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In generative learning, models are trained to produce new samples that follow the distribution of the target data.
These models were historically difficult to train, until proposals such as generative adversarial networks (GANs)
emerged, where a generative and a discriminative model compete against each other in a minimax game. Quantum
versions of the algorithm have since been designed for the generation of both classical and quantum data. While
most work so far has focused on qubit-based architectures, in this article we present a quantum GAN based on linear
optical circuits and Fock-space encoding, which makes it compatible with near-term photonic quantum computing.
We demonstrate that the model can learn to generate images by training the model end-to-end experimentally on
a single-photon quantum processor.
Published by Optica Publishing Group under the terms of the Creative Commons Attribution 4.0 License. Further distribution of
this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.
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1. INTRODUCTION
Photonic quantum hardware represents one of the most promis-
ing paths for the realization of a quantum computer. There
is a strong potential for scaling in the number of qubits
[1], and various computation models and architectures have
been designed for photonics [2,3]. Moreover, the possibility
of demonstrating a near-term computational advantage in tasks
such as boson sampling [4] makes it a noteworthy candidate for
noisy intermediate-scale quantum (NISQ) technology [5]. Even
though building photonic circuits with large numbers of single
photons and optical modes is challenging given current tech-
nology, the rate of hardware advancement in the field is very
encouraging [6].

Nevertheless, little effort has been dedicated so far to exploit-
ing photonic-native architectures for machine learning tasks, i.e.,
architectures where the components are single photon sources,
photon detectors, linear optical circuits with beam splitters and
phase shifters, and where the problem is encoded in the Fock
space. Some of the existing works concentrate on discriminative
learning [7–9], but generative learning models remain mostly
understudied [10,11], despite the great potential shown by clas-
sical generative models in recent years. While Fock-space-based
models do not consist of traditional qubits, they do exhibit quan-
tum properties which could be harnessed in machine learning
tasks.

In this work, we propose a quantum generative adversarial
network (QGAN) where the generator network is a variational
photonic quantum circuit [12]. We train our model on the
MNIST [13] dataset of handwritten digits in reduced dimen-
sion, using a patch-based image generation approach, in both

ideal and noisy settings. We run the full training procedure as
a physical experiment on Quandela’s quantum processing unit
Ascella introduced in [9], whose setup consists of a single-
photon source connected to an integrated photonic chip and
photon detectors. Our work is a proof-of-concept demonstra-
tion that photonic quantum adversarial models can be trained to
generate classical data, and our results thus contribute to a grow-
ing body of literature on near-term quantum machine learning
implementations.

2. BACKGROUND
Generative models are designed to produce previously unseen
data that follow certain patterns. Their training consists in
feeding the model some target training samples that are rep-
resentative of the desired outcome and optimizing the model so
that its outputs grow closer to these target samples. This corre-
sponds to learning the underlying distribution from which the
training samples are drawn, i.e., the data generating distribution.
Generative models have a long-standing history; however, only
recent advances in deep neural networks enabled the creation
of deep generative models (DGMs), such as GANs, as well
as variational autoencoders (VAEs), autoregressive and diffu-
sion models [14–17]. Among other factors, these advances were
made possible due to training techniques and properties of deep
neural networks [18].

2.1. Classical GANs

In this work, we focus on GANs as they are realizable on a rel-
atively small scale and can be trained efficiently. First proposed
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in [14], GANs marked an important milestone in the field of
generative learning models. The primary concept of adversarial
learning consists of two competing deep neural networks—the
generator, often denoted as G, and the discriminator D. The gen-
erator accomplishes the task of data generation, by transforming
the noise z ∼ pz(z) sampled from the latent space Z (also known
as noise prior) into a fake data sample. Then, both generator and
discriminator networks compete against each other in an adver-
sarial zero-sum game, where the generator is trying to produce
fake samples close to the real target samples drawn from the
data generating distribution x ∼ pdata(x), and the discriminator
is trying to classify the real samples from the fake ones. The pro-
cess is repeated iteratively until the generator starts producing
realistic results, which may correspond to a Nash equilibrium
being reached for the zero-sum game [19].

