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a b s t r a c t

Recently some neural networks have been proposed for computing approximate solu-
tions to partial differential equations. For some second order elliptic or parabolic PDEs,
error estimates are proved between the solution and the computed one with neural
networks, assuming this one minimizes a Lp norm or a dual norm of the residual, or an
abstract loss function. In this article, for some second order elliptic PDEs, thanks to a
gradient flow strategy, we prove the existence of a neural network solution minimizing
the loss function with respect to the neural network parameters and we give an error
estimate between the solution and the computed one with neural networks. For some
nonsymmetric elliptic PDEs, the problem is expressed in form of a MinMax problem
which is approximating with a double NN. Thanks to a diagonal extraction process a
result of convergence is established with respect to the parameters of NNs and errors
estimates are also given.

© 2023 Elsevier B.V. All rights reserved.

1. Introduction

Feedforward neural networks (FNNs), or machine learning have become very popular in computer science in recent
ears, particularly for images processing and signal processing. These methods aim to approximate functions with layers
eurons (or units), connected by linear operations between units and nonlinear activations within units, by minimizing a
oss function J over a learning set, see [1–3] and references therein. Motivated by the performance of deep learning-based
solutions in classical machine learning tasks, and since FNNs do not require meshes allowing to consider problems in
large space dimension, FNNs are, now some time, used for computing approximate solutions of some PDEs. In [4], it is
proved that a ReLU deep neural networks has the ability to represent the basis functions of simplicial finite element of
order one, allowing so to approximate elliptic second order PDE problems which can be formulated as minimizing an
energy functional as in [5]. For some elliptic second order PDEs, generally, the loss functions are based on a least squares
formulation of the residual of the PDE in Lp norm or in a dual norm of the residual (see [6,7] for example), eventually
ugmented with a penalized term for the boundary conditions and a regularization term. In the first case, error estimates
ave been proposed between a NN-solution of the PDE and the exact solution in [8,9]. In the second case, if the elliptic
perator is not symmetric, the problem can be formulated in form of a Min-Max problem, that optimization problem is
sed for calculating NN-solutions (also called adversial solutions). Approximating a Min-Max problem requires to deal
ith two NN. Error estimates have also been proposed in [10,11] and [12] for example. Here we have to notice that,

n both cases, the NN-solutions considered minimize an abstract formulation of the loss function, that is to say that the
ptimization process is with respect to NN-functions as elements Sobolev spaces and not with respect to parameters of the
N. Unfortunately, it is well known that the realization spaces of NN-functions have very few topological properties [13].
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n [14], by using a temporal discretization, nonlinear parabolic PDEs are approximatively solved with a FNN. The loss
unction consists of a L2-least squares formulation of the equation augmented with the boundary and initial conditions.
he neural network is then trained to minimize, with a stochastic gradient descent, the loss functional by a discretization
f integrals and randomly sampling spatial points. A similar way is adopted in [15].
For elliptic PDEs, The loss function minimizing problems have a gradient flow structure (see Section 3), which validates

hat a gradient descent (respectively ascent) strategy converges towards a minimum (respectively a maximum). In this
aper, for some elliptic problems, it is proved that a gradient technic applied to the NN parameters set converges towards
minimum of the loss function and errors estimates are given. For the nonsymmetric elliptic PDEs, the MinMax problem

s approximating with a double NN, and thanks to a diagonal extraction process a result of convergence is established
nd Errors estimates are also given.
The paper is organized as follows. Second section is dedicated to some properties of NNs. Third section consider self

djoint elliptic operator. A collocation method with a Gauss quadrature is introduced for evaluating the residual, and the
N is trained with a gradient descent technic with respect to parameters. A convergence result is given and error estimates
re presented. Section 3 investigates the case of nonsymmetric elliptic operator and the Min-Max problem associated. By
sing a diagonal extraction principle an existence results is given and errors estimates are proved. The section is ended
ith some remarks concerning the way in which boundary conditions are accounted.

. Neural networks

Consider a NN with a scalar-valued output N(L, θ ) defined as composition of many layers of functions:

N(L, θ ) = N (L, ωL, bL) ◦ N (L − 1, ωL−1, bL−1) · · ·N (2, ω2, b2) ◦ N (1, ω1, b1), (1)

where the symbol ◦ denotes the composition of functions, L is the depth of the network and N (l, ωl, bl) is called the
lth hidden layer of the network for 1 ≤ l ≤ L − 1. A layer N (l, ωl, bl) : Rdl−1 → Rdl is defined as composition of an
affine transformation Rdl−1 −→ Rdl

xl−1:→ωlxl−1+bl
where ωl is a d × (d − 1) weights matrix, bl a Rd bias vector, with an activation

function
σ : R −→ R

t ↦→ t+ = max(0, t)

or the hyperbolic tangent or the sigmoid function if more regularity is required for the functions that the NN yield. We
have

N (l, ωl, bl) = σ (ωlxl−1 + bl) (2)

here the function σ acts component-wise for a vector. The last layer is a linear transformation. Each component of the
vector valued function N (l, ωl, bl) is seen as a neuron and its dimension defines the width or the number of neurons
of the lth layer. The set of

∑L
l=1 dl × (dl−1 + 1) parameters of the NN is denoted by θ , and its cardinal is denoted

by |θ |.
Let us note that Z , the set of all NN defined by (1), is a finite dimension vector space the dimension of which is |θ |,

which is isomorphic to R|θ |. This vector space is equipped with the following norm:

∥N(L, θ )∥max = max
(

∥N(L, θ )∥∞,sc, max
1≤l≤L

∥bl∥∞

)
with

∥N(L, θ )∥∞,sc = max
1≤l≤L

∥ωl∥∞.

