
HAL Id: hal-04827997
https://hal.science/hal-04827997v1

Submitted on 9 Dec 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Formal methods: abstract interpretation & verified
compilation
David Monniaux

To cite this version:
David Monniaux. Formal methods: abstract interpretation & verified compilation. Engineering school.
Le Kremlin-Bicêtre, France. 2022. �hal-04827997�

https://hal.science/hal-04827997v1
https://hal.archives-ouvertes.fr

Formal methods: abstract interpretation &
verified compilation

David Monniaux

VERIMAG — CNRS

2022-09-06

David Monniaux (VERIMAG) Formal methods: abstract interpretation & verified compilation 2022-09-06 1 / 50

In a nutshell

Use methods based on mathematics to produce safe software.

David Monniaux (VERIMAG) Formal methods: abstract interpretation & verified compilation 2022-09-06 2 / 50

Astrée and other analyzers Safety properties and induction

Contents

Astrée and other analyzers
Safety properties and induction
Numerical abstractions
Other data
Tools
Too hard

CompCert
Compiler safety
Scheduling

David Monniaux (VERIMAG) Formal methods: abstract interpretation & verified compilation 2022-09-06 3 / 50

Astrée and other analyzers Safety properties and induction

Program safety proofs
Prove that a program does not end in the wrong place.

David Monniaux (VERIMAG) Formal methods: abstract interpretation & verified compilation 2022-09-06 4 / 50

Astrée and other analyzers Safety properties and induction

My industrial involvement

https://www.astree.ens.fr/

https://www.absint.com/astree/index.htm

David Monniaux (VERIMAG) Formal methods: abstract interpretation & verified compilation 2022-09-06 5 / 50

https://www.astree.ens.fr/
https://www.absint.com/astree/index.htm

Astrée and other analyzers Safety properties and induction

Use case: safety-critical systems

e.g., fly-by-wire aircraft controls

David Monniaux (VERIMAG) Formal methods: abstract interpretation & verified compilation 2022-09-06 6 / 50

Astrée and other analyzers Safety properties and induction

Then not so critical systems

e.g. car engine control unit

David Monniaux (VERIMAG) Formal methods: abstract interpretation & verified compilation 2022-09-06 7 / 50

Astrée and other analyzers Safety properties and induction

Distinct from testing

Testing
Check a finite number of cases.
What if the bug occurs in other cases (e.g. compiler generates
incorrect code for some rarely used block only if some register is
X15).

Proof
Prove for all cases.

David Monniaux (VERIMAG) Formal methods: abstract interpretation & verified compilation 2022-09-06 8 / 50

Astrée and other analyzers Safety properties and induction

Safety properties

In this talk: properties of the form
“∀ execution, ∀ state along execution, property P holds”

Otherwise said: “the system cannot reach ¬P”

Obvious use: ¬P is the error states
▶ runtime errors (division by zero, null pointer, array access out of

bounds, invalid cast…)
▶ assertion violations

David Monniaux (VERIMAG) Formal methods: abstract interpretation & verified compilation 2022-09-06 9 / 50

Astrée and other analyzers Safety properties and induction

First idea: direct proof by induction

1. true when starting the loop

2. if true at iteration n, then true at iteration n+ 1

Weakness?

David Monniaux (VERIMAG) Formal methods: abstract interpretation & verified compilation 2022-09-06 10 / 50

Astrée and other analyzers Safety properties and induction

A loopy example

for(int i=0; i!=100; i++) { }

Loop body:
▶ initialization i := 0
▶ step i → i+ 1 if i ̸= 100

Prove i < 200. Inductive?

Not inductive. Yet stronger i ≤ 100 inductive!

David Monniaux (VERIMAG) Formal methods: abstract interpretation & verified compilation 2022-09-06 11 / 50

Astrée and other analyzers Safety properties and induction

A loopy example

for(int i=0; i!=100; i++) { }

Loop body:
▶ initialization i := 0
▶ step i → i+ 1 if i ̸= 100

Prove i < 200. Inductive?

