2T ] → T [2] conserves the linking
number T.

Discussion and conclusions

Necklace-like links made of dislocations. From purely topo-
logical point of view, the necklaces made of dislocations are
equivalent to a special class of multicomponent links made of
several loops tethered on just one loop that we called cargo.

In our experiments, these links have very asymmetric
shapes: the cargo loop is much larger than the tethered
loops which have all a very small diameter of the order of
the cholesteric pitch.

The large radius rN of the cargo loop is fixed by min-
imization of the elastic interactions with the surfaces of
the mica sheets providing the planar anchoring. In a first
approximation, this radius is such that the local thickness
h(r) = hmin + r2

N /(2Rm) of the cylinder/cylinder gap is equal
to hN = (N + 1/2)p (10). The radius rN decreases when hmin

grows, and tends to zero when hmin = hN . For hmin > hN

the cargo loops becomes unstable and collapses. The collapse

of the cargo loop leads to the collapse of the necklace as a
whole (see Figure S10 of the SI Appendix).

The radius rml ≈ p/2 of the minimal loops tethered on
the cargo loop is fixed by the balance between the Laplace
centripetal force T/rml due to the tension T of the tethered
loop and the centrifuge repulsion force due to the elastic
interaction between the tethered loop and the kink of the
cargo loop. Obviously, the tethered loops loose their stability
when the cargo loop collapses.

In conclusion, the necklace-like links made of the non-
singular dislocations b = p are remnants of the decay of
arbitrarily complex entanglements of dislocations in cholester-
ics. The incomplete decay is due to the helical structure of
cholesterics characterized by the helix pitch p which determines
the elastic interactions of dislocations with surfaces of the
cylinder/cylinder gap as well as the elastic interactions between
the non singular b = p dislocations.

Necklaces, links and knots made of disclinations in nematics.

The characteristic length p is missing in interactions of the
nematic disclinations with surfaces and between themselves.
For this reason, entanglements of disclinations in nematics
confined in the cylinder/cylinder gap always decay to the the
defect-less state.

Let us note however that in the presence of cylindrical fibers
or spherical inclusions immersed in nematics, the decay is
incomplete because it leads, respectively, to disclination loops
(unknots) tethered on fibers (24) and to knots or links tethered
on inclusions (25). These topologically non trivial systems
of defects owe their survival to the boundary conditions for
orientation of molecules on surfaces of the cylindrical or
spherical inclusions (anchoring of the director field).

Necklace-like structure of screw dislocations in cholesterics.

The texture of the director field in the vicinity of the minimal
loop tethered on the kink of the cargo loop from Figure 3 can
be extended periodically in z direction as shown in Figure 5b.
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It can be seen now as a non-singular variant of the singular
model of the screw dislocation with the Burgers vector b =
pez parallel to cholesteric helix axis z represented in Figure
5a. This singular model was proposed for the first time by
Bouligand and Kleman (see the scheme labeled ”n=2, S=1
and m=0” in Figure 12 of the ref. (22)). The director field
(n = [cos ϕ, sin ϕ, 0] parallel to the (x,y) plane) was generated
by the Volterra process and has a linear singularity on the z
axis corresponding to the singular disclination of rank m=1
(5)).

In Figure 5b, this singularity is removed thanks to the
”escape into the third dimension” introduced by Williams et
al. (23). Remarkably, the non-singular texture obtained by
this means has the topology of the necklace-like links reported
in this paper.

Tethering of dislocation loops in smectics. The necklace-like
link of an edge dislocation loop pierced by a screw dislocation
in smectics was considered by Kamien and Mosna in ref.(26).
In this configuration, the edge dislocation loop acquires a
helical shape so that it must be closed with a kink. Let us
stress that in cholesterics, thanks to their helical symmetry, the

edge dislocation loop tethered on a screw dislocation becomes
flat.

In contradistinction with cholesterics, the edge and screw
dislocations in smectics must have singular cores, like the
superfluid vortices, because the order parameters of the smectic
A and superfluid phases are the same: Ψ = |Ψ|exp(iϕ). We
conjecture that for this reason the necklace-like links is smectics
should be unstable.
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