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Abstract

Recently some neural networks have been proposed for computing approximate

solutions to partial differential equations. For some second order elliptic or

parabolic PDEs, error estimates are proved between the solution and the com-

puted one with neural networks, assuming this one minimizes a Lp norm or a

dual norm of the residual, or an abstract loss function. In this article, for some

second order elliptic PDEs, thanks to a gradient flow strategy, we prove the

existence of a neural network solution minimizing the loss function with respect

to the neural network parameters and we give an error estimate between the

solution and the computed one with neural networks. For some nonsymmetric

elliptic PDEs, the problem is expressed in form of a MinMax problem which

is approximating with a double NN. Thanks to a diagonal extraction process a

result of convergence is established with respect to the parameters of NNs and

errors estimates are also given.
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1. Introduction

Feedforward neural networks (FNNs), or machine learning have become very

popular in computer science in recent years, particularly for images processing
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and signal processing. These methods aim to approximate functions with layers

neurons (or units), connected by linear operations between units and nonlinear5

activations within units, by minimizing a loss function J over a learning set,

see [6]; [8]; [15] and references therein. Motivated by the performance of deep

learning-based solutions in classical machine learning tasks, and since FNNs

do not require meshes allowing to consider problems in large space dimension,

FNNs are, now some time, used for computing approximate solutions of some10

PDEs. In [10], it is proved that a ReLU deep neural networks has the ability to

represent the basis functions of simplicial finite element of order one, allowing

so to approximate elliptic second order PDE problems which can be formulated

as minimizing an energy functional as in [23]. For some elliptic second order

PDEs, generally, the loss functions are based on a least squares formulation of15

the residual of the PDE in Lp norm or in a dual norm of the residual (see [5],

[20] for example), eventually augmented with a penalized term for the bound-

ary conditions and a regularization term. In the first case, error estimates have

been proposed between a NN-solution of the PDE and the exact solution in [18],

[16]. In the second case, if the elliptic operator is not symmetric, the problem20

can be formulated in form of a Min-Max problem, that optimization problem

is used for calculating NN-solutions (also called adversial solutions). Ap-

proximating a Min-Max problem requires to deal with two NN. Error estimates

have also been proposed in [11], [12] and [22] for example. Here we have to

notice that, in both cases, the NN-solutions considered minimize an abstract25

formulation of the loss function, that is to say that the optimisation process is

with respect to NN-functions as elements Sobolev spaces and not with respect

to parameters of the NN. Unfortunately, it is well known that the realization

spaces of NN-functions have very few topological properties [19]. In [13], by

using a temporal discretization, nonlinear parabolic PDEs are approximatively30

solved with a FNN. The loss function consists of a L2-least squares formulation

of the equation augmented with the boundary and initial conditions. The neural

network is then trained to minimize, with a stochastic gradient descent, the loss

functional by a discretization of integrals and randomly sampling spatial points.

2



A similar way is adopted in [21].35

For elliptic PDEs, The loss function minimizing problems have a gradient flow

structure (see section 3), which validates that a gradient descent ( respectively

ascent) strategy converges towards a minimum (respectively a maximum). In

this paper, for some elliptic problems, it is proved that a gradient technic applied

to the NN parameters set converges towards a minimum of the loss function and40

errors estimates are given. For the nonsymmetric elliptic PDEs, the MinMax

problem is approximating with a double NN, and thanks to a diagonal extraction

process a result of convergence is established and Errors estimates are also

given.

The paper is organized as follows. Second section is dedicated to some proper-45

ties of NNs. Third section consider self adjoint elliptic operator. A collocation

method with a Gauss quadrature is introduced for evaluating the residual, and

the NN is trained with a gradient descent technic with respect to parameters.

A convergence result is given and error estimates are presented. Section 3 in-

vestigates the case of nonsymmetric elliptic operator and the Min-Max problem50

associated. By using a diagonal extraction principle an existence results is given

and errors estimates are proved. The section is ended with some remarks con-

cerning the way in which boundary conditions are accounted.

2. Neural Networks

Consider a NN with a scalar-valued output N(L, θ) defined as composition of

many layers of functions:

N(L, θ) = N (L, ωL, bL)◦N (L−1, ωL−1, bL−1) · · · N (2, ω2, b2)◦N (1, ω1, b1), (1)

where the symbol ◦ denotes the composition of functions, L is the depth of

the network and N (l, ωl, bl) is called the lth hidden layer of the network for

1 ≤ l ≤ L− 1. A layer N (l, ωl, bl) : Rdl−1 → Rdl is defined as composition of an

affine transformation Rdl−1 −→ Rdl
xl−1:→ωlxl−1+bl

where ωl is a d× (d− 1) weights matrix, bl
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a Rd bias vector, with an activation function

σ : R −→ R

t 7→ t+ = max(0, t)

or the hyperbolic tangent or the sigmoid function if more regularity is required

for the functions that the NN yield. We have

N (l, ωl, bl) = σ(ωlxl−1 + bl) (2)

here the function σ acts component-wise for a vector. The last layer is a linear55

transformation. Each component of the vector valued function N (l, ωl, bl) is

seen as a neuron and its dimension defines the width or the number of neurons

of the lth layer. The set of
∑L
l=1 dl× (dl−1 +1) parameters of the NN is denoted

by θ, and its cardinal is denoted by |θ|.