The learning process tries to maximize the loss value across
the discriminator parameters, so that the discriminator is able to
distinguish between the fake and real data. At the same time, it
tries to minimize the loss over the generator parameters, so as to
generate more realistic samples and confuse the discriminator.
Mathematically, this is equivalent to a min–max optimization
of a loss function L(D, G) defined on the discriminator and
generator models:

min
G

max
D

L(D, G), (1)

where
L(D, G) = Ex∼pdata(x)[log(D(x))]

+ Ez∼pz(z)[log(1 − D(G(z)))].
(2)

This can be expanded into the problem of maximizing two sep-
arate loss functions, the generator loss LG and the discriminator
loss LD:

max
θG

LG and max
θD

LD, (3)

where

LG =
1
n

n∑︂
i=1

log (D(G(zi))) ,

LD =
1
n

n∑︂
i=1

[log(D(xi)) + log(1 − D(G(zi)))] ,
(4)

with n the number of training samples from the dataset, and xi

and zi respectively the ith real and noise samples.
In practice, a batch of noise samples from the latent space is

supplied to the generator. It produces a batch of results, which are
then used for the discriminator. Simultaneously, the discrimina-
tor is supplied a batch of samples from the training dataset. The
loss is therefore computed by averaging over the batch, which
has the added advantage of stabilizing the learning process. For
every learning iteration, optimization steps are performed first
for the discriminator and then for the generator, using gradi-
ent descent (or ascent), where the gradient is computed using
backpropagation. The number of optimization steps k for the
discriminator depends on the specific use case. The full training
algorithm is shown in Section S1 of the Supplement 1.

2.2. Quantum GANs

Quantum generative adversarial networks (QGANs) were intro-
duced in [20,21] as a quantum alternative to GANs. Rather than
a single architecture, they consist of a set of concepts where at

least one, if not both, of the components—the generator and the
discriminator—possess a certain degree of quantum capabilities.

Moreover, not only the networks, but also the data or type
of problem, can be quantum or classical, as is discussed in
detail in [20]. Additionally, the latent space can also be gener-
ated by a quantum source. References [22] and [23] consider
the alternative case where only the latent space of an otherwise
fully classical GAN is generated quantumly, in qubit-based and
photonic-native scenarios, respectively. In [21], an early exam-
ple for the generation of quantum data, i.e., the generation of a
quantum state, is presented. The problem is defined so that, in
practice, the generator learns how to implement a CNOT quan-
tum gate. A photonic example for the generation of quantum
data was studied recently in [24]. For the generation of classical
data with a QGAN, qubit-based models were developed in vari-
ous works [25–28], and a model where the generator is based on
the combination of a linear optical circuit and a neural network
was very recently introduced in [29].

Here, we focus on the latter task of generating classical data,
with photonic quantum circuits as a resource. In our scenario,
the generator is a fully quantum variational circuit, while the dis-
criminator is a fully classical discriminative neural network. The
communication between both networks happens by obtaining
classical samples from the output measurements of the genera-
tor and feeding them to the discriminator, along with the target
data. The rest of the training progresses as for classical GANs:
the discriminator is optimized first followed by the generator,
iteratively.

2.3. Image Generation and Patch-Based Approach

The specific task we consider for our QGAN is to generate
images. We use a patch-based approach to exploit only a small
number of photons and modes, and thus make our scheme easier
to execute experimentally. The patch-based approach involves
generating parts of larger images from separate quantum gener-
ators, which we call sub-generators, and combining or stacking
the outputs together to obtain the full image. Such an approach
has previously been shown to work on the 8 × 8 MNIST dataset
in [26].

We focus on this same dataset in our work. It is a downscaled
version of the popular 28 × 28 MNIST dataset of handwritten
digits, which was originally used for small-scale classical gener-
ative models. It consists of a collection of digit images ranging
from 0 to 9, each image being of size 8 × 8. The dataset contains
approximately 560 entries for each digit, with 5621 datapoints
in total. Each datapoint consists of 64 pixels and each pixel has
continuous intensity value in the interval [0, 1], with 0 being
fully black pixels and 1 being fully white ones. Some examples,
sampled randomly, are shown in Fig. 1. While the downscal-
ing causes lower quality, the digits still closely resemble actual
handwritten numbers and provide enough diversity for the tasks
discussed in this work.

