
HAL Id: hal-04828059
https://hal.science/hal-04828059v1

Submitted on 9 Dec 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Verified compilation: the case of CompCert
David Monniaux

To cite this version:
David Monniaux. Verified compilation: the case of CompCert. Doctoral. En ligne, Russia. 2022.
�hal-04828059�

https://hal.science/hal-04828059v1
https://hal.archives-ouvertes.fr

Verified compilation: the case of CompCert

David Monniaux

VERIMAG — CNRS

February 16, 2022

David Monniaux (VERIMAG) Verified compilation: the case of CompCert February 16, 2022 1 / 33

Compiler safety

Contents

Compiler safety

Scheduling

Fun stuff in compiling

David Monniaux (VERIMAG) Verified compilation: the case of CompCert February 16, 2022 2 / 33

Compiler safety

Usual compiler

source code
↓
target code (assembler source, object code, bytecode…)

tens of thousands of bugs in gcc’s bug tracker

David Monniaux (VERIMAG) Verified compilation: the case of CompCert February 16, 2022 3 / 33

Compiler safety

Why compiler bugs are nasty

A compiler bug may disappear
▶ if optimization levels are changed to ease debugging
▶ if a different compiler is used
▶ if debugging code is added to the program (even just printf)

A compiler bug is most often at first undistinguishable from
reliance on undefined behavior in the program.

David Monniaux (VERIMAG) Verified compilation: the case of CompCert February 16, 2022 4 / 33

Compiler safety

CompCert

Formally verified C compiler
project led by Xavier Leroy, then at INRIA, now at Collège de France

Non-commercial https://github.com/AbsInt/CompCert
Commercial https://www.absint.com/compcert/index.htm

trace of execution = sequence of external calls, volatile read/writes

valid trace of execution at C level
↓
same trace of execution at assembly level

David Monniaux (VERIMAG) Verified compilation: the case of CompCert February 16, 2022 5 / 33

https://github.com/AbsInt/CompCert
https://www.absint.com/compcert/index.htm

Compiler safety

Trace of execution

A compiler optimizer may reorganize everything internally…
but must preserve all interactions with the outside world and their
ordering
▶ calls to external functions (system calls, I/O, GUI…)
▶ read/write to volatile variables (for system-level programming)

David Monniaux (VERIMAG) Verified compilation: the case of CompCert February 16, 2022 6 / 33

Compiler safety

Use case: traceability

Safe-critical systems (e.g. avionics)

Obligation to match object code to source

Conventional method: -O0 and some manual inspection

CompCert replaces this by mathematical proofs.
Can use optimization.

David Monniaux (VERIMAG) Verified compilation: the case of CompCert February 16, 2022 7 / 33

Compiler safety

Semantics and proofs in CompCert

Each intermediate language comes with a semantics written in Coq.
Gives a mathematical meaning to all constructs in the
intermediate language.

e.g. at C level, gives a notion of environment of variables (local and
global), defines + as addition on various data types depending on
types of inputs

Optimization / transformation phases written in Coq.
(Can call external untrusted OCaml code.)

Must prove simulation for each phase

David Monniaux (VERIMAG) Verified compilation: the case of CompCert February 16, 2022 8 / 33

Compiler safety

Intermediate languages (1)

CompCert C Clight C#minor

CminorCminorSelRTL

LTL Linear Mach Asm

side-effects out of
expressions

type elimination
loop simplification

stack allocation
of variables

instruction
selection

CFG construction
expr. decomp.

register
allocation

optimizations

linearization
of CFG

branch tunneling

layout of
stackframes

assembly
code generation

David Monniaux (VERIMAG) Verified compilation: the case of CompCert February 16, 2022 9 / 33

Compiler safety

Intermediate languages (2)

CompCert C RTL LTL Linear

MachRTLpath

MachblockAsmblock

Asm

Register

allocation
Linearization

of CFG
Stackframes

layout

Assembly code
expansions Basic-blocks

construction

Prepass
scheduling

Postpass
scheduling

Optimizations
& code duplications

Branch
tunneling

David Monniaux (VERIMAG) Verified compilation: the case of CompCert February 16, 2022 10 / 33

Compiler safety

Simulation proofs

Lockstep
one step of program before the transformation
↓
one matching step of program after the transformation

More complex simulations replace sequences of steps by sequences
of steps.

David Monniaux (VERIMAG) Verified compilation: the case of CompCert February 16, 2022 11 / 33

Compiler safety

Overall use

These proofs concern the compiler designer only (and those who file
for qualification for safety-critical systems).

For most users, using CompCert is just like using gcc or clang.