Let us note that Z, the set of all NN defined by 1, is a finite dimension vector

space the dimension of which is |θ|, which is isomorphic to R|θ|. This vector

space is equipped with the following norm:

‖N(L, θ)‖max = max

(
‖N(L, θ)‖∞,sc, max

1≤l≤L
‖bl‖∞

)
with

‖N(L, θ)‖∞,sc = max
1≤l≤L

‖ωl‖∞.

For d be given, let Ω ⊂ Rd be a convex bounded open subset with a C0,1
60

boundary ∂Ω with Ω compact, and denote by C1(Ω;R) the set of differen-

tiable functions with a continuous derivative. Introduce the realization map

Rσ : Z −→ C1(Ω;R)
N(L,θ)→RσN(L,θ)

when using the sigmoid function or hyperbolic tangent

for function σ which will be assumed in this paper.

Lemma 1. Let Ω ⊂ Rd be compact, and let σ globally Lipschitz continuous,

then there exists a constant 0 < C(σ, Z), such that

Lipschitz(RσN(L, θ)) ≤ C(σ, Z)‖N(L, θ)‖∞,sc;

Moreover, if θ ∈ BR|θ|(0, B), then ‖RσN(L, θ)‖W 1,∞(Ω), ‖∂RσN(L,θ)

∂θ̃
‖L∞(Ω), and65

‖∂
2RσN(L,θ)

∂θ̃2
‖L∞(Ω) are bounded for any parameter θ̃ ∈ θ.
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Proof. See [19] prop. 4.1 for the bound C(σ, Z) of the lipschitz constant of

map Rσ, depending on σ and on the structure of the NN, which implies the

bound in W 1,∞ norm. The other bounds are consequence of composition of

affine functions with functions σ.70

2.1. Feedforward Neural Networks

The parameters (weight matrices and bias vectors) are to be determined with a

training set by minimizing a convex functional J usually called loss function.

For given integers {dl}Ll=1, define C(L, θ) the set of realizations of FNN by:

C(L, θ) = {x 7→ RσN(L, θ)(x) = N (L, ωL, bL) ◦ · · · ◦ N (1, ω1, b1)(x)} (3)

where N(L, θ) is defined by (1), and N (l, ωl, bl) by (2).

The space C(L, θ) is not a vectorial subspace (see [20] section 2 for a trivial75

example when σ is a max function, but a star-shaped with respect to 0 subspace

of Lipschitz functions). It is not convex, neither closed for the Lp topology (see

Theorem 2.1 and Theorem 3.1 in [19]).

2.2. ability to approximate functions with a NN

Approximating a function with a neural network has been considered for a long

time by many authors and is known as the universal approximation property.

The smaller the precision, the more neurons in the hidden layers one should take

to reach the required precision [14]. For 1 ≤ p ≤ ∞, we denote by Lp(Ω) the

standard Lebesgue’s space of functions defined on Ω. For 1 ≤ n, the Sobolev’s

space Wn,p(Ω) is defined as the set of functions in Lp(Ω), the distributional

derivatives of order up to n are in Lp(Ω):

Wn,p(Ω) = {f ∈ Lp(Ω); Dαf ∈ Lp(Ω), 0 < |α| ≤ n}.

Wn,p(Ω) is a Banach space when is endowed with the following norm [7], [3]

‖f‖Wn,p(Ω) =

 ∑
0≤|α|≤n

‖Dαf‖pLp(Ω)

 1
p
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Now we give the universal approximation property proved in [14]. For a fixed80

0 < B, denote by B = {f ∈ Wn,p(Ω); ‖f‖Wn,p(Ω) ≤ B} the B-radius ball of

Wn,p(Ω).

Theorem 2. Let 0 < d; 1 ≤ p ≤ ∞; 2 ≤ n; 0 < B and 0 ≤ s ≤ 1 be given.

Then for any ε ∈ (0, 1
2 ) and for any f ∈ B then there exists a FNN N(L, θ), the

deep of which is L with a parameters set θ and a function RσN(L, θf ) ∈ C(L, θ)

verifying

‖RσN(L, θf )− f(·)‖W s,p(Ω) ≤ ε. (4)

For the case Ω = (0, 1)d, in [9] Theorem 4.1, the following bounds are provided:

there exists 0 < c(d, n, p,B, s) be such that

L ≤ c(d, n, p,B, s) log2 (ε
−n
n−s )

and |θ|, the cardinal of parameters set, is bounded by:

|θ| ≤ c(d, n, p,B, s)ε
−d
n−s log2 (ε

−n
n−s ).

Assume Ω = (0, 1)d, let us end this section with a classical result concerning

numerical integration.

Lemma 3. Let 0 < µ be a small parameter, the interval (0, 1) is divided into85

subintervals the length of which is µ. Denote by {xi,Wi}Mi=1 the tensorized Gauss

points and weights for Ω, and denote by {yjwj}mj=1 the tensorized Gauss points

and weights for ∂Ω,. Then there exist 0 < C1, C2 not depending on µ such that

for every f ∈W 1,∞(Ω) ∩W 1,∞(∂Ω) we have:∣∣∣∣∣
∫

Ω

f(x) dx−
M∑
i=1

Wif(xi)

∣∣∣∣∣ ≤ C1(Ω)
µ
√
d

2
‖f‖W 1,∞ ,∣∣∣∣∣∣

∫
∂Ω

f(s) ds−
m∑
j=1

wjf(yj)

∣∣∣∣∣∣ ≤ C2(∂Ω)
µ
√
d− 1

2
‖f‖W 1,∞ .