Not inductive. Yet stronger i ≤ 100 inductive!

David Monniaux (VERIMAG) Formal methods: abstract interpretation & verified compilation 2022-09-06 11 / 50

Astrée and other analyzers Safety properties and induction

Strenghtening: executive summary

The property to prove is almost never inductive.

Replace it by a stronger, inductive property.

Either ask the user to provide the property (Frama-C, etc.)…
…or have the tool find it (Astrée, etc.)

David Monniaux (VERIMAG) Formal methods: abstract interpretation & verified compilation 2022-09-06 12 / 50

Astrée and other analyzers Numerical abstractions

Contents

Astrée and other analyzers
Safety properties and induction
Numerical abstractions
Other data
Tools
Too hard

CompCert
Compiler safety
Scheduling

David Monniaux (VERIMAG) Formal methods: abstract interpretation & verified compilation 2022-09-06 13 / 50

Astrée and other analyzers Numerical abstractions

Intervals

State space = Zd (d integer variables)
Compute one interval per variable per program point

int x, y, z; //x ∈ [−7, 5]
if (x >= 0) { //

x ∈ [0, 5]

y = x; //

y ∈ [0, 5]

} else { //

x ∈ [−7,−1]

y = -x; //

y ∈ [1, 7]

} //

y ∈ [0, 7]

z = 2*y + x; //

z ∈ [−7, 19]

David Monniaux (VERIMAG) Formal methods: abstract interpretation & verified compilation 2022-09-06 14 / 50

Astrée and other analyzers Numerical abstractions

Intervals

State space = Zd (d integer variables)
Compute one interval per variable per program point

int x, y, z; //x ∈ [−7, 5]
if (x >= 0) { //x ∈ [0, 5]

y = x; //

y ∈ [0, 5]

} else { //x ∈ [−7,−1]
y = -x; //

y ∈ [1, 7]

} //

y ∈ [0, 7]

z = 2*y + x; //

z ∈ [−7, 19]

David Monniaux (VERIMAG) Formal methods: abstract interpretation & verified compilation 2022-09-06 14 / 50

Astrée and other analyzers Numerical abstractions

Intervals

State space = Zd (d integer variables)
Compute one interval per variable per program point

int x, y, z; //x ∈ [−7, 5]
if (x >= 0) { //x ∈ [0, 5]

y = x; //y ∈ [0, 5]
} else { //x ∈ [−7,−1]
y = -x; //y ∈ [1, 7]

} //

y ∈ [0, 7]

z = 2*y + x; //

z ∈ [−7, 19]

David Monniaux (VERIMAG) Formal methods: abstract interpretation & verified compilation 2022-09-06 14 / 50

Astrée and other analyzers Numerical abstractions

Intervals

State space = Zd (d integer variables)
Compute one interval per variable per program point

int x, y, z; //x ∈ [−7, 5]
if (x >= 0) { //x ∈ [0, 5]

y = x; //y ∈ [0, 5]
} else { //x ∈ [−7,−1]
y = -x; //y ∈ [1, 7]

} //y ∈ [0, 7]
z = 2*y + x; //

z ∈ [−7, 19]

David Monniaux (VERIMAG) Formal methods: abstract interpretation & verified compilation 2022-09-06 14 / 50

Astrée and other analyzers Numerical abstractions

Intervals

State space = Zd (d integer variables)
Compute one interval per variable per program point

int x, y, z; //x ∈ [−7, 5]
if (x >= 0) { //x ∈ [0, 5]

y = x; //y ∈ [0, 5]
} else { //x ∈ [−7,−1]
y = -x; //y ∈ [1, 7]

} //y ∈ [0, 7]
z = 2*y + x; //z ∈ [−7, 19]

David Monniaux (VERIMAG) Formal methods: abstract interpretation & verified compilation 2022-09-06 14 / 50