3. PHOTONIC QGAN
We present our proposal for a photonic QGAN in Fig. 2, where
the quantum generator is implemented using linear optical varia-
tional quantum circuits. Having a photonic-native model means
that the circuit ansatz consists of optical modes with parame-
terized phase shifters and beam splitters, which is reflected in
Fig. 3. In this framework, we consider as the input and output

https://doi.org/10.6084/m9.figshare.27614019
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Fig. 1. Randomly sampled entries from the 8 × 8 MNIST dataset.
Each row corresponds to a separate digit, sorted in increasing order
0–9.

states of the circuit the Fock states of n photons in m modes,
as in [7]. We denote an input Fock state as |n⃗in⟩ = |nin

1 , . . . , nin
m⟩,

where nin
i indicates the number of photons in mode i. Natu-

rally,
∑︁

i nin
i = n. Likewise, we can write an output Fock state as

|n⃗out⟩ = |nout
1 , . . . , nout

m ⟩: they are detected as arrangements of pho-
tons in the output modes, which we denote as s = (nout

1 , . . . , nout
m ).

If there is no photon loss, the nout
i sum to n as well.

An obvious way to design the quantum generator is to consider
that one output state corresponds to one data sample, and to
define a mapping between the Fock states and the space of the
training data. As a simple example, let us imagine that we want
to generate integers between 0 and 100, according to a certain

Fig. 2. Proposal for image generation with a photonic QGAN. Noise from the latent space is fed into each sub-generator of the patch-based
approach. These are variational photonic quantum circuits detailed in Fig. 5. The output distribution of the sub-generators is mapped to image
pixels, which are then recombined together to form a complete image, following the patch-based approach. The fake images are provided to
the discriminator, along with the real images. The discriminator is a classical neural network and classifies the image as real or fake. Based
on these results, the loss is constructed as per Eq. (4). After optimizing the loss, the parameters of the generator and the discriminator are
updated.

Fig. 3. Structures of the (a) variational layers and (b) encoding or noise layers. Phase shifters are depicted by squares and beam splitters by
crossing between the modes. Parameters of the variational layers are trainable and parameters of the encoding layers are sampled from the
latent space.

target data distribution. We can then choose the number of modes
m and the number of photons n such that there are at least 100
possible output Fock states, and map each output state to an
integer. In this scenario, one run of the quantum circuit produces
one sample. This approach, which we could call sample based,
is used, for instance, in related work on photonic quantum circuit
Born machines [30].

However, while we are limited to small-scale devices, such as
the 12 modes and 6 photons of the Ascella processor [9], using
this approach also means that we are restricted in the type of
datasets that we can consider. Let us suppose that we aim to
generate 8 × 8 MNIST digits and that we use the patch-based
approach as mentioned in the previous section with four patches,
so that each circuit must generate images of 16 pixels at a time.
If each pixel only had two intensity values (black or white), the
dimension of the resulting space would be 216. This is already
beyond what we could implement on Ascella, and even more so
if we considered the actual range of pixel intensities of the digit
images. For this reason, and for the purpose of this work, we
propose an alternative new mapping in the next section.

3.1. Distribution-Based Mapping

In this approach, we compute the probability distribution on the
output Fock states by performing several thousands of measure-
ment shots at the end of the generator circuit. This discrete
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Fig. 4. Distribution-based mapping. Each output Fock state
observed as arrangement s = (nout

1 , . . . , nout
m ) is mapped to a pixel

number in the image, and the associated estimated probability is
mapped to the intensity of the pixel.

output distribution is then mapped to a discrete distribution on
integers. If needed, binning may be performed so that several
output Fock states correspond to the same integer. The index
of a bin, i.e., the integer, corresponds to the location of a pixel
on the image, while the probability of the bin corresponds to
the pixel intensity, as shown in Fig. 4. This allows us to obtain
continuous pixel intensity values. To cover their full range, the
probability values are renormalized to the interval [0, 1] using
min–max normalization.

It is important to note that the number of possible output states
of the generator does not always match the number of pixels
necessary for the image or the patch, so the output distribution
of each sub-generator may be trimmed equally on each tail,
under the assumption that tails of distributions do not carry
much information.

When transforming Fock states to integers, while we can
apply an arbitrary mapping scheme, it would intuitively make
sense if photon arrangements physically close to each other in
the device would correspond to integers that are close as well.
We thus consider outputs with the most number of photons in
the rightmost modes as closer to 0 in their integer mapping.
Moreover, the larger the number of photons in the rightmost
mode, the smaller is the mapped integer. Correspondingly,
states with a larger number of photons in the leftmost modes
are considered further away from 0. Naturally, the number of
available integers corresponds to the number of distinguishable
states.