Remark that for domains Ω which can be obtained by deforming hypercubes,90

similar results concerning numerical integration are valid.
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3. The case of some second order self-adjoint elliptic PDE in d-

dimension

Consider an operator A in a divergence form, Av =
∑d
i,j=1−Di(aijDjv) + a0v,

with aij = aji ∈ C1,1(Ω); 0 < a ≤ a0 ∈ C1,1(Ω) and where there exists 0 < α

such that

α‖ξ‖2Rd ≤
d∑

i,j=1

aij(x)ξiξj

for all x ∈ Ω and ξ ∈ Rd. Problem PE reads: for g ∈ C1(Ω) be given, find

u ∈W 1,2(Ω) verifying:

Au = g in Ω;

u = 0 on ∂Ω
(5)

Problem PE has one solution in W 2,2(Ω) ∩
(
W 1,2(Ω) ∩Ker(γ)

)
, where γ :

W 1,2(Ω) → W
1
2 ,2(∂Ω) ⊂ L2(∂Ω) is the trace operator (see [7] Chapter 2 or95

[3]).

It is not possible to include the boundary conditions in the space C(L, θ), thus a

penalization strategy is proposed for the Dirichlet boundary condition γ(u) = 0

in the same way as in [20]. For 0 < η, define V the Hilbert space W 1,2(Ω)

endowed with the following scalar product:

(v, w)η =

∫
Ω

d∑
i,j=1

aijDivDjw + a0vw dx+
1

η

∫
∂Ω

vw ds, ∀v, w.

The associated norm is denoted by

|||v|||2η =

∫
Ω

d∑
i,j=1

aijDivDjv + a0v
2 dx+

1

η

∫
∂Ω

v2 ds (6)

Lemma 4. The norm ||| · |||η defined by 6 is equivalent to the norm of W 1,2.

For a proof see Lemma 3 in [20] where
∫

Ω
|∇v|2 dx is replaced by

∫
Ω

∑d
i,j=1 aijDivDjv+

a0v
2 dx.

We have u ∈W 2,2(Ω)∩
(
W 1,2(Ω) ∩Ker(γ)

)
the solution to Problem PE verifies100
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the following minimization problem:

u = Argmin Jη(v) =
v∈W 1,2(Ω)∩Ker(γ)

1
2

∫
Ω

∑d
i,j=1 aijDivDjv + a0v

2 − 2gv dx+ 1
2η

∫
∂Ω
v2 ds(7)

= Argmin Jη(v) =
v∈W 1,2(Ω)∩Ker(γ)

1
2

(
|||v − u|||2η − |||u|||2η

)
(8)

since a variational formulation of Problem PE reads:∫
Ω

d∑
i,j=1

aijDiuDjv + a0uv − gv dx = 0∀v ∈W 1,2(Ω) ∩Ker(γ).

When approximating Problem PE with a NN, it will be needed to keep param-

eters θ bounded, therefore a penalized term is added to Jη. Let 0 < B be given,

define

Jη(RσN(L, θ)) =
1

2

(
|||RσN(L, θ)− u|||2η − |||u|||2η

)
+

1

4η

|θ|∑
q=1

(
θ2
q −B2

)+2

(9)

u = Argmin JGη (RσN(L, θ)) =
RσN(L,θ)∈C(L,θ)

1
2

∑M
i=1Wi

(∑d
k,l=1 aij(xi)Dl(RσN(L, θ)DkRσN(L, θ)(xi)+

a0(xi) (RσN(L, θ))
2

(xi)− 2gRσN(L, θ)(xi)
)

+

1
2η

∑m
j=1 wj (RσN(L, θ))

2
(yj) + 1

4η

∑|θ|
q=1

(
θ2
q −B2

)+2

.

(10)

Now we give an existence result for Problem 10.

Lemma 5. Assume Ω = (0, 1)d and σ to be hyperbolic tangent or sigmoid func-

tion, then there exists u ∈ C(L, θ) solution to Problem 10.

Proof. In what follows the notation RσN(L, θ) will be replaced by N(θ) with105

θ a real parameter for keeping the presentation as simple as possible, the case

of the NN is a straightforward generalization. First, the case of function Jη

is considered, and we show the gradient flow structure of the minimization

problem. After simple calculations we check that Jη is differentiable with respect

to θ:110

DθJη(N(θ)) =

(
N(θ)− u, ∂N(θ)

∂θ

)
η

+
1

η
(θ2 −B2)+θ
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We have:

d

dt
Jη(N(θ(t))) = DθJη(N(θ(t)))

d

dt
θ(t) =((

N(θ)− u, ∂N(θ(t))

∂θ

)
η

+
1

η
(θ2 −B2)+θ

)
d

dt
θ(t)

Choose for a positive parameter h

d

dt
θ(t) = −hDθJη(N(θ)),

and we get that t 7→ Jη(N(θ(t))) is a decreasing function, allowing to use a

descent gradient strategy for minimizing the function.

Now skip to Problem 10 with the function JGη . Introduce the positive semi-

definite bilinear form (·, ·)Gη defined on C(L, θ) × C(L, θ) and the linear form

(g, ·)G defined on C(L, θ) be such that

JGη (N(θ)) =
1

2

[
(N(θ), N(θ))

G
η − 2 (g,N(θ))

G
]

+
1

4η

(
θ2 −B2

)+2

.