Astrée and other analyzers Numerical abstractions

Unbounded convex polyhedra

David Monniaux (VERIMAG) Formal methods: abstract interpretation & verified compilation 2022-09-06 15 / 50

Astrée and other analyzers Other data

Contents

Astrée and other analyzers
Safety properties and induction
Numerical abstractions
Other data
Tools
Too hard

CompCert
Compiler safety
Scheduling

David Monniaux (VERIMAG) Formal methods: abstract interpretation & verified compilation 2022-09-06 16 / 50

Astrée and other analyzers Other data

What must be done

Being able to represent sets of variable / memory states usable in
inductive proofs.

Not limited to integers values!

David Monniaux (VERIMAG) Formal methods: abstract interpretation & verified compilation 2022-09-06 17 / 50

Astrée and other analyzers Other data

Floating-point

Most abstract domains: ideal mathematics (Z, Q, R)
Intervals: handle floating-point by directed rounding

Other cases: bound roundoff errors
x⊕ y = x+ y+ ϵ, |ϵ| ≤ ϵr|x+ y|

x⊗ y = x× y+ ϵ, |ϵ| ≤ min(ϵa, ϵr|x+ y|)

ϵr “error at last bit of precision”
ϵa least positive floating-point value

David Monniaux (VERIMAG) Formal methods: abstract interpretation & verified compilation 2022-09-06 18 / 50

Astrée and other analyzers Other data

Data structures

▶ Point-to graph (may/must)
▶ Abstract into a single variable

▶ all data allocated at single location? (but beware of malloc-like
functions)

▶ all fields with same field identifier (e.g. in Java)

▶ Recursive decomposition of memory
▶ Separation logic?

David Monniaux (VERIMAG) Formal methods: abstract interpretation & verified compilation 2022-09-06 19 / 50

Astrée and other analyzers Tools

Contents

Astrée and other analyzers
Safety properties and induction
Numerical abstractions
Other data
Tools
Too hard

CompCert
Compiler safety
Scheduling

David Monniaux (VERIMAG) Formal methods: abstract interpretation & verified compilation 2022-09-06 20 / 50

Astrée and other analyzers Tools

Other approaches

Astrée based on abstract interpretation

Other tools based on predicate abstraction, Craig interpolants, etc.

Yet other tools (not discussed here) are style checkers.

David Monniaux (VERIMAG) Formal methods: abstract interpretation & verified compilation 2022-09-06 21 / 50

Astrée and other analyzers Tools

Polyspace
(commercial) now Mathworks

David Monniaux (VERIMAG) Formal methods: abstract interpretation & verified compilation 2022-09-06 22 / 50

Astrée and other analyzers Tools

Astrée

Cousot et al. (commercial)
http://www.astree.ens.fr/
http://www.absint.com/astree/index.htm

▶ home-made front-end
▶ only abstract interpretation
▶ intervals and octagons
▶ specialized abstractions for numerical filters
▶ limited memory abstractions
▶ now support for parallel programs and C++

David Monniaux (VERIMAG) Formal methods: abstract interpretation & verified compilation 2022-09-06 23 / 50

http://www.astree.ens.fr/
http://www.absint.com/astree/index.htm

Astrée and other analyzers Tools

CPAChecker

http://cpachecker.sosy-lab.org/

▶ Eclipse CDT front-end
▶ mostly predicate interpretation
▶ intervals
▶ limited support for octagons and polyhedra

David Monniaux (VERIMAG) Formal methods: abstract interpretation & verified compilation 2022-09-06 24 / 50

http://cpachecker.sosy-lab.org/

Astrée and other analyzers Tools

PAGAI

http://pagai.forge.imag.fr/ (Julien Henry)

▶ LLVM front-end
▶ uses APRON abstract domains
▶ path-focusing for SMT-solving
▶ extra applications to worst case execution time (WCET) analysis

