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Photonic quantum generative adversarial networks for classical data

Tigran Sedrakyan1, 2 and Alexia Salavrakos1
1Quandela, 7 Rue Léonard de Vinci, 91300 Massy, France
2Sorbonne Université CNRS, LIP6, F-75005 Paris, France

When Generative Adversarial Networks (GANs) first emerged, they marked a breakthrough in
the field of classical machine learning. Researchers have since designed quantum versions of the
algorithm, both for the generation of classical and quantum data, but most work so far has focused
on qubit-based architectures. In this article, we focus on photonic quantum computing and present
a quantum GAN based on linear optical circuits and Fock-space encoding for the generation of
classical data. We explore the trainability and the performance of the model in a proof-of-concept
image generation scenario. We then conduct an experiment where we train our quantum GAN on
Quandela’s photonic quantum processor Ascella.

I. INTRODUCTION

Photonic quantum hardware represents one of the most
promising paths for the realization of a quantum com-
puter. There is a strong potential for scaling in the num-
ber of qubits [1], and various computation models and ar-
chitectures have been designed for photonics [2, 3]. More-
over, the possibility of demonstrating a near-term com-
putational advantage in tasks such as boson sampling [4]
makes it a noteworthy candidate for Noisy Intermediate-
Scale Quantum (NISQ) technology [5]. Even though
building photonic circuits with large numbers of single
photons and optical modes is challenging given current
technology, the rate of hardware advancement in the field
is very encouraging [6].

Nevertheless, little effort has been dedicated so far
to exploiting photonic-native architectures for machine
learning tasks, i.e. architectures where the components
are single photon sources, photon detectors, linear op-
tical circuits with beam-splitters and phase-shifters, and
where the problem is encoded in the Fock space. Some of
the existing works concentrate on discriminative learning
[7–9], but generative learning models remain mostly un-
derstudied [10, 11], despite the great potential shown by
classical generative models in recent years. While Fock-
space based models do not consist of traditional qubits,
they do exhibit quantum properties which could be har-
nessed in machine learning tasks.

Our work sets out to explore photonic quantum com-
puting for the generation of classical data. In particular,
we propose a quantum generative adversarial network
(QGAN) where the generator network is a variational
quantum circuit [12]. We train our model on the MNIST
[13] dataset of handwritten digits in reduced dimension,
using a patch-based image generation approach, in both
ideal and noisy settings. Additionally, we run the full
training procedure as a physical experiment on Quan-
dela’s quantum processing unit Ascella introduced in [9].
Our work is a proof-of-concept demonstration that pho-
tonic quantum adversarial models can be trained to gen-
erate classical data.

II. BACKGROUND

Generative models are designed to produce previously
unseen data that follow certain patterns. Their training
consists in feeding the model some target training sam-
ples that are representative of the desired outcome, and
optimizing the model so that its outputs grow closer to
these target samples. This corresponds to learning the
underlying distribution from which the training samples
are drawn, i.e. the data generating distribution. Gener-
ative models have a long-standing history, however, only
recent advances in deep neural networks enabled the cre-
ation of deep generative models (DGMs), such as GANs,
as well as variational autoencoders (VAEs), autoregres-
sive and diffusion models [14–17]. Among other factors,
these advances were made possible due to training tech-
niques and properties of deep neural networks [18].

A. Classical GANs

In this work, we focus on GANs as they are realizable
on a relatively small scale and can be trained efficiently.
First proposed by [14], GANs marked an important mile-
stone in the field of generative learning models. The
primary concept of adversarial learning consists of two
competing deep neural networks - the generator, often
denoted as G, and the discriminator D. The generator
accomplishes the task of data generation, by transform-
ing the noise z ∼ pz(z) sampled from the latent space
Z (also known as noise prior) into a fake data sample.
Then, both generator and discriminator networks com-
pete against each other in an adversarial zero-sum game,
where the generator is trying to produce fake samples
close to the real target samples drawn from the data gen-
erating distribution x ∼ pdata(x), and the discriminator
is trying to classify the real samples from the fake ones.
The process is repeated iteratively until the generator
starts producing realistic results, which may correspond
to a Nash equilibrium being reached for the zero-sum
game [19].