The derivatives of function JGη are given by:

DθJ
G
η (N(θ)) =

(
N(θ),

∂N(θ)

∂θ

)G
η

−
(
g,
∂N(θ)

∂θ

)G
+ (11)

1

η
(θ2 −B2)+θ (12)

D2
θ2J

G
η (N(θ)) =

(
∂N(θ)

∂θ
,
∂N(θ)

∂θ

)G
η

+

(
N(θ),

∂2N(θ)

∂θ2

)G
η

− (13)(
g,
∂2N(θ)

∂θ2

)G
+

1

η

(
(θ2 −B2)+ + 2θ2sgn+(θ2 −B2)

)
(14)

For minimizing JGη a gradient descent algorithm is applied, which reads:115

• Choose θ0, n = 0,

* θn+1 = θn − hDθJ
G
η (N(θn))

• While |θn+1 − θn| is not small enough do

– compute DθJ
G
η (N(θn+1))
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– n=n+1 and go to *120

The function JGη is coercitive at infinity (lim|θ|→+∞ JGη (θ) = +∞). Thus we can

assume there exists 0 < B1 such that for minimizing sequences θ2
n ≤ B2

1 , other-

wise, if θn were not bounded, it would not minimize JGη . Lemma 1 claims that

N(θn); ∂N(θn)
∂θ ; ∂

2N(θn)
∂θ2 are bounded in L∞ norm. The second derivative of JGN

is constituted of scalar products computed with numerical integration, involv-

ing N(θn); ∂N(θn)
∂θ and ∂2N(θn)

∂θ2 . Thus |D2
θ2J

G
η (N(θn) + ξ(N(θn+1)−N(θn)))| is

bounded. The parameter h is chosen such that for all θ2
n, θ

2
n+1 ≤ B2

1 we have:

h|D2
θ2J

G
η (N(θn) + ξ(N(θn+1)−N(θn)))| < 1; ∀ξ ∈ (0, 1).

We have:

JGη (N(θn+1))− JGη (N(θn)) = −h
(
DθJ

G
η (N(θn))

)2
+
h2

2

D2
θ2J

G
η (N(θn) + ξ(N(θn+1)−N(θn))) (DθJη(N(θn)))

2

≤ −h
2

(
DθJ

G
η (N(θn))

)2
.

The sequence JGη (N(θn)) is decreasing, and since JGη (N(θn)) ≤ JGη (N(θ0)) = 0

we deduce the following bound for θn:

θ2
n ≤ B2 + 2

√
η

2

a

M∑
i=1

Wig
2(xi).

We have:

−2

a

M∑
i=1

Wig
2(xi) ≤ JGη (N(θn)) ≤ JGη (N(θ0)).

The function JGη is bounded from below there exists a subsequence JGη (N(θnp))

and a real a with JGη (N(θnp))→ a. The sequence JGη (N(θnp)) converges.∑∞
p=1−h (DθJη(N(θn)))

2
+ h2

2

D2
θ2J

G
η (N(θn) + ξ(N(θn+1)−N(θn))) (DθJη(N(θn)))

2
;

is bounded from above by∑∞
p=1−

h
2 (DθJη(N(θn)))

2
and thus since JGη (N(θnp)) converges∑∞

p=1
h
2 (DθJη(N(θn)))

2
converges .
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There exists a constant C(a0) such that

0 ≤ Jη(N(θnp)) + C(a0) (g, g)
G
.

Then we have the following estimates:125 [
JGη (N(θnp)) + C(a0) (g, g)

G
] 1

2 −
[
JGη (N(θnp+1)) + C(a0) (g, g)

G
] 1

2 ≤∣∣∣∣[JGη (N(θnp)) + C(a0) (g, g)
G
] 1

2 −
[
JGη (N(θnp+1)) + C(a0) (g, g)

G
] 1

2

∣∣∣∣ ≤[
JGη (N(θnp))− JGη (N(θnp+1))

] 1
2 ≤

[
h
2DθJη(N(θnp))2

] 1
2 .

The function
√

(·) is continuous, thus the sequence

{
[
Jη(N(θnp)) + C(a0) (g, g)

] 1
2 }∞p=1

converges and the serie
√

h
2

∑∞
p=1DθJη(N(θnp)) absolutely converges. We get

the existence of a subsequence {θnp}p∈N converging toward θ. Since the realiza-

tion map Rσ ∈ C0(Z;C1(Ω;R) we have

RσN(θnp)→ RσN(θ),

and JGη (RσN(θnp))→ JGη (RσN(θ)) which is a solution to Problem 10.

In what follows, we deal with the expression 7 for function Jη since function u

is not known. We have the following existence and error estimate for Problem

10:

Theorem 6. Assume Ω = (0, 1)d and σ to be the hyperbolic tangent or the130

sigmoid function, let 0 < η and 0 < ε < 1
2 be given, denote by u ∈ W 2,2(Ω) the

solution to Problem 5 and by RσN(L, θu) ∈ C(L, θ) the approximation of u into

C(L, θ) given by Theorem 2. Then there exists u ∈ C(L, θ) solution to Problem

10. Moreover, assuming θu ∈ B(0, B) and RσN(L, θu) is not a minima of JGη ,

then there exists a constant 0 < C independent of η and ε be such that135

1

4
‖|u− u‖|2η ≤

3

4
‖|RσN(L, θu)− u‖|2η + 8ηCγ‖u‖W 2,2(Ω) + (15)

µ
(
C(u, g) + C(RσN(L, θu), g

)
; (16)

11



and thus thanks to Theorem 2

1

4
‖|u− u‖|2η ≤ Cε2 + 8ηCγ‖u‖W 2,2(Ω) + µ

(
C(u, g) + C(RσN(L, θu), g

)
(17)

Proof. Lemma 5 yields the existence of u = RσN(L, θ)) solution to Problem

10. Since RσN(L, θu) is not a minima of JGη we have:

JGη (u) ≤ JGη (RσN(L, θu)).