$ ccomp hello_world.c -o hello_world
$./hello_world

Or to produce assembly code

$ ccomp -S hello_world.c

David Monniaux (VERIMAG) Verified compilation: the case of CompCert February 16, 2022 12 / 33

Compiler safety

Assembly output
// File generated by CompCert 3.10
// Command line: -S hello_world.c

.section .rodata

.balign 1
__stringlit_1:

.ascii ”Hello, world!\012\000”

.type __stringlit_1, @object

.size __stringlit_1, . - __stringlit_1

.text

.balign 4

.globl main
main:

mov x29, sp
sub sp, sp, #16
str x29, [sp, #0]
str x30, [sp, #8]
adrp x0, __stringlit_1
add x0, x0, #:lo12:__stringlit_1
bl printf
movz w0, #0, lsl #0
ldr x30, [sp, #8]
add sp, sp, #16
ret x30
.type main, @function
.size^^Imain, . - main
David Monniaux (VERIMAG) Verified compilation: the case of CompCert February 16, 2022 13 / 33

Compiler safety

Alternate front-ends

Many high-level languages / domain-specific languages compile to
C.
▶ bugs in the high-level language compiler
▶ “semantic mismatches” between the high-level compiler and

the C compiler

Solution: compile directly to one of CompCert’s early intermediate
representations!
e.g. Vélus https://velus.inria.fr/ compiles a subset of the
synchronous data-flow Lustre / SCADE language used in avionics
etc.

David Monniaux (VERIMAG) Verified compilation: the case of CompCert February 16, 2022 14 / 33

https://velus.inria.fr/

Scheduling

Contents

Compiler safety

Scheduling

Fun stuff in compiling

David Monniaux (VERIMAG) Verified compilation: the case of CompCert February 16, 2022 15 / 33

Scheduling

Scheduling

An example of an optimization, particularly for low-power /
embedded cores.

Instructions produce outputs a number of clock cycles after receiving
their inputs.
Take this into account to schedule instructions.

David Monniaux (VERIMAG) Verified compilation: the case of CompCert February 16, 2022 16 / 33

Scheduling

A menu

1. oysters
2. veal blanquette

2.1 prepare blanquette
2.2 cook it

3. millefeuille
3.1 puff pastry

3.1.1 fold 1, wait 30 minutes
3.1.2 fold 2, wait 30 minutes
3.1.3 fold 3, wait 30 minutes
3.1.4 fold 4, wait 30 minutes
3.1.5 fold 5

3.2 cream

David Monniaux (VERIMAG) Verified compilation: the case of CompCert February 16, 2022 17 / 33

Scheduling

Scheduling

“Official” CompCert produces instructions roughly in the source
ordering.

Not the best execution order in general!

Especially on in-order cores.

Our solution: verified scheduling

David Monniaux (VERIMAG) Verified compilation: the case of CompCert February 16, 2022 18 / 33

Scheduling

Superblock scheduling

1. Partition each function into superblocks: one entry point,
possibly several exit points, no cycle

2. Possibly do some other reorganization: tail duplication, etc. to
get bigger superblocks

3. Schedule the superblock (no proof needed)

4. Witness through symbolic execution that the original and
scheduled superblocks have equivalent semantics (proof
needed)

Before register allocation, on IR.

On Kalray KVX and AArch64: reschedule basic blocks on assembly
instructions after register allocation.

David Monniaux (VERIMAG) Verified compilation: the case of CompCert February 16, 2022 19 / 33

Scheduling

Equivalent semantics

▶ Same order of exit branches in original and scheduled
superblock

▶ All live pseudo registers and memory have the same value at
same exit point (non-live registers can differ)

▶ Same (or smaller) list of instructions that may fail (division by
zero, memory access) reached at same exit point

Obtained by symbolic execution: two registers are considered
equal if computed by exactly the same symbolic terms

David Monniaux (VERIMAG) Verified compilation: the case of CompCert February 16, 2022 20 / 33

Scheduling

Example

r1 := a ∗ b
r3 := a− b
r2 := r1 + c
branch(a > 0, EXIT1)

r3 := a− b
r4 := a ∗ b
r2 := r4 + c
branch(a > 0, EXIT1)

r1 and r4 are both dead at EXIT1 and at final point.

These two blocks are equivalent: in both cases
r2 = (a ∗ b) + c and r3 = a− b

David Monniaux (VERIMAG) Verified compilation: the case of CompCert February 16, 2022 21 / 33

Scheduling

Acceptable refinement

r1 := a ∗ b
r3 := a− b
r2 := r1 + c
r5 := a/b
branch(a > 0, EXIT1)

r3 := a− b
r4 := a ∗ b
r3 := r4 + c
branch(a > 0, EXIT1)
r5 := a/b

r5 dead on EXIT1.

On x86, the division may fail:
▶ it’s allowed to move it beyond the branch
▶ the converse is not allowed

David Monniaux (VERIMAG) Verified compilation: the case of CompCert February 16, 2022 22 / 33

Scheduling

What our CompCert does (roughly)

1. partition functions into superblocks

2. reorder instructions in each superblock

3. for each superblock, check that symbolic execution modulo live
variable produces the same symbolic values for the original and
transformed superblocks

4. (if the check fails, optimization fails; this does not happen in
practice)

Simulation proof: if the check succeeds, a number of steps of the
original program are simulated by a number of steps of the
transformed program

David Monniaux (VERIMAG) Verified compilation: the case of CompCert February 16, 2022 23 / 33

Scheduling

Information needed

For all instructions
▶ latency: clock cycles between consuming operands and

producing the value (or, more generally, a timetable of when
each operand is consumed after the instruction is issued)

▶ resource consumption: CPU units in use that preclude other
instructions being scheduled at the same time

Very difficult to find even for “open cores”‼!
(Reverse-engineer gcc and LLVM?)