The learning process tries to maximize the loss value
across the discriminator parameters, so that the discrim-
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inator is able to distinguish between the fake and real
data. At the same time, it tries to minimize the loss
over the generator parameters, so as to generate more
realistic samples and confuse the discriminator. Mathe-
matically, this is equivalent to a min-max optimization
of a loss function L(D,G) defined on the discriminator
and generator models:

min
G

max
D

L(D,G), (1)

where:

L(D,G) = Ex∼pdata(x)[log(D(x))]

+ Ez∼pz(z)[log(1−D(G(z)))].
(2)

This can be expanded into the problem of maximizing
two separate loss functions, the generator loss LG and
the discriminator loss LD:

max
θG

LG and max
θD

LD, (3)

where:

LG =
1

n

n∑
i=1

log (D(G(zi)))

LD =
1

n

n∑
i=1

[log(D(xi)) + log(1−D(G(zi)))] ,

(4)

with n the number of training samples from the dataset,
and xi and zi respectively the i-th real and noise samples.

In practice, a batch of noise samples from the latent
space is supplied to the generator. It produces a batch of
results, which are then used for the discriminator. Simul-
taneously, the discriminator is supplied a batch of sam-
ples from the training dataset. The loss is therefore com-
puted by averaging over the batch, which has the added
advantage of stabilizing the learning process. For every
learning iteration, optimization steps are performed first
for the discriminator, and then for the generator, using
gradient descent (or ascent), where the gradient is com-
puted using backpropagation. The number of optimiza-
tion steps k for the discriminator depends on the specific
use case. The full training algorithm is shown Appendix
A.

B. Quantum GANs

Quantum Generative Adversarial Networks (QGANs)
were introduced in [20, 21] as a quantum alternative to
GANs. Rather than a single architecture, they consist
of a set of concepts where at least one, if not both of
the components - the generator and the discriminator -
possess a certain degree of quantum capabilities.

Moreover, not only the networks, but also the data or
type of problem, can be quantum or classical, as is dis-
cussed in details in [20]. Additionally, the latent space

can also be generated by a quantum source. References
[22] and [23] consider the alternative case where only the
latent space of an otherwise fully classical GAN is gener-
ated quantumly, in qubit-based and photonic-native sce-
narios respectively. In [21], an early example for the gen-
eration of quantum data, i.e. the generation of a quan-
tum state, is presented. The problem is defined so that in
practice, the generator learns how to implement a CNOT
quantum gate. A photonic example for the generation
of quantum data was studied recently in [24]. For the
generation of classical data with a QGAN, qubit-based
models were developed in various works [25–28], and a
model where the generator is based on the combination
of a linear optical circuit and a neural network was very
recently introduced in [29].

Here, we focus on the latter task of generating classi-
cal data, with photonic quantum circuits as a resource.
In our scenario, the generator is a fully quantum varia-
tional circuit, while the discriminator is a fully classical
discriminative neural network. The communication be-
tween both networks happens by obtaining classical sam-
ples from the output measurements of the generator, and
feeding them to the discriminator, along with the target
data. The rest of the training progresses as for classical
GANs: the discriminator is optimized first, followed by
the generator, iteratively.

C. Image generation and patch-based approach

The specific task we consider for our QGAN is to gen-
erate images. We use a patch-based approach in order to
exploit only a small number of photons and modes, and
thus make our scheme easier to execute experimentally.
The patch-based approach involves generating parts of
larger images from separate quantum generators, which
we call sub-generators, and combining or stacking the
outputs together to obtain the full image. Such an ap-
proach has previously been shown to work on the 8 × 8
MNIST dataset in [26].

We focus on this same dataset in our work. It is a
downscaled version of the popular 28×28 MNIST dataset
of handwritten digits, which was originally used for small-
scale classical generative models. It consists of a collec-
tion of digit images ranging from 0 to 9, each image be-
ing of size 8 × 8. The dataset contains approximately
560 entries for each digit, with 5621 datapoints in to-
tal. Each datapoint consists of 64 pixels, and each pixel
has continuous intensity value in the interval [0, 1], with
0 being fully black pixels and 1 being fully white ones.
Some examples, sampled randomly, are shown in Figure
1. While the downscaling causes lower quality, the dig-
its still closely resemble actual handwritten numbers and
provide enough diversity for the tasks discussed in this
work.
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Figure 1. Randomly sampled entries from the 8 × 8 MNIST
dataset. Each row corresponds to a separate digit, sorted in
increasing order 0-9.