David Monniaux (VERIMAG) Formal methods: abstract interpretation & verified compilation 2022-09-06 25 / 50

http://pagai.forge.imag.fr/

Astrée and other analyzers Too hard

Contents

Astrée and other analyzers
Safety properties and induction
Numerical abstractions
Other data
Tools
Too hard

CompCert
Compiler safety
Scheduling

David Monniaux (VERIMAG) Formal methods: abstract interpretation & verified compilation 2022-09-06 26 / 50

Astrée and other analyzers Too hard

When proving is too hard

Use technology developed for proving to conduct more extensive
testing.
Concolic execution.

e.g. SAGE project at Microsoft https://patricegodefroid.
github.io/public_psfiles/ndss2008.pdf
automated search for vulnerabilities in MS Office etc.

David Monniaux (VERIMAG) Formal methods: abstract interpretation & verified compilation 2022-09-06 27 / 50

https://patricegodefroid.github.io/public_psfiles/ndss2008.pdf
https://patricegodefroid.github.io/public_psfiles/ndss2008.pdf

CompCert Compiler safety

Contents

Astrée and other analyzers
Safety properties and induction
Numerical abstractions
Other data
Tools
Too hard

CompCert
Compiler safety
Scheduling

David Monniaux (VERIMAG) Formal methods: abstract interpretation & verified compilation 2022-09-06 28 / 50

CompCert Compiler safety

Usual compiler

source code
↓
target code (assembler source, object code, bytecode…)

tens of thousands of bugs in gcc’s bug tracker

David Monniaux (VERIMAG) Formal methods: abstract interpretation & verified compilation 2022-09-06 29 / 50

CompCert Compiler safety

Why compiler bugs are nasty

A compiler bug may disappear
▶ if optimization levels are changed to ease debugging
▶ if a different compiler is used
▶ if debugging code is added to the program (even just printf)

A compiler bug is most often at first undistinguishable from
reliance on undefined behavior in the program.

David Monniaux (VERIMAG) Formal methods: abstract interpretation & verified compilation 2022-09-06 30 / 50

CompCert Compiler safety

CompCert

Formally verified C compiler
project led by Xavier Leroy, then at INRIA, now at Collège de France

Non-commercial https://github.com/AbsInt/CompCert
Commercial https://www.absint.com/compcert/index.htm

trace of execution = sequence of external calls, volatile read/writes

valid trace of execution at C level
↓
same trace of execution at assembly level

David Monniaux (VERIMAG) Formal methods: abstract interpretation & verified compilation 2022-09-06 31 / 50

https://github.com/AbsInt/CompCert
https://www.absint.com/compcert/index.htm

CompCert Compiler safety

Trace of execution

A compiler optimizer may reorganize everything internally…
but must preserve all interactions with the outside world and their
ordering
▶ calls to external functions (system calls, I/O, GUI…)
▶ read/write to volatile variables (for system-level programming)

David Monniaux (VERIMAG) Formal methods: abstract interpretation & verified compilation 2022-09-06 32 / 50

CompCert Compiler safety

Use case: traceability

Safe-critical systems (e.g. avionics)

Obligation to match object code to source

Conventional method: -O0 and some manual inspection

CompCert replaces this by mathematical proofs.
Can use optimization.

David Monniaux (VERIMAG) Formal methods: abstract interpretation & verified compilation 2022-09-06 33 / 50

CompCert Compiler safety

Semantics and proofs in CompCert

Each intermediate language comes with a semantics written in Coq.
Gives a mathematical meaning to all constructs in the
intermediate language.

e.g. at C level, gives a notion of environment of variables (local and
global), defines + as addition on various data types depending on
types of inputs

Optimization / transformation phases written in Coq.
(Can call external untrusted OCaml code.)