Lemma 3 yields estimates between Jη and JGη which combined with previous

inequality give:

Jη(u)− µC(u, g) ≤ Jη(RσN(L, θu)) + µC(RσN(L, θu), g). (18)

Denote by (·, ·)A the inner product induced by the differential operator A. We

have u ∈W 2,2(Ω) with γ(u) = 0, thus integrating by parts leads to:∫
Ω

gu dx =

∫
Ω

Auudx = (u, u)A +

∫
∂Ω

d∑
i,j=1

aijDj uniu ds

where n is the outward normal to ∂Ω. By using the continuity of the trace

operator γ for the normal derivative: ∂nA =
∑d
i,j=1 aijDj · ni (see [7] for

example) we get ‖γ(∂nAu)‖L2(∂Ω) ≤ Cγ,A‖u‖W 2,2(Ω). The young inequality,

provides:

−4ηCγ,A‖u‖W 2,2(Ω) −
1

4η

∫
∂Ω

(u− u)2 dx ≤
∫
∂Ω

|∂nAuu| dx (19)

We deduce the following bound from below for Jη:

1

4
‖|u− u‖|2η −

1

2
(u, u)A − 4ηCγ,A‖u‖W 2,2(Ω) ≤ Jη(u) (20)

Arguing in the same way and since θu ∈ B(0, R), we get the following bound

from above for Jη(RσN(L, θu))

Jη(RσN(L, θu)) ≤ 3

4
‖|RσN(L, θu)− u‖|2η−

1

2
(u, u)A + 4ηCγ,A‖u‖W 2,2(Ω)

and we get the announced error estimate.
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Remark 7. There does not exist a unique minimum for function JGη . While

local minima are numerous, they are relatively easy to find, and they are all

more or less equivalent. This peculiar property is analyzed for the loss function

of a typical multilayer net with ReLU activation function in [1] with the use of140

random matrix theory applied to the analysis of critical points in high degree

polynomials on the sphere.

In practice R can be chosen sufficiently large for satisfying θu ∈ B(0, R).

Remark 8. The penalization function is positive, thus does not play any role

in the bound from below in the error estimate. Since R is sufficiently large for145

θu be in the ball B(0, R), the penalization function does not appear in the bound

from above in the error estimate.

4. The case of some second order elliptic PDEs in d-dimension

Consider an operator A in divergence form,

Av =

d∑
i,j=1

−Di(aijDjv) +

d∑
j=1

bjDjv + a0v,

with aij ∈ C1,1(Ω); b ∈ C1(Ω);Rd); 0 < a ≤ a0 ∈ C0(Ω) with 0 < a0 − 1
2div(b)

(to keep technical difficulties as simple as possible) and where there exists 0 < α

such that

α ≤
d∑

i,j=1

aij(x)ξiξj

for all x ∈ Ω and ξ ∈ Rd. Problem 21 reads: for g ∈ C1(Ω) be given, find

u ∈W 1,2(Ω) verifying:

Au = g in Ω;

u = 0 on ∂Ω.
(21)

Let us denote by W 1,2
0 (Ω) = W 1,2(Ω)∩Ker(γ), Problem PE has one solution in

W 2,2(Ω) ∩W 1,2
0 (Ω) (see [7] Chapter 2). A variational formulation for problem

PE reads:∫
Ω

d∑
i,j=1

aijDiuDjv + v

d∑
j=1

bjDju+ a0uv − gv dx = 0∀v ∈W 1,2
0 (Ω) (22)
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The variational formulation 22 can be expressed in form of the following saddle

point problem with J : W 1,2
0 (Ω)×W 1,2

0 (Ω)→ R defined by:150

J(w, v) =
∫

Ω

∑d
i,j=1 aijDiwDjv + v

∑d
j=1 bjDjw + a0wv − gv dx, (23)

inf
w

sup
‖v‖W1,2=1

J(w, v) (24)

The function J is bilinear, and twice continuously differentiable. The optimality

conditions for the saddle point (u, v) verifying:

∀ϕ,w ∈W 1,2
0 (Ω), J(u,w) ≤ J(u, v) ≤ J(ϕ, v)

read: there exists λ ∈ R be such that ∀w ∈W 1,2
0 (Ω):

D1J(u, v)w =
∫

Ω

∑d
i,j=1 aijDiwDjv + v

∑d
j=1 bjDjw + a0wv dx = 0;

D2J(u, v)w =
∫

Ω

∑d
i,j=1 aijDiuDjw + w

∑d
j=1 bjDju+ a0uw − gw dx

= λ(v, w)W 1,2(Ω)

(25)