III. A PHOTONIC QGAN

We present our proposal for a photonic QGAN in Fig-
ure 2, where the quantum generator is implemented us-
ing linear optical variational quantum circuits. Having a
photonic-native model means that the circuit ansatz con-
sists of optical modes with parametrized phase shiters
and beam-splitters, which is reflected in Figure 4. In
this framework, we consider as the input and output
states of the circuit the Fock states of n photons in m
modes, as in [7]. We denote an input Fock state as
|n⃗in⟩ = |nin

1 , ..., nin
m ⟩, where nin

i indicates the number of
photons in mode i. Naturally,

∑
i n

in
i = n. Likewise, we

can write an output Fock state as |n⃗out⟩ = |nout
1 , ..., nout

m ⟩:
they are detected as arrangements of photons in the out-
put modes, which we denote s = (nout

1 , ..., nout
m ). If there

is no photon loss, the nout
i sum to n as well.

An obvious way to design the quantum generator is to
consider that one output state corresponds to one data
sample, and to define a mapping between the Fock states
and the space of the training data. As a simple example,
let us imagine that we want to generate integers between
0 and 100, according to a certain target data distribution.
We can then choose the number of modes m and the
number of photons n such that there are at least 100
possible output Fock states, and map each output state
to an integer. In this scenario, one run of the quantum
circuit produces one sample. This approach, which we
could call sample-based, is used for instance in related
work on photonic quantum circuit Born machines [30].

However, while we are limited to small scale devices,
such as the 12 modes and 6 photons of the Ascella pro-
cessor [9], using this approach also means that we are re-
stricted in the type of datasets that we can consider. Let
us suppose that we aim to generate 8× 8 MNIST digits,
and that we use the patch-based approach as mentioned

in the previous section with four patches, so that each
circuit must generate images of 16 pixels at a time. If
each pixel only had two intensity values (black or white),
the dimension of the resulting space would be 216. This
is already beyond what we could implement on Ascella,
and even more so if we considered the actual range of
pixel intensities of the digit images. For this reason, and
for the purpose of this work, we propose an alternative
new mapping in the next section.

A. A distribution-based mapping

In this approach, we compute the probability distri-
bution on the output Fock states by performing several
thousands of measurement shots at the end of the gen-
erator circuit. This discrete output distribution is then
mapped to a discrete distribution on integers. If needed,
binning may be performed so that several output Fock
states correspond to the same integer. The index of a bin,
i.e. the integer, corresponds to the location of a pixel on
the image, while the probability of the bin corresponds
to the pixel intensity, as shown in Figure 3. This allows
us to obtain continuous pixel intensity values. To cover
their full range, the probability values are renormalized
to the interval [0, 1] using min-max normalization.

It is important to note that the number of possible
output states of the generator does not always match the
number of pixels necessary for the image or the patch,
so the output distribution of each sub-generator may be
trimmed equally on each tail, under the assumption that
tails of distributions do not carry much information.

When transforming Fock states to integers, while we
can apply an arbitrary mapping scheme, it would in-
tuitively make sense if photon arrangements physically
close to each other in the device would correspond to in-
tegers that are close as well. We thus consider outputs
with the most number of photons in the rightmost modes
as closer to 0 in their integer mapping. Moreover, the
larger the number of photons in the rightmost mode the
smaller is the mapped integer. Correspondingly, states
with a larger number of photons in the leftmost modes
are considered further away from 0. Naturally, the num-
ber of available integers corresponds to the number of
distinguishable states.

This approach is most efficient when photon number
resolving (PNR) detectors are available. One of the main
advantages photon number resolution provides is that it
allows us to observe a larger amount of output states for
given values of m and n. However, PNR detectors remain
difficult to design with current technology. With thresh-
old detectors, the only accessible values are binary - 0 (no
photon) or 1 (click, i.e. presence of photons). Learning
is of course still possible, but the mapping differs since
several states with photon bunching are indistinguishable
from each other. A sample mapping for 3 modes and 3
photons is shown in Table I.