Must prove simulation for each phase

David Monniaux (VERIMAG) Formal methods: abstract interpretation & verified compilation 2022-09-06 34 / 50

CompCert Compiler safety

Intermediate languages (1)

CompCert C Clight C#minor

CminorCminorSelRTL

LTL Linear Mach Asm

side-effects out of
expressions

type elimination
loop simplification

stack allocation
of variables

instruction
selection

CFG construction
expr. decomp.

register
allocation

optimizations

linearization
of CFG

branch tunneling

layout of
stackframes

assembly
code generation

David Monniaux (VERIMAG) Formal methods: abstract interpretation & verified compilation 2022-09-06 35 / 50

CompCert Compiler safety

Intermediate languages (2)

CompCert C RTL LTL Linear

MachBTL

MachblockAsmblock

Asm

Register

allocation
Linearization

of CFG
Stackframes

layout

Assembly code
expansions Basic-blocks

construction

Prepass
scheduling

Postpass
scheduling

Optimizations
& code duplications

Branch
tunneling

David Monniaux (VERIMAG) Formal methods: abstract interpretation & verified compilation 2022-09-06 36 / 50

CompCert Compiler safety

Simulation proofs

Lockstep
one step of program before the transformation
↓
one matching step of program after the transformation

More complex simulations replace sequences of steps by sequences
of steps (one step of function call → many steps for pushing
parameters and calling the function)

David Monniaux (VERIMAG) Formal methods: abstract interpretation & verified compilation 2022-09-06 37 / 50

CompCert Compiler safety

Tastes like chicken

Pen-and-paper mathematical proofs can be buggy.

All proofs here checked by Coq against the actual compiler code.

https://coq.inria.fr/

David Monniaux (VERIMAG) Formal methods: abstract interpretation & verified compilation 2022-09-06 38 / 50

https://coq.inria.fr/

CompCert Compiler safety

Overall use

These proofs concern the compiler designer only (and those who file
for qualification for safety-critical systems).

For most users, using CompCert is just like using gcc or clang.

$ ccomp hello_world.c -o hello_world
$./hello_world

Or to produce assembly code

$ ccomp -S hello_world.c

David Monniaux (VERIMAG) Formal methods: abstract interpretation & verified compilation 2022-09-06 39 / 50

CompCert Compiler safety

Alternate front-ends

Many high-level languages / domain-specific languages compile to
C.
▶ bugs in the high-level language compiler
▶ “semantic mismatches” between the high-level compiler and

the C compiler

Solution: compile directly to one of CompCert’s early intermediate
representations!
e.g. Vélus https://velus.inria.fr/ compiles a subset of the
synchronous data-flow Lustre / SCADE language used in avionics
etc.
and…our current development of a Rust front-end

David Monniaux (VERIMAG) Formal methods: abstract interpretation & verified compilation 2022-09-06 40 / 50

https://velus.inria.fr/

CompCert Scheduling

Contents

Astrée and other analyzers
Safety properties and induction
Numerical abstractions
Other data
Tools
Too hard

CompCert
Compiler safety
Scheduling

David Monniaux (VERIMAG) Formal methods: abstract interpretation & verified compilation 2022-09-06 41 / 50

CompCert Scheduling

Scheduling

An example of an optimization, particularly for low-power /
embedded cores.

Instructions produce outputs a number of clock cycles after receiving
their inputs.
Take this into account to schedule instructions.

David Monniaux (VERIMAG) Formal methods: abstract interpretation & verified compilation 2022-09-06 42 / 50

CompCert Scheduling

A menu

1. oysters
2. veal blanquette

2.1 prepare blanquette
2.2 cook it

3. millefeuille
3.1 puff pastry

3.1.1 fold 1, wait 30 minutes
3.1.2 fold 2, wait 30 minutes
3.1.3 fold 3, wait 30 minutes
3.1.4 fold 4, wait 30 minutes
3.1.5 fold 5

3.2 cream

David Monniaux (VERIMAG) Formal methods: abstract interpretation & verified compilation 2022-09-06 43 / 50

CompCert Scheduling

Scheduling

“Official” CompCert produces instructions roughly in the source
ordering.