David Monniaux (VERIMAG) Verified compilation: the case of CompCert February 16, 2022 24 / 33

Scheduling

Performance gain

CPU Differences in cycles spent (%) compared to
no CSE3, no unroll gcc -O2
avg min max avg min max

Cortex-A53 -16 -63 +3 +10 -23 +87
Rocket -10 -43 +1 +29 0 +184
Xeon -21 -56 +4 +21 -3 +189
KV3 -11 -32 +3 +8 -13 +88

David Monniaux (VERIMAG) Verified compilation: the case of CompCert February 16, 2022 25 / 33

Scheduling

Reducing the proof workload

We split most of our optimizations into:
▶ an untrusted program transformation
▶ a verifier, which is proved to answer “yes” only if semantics is

preserved

Advantages:
▶ reducing the proof effort
▶ easing changes to the transformation (no need to redo proofs)

David Monniaux (VERIMAG) Verified compilation: the case of CompCert February 16, 2022 26 / 33

Fun stuff in compiling

Contents

Compiler safety

Scheduling

Fun stuff in compiling

David Monniaux (VERIMAG) Verified compilation: the case of CompCert February 16, 2022 27 / 33

Fun stuff in compiling

Strength reduction

(Work in progress)
Rewrite costly instruction into cheaper instructions.

for(int i=0; i<n; i++) {
tab[i*M] = 42;

}

into

data *p = tab;
for(int i=0; i<n; i++) {
*p = 42;
p += M;

}

David Monniaux (VERIMAG) Verified compilation: the case of CompCert February 16, 2022 28 / 33

Fun stuff in compiling

Invariants

Being added to our compiler infrastructure for verifying
optimizations.

Instead of just symbolic execution within the loop body, needs
invariants.
Here, at every loop iteration, p = &tab[i*M].
True at loop start, then holds by induction over the number of loop
iterations.

David Monniaux (VERIMAG) Verified compilation: the case of CompCert February 16, 2022 29 / 33

Fun stuff in compiling

Fun CPU feature: conditional move

For predictable hard real time code (fewer execution paths)

Branches are bad for worst-case execution time static analysis
(Absint aIT, etc.)

Suggestion: add conditional moves for integer and
floating-point registers
at least on in-order cores

David Monniaux (VERIMAG) Verified compilation: the case of CompCert February 16, 2022 30 / 33

Fun stuff in compiling

Fun CPU feature: dismissible loads

An operation that may fail cannot be moved before a branch
r1 := a+ i << 3
branch(i > 3, EXIT1)
r2 := load(p)

r1 := a+ i << 3
r2 := loads(p)
branch(i > 3, EXIT1)

Cannot be done if the load can fail.

Need special load returning a default value instead of trapping.
▶ easy without virtual memory
▶ needs OS collaboration with virtual memory

David Monniaux (VERIMAG) Verified compilation: the case of CompCert February 16, 2022 31 / 33

Fun stuff in compiling

Dismissible load on KVX

8 cycles

L100:
compw.ge $r32 = $r4, $r2

;;
cb.wnez$r32? .L101

;;
sxwd $r5 = $r4
addw $r4 = $r4, 1

;;
lws.xs $r3 = $r5[$r1]

;;
addw $r0 = $r0, $r3
goto .L100

;;

6 cycles

.L100:
sxwd $r5 = $r4
compw.ge $r32 = $r4, $r2

;;
lws.s.xs $r3 = $r5[$r1]

;;
cb.wnez $r32? .L101

;;
addw $r0 = $r0, $r3
addw $r4 = $r4, 1
goto .L100

David Monniaux (VERIMAG) Verified compilation: the case of CompCert February 16, 2022 32 / 33

Fun stuff in compiling

A general call for collaboration

Need collaboration between
▶ compiler writers
▶ architecture / core designers
▶ operating systems (low level)

Our version of CompCert with optimizations not found in the
“official” releases + the KVX target:
https://gricad-gitlab.univ-grenoble-alpes.fr/
certicompil/compcert-kvx

Pre-pass scheduling: KVX; Cortex-A53/A35 (AArch64); Rocket,
SweRV EH1 (Risc-V)
Post-pass scheduling: KVX; Cortex-A53/A35 (AArch64)

David Monniaux (VERIMAG) Verified compilation: the case of CompCert February 16, 2022 33 / 33

https://gricad-gitlab.univ-grenoble-alpes.fr/certicompil/compcert-kvx
https://gricad-gitlab.univ-grenoble-alpes.fr/certicompil/compcert-kvx

	Compiler safety
	Scheduling
	Fun stuff in compiling