This mapping assumes ideal conditions without pho-
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Figure 2. Proposal for image generation with a photonic QGAN. Noise from the latent space is fed into each sub-generator
of the patch-based approach. These are variational photonic quantum circuits detailed in Figure 5. The output distribution
of the sub-generators is mapped to image pixels, which are then recombined together to form a complete image, following the
patch-based approach. The fake images are provided to the discriminator, along with the real images. The discriminator is a
classical neural network, and classifies the image as real or fake. Based on these results, the loss is constructed as per Equation
(4). After optimizing the loss, the parameters of the generator and the discriminator are updated.

2 0 0 0 0

1 0 0 0

0 0 0 0

... ...

Output arrangements s and probabilities Pixel number and pixel intensity 

p(s1)

p(s2)

p(sk)

1

2

Figure 3. Distribution-based mapping. Each output Fock
state observed as arrangement s = (nout

1 , ..., nout
m ) is mapped

to a pixel number in the image, and the associated estimated
probability is mapped to the intensity of the pixel.

ton loss. In noisy settings, the mapping does not need to
be updated if PNR is available, since lossy states can be
properly detected and filtered out of the final distribution
with postselection. However, with threshold detectors,
photon loss introduces an ambiguity in the output dis-
tribution and another mapping is necessary. In practice,
lossless states with photon bunching cannot be distin-
guished from lossy states and they are both discarded in
postselection. For the case of 3 photons with 3 modes,
the number of output states reduces to one - |1, 1, 1⟩. In
such a situation, m or n must be increased to recover the
necessary amount of integers for the image size.

Integer PNR No PNR (state) No PNR (pattern)
0 |0, 0, 3⟩ |0, 0, 3⟩ |0, 0, click⟩
1 |0, 1, 2⟩ |0, 3, 0⟩ |0, click, 0⟩
2 |0, 2, 1⟩ |0, 2, 1⟩, |0, 1, 2⟩ |0, click, click⟩
3 |0, 3, 0⟩ |3, 0, 0⟩ |click, 0, 0⟩
4 |1, 0, 2⟩ |2, 0, 1⟩, |1, 0, 2⟩ |click, 0, click⟩
5 |1, 1, 1⟩ |2, 1, 0⟩, |1, 2, 0⟩ |click, click, 0⟩
6 |1, 2, 0⟩ |1, 1, 1⟩ |click, click, click⟩
7 |2, 0, 1⟩ - -
8 |2, 1, 0⟩ - -
9 |3, 0, 0⟩ - -

Table I. Fock state to integer mapping table for a noiseless
setup with 3 modes and 3 photons. The last column clarifies
the detection pattern without PNR.

B. The ansatz

In our patch-based approach, images are generated in
horizontal patches by separate sub-generators and even-
tually stacked vertically to form the full image. Each sub-
generator corresponds to a linear optical quantum circuit.
When designing the ansatz, we considered setups with
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Φ4

Φ5

θ1,θ'1

θ'2

θ3,

θ2,

θ4,

θ'3

θ'4

=

(a) Structure of a variational layer

ENC [ i ] = Φ

i - 1

i + 1

i 

(b) Structure of an encoding layer

Figure 4. Structures of the variational layers and encoding or noise layers. Phase shifters are depicted by squares and beam-
splitters by crossing between the modes. Parameters of the variational layers are trainable and parameters of the encoding
layers are sampled from the latent space.

VAR ENC [2] VAR

(a) Circuit setup A

VAR ENC [0] VAR ENC [2] VAR ENC [4] VAR

(b) Circuit setup B

VAR VAR ENC [2] VAR VAR

(c) Circuit setup C

VAR ENC [1] VAR ENC [3] VAR

(d) Circuit setup D

Figure 5. Sub-generator circuit structures used for photonic QGAN training. Layer structures are shown in Figure 4.

two quantum sub-generators, where each sub-generator
generates patches of 32 pixels, as well as setups with four
quantum sub-generators, where the patches contain 16
pixels.

In a given setup, all the sub-generators of the gener-
ator have the same structure. This structure consists
of variational layers, and encoding or noise layers, as
described in Figure 4. The variational layers contain
the parameters that are optimized during the training
of the model and their structure is inspired from [31, 32].
The encoding or noise layers are used to introduce noise
z into the model (here sampled from a normal distri-
bution). These encoding-reuploading layers consist of
phase-shifters. They ensure that the resulting distribu-
tion over pixel intensities is different for each input noise
sample, and that the model can thus generate a variety
of data points, as well as generalize better. In general,
noise-reuploading adds to the non-linearity of the input-
output mapping, improving the diversity in the gener-
ated images and encouraging the model to learn patterns
rather than memorizing them [33, 34].