The expression (·, ·)W 1,2(Ω) denotes the inner product of W 1,2, and the right

hand side of the second equation is due to the constraint (v, v)
1
2

W 1,2 = 1. From

the first equation of 25 associated to the W 1,2-coercivity of the bilinear form

defined by v, w 7→ D1J(u, v)w we deduce that v = 0 and thus the second

equation of 25 reduces to the variational formulation 22.155

In the same way that have been done in section 3, for defining the approximated

problem we need to consider two NNs: N(L, θ) for functions u and N(L̃, θ̃)

for functions v. In what follows, for simplifying the notations RσN(L, θ) and

RσN(L̃, θ̃)) will be denoted by N(θ), and by N(θ̃)). Consider the bilinear form

(·, ·)Gη C(L, θ) × C(L̃, θ̃) → R and the linear forms (g, ·)Gη : C(L, θ) → R defined

by:

(ϕ, v)Gη =
∑M
i=1Wi

(∑d
k,l=1 aklDlϕDkv(xi) + v

∑d
j=1 bjDjϕ(xi) + a0ϕv(xi)

)
+

1
η

∑m
j=1 wjϕv(yj);

(g, v)G =
∑M
i=1Wi

(∑d
k,l=1 gv(xi)

)
.

(26)
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Introduce the two following bilinear forms:

Jη(ϕ, v) =
∫

Ω

∑d
i,j=1 aijDiϕDjv + v

∑d
j=1 bjDjϕ+ a0ϕv − gv dx+

1
η

∫
∂Ω
ϕv ds + 1

4η

(
θ2 −B2

)+2

JGη (ϕ, v) = (ϕ, v)Gη − (g, v)G + 1
4η

(
θ2 −B2

)+2

.

(27)

Remark that whatever 0 < M is, we have (since Jη is linear with respect to v):

Argmin
N(θ)∈C(L,θ)

Argmax
N(θ̃)6=0 ‖N(θ̃)‖W1,2≤M

Jη(N(θ),N(θ̃))

‖N(θ̃)‖W1,2
=

Argmin
N(θ)∈C(L,θ)

Argmax
N(θ̃)6=0 ‖N(θ̃)‖W1,2=1

Jη(N(θ), N(θ̃))
(28)

and thus thanks to Lemma 1

Argmin
N(θ)∈C(L,θ)

Argmax
N(θ̃)6=0 ‖N(θ̃)‖W1,2=1

Jη(N(θ), N(θ̃))

Argmin
N(θ)∈C(L,θ)

Argmax
θ̃∈B(0,B̃),‖N(θ̃)‖W1,2=1

Jη(N(θ), N(θ̃))
(29)

The NN approximated problem is defined by:

{u, v} = Argmin
N(θ)∈C(L,θ)

Argmax
θ̃∈B(0,B̃),‖N(θ̃)‖W1,2=1

JGη (N(θ), N(θ̃)). (30)

The function JGη is twice continuously differentiable since it is a bilinear function

added to a C2 functions. Simple calculations provide for all ϕ, v:

DθJ
G
η (N(θ), v) = (∂N(θ)

∂θ , v)Gη + 1
η (θ2 −B2)+θ;

Dθ̃J
G
η (ϕ,N(θ̃)) = (ϕ, ∂N(θ̃)

∂θ̃
)Gη − (g, ∂N(θ̃)

∂θ̃
)G;

D2
θ2J

G
η (N(θ), v) = (∂

2N(θ)
∂θ2 , v)Gη + 1

η

(
(θ2 −B2)+ + 2θ2sgn+(θ2 −B2)

)
;

D2
θ̃2
JGη (ϕ,N(θ̃)) = (ϕ, ∂

2N(θ̃)

∂θ̃2
)Gη − (g, ∂

2N(θ̃)

∂θ̃2
)G;

D2
θθ̃
JGη (N(θ), N(θ̃)) = (∂N(θ)

∂θ , ∂N(θ̃)

∂θ̃
)Gη .

(31)

Consider the two following intermediate optimization problems. For u,∈ C(L, θ)

, v ∈ C(L̃, θ̃) given find v(u), u(v) ∈ C(L̃, θ̃)× C(L, θ)) verifying:

v(u) = Argmax
θ̃∈B(0,B̃)‖N(θ̃)‖W1,2=1

JGη (u,N(θ̃)) (32)

u(v) = Argmin
N(θ)∈C(L,θ))

JGη (N(θ), v) (33)
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Lemma 9. Assume Ω = (0, 1)d and σ to be hyperbolic tangent or sigmoid func-

tion, and let u ∈ C(L, θ) be given, then there exists v(u) ∈ C(L̃, θ̃) solution to

Problem 32, calculated with a gradient ascent algorithm.

Proof. See Annex 1160

Lemma 10. Assume Ω = (0, 1)d and σ to be hyperbolic tangent or sigmoid

function, and let v ∈ C(L̃, θ̃) be given, then there exists u(v) ∈ C(L, θ) solution

to Problem 33 calculated with a gradient descent algorithm.