This approach is most efficient when photon number resolving
(PNR) detectors are available. One of the main advantages pho-
ton number resolution provides is that it allows us to observe
a larger amount of output states for given values of m and n.
However, PNR detectors remain difficult to design with current
technology. With threshold detectors, the only accessible values
are binary—0 (no photon) or 1 (click, i.e., presence of photons).
Learning is of course still possible, but the mapping differs since
several states with photon bunching are indistinguishable from
each other. A sample mapping for three modes and three photons
is shown in Table 1.

This mapping assumes ideal conditions without photon loss.
In noisy settings, the mapping does not need to be updated if
PNR is available, since lossy states can be properly detected and
filtered out of the final distribution with postselection. However,
with threshold detectors, photon loss introduces an ambiguity
in the output distribution and another mapping is necessary. In
practice, lossless states with photon bunching cannot be dis-
tinguished from lossy states and they are both discarded in
postselection. For the case of three photons with three modes,
the number of output states reduces to one—|1, 1, 1⟩. In such
a situation, m or n must be increased to recover the necessary
number of integers for the image size.

Table 1. Fock State to Integer Mapping Table for a
Noiseless Setup with Three Modes and Three Photons

Integer PNR No PNR (state) No PNR (pattern)a

0 |0, 0, 3⟩ |0, 0, 3⟩ |0, 0, click⟩
1 |0, 1, 2⟩ |0, 3, 0⟩ |0, click, 0⟩
2 |0, 2, 1⟩ |0, 2, 1⟩, |0, 1, 2⟩ |0, click, click⟩
3 |0, 3, 0⟩ |3, 0, 0⟩ |click, 0, 0⟩
4 |1, 0, 2⟩ |2, 0, 1⟩, |1, 0, 2⟩ |click, 0, click⟩
5 |1, 1, 1⟩ |2, 1, 0⟩, |1, 2, 0⟩ |click, click, 0⟩
6 |1, 2, 0⟩ |1, 1, 1⟩ |click, click, click⟩
7 |2, 0, 1⟩ — —
8 |2, 1, 0⟩ — —
9 |3, 0, 0⟩ — —

aThe last column clarifies the detection pattern without PNR.

3.2. The Ansatz

In our patch-based approach, images are generated in horizontal
patches by separate sub-generators and eventually stacked verti-
cally to form the full image. Each sub-generator corresponds to
a linear optical quantum circuit. When designing the ansatz, we
considered setups with two quantum sub-generators, where each
sub-generator generates patches of 32 pixels, as well as setups
with four quantum sub-generators, where the patches contain 16
pixels.

In a given setup, all the sub-generators of the generator have
the same structure. This structure consists of variational lay-
ers, and encoding or noise layers, as described in Fig. 3. The
variational layers contain the parameters that are optimized dur-
ing the training of the model and their structure is inspired from
[31,32]. The encoding or noise layers are used to introduce noise
z into the model (here sampled from a normal distribution).
These encoding-reuploading layers consist of phase shifters.
They ensure that the resulting distribution over pixel intensities
is different for each input noise sample, and that the model can
thus generate a variety of data points, as well as generalize bet-
ter. In general, noise-reuploading adds to the nonlinearity of the
input–output mapping, improving the diversity in the generated
images and encouraging the model to learn patterns rather than
memorizing them [33,34].

We explored several structures for the sub-generator circuits.
This structure can be adjusted by alternating the number and the
arrangement of the variational and encoding layers. We display
in Fig. 5 the circuits that we found to be fairly efficient at solving
our image generation task. The smallest circuit only has one
encoding layer, while the largest one has three. The number of
modes may vary compared with the circuits displayed in Figs. 4
and 5, but the general layer structure is preserved. It is important
to note that considering the empiric nature of the findings, the
circuit configurations are not guaranteed to be optimal, but are
rather a heuristic combination of an educated guess and non-
exhaustive search.