Not the best execution order in general!

Especially on in-order cores.

Our solution: verified scheduling

David Monniaux (VERIMAG) Formal methods: abstract interpretation & verified compilation 2022-09-06 44 / 50

CompCert Scheduling

Superblock scheduling

1. Partition each function into superblocks: one entry point,
possibly several exit points, no cycle

2. Possibly do some other reorganization: tail duplication, etc. to
get bigger superblocks

3. Schedule the superblock (no proof needed)

4. Witness through symbolic execution that the original and
scheduled superblocks have equivalent semantics (proof
needed)

Before register allocation, on IR.

On Kalray KVX and AArch64: reschedule basic blocks on assembly
instructions after register allocation.

David Monniaux (VERIMAG) Formal methods: abstract interpretation & verified compilation 2022-09-06 45 / 50

CompCert Scheduling

Equivalent semantics

▶ Same order of exit branches in original and scheduled
superblock

▶ All live pseudo registers and memory have the same value at
same exit point (non-live registers can differ)

▶ Same (or smaller) list of instructions that may fail (division by
zero, memory access) reached at same exit point

Obtained by symbolic execution: two registers are considered
equal if computed by exactly the same symbolic terms

David Monniaux (VERIMAG) Formal methods: abstract interpretation & verified compilation 2022-09-06 46 / 50

CompCert Scheduling

Example

r1 := a ∗ b
r3 := a− b
r2 := r1 + c
branch(a > 0, EXIT1)

r3 := a− b
r4 := a ∗ b
r2 := r4 + c
branch(a > 0, EXIT1)

r1 and r4 are both dead at EXIT1 and at final point.

These two blocks are equivalent: in both cases
r2 = (a ∗ b) + c and r3 = a− b

David Monniaux (VERIMAG) Formal methods: abstract interpretation & verified compilation 2022-09-06 47 / 50

CompCert Scheduling

Information needed

For all instructions
▶ latency: clock cycles between consuming operands and

producing the value (or, more generally, a timetable of when
each operand is consumed after the instruction is issued)

▶ resource consumption: CPU units in use that preclude other
instructions being scheduled at the same time

Very difficult to find even for “open cores”‼!
(Reverse-engineer gcc and LLVM?)

David Monniaux (VERIMAG) Formal methods: abstract interpretation & verified compilation 2022-09-06 48 / 50

CompCert Scheduling

Online

https://www.absint.com/compcert/index.htm
https://github.com/AbsInt/CompCert

Our version of CompCert with optimizations not found in the
“official” releases + the KVX target:
https://gricad-gitlab.univ-grenoble-alpes.fr/
certicompil/compcert-kvx

Pre-pass scheduling: KVX; Cortex-A53/A35 (AArch64); Rocket,
SweRV EH1 (Risc-V)
Post-pass scheduling: KVX; Cortex-A53/A35 (AArch64)

David Monniaux (VERIMAG) Formal methods: abstract interpretation & verified compilation 2022-09-06 49 / 50

https://www.absint.com/compcert/index.htm
https://github.com/AbsInt/CompCert
https://gricad-gitlab.univ-grenoble-alpes.fr/certicompil/compcert-kvx
https://gricad-gitlab.univ-grenoble-alpes.fr/certicompil/compcert-kvx

CompCert Scheduling

Verimag

https://www-verimag.imag.fr
https://www-verimag.imag.fr/~monniaux/

David Monniaux (VERIMAG) Formal methods: abstract interpretation & verified compilation 2022-09-06 50 / 50

https://www-verimag.imag.fr
https://www-verimag.imag.fr/~monniaux/

	Astrée and other analyzers
	Safety properties and induction
	Numerical abstractions
	Other data
	Tools
	Too hard

	CompCert
	Compiler safety
	Scheduling