Proof. See Annex 2

Now, we give the algorithm for solving Problem 30. With Lemma 9 and Lemma165

10 we are able to compute a double index sequence {N(θnp), N(θ̃nq )}p,q∈N which

for p fixed converges when q goes to infinity towards a solution to Problem 32,

and which for q fixed converges when p goes to infinity to a solution to Problem

33. By using the diagonal extraction principle we have a converging sequence

{N(θnp), N(θ̃np)}p∈N towards a solution to Problem 30. The proposed ascent-170

descent algorithm reads:

• 0 < h and 0 < h̃, be given, define n = 0,

� n = n+ 1

– Choose θ̃0 ∈ B(0, B̃), N(θ̃0) = N(θ̃0)

‖N(θ̃0)‖W1,2

– For p = 0, to n175

∗ θ̃p+1 = θ̃p + hDθ̃J
G
η (N(θn), N(θ̃p))

∗ θ̃p+1 = its projection into the ball B(0, B̃)

∗ N(θ̃p+1) =
N(θ̃p+1)

‖N(θ̃p+1)‖W1,2

∗ compute Dθ̃J
G
η (N(θ̃n), N(θ̃p+1))

– end of loop for p180

– choose θ0 = 0

– For q = 0, to n
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– θq+1 = θq − hDθJ
G
η (N(θq), N(θ̃n))

– compute DθJ
G
η (N(θq+1), N(θ̃n))

– end of loop for q185

– If |θ̃n+1 − θ̃n| and |θn+1 − θn| are not small enough go to �

Define the norm |‖ · |‖2η = ‖ · ‖2W 1,2 + 1
η‖ · ‖

2
L2(∂Ω) which is equivalent to the W 1,2

norm (see [20]). Finally we have the following existence and error estimate

results.

Theorem 11. Assume Ω = (0, 1)d and σ to be the hyperbolic tangent or the190

sigmoid function, let 0 < η and 0 < ε < 1
2 be given, denote by u ∈ W 2,2(Ω)

the solution to Problem 22 and by RσN(L, θu) ∈ C(L, θ) the approximation of

u into C(L, θ) given by Theorem 2. Then there exists (u, v) ∈ C(L, θ)× C(L̃, θ̃)

solution to Problem 30. Moreover, assuming θu ∈ B(0, B) and RσN(L, θu) is

not a solution to Problem 33 with v = v, then the following estimate is valid195

‖|u− u‖|η ≤ C(A, γ)‖|RσN(L, θu)− u‖|η + (34)

C(A, γ, α, η)‖|Rσ(N(L̃, θ̃u−u))− (u− u)‖|η + (35)

µ
(
C(u, g) + C(RσN(L, θu), g

)
; (36)

and thus thanks to Theorem 2

‖|u−u‖|η ≤ C(A, γ)ε+C(A, γ, α, η)ε1 +µ
(
C(u, v, g)+C(RσN(L, θu), g

)
(37)

Proof. Lemmas 9, 10 yield the existence of (u, v) solution to Problem 30. Since

RσN(L, θu) is not a minima of JGη (·, v) we have:

JGη (u, v) ≤ JGη (RσN(L, θu), v).

Lemma 3 yields estimates between Jη and JGη which combined with previous

inequality and since θu ∈ B(0, B) give:

Jη(u, v)− µC(u, v, g) ≤ Jη(RσN(L, θu), v) + µC(RσN(L, θu), v, g). (38)
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we have:

Jη(RσN(L, θu), v) =

∫
Ω

d∑
i,j=1

aijDi(RσN(L, θu)− u)Djv +

v

d∑
j=1

bjDj(RσN(L, θu)− u) dx+∫
Ω

a0(RσN(L, θu)− u)v dx+
1

η

∫
∂Ω

(RσN(L, θu)− u)v ds

which is bounded:

|Jη(RσN(L, θu), v)| ≤ C(A, γ, η)|‖RσN(L, θu)− u|‖η.

Whatever w ∈ C(L̃, θ̃) is with a W 1,2 norm one, for getting a bounded from

below, start from the inequality:∫
Ω

d∑
i,j=1

aijDi(u− u)Djw + w

d∑
j=1

bjDj(u)− u) dx+∫
Ω

a0(u− u)w dx+
1

η

∫
∂Ω

(u− u)w ds ≤ Jη(u, v).

Then choose200

w =
Rσ(N(L̃, θ̃u−u))

‖Rσ(N(L̃, θ̃u−u))‖W 1,2

=

1

‖Rσ(N(L̃, θ̃u−u))‖W 1,2

(
u− u+Rσ(N(L̃, θ̃u−u))− (u− u)

)
,

with thanks to Theorem 2

‖Rσ(N(L̃, θ̃u−u)−(u−u)‖W 1,2 ≤ ε1 and ‖Rσ(N(L̃, θ̃u−u)‖W 1,2 ≤ ‖(u−u)‖W 1,2+ε1

By using the coercivity of the bilinear form, we have:

1

‖Rσ(N(L̃, θ̃u−u))‖W1,2[
min (α, 1)‖|u− u‖|2η − C(A, γ)‖|u− u‖|η‖|Rσ(N(L̃, θ̃u−u))− (u− u)‖|η

]
and we get the following bound from below:

1

2‖u− u‖W 1,2[
min (α, 1)‖|u− u‖|2η − C(A, γ)‖|u− u‖|η‖|Rσ(N(L̃, θ̃u−u))− (u− u)‖|η

]
.
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Since the norms ‖ · ‖W 1,2 and |‖ · ‖|η are equivalent, there exists a constant C(η)

such that for all v, 0 < C(η) ≤ |‖v‖|η
‖v‖W1,2

and we get the following bound from

below for Jη(u, v):

C(η)

2

[
min (α, 1)‖|u− u‖|η − C(A, γ)‖|Rσ(N(L̃, θ̃u−u))− (u− u)‖|η

]
≤ Jη(u, v).

Gathering this bound from below with the bound from above gives the an-

nounced estimate.