3.3. Training and Optimization

The training of photonic QGANs progresses similarly to the
regular GANs, as in Algorithm S1. The classical discrimina-
tor is trained first for one step using backpropagation-enabled
stochastic gradient ascent to maximize LD, after which the
quantum generator is trained for several steps of simultaneous
perturbation stochastic approximation (SPSA) [35] iterations, to
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Fig. 5. Sub-generator circuit structures used for photonic QGAN training. (a) Circuit setup A, (b) circuit setup B, (c) circuit setup C, (d)
circuit setup D. Layer structures are shown in Fig. 4.

optimize LG. All the parameters are updated, and this process
is repeated until the maximum number of training epochs is
reached.

SPSA is an optimization technique based on a stochas-
tic approximation of the gradient. Due to the fact that this
approximation is an almost unbiased estimator of the gradient,
convergence of the method is guaranteed under reasonably gen-
eral conditions. The primary advantage of the SPSA algorithm
lies in the amount of circuit evaluations necessary for approx-
imating the gradient and its robustness to noise, including the
noise induced by quantum sources [36,37]. SPSA requires only
two evaluations, which allows cutting back on costly reconfig-
uration of linear optical gates, and considerably reduces the
duration of both simulations and experiments. Indeed, the num-
ber of training steps of the models scale only constantly (rather
than linearly) with the number of parameters.

We initialize the parameters for SPSA in a way which allows
the initial generator pseudo-gradients to be large enough for
a successful kick-start to the optimization. To achieve this,
parameters are initialized randomly, the initial gradients are
computed and if the values are too small, a reinitialization is
performed. This parameter reinitialization is repeated until the
starting pseudo-gradient values are in a desired range. Initial-
ization performed in this way does not guarantee convergence
but, in most cases, allows the generator enough starting opti-
mization momentum to be able to compete with the more exact
gradient calculation of the classical discriminator, thus enabling
a balanced training.

3.4. Numerical Experiments: Ideal Simulations and
Assessment

We perform our numerical experiments using Quandela’s soft-
ware package Perceval [38], designed for linear optical quantum
circuits. We include an abstract pseudocode in Section S1 of the
Supplement 1, and our Python code can be found in a companion
Github repository [39].

Ideal conditions for simulations assume a perfect single-
photon source, ideal components, no photon loss, perfect
detectors, and the absence of sampling errors. First, we focus
on the generation of digit “0" for the design of the model and

the optimization of its hyperparameters. We then further study
the best model for the generation of other digits and for noisy
simulations in the next sections. We include all details about the
model optimization and hyperparameter search in Section S2 of
the Supplement 1.

We present our results in Fig. 6. The loss evolution plots
describe how the values of the generator loss LG and the dis-
criminator loss LD progress with the training epochs. For each
configuration, we run ten training instances, and we display the
average over these runs as a bold line and the standard devi-
ation as a shaded area. We observe that even averaged over ten
runs, loss values have small constant fluctuations throughout the
training, which is a strong characteristic of adversarial training.
When the LD loss increases, the LG loss decreases and vice versa.
In the image evolution plots, we see that the models start with
noisy outputs and that most of them produce quite realistic “0”
terms by the end of the training (iteration 1500). The generated
image plot shows several samples from the trained model, after
the last epoch has been completed.

It appears that there is no specific loss value where the training
can be stopped. However, good models generally reach an equi-
librium where LG and LD losses start to fluctuate around the same
moving average, without increasing or decreasing further. This
is clearly observed in Fig. 6 (c) where both configurations con-
verge to an equilibrium after approximately 1000 iterations. This
equilibrium is centered around a value close to 0.69, which cor-
responds to log 2. Taking a look at loss from Eq. (4), it becomes
clear that LG = − log 2, when D(G(z)) = 1/2, that is, when the
discriminator prediction about whether the fake image is real
is as good as a random guess. Despite the fact this equilibrium
is reached around iteration 1000, we note that further training
does improve the results. Therefore, cutting off the training once
the losses reach the value of log 2 is not necessarily a desirable
strategy.

Loss does not constitute a good assessment metric, and thus
it makes sense to inspect the generated results using other qual-
itative or quantitative metrics. Important quantitative metrics
in the assessment of generative models are the quality and the
diversity of generated images. The quality measures the simi-
larity to the original training data, while the diversity measures
the variability between the generated images. Essentially, these

https://doi.org/10.6084/m9.figshare.27614019
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Fig. 6. Best training configurations for: (a) circuit setup A; (b) circuit setup B; (c) circuit setup C; (d) circuit setup D. Each panel contains a
plot with the evolution of the loss function, the evolution of the generated images, as well as the final generated images of the trained model,
and a small infobox detailing the model hyperparameters. Panels on the left and right correspond to different sets of hyperparameters.

metrics allow to evaluate a model’s capability to learn well from
data instead of memorizing it.