We explored several structures for the sub-generator
circuits. This structure can be adjusted by alternating
the number and the arrangement of the variational and

encoding layers. We display in Figure 5 the circuits that
we found to be fairly efficient at solving our image gen-
eration task. The smallest circuit only has one encoding
layer, while the largest one has three. The number of
modes may vary compared to the circuits displayed in
Figures 4 and 5, but the general layer structure is pre-
served. It is important to note that considering the em-
piric nature of the findings, the circuit configurations are
not guaranteed to be optimal, but are rather a heuris-
tic combination of an educated guess and non-exhaustive
search.

C. Training and optimization

The training of photonic QGANs progresses similarly
to the regular GANs, as in Algorithm 1. The clas-
sical discriminator is trained first for one step using
backpropagation-enabled stochastic gradient ascent to
maximize LD, after which the quantum generator is
trained for several steps of Simultaneous Perturbation
Stochastic Approximation (SPSA) [35] iterations, to op-
timize LG. All the parameters are updated, and this pro-
cess is repeated until the maximum number of training
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epochs is reached.
SPSA is an optimization technique based on a stochas-

tic approximation of the gradient. Due to the fact that
this approximation is an almost unbiased estimator of the
gradient, convergence of the method is guaranteed under
reasonably general conditions. The primary advantage
of the SPSA algorithm lies in the amount of circuit eval-
uations necessary for approximating the gradient and its
robustness to noise, including the noise induced by quan-
tum sources [36, 37]. SPSA requires only 2 evaluations,
which allows cutting back on costly reconfiguration of lin-
ear optical gates and considerably reduces the duration
of both simulations and experiments. Indeed, the num-
ber of training steps of the models scale only constantly
(rather than linearly) with the number of parameters.

We initialize the parameters for SPSA in a way which
allows the initial generator pseudo-gradients to be large
enough for a successful kick-start to the optimization. In
order to achieve this, parameters are initialized randomly,
the initial gradients are computed and if the values are
too small a reinitialization is performed. This parame-
ter reinitialization is repeated until the starting pseudo-
gradient values are in a desired range. Initialization per-
formed in this way does not guarantee convergence, but
in most cases allows the generator enough starting opti-
mization momentum to be able to compete with the more
exact gradient calculation of the classical discriminator,
thus enabling a balanced training.

D. Numerical experiments: ideal simulations

We perform our numerical experiments using Quan-
dela’s software package Perceval [38], designed for lin-
ear optical quantum circuits. We include an abstract
pseudocode in Appendix A, and our Python code can be
found in a companion Github repository [39].

Ideal conditions for simulations assume a perfect single
photon source, ideal components, no photon loss, perfect
detectors and the absence of sampling errors. First, we
focus on the generation of digit "0" for the design of the
model and the optimization of its hyperparameters. We
then further study the best model for the generation of
other digits, and for noisy simulations in the next sec-
tions. We include all details about the model optimiza-
tion and hyperparameter search in Appendix B.

We present our results in Figure 6. The loss evolution
plots describe how the values of the generator loss LG

and the discriminator loss LD progress with the training
epochs. For each configuration, we run 10 training in-
stances, and we display the average over these runs as a
bold line, and the standard deviation as a shaded area.
We observe that even averaged over 10 runs, loss values
have small constant fluctuations throughout the training,
which is a strong characteristic of adversarial training.
When the LD loss increases, the LG loss decreases, and
vice versa. In the image evolution plots, we see that the
models start with noisy outputs and that most of them

produce quite realistic "0"s by the end of the training
(iteration 1500). The generated image plot shows several
samples from the trained model, after the last epoch has
been completed.