Let us end this section with some comments about some existing ways for enforc-205

ing the Dirichlet boundary conditions [2]. One can use an approximate distance

function to exactly impose the boundary conditions by modifying the last layer

of the NN, or by adding this distance function to the variational formulation.

The Nitsche method [17] where the boundary conditions are variationally im-

posed, and finally the penalization method presented in this study. The gradient210

strategy and the existence and error estimates results presented in this paper

can be extended to the Nitsche method.

ANNEX 1

Proof of Lemma 9. A gradient ascent algorithm is applied, which reads:

• Choose θ̃0 ∈ B(0, B̃), n = 0, N(θ̃0) = N(θ̃0)

‖N(θ̃0)‖W1,2
215

* θ̃n+1 = θ̃n + hDθ̃J
G
η (u,N(θ̃n))

• θ̃n+1 = its projection into the ball B(0, B̃)

• N(θ̃n+1) = N(θ̃n+1)

‖N(θ̃n+1)‖W1,2

• While |θ̃n+1 − θ̃n| is not small enough do

– compute Dθ̃J
G
η (u,N(θ̃n+1))220

– n=n+1 and go to *

Since θ̃n ∈ B(0, B̃) for all n, Lemma 1 implies N(θ̃n) is bounded in W 1,∞ norm.

We deduce that JGη (u,N(θ̃n)) is bounded.
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The sequence JGη (u,N(θ̃n)) is increasing. We have:

JGη (u,N(θ̃n+1))− JGη (u,N(θ̃n)) = hDθ̃J
G
η (u,N(θ̃n))2 (39)

+
h2

2
D2
θ̃2
JGη (u,N(θ̃n+1) + ξ(N(θ̃n+1)−N(θ̃n)))Dθ̃J

G
η (u,N(θ̃n))2 (40)

Lemma 1 implies D2
θ̃2
JGη (u,N(θ̃n+1) + ξ(N(θ̃n+1) − N(θ̃n))) is bounded, thus225

we can choose h sufficiently small such that h|D2
θ̃2
JGη (u,N(θ̃n+1)+ξ(N(θ̃n+1)−

N(θ̃n)))| < 1 and we get the following inequality:

h

2
Dθ̃J

G
η (u,N(θ̃n))2 ≤ JGη (u,N(θ̃n+1))− JGη (u,N(θ̃n)). (41)

There exists a subsequence np be such as {JGη (u,N(θ̃np))}p∈N converges towards

a. We get the convergence of the following series:∑
p∈N

Dθ̃J
G
η (u,N(θ̃np))2.

JGη (u,N(θ̃np)) is bounded there exists a constant C such that 0 ≤ JGη (u,N(θ̃np))+

C. Arguing in the same way as for the proof of Lemma 5 and by using the
√
·

function we deduce the convergence of the series∑
p∈N

Dθ̃J
G
η (u,N(θ̃np)),

which implies the convergence of the sequence {θ̃np}p∈N and since the realiza-

tion map Rσ is continuous, the convergence of {Rσ(N(L̃, θ̃np))}p∈N towards a

maximum of function JGη230

ANNEX 2

Proof of Lemma 10

Thanks to Lemma 1, we have
‖N(θ)‖W1,∞

|θ| ≤ C(σ, Z), we deduce that the func-

tion JGη is coercitive at infinity (lim|θ|→+∞
JGη (θ)

|θ| = +∞).

There exists 0 < B2 such that minimizing sequences verify θn ∈ B(0, B2).235

Otherwise, if θn were not bounded, it would not minimize JGη .

A gradient descent algorithm is applied, which reads:

• Choose θ0, n = 0,
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* θn+1 = θn − hDθJ
G
η (N(θn), v)

• While |θn+1 − θn| is not small enough do240

– compute DθJ
G
η (N(θn+1), v)

– n=n+1 and go to *

Let us prove the convergence of the algorithm for a subsequence. The parameter

h is chosen such that for all θn, θn+1 ∈ B(0, B2) the following inequality is

verified:

h|D2
θ2J

G
η (N(θn) + ξ(N(θn+1)−N(θn)))| < 1.

which is possible thanks to Lemma 1.

We have:

JGη (N(θn+1))− JGη (N(θn)) = −h
(
DθJ

G
η (N(θn))

)2
+
h2

2

D2
θ2J

G
η (N(θn) + ξ(N(θn+1)−N(θn))) (DθJη(N(θn)))

2

≤ −h
2

(
DθJ

G
η (N(θn))

)2
.

The sequence JGη (N(θn), v) is decreasing, and since JGη (N(θn), v) ≤ JGη (N(θ0), v) =

0. we deduce the following bound for θn:

|θn| ≤ B + 4ηC(A,C(σ, Z), g)‖v‖W 1,∞ .

As a consequence of Lemma 1, the sequence {JGη (N(θn), v)}n∈N is bounded, thus

there exists a subsequence and a real a such that: limp→+∞ JGη (N(θnp), v) = a.

We get the convergence of the following series:∑
p∈N

DθJ
G
η (N(θn), v)2.

JGη (N(θnp), v) is bounded there exists a constant C such that 0 ≤ JGη (N(θnp), v)+

C. Arguing in the same way as for the proof of Lemma 5 and by using the
√
·

function we deduce the convergence of the series∑
p∈N

DθJ
G
η (N(θnp), v),
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which implies the convergence of the sequence {θnp}p∈N and since the realiza-245

tion map Rσ is continuous, the convergence of {Rσ(N(L, θnp))}p∈N towards a

minimum of function JGη
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