A common choice of measures of similarity and diversity
are the inception score (IS) [40] and Fréchet inception distance
(FID) [41], which measure both the quality and the diversity of
generated images. However, for a simple model working with
lower dimensional images, such as ours, a simpler metric suf-
fices. For this purpose, we chose the structural similarity index
measure (SSIM) [42], which works by weighing in the compar-
ative properties of luminance (l), contrast (c), and structure (s),
defined as follows for patches x and y of images to be compared:

l(x, y) =
2µxµy + c1

µ2
x + µ

2
y + c1

, c(x, y) =
2σxσy + c2

σ2
x + σ

2
y + c2

, s(x, y) =
σxy + c3

σxσy + c3
,

where µ and σ are correspondingly the mean and the standard
deviation of pixel intensity for the given patch, σxy is the covari-
ance between patches x and y, and c1, c2, and c3 are stabilizing
constants, preventing a division by a small value. With these
notions in mind, SSIM is defined as

SSIM(x, y) = l(x, y) · c(x, y) · s(x, y) =
(︁
2µxµy + c1

)︁ (︁
2σxy + c2

)︁(︂
µ2

x + µ
2
y + c1

)︂ (︂
σ2

x + σ
2
y + c3

)︂ .

SSIM compares large images patch by patch and then averages
the metrics across the patches; however, for our case, due to
the small sizes of images, it compares them immediately. SSIM
varies in the range [−1, 1], with values close to 1 indicating

similarity, 0 indicating absence of similarity, and values close
to −1 indicating anticorrelation between images.

To evaluate the models, we compute the similarity score,
which computes a pairwise SSIM of 500 random real images
from the training dataset against 500 images generated by the
quantum generator and then average across all the images. We
also compute the the diversity score: first we compute the pair-
wise SSIM among the generated images, and again average
across all images. This value is then subtracted from 1 to follow
the logic of high diversity corresponding to more diverse (rather
than more similar) images.

To have a baseline for comparison, we train a small GAN with
a classical generator, which has approximately the same number
of parameters as the largest generator considered in this work
(around 330). This model is one of the simplest possible gener-
ators with only one small hidden layer, built in a way to allow
for a fair comparison with quantum analog, with the training
hyperparameters identical to those used for quantum generators.
We note that a classical generator like this is heavily underpa-
rameterized and would not normally be used in a setting other
than a comparative one; however, it mimics well the behavior of
small quantum models discussed here.

We plot the similarity against the diversity for all the models
tested, along with corresponding scores of the classical model
on a scatter plot presented in Fig. 7. First, we note that diver-
sity and similarity are anticorrelated for small models discussed
here. In addition, the quantum model with the highest similarity
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Fig. 7. Similarity plotted against diversity of generated images.

(highlighted as a square, corresponding to Fig. 6, left) has a per-
formance comparable to that of the classical model (highlighted
as a triangle), with slightly worse similarity and a slightly better
diversity. Moreover, the quantum generator has approximately
2/3 parameters of the classical one (208 versus 332).

Visual inspection confirms that indeed the results are of gen-
erally high quality for this model, albeit not very diverse. We
thus choose this model for further testing, since it compares the
best to the classical alternative. We refer the reader to Section
S2 of the Supplement 1 for further analysis of the results and for
hypotheses as to why some configurations perform better than
others.

We apply the model from the left-hand side of Fig. 6 (c)
to the generation of other digits. We present results for some
digits in Fig. 8, while the rest of the digits can be found in
the Github repository [39]. An additional 500 iterations were
employed here to properly assess the convergence for different
digits. When comparing to target data, we see that the model
performs fairly well for most of the digits, and each sampled
digit has recognizable contours. Importantly, the model either
converges or is bound to do so for all the digits, which is indicated
by a narrowing of the standard deviation for the LG loss. While
some digits may require more training iterations to reach an
equilibrium state, we can assert that the model starts producing
realistic results around iteration 1500.

Note that, for simplicity, we restricted our model to generating
one digit at a time (unlike classical GANs trained on MNIST).
This is a similar approach to previous QGAN proposals such as
[26], but our model could be extended to a conditional QGAN

Fig. 8. Training results for different digits: (a) digit 1; (a) digit 3; (a) digit 5; (a) digit 9.

in future work. It would then be able to generate all the digits
depending on the input label, which could be supplied as a model
input or encoded through an additional layer.