It appears that there is no specific loss value where the
training can be stopped. However, good models gener-
ally reach an equilibrium where LG and LD losses start
to fluctuate around the same moving average, without in-
creasing or decreasing further. This is clearly observed in
Figure 6c where both configurations converge to an equi-
librium after around 1000 iterations. This equilibrium is
centered around value close to 0.69, which corresponds to
log 2. Taking a look at loss from Equation (4), it becomes
clear that LG = − log 2 , when D(G(z)) = 1/2. That is,
when the discriminator prediction about whether the fake
image is real is as good as a random guess. Despite the
fact this equilibrium is reached around iteration 1000,
we note that further training does improve the results.
Therefore, cutting off the training once the losses reach
the value of log 2 is not necessarily a desirable strategy.
Rather, it makes sense to inspect the generated results
using qualitative or quantitative metrics in order to be
able to cutoff the training in due time. Quantitative as-
sessment metrics are not discussed here, since the small
scale of generated images allows for direct inspection of
the results, as has been the case in many quantum gen-
erative learning works [26].

We refer the reader to Appendix B for further anal-
ysis of the results and for hypotheses as to why some
configurations perform better than others. Overall, the
models from Figure 6c behaved best and we select them
for further simulations.

In particular, we apply the model from the left hand
side of Figure 6c to the generation of other digits. We
present results for some digits in Figure 7, while the rest
of the digits can be found in the Github respository [39].
An additional 500 iterations were employed here in order
to properly assess the convergence for different digits.
When comparing to target data, we see that the model
performs fairly well for most of the digits, and each sam-
pled digit has recognizable contours. Importantly, the
model either converges or is bound to do so for all the
digits, which is indicated by a narrowing of the standard
deviation for the LG loss. While some digits may require
more training iterations to reach an equilibrium state,
we can assert that the model starts producing realistic
results around iteration 1500.

Note that, for simplicity, we restricted our model to
generating one digit at a time (unlike classical GANs
trained on MNIST). This is a similar approach to pre-
vious QGAN proposals such as [26], but our model could
be extended to a conditional QGAN in future work. It
would then be able to generate all the digits depending
on the input label, which could be supplied as a model
input or encoded through an additional layer.
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(a) Best training configurations for circuit setup A.

(b) Best training configurations for circuit setup B.

(c) Best training configurations for circuit setup C.

(d) Best training configurations for circuit setup D.

Figure 6. Best training results for different circuit setups. Each figure contains a plot with the evolution of the loss function,
the evolution of the generated images as well as the final generated images of the trained model, and as a small infobox detailing
the model hyperparameters. Figures on the left and right correspond to different sets of hyperparameters.

E. Noisy simulations

We now use the same model for noisy simulations. The
Perceval package allows us to specify various parame-
ters such as the emission probability of the source, the
photon loss regime, and photon distinguishability. We
set indistinguishability and photon loss to 0.92 each, so
as to closely mimic the actual conditions on the Ascella
processor as it was presented in [9].

In addition to the imperfect source and losses through-
out the circuit, noisy simulations also introduce sampling
error. For ideal simulations the distribution of the out-
put with exact probabilities is directly available in Perce-
val. However, in this case the distribution is obtained by

collecting 105 measurement shots and postselecting lossy
outputs. A discrete distribution obtained in such a way
gets closer to the exact distribution with an increasing
number of measurement shots. However, in an experi-
mental setting, collecting a high number of shots requires
precious time, and 105 shots were found to be an optimal
compromise for the accuracy/training time trade-off.

As discussed in Section III A, the lack of PNR detectors
combined with photon loss shrink the size of the output
space. This requires us to change some hyperparameters
and we display two strategies in Figure 8.

Clearly, the added noise considerably slows down the
convergence. While the noiseless version reaches an equi-
librium around iteration 900 on average, for the noisy ver-
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(a) Results for digit 1 (b) Results for digit 3

(c) Results for digit 5 (d) Results for digit 9

Figure 7. Training results for different digits.

Figure 8. Training results for noisy simulations. The model on the left has a higher number of modes, and the model on the
right contains more sub-generators, which compensates for a smaller output space in the lossy case.

sion on the right of Figure 8, even 1500 iterations are not
enough. This version, which has more sub-generators,
shows a diverging learning trend. This might be caused
by the increased number of parameters, making it harder
to train this model under the predefined learning rate re-
strictions (see Appendix B). Nevertheless, for the model
on the left which has less sub-generators but a higher
number of modes, one can see how the standard devia-
tion of the generator decreases throughout the training,
indicating that it is likely to eventually converge. More-
over, the generated results are satisfactory when applying
a manual check. Results comprehensible to the human
eye are available by iteration 600 for the ideal version,
while the noisy version requires more than 1000.