3.5. Noisy Simulations

We now use the same model for noisy simulations. The Perceval
package allows us to specify various parameters such as the
emission probability of the source, the photon loss regime, and
photon distinguishability. We set indistinguishability and photon
loss to 0.92 each, so as to closely mimic the actual conditions
on the Ascella processor as it was presented in [9].

In addition to the imperfect source and losses throughout the
circuit, noisy simulations also introduce sampling error. For
ideal simulations, the distribution of the output with exact prob-
abilities is directly available in Perceval. However, in this case,
the distribution is obtained by collecting 105 measurement shots
and postselecting lossy outputs. A discrete distribution obtained
in such a way gets closer to the exact distribution with an increas-
ing number of measurement shots. However, in an experimental
setting, collecting a high number of shots requires precious time,
and 105 shots were found to be an optimal compromise for the
accuracy/training time trade-off.

As discussed in Section 3.1, the lack of PNR detectors com-
bined with photon loss shrink the size of the output space. This
requires us to change some hyperparameters and we display two
strategies in Fig. 9.

Clearly, the added noise considerably slows down the con-
vergence. While the noiseless version reaches an equilibrium
around iteration 900 on average, for the noisy version on the
right of Fig. 9, even 1500 iterations are not enough. This ver-
sion, which has more sub-generators, shows a diverging learning
trend. This might be caused by the increased number of param-
eters, making it harder to train this model under the predefined
learning rate restrictions (see Supplement 1, Section S2). Never-
theless, for the model on the left which has less sub-generators
but a higher number of modes, one can see how the standard
deviation of the generator decreases throughout the training,
indicating that it is likely to eventually converge. Moreover, the
generated results are satisfactory when applying a manual check.
Results comprehensible to the human eye are available by iter-
ation 600 for the ideal version, while the noisy version requires
more than 1000.

https://doi.org/10.6084/m9.figshare.27614019
https://doi.org/10.6084/m9.figshare.27614019
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Fig. 9. Training results for noisy simulations. The model on the left has a higher number of modes and the model on the right contains
more sub-generators, which compensates for a smaller output space in the lossy case.

Fig. 10. Training results for the experiment on the Ascella
quantum processor.

Overall, training in the presence of noise and sampling errors
comparable to those of a real quantum processor is still viable,
albeit slower. Techniques for quantum error mitigation [43]
might improve the results of noisy simulations and could be
explored in future work.

3.6. Physical Experiment

Based on the insights gathered from our simulations, we run
an experiment on Quandela’s processor Ascella, with our best-
performing model. The experimental setup is the following. A
gated InGaAs quantum dot placed inside a micropillar cav-
ity [44] is excited by a laser as in the scheme of [45] to
produce single photons on demand. A demultiplexer converts
the train of produced photons into single photons arriving
simultaneously on the chip, which is a 12-mode interferom-
eter designed according to the Clements scheme [46]. The
phase shifters on the chip are tuned thermo-optically to apply
the intended operations, and this process is optimized fol-
lowing the characterization procedure of [47]. The photons
then enter superconducting nanowire single-photon detectors
(SNSPDs), which are threshold detectors. As mentioned in
the previous section, the setup is affected by photon loss and
distinguishability.

The circuit that corresponds to our best-performing model
is of reasonable depth, making it compatible with the Ascella
chip, which is naturally reused for each sub-generator. To make
the duration of the experiment tractable, we decrease the total
number of training iterations to 1000, with three SPSA steps for
the generator at each iteration, which results in a total of 3000
SPSA steps. The results for one training instance are displayed
in Fig. 10.

While the training is slow, following the trend of noisy sim-
ulations, the results are promising. Importantly, we observe
that the model is learning, with the loss functions behaving as
they should, tending toward the equilibrium value, and results
improving throughout the training. A point that would require
improvements in future experiments is that the generated images
do not present much diversity. There are only minor differences
between the “0” terms which might be improved by adding more
encoding phase shifters into the ansatz. Nevertheless, the gen-
erated “0” terms are of fairly good quality, with characteristic

contours of the digit, demonstrating the experimental feasibility
of photonic QGANs.

4. DISCUSSION AND FUTURE WORK
In this work, we showed that photonic quantum circuits can work
as a key component in a generative learning pipeline to produce
images. This is in contrast to previous work where linear optical
circuits were used for smaller-scale tasks such as latent space
generation, without going as far as using a photonic generator.
To the best of our knowledge, our experiment is the first demon-
stration of a photonic GAN with a fully quantum generator for
classical data. Additionally, with the aim of transparency and
collaboration within the quantum machine learning community,
we make our code available online at [39].

Most of the QGAN literature concentrates on smaller scale
models for generation of lower resolution images, such as 3 × 3
bars-and-stripes. However, the task of generating larger images is
tractable with currently available hardware if the right approach
is used—such as our distribution-based mapping. This high-
lights the importance of looking for alternative strategies when
working with near-term quantum hardware. Using our map-
ping along with noise reuploading gave us greater flexibility
and, in combination with patch-based learning, the model could
generate higher resolutions images.

In terms of scaling, we point out that our approach requires
the approximation of the output probability distribution and may
thus have a high sampling cost, like many quantum machine
learning models. Photonics at least has the benefit of providing
fast sampling which improves runtime, a strength which will
become more apparent as levels of photon loss decrease with
the advancement of the technology. However, beyond a certain
dimension of the problem, it might be necessary to modify the
approach, for instance, using our model together with a VAE
that transforms the data.

We note that while the size of the Fock space grows expo-
nentially with the number of modes and photons, it is also
directly linked to the dimension of the target data, given our
mapping. Many problems of interest might thus be reachable
with a reasonably sized device. When comparing the native
photonic approach to the qubit-based approach of [26], we see
how, in terms of resources used, on photonic platforms, it may
be advantageous to use the Fock space over the Hilbert space.
As we saw above, a model can be built which uses five modes
and two photons for the generation of 8 × 8 images, with the
input state |0, 1, 0, 1, 0⟩, as compared with eight modes and four
photons, which would be needed in dual-rail encoding to have
qubits as in [26].

Concerning the optimization, we note that SPSA seems to
work surprisingly well on variational linear optical circuits.
Especially in the noisy experimental setup, SPSA allowed for
stable learning at a constant cost, albeit requiring more iterations
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to converge. Fine-tuning the optimization and the model, in gen-
eral, was an important aspect of the work. Future work may
concentrate on improving the convergence rates of optimization
techniques for photonic platforms, which can be used directly to
improve the performance of our model. Indeed, only few works
so far have focused on exploring methods like parameter-shift
rules [48] in the context of quantum photonics [49–51]. As men-
tioned in the text, other improvements to this work include the
extension of the model to a conditional QGAN, as well as the
integration of error mitigation techniques for sources of noise
such as photon loss and distinguishability [52].

Overall, our QGAN implementation is quite flexible and mod-
ular, so the model can be further explored for generation of other
types of classical data, by fine-tuning parameters and intro-
ducing some changes to the circuit structure. For instance, a
generator may consist of sub-generators with different struc-
tures, depending on the task at hand. We could also consider
a quantum discriminator and training data based on a quantum
source, for the generation of quantum states, for instance. Addi-
tionally, the source of the latent space could also be changed to
be quantum, by using another boson-sampling-based circuit as
a source of noise, as in [23].

In terms of applications, it is not always clear for which prob-
lems a quantum model will perform best—a recent study showed
that several popular quantum classifiers do not outperform their
classical counterparts on standard datasets [53]. A solution that
is often proposed is to focus on quantum data instead, e.g., to
generate quantum states. However, problems containing classi-
cal data are overall much more common. There, the concept of
inductive bias proves very helpful to follow, requiring that the
model contain some information about the structure of the prob-
lem at hand. For this reason, high-energy physics and quantum
chemistry are often cited as areas where quantum models might
be most useful on classical data. For example, in [54], a QGAN
is trained to detect anomalous events that cannot be described
by the standard model; in [55], a QGAN was used to generate
calorimeter shower images; and in [56,57], QGANs and QCBMs
were used for the generation of new molecules.

We saw that our best-performing generator achieves similar
performance to its classical counterpart for a lower number of
trainable parameters. Such benchmarks can be interesting to
focus on, as an alternative to speedups. In the same spirit, the
energy consumption of quantum versus classical computers are
currently being explored [58].
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