Overall, training in the presence of noise and sampling
errors comparable to those of a real quantum processor is
still viable, albeit slower. Techniques for quantum error
mitigation [40] might improve the results of noisy simu-
lations, and could be explored in future work.

F. Physical experiment

Based on the insights gathered from our simulations,
we run an experiment on Quandela’s processor Ascella,
with our best performing model. The corresponding
quantum circuit is of a reasonable depth, making it com-
patible with Ascella’s chip, which is naturally reused for
each sub-generator. In order to make the duration of
the experiment tractable, we decrease the total number
of training iterations to 1000, with 3 SPSA steps for the
generator at each iteration, which results in a total of
3000 SPSA steps. The results for one training instance
are displayed in Figure 9.

While the training is slow, following the trend of noisy
simulations, the results are promising. Importantly, we
observe that the model is learning, with the loss functions
behaving as they should, tending towards the equilibrium
value, and results improving throughout the training. A
point that would require improvements in future experi-
ments is that the generated images do not present a lot
of diversity. There are only minor differences between
the "0"s which might be improved by adding more en-



9

Figure 9. Training results for the experiment on the Ascella
quantum processor.

coding phase-shifters into the ansatz. Nevertheless, the
generated "0"s are of fairly good quality, with character-
istic contours of the digit, demonstrating the experimen-
tal feasibility of photonic QGANs.

IV. DISCUSSION AND FUTURE WORK

In this work, we showed that photonic quantum cir-
cuits can work as a key component in a generative learn-
ing pipeline to produce images. This is in contrast to
previous work where linear optical circuits were used for
smaller-scale tasks such as latent space generation, with-
out going as far as using a photonic generator. To the
best of our knowledge, our experiment is the first demon-
stration of a photonic GAN with a fully quantum gen-
erator for classical data. Additionally, with the aim of
transparency and collaboration within the quantum ma-
chine learning community, we make our code available
online at [39].

Most of the QGAN literature concentrates on smaller
scale models for generation of lower resolution images,
such as 3× 3 bars-and-stripes. However, the task of gen-
erating larger images is tractable with current hardware
if the right approach is used – such as our distribution-
based mapping. This highlights the importance of look-
ing for alternative strategies when working with near-
term quantum hardware. Using our mapping along with
noise reuploading gave us greater flexibility, and in com-
bination with patch-based learning the model could gen-
erate higher resolutions images.

We note that SPSA-based optimization seems to work
surprisingly well on variational linear optical circuits. Es-
pecially in the noisy experimental setup, SPSA allowed
for stable learning at a constant cost, albeit requiring
more iterations to converge. Fine-tuning the optimiza-

tion and the model in general was an important aspect
of the work. Future work may concentrate on improving
the convergence rates of optimization techniques for pho-
tonic platforms, which can be used directly to improve
the performance of our model. Indeed, only few works
so far have focused on exploring methods like parameter-
shift rules [41] in the context of quantum photonics [42].
As mentioned in the text, other improvements to this
work include the extension of the model to a conditional
QGAN, as well as the integration of error mitigation tech-
niques for sources of noise such as photon loss and dis-
tinguishability [43].

Overall, our QGAN implementation is quite flexible
and modular, so the model can be further explored for
generation of other types classical data, by fine-tuning
parameters and introducing some changes to the circuit
structure. For instance, a generator may consist of sub-
generators with different structures, depending on the
task at hand. We could also consider a quantum discrim-
inator and training data based on a quantum source, for
the generation of quantum states, for instance. Addition-
ally, the source of the latent space could also be changed
to be quantum, by using another boson-sampling-based
circuit as a source of noise, as in [23].

As is often the case in quantum machine learning, it is
not always clear if a quantum model will perform better
than a classical one and on which datasets that would
be the case [44], although interesting alternative bench-
marks such as the energy consumption of quantum ver-
sus classical computers are being explored [45]. Tasks
based on quantum data clearly require a quantum model
– for example if the generator learns how to implement
a quantum gate or generate specific quantum states. For
classical data on the other hand, a deeper investigation
is required, likely related to the identification of induc-
tive biases of quantum models. In our case in particular,
identifying inductive biases of photonic quantum circuits
may help us understand where photonic QGANs may be
most useful.
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Appendix A: Algorithms

Algorithm 1: GAN Training
Data: Neural networks G and D, data generating distribution pdata(x)
Result: G capable of sampling from pdata(x)
for number of training iterations do

for k steps do
Sample a batch of noise samples z ∼ pz(z)
Sample a batch of real data x ∼ pdata(x)
Generate fake data batch G(z) Get predictions for fake and real data batches: D(G(z)) and D(x)
Calculate and maximize LD according to 4 Update parameters of D

end
Sample a batch of noise samples z ∼ pz(z)
Get predictions for the fake data batch D(G(z))
Calculate and maximize LG according to 4
Update parameters of G

end
return G

Algorithm 2: Patch-based image generation using photonic quantum circuits
Data: Sub-generator count c, sub-generator parameters params

Noise batch z, input Fock state |∗⟩ψ, measurement shot count m
Result: A batch of fake images

Initialize an empty batch of fake images fakebatch
Initialize c sub-generator circuits according to params
foreach noise sample zi in z do

Initialize an empty fake image fakeimage
foreach sub-generator g do

Encode zi into g through noise reuploading phase-shifter layers
Run the circuit g with input |∗⟩ψ, performing m measurement shots
Build the discrete distribution of the output Fock states
Map the distribution to an integer distribution.
Construct the patch g(z) by renormalizing the integer distribution to the interval [0, 1].
Add g(z) to fakeimage

end
Add fakeimage to fakebatch

end
return fakebatch

Appendix B: Model details

In section III D, we optimize the model in ideal conditions before proceeding with noisy simulations and the experi-
ment. This optimization is done through hyperparameter search, by testing and choosing the models that showed the
best potential and performance. Batch size is one of the fixed hyperparameters over our search. All generators are
supplied 4 noise samples and therefore produce a batch of 4 results over which averaging is done for loss evaluation.
This batch size was found to be optimal in terms of computation time and implications on the stability of the train-
ing. Another training hyperparameter which is fixed across all models is the learning rate, for both the generator and
the discriminator. For the discriminator, we chose a constant learning rate of 0.002. For the generator, the adaptive
learning rate of SPSA is employed, with the initial rate dependent on the initial gradient values. However, the number
of optimization steps per each discriminator step is fixed to be 7. A total of 10500 SPSA iterations are used, with 7
steps corresponding to a single step of gradient ascent of the discriminator. This means that the total optimization
routine has 10500/7 = 1500 steps.

Four hyperparameters were picked to be variable: the number of sub-generators, their circuit structure as shown in
Figure 5, their input state, and the PNR capabilities of the detectors. We do a grid search on these configurations, and
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we present the most interesting results in Figures 6a - 6d from the main text. The full list of the results is presented
in the companion Github repository [39] for curious readers.

From our results, we observe that deeper circuits do not necessarily mean improved results. While there is certainly
an improvement when increasing the number of layers from 3 to 5, this trend does not uphold for deeper circuits. As
a matter of fact, the deepest circuit from the Figure 6b performs worse than the shallower analogs. This might be
attributed to the difficulties associated with the training of more complex quantum circuits.

We can also see how the number of noise encoding layers affects the diversity of the generated results. Since
the encoding layers are the interface for supplying the classical noise, increasing their amount means increasing the
classical noise on the circuits. This has an adverse effect, however, wherein the quality of the results deteriorates
with the number of encoding layers. The transition between Figures 6c and 6d indicates a noticeable decrease in
image quality with the introduction of an additional encoding layer, in otherwise identical setups. Luckily, even one
encoding layer provides enough diversity in the images. The results generated by such models with one encoding layer
(Figures 6a and 6c) may initially seem less diverse, because they preserve the same shape for all generated samples.
But results are indeed diverse, as can be seen through the placements of intensity value accents in generated samples.
Most importantly, simple checks show that the generated results do not replicate original training samples, but rather
generate previously unseen "0"s, which means that these models generalize well.

Finally, we note that our models benefit from the availability of PNR detectors. In otherwise identical setups in
Figure 6a, PNR detectors make it possible to generate similar results by exploiting fewer modes and more photons,
as expected. On the other hand, if the number of modes and photons is increased while PNR is made available, this
could also potentially open up some prospects for larger-scale models and working with higher resolution images.
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