For d be given, let Ω ⊂ Rd be a convex bounded open subset with a C0,1 boundary ∂Ω with Ω compact, and
enote by C1(Ω;R) the set of differentiable functions with a continuous derivative. Introduce the realization map
σ : Z −→ C1(Ω;R)

N(L,θ )→Rσ N(L,θ )
when using the sigmoid function or hyperbolic tangent for function σ which will be assumed in

his paper.

emma 1. Let Ω ⊂ Rd be compact, and let σ globally Lipschitz continuous, then there exists a constant 0 < C(σ , Z), such
hat

Lipschitz(RσN(L, θ )) ≤ C(σ , Z)∥N(L, θ )∥∞,sc;

oreover, if θ ∈ BR|θ | (0, B), then ∥RσN(L, θ )∥W1,∞(Ω), ∥
∂Rσ N(L,θ )

∂θ̃
∥L∞(Ω), and ∥

∂2Rσ N(L,θ )
∂θ̃2

∥L∞(Ω) are bounded for any parameter
˜ ∈ θ .
2
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roof. See [13] prop. 4.1 for the bound C(σ , Z) of the Lipschitz constant of map Rσ , depending on σ and on the structure
f the NN, which implies the bound in W 1,∞ norm. The other bounds are consequence of composition of affine functions
ith functions σ .

.1. Feedforward neural networks

The parameters (weight matrices and bias vectors) are to be determined with a training set by minimizing a convex
unctional J usually called loss function.

For given integers {dl}Ll=1, define C(L, θ ) the set of realizations of FNN by:

C(L, θ ) = {x ↦→ RσN(L, θ )(x) = N (L, ωL, bL) ◦ · · · ◦ N (1, ω1, b1)(x)} (3)

where N(L, θ ) is defined by (1), and N (l, ωl, bl) by (2).
The space C(L, θ ) is not a vectorial subspace (see [7] Section 2 for a trivial example when σ is a max function, but a

star-shaped with respect to 0 subspace of Lipschitz functions). It is not convex, neither closed for the Lp topology (see
Theorem 2.1 and Theorem 3.1 in [13]).

2.2. Ability to approximate functions with a NN

Approximating a function with a neural network has been considered for a long time by many authors and is known as
the universal approximation property. The smaller the precision, the more neurons in the hidden layers one should take to
reach the required precision [16]. For 1 ≤ p ≤ ∞, we denote by Lp(Ω) the standard Lebesgue’s space of functions defined
n Ω . For 1 ≤ n, the Sobolev’s space W n,p(Ω) is defined as the set of functions in Lp(Ω), the distributional derivatives of
rder up to n are in Lp(Ω):

W n,p(Ω) = {f ∈ Lp(Ω); Dα f ∈ Lp(Ω), 0 < |α| ≤ n}.

W n,p(Ω) is a Banach space when is endowed with the following norm [17,18]

∥f ∥Wn,p(Ω) =

⎛⎝ ∑
0≤|α|≤n

∥Dα f ∥p
Lp(Ω)

⎞⎠ 1
p

Now we give the universal approximation property proved in [16]. For a fixed 0 < B, denote by B = {f ∈

W n,p(Ω); ∥f ∥Wn,p(Ω) ≤ B} the B-radius ball of W n,p(Ω).

Theorem 2. Let 0 < d; 1 ≤ p ≤ ∞; 2 ≤ n; 0 < B and 0 ≤ s ≤ 1 be given. Then for any ϵ ∈ (0, 1
2 ) and for any f ∈ B then

here exists a FNN N(L, θ ), the deep of which is L with a parameters set θ and a function RσN(L, θf ) ∈ C(L, θ ) verifying

∥RσN(L, θf ) − f (·)∥W s,p(Ω) ≤ ϵ. (4)

For the case Ω = (0, 1)d, in [19] Theorem 4.1, the following bounds are provided: there exists 0 < c(d, n, p, B, s) be
such that

L ≤ c(d, n, p, B, s) log2 (ϵ
−n
n−s )

nd |θ |, the cardinal of parameters set, is bounded by:

|θ | ≤ c(d, n, p, B, s)ϵ
−d
n−s log2 (ϵ

−n
n−s ).

Assume Ω = (0, 1)d, let us end this section with a classical result concerning numerical integration.

Lemma 3. Let 0 < µ be a small parameter, the interval (0, 1) is divided into subintervals the length of which is µ. Denote
y {xi,Wi}

M
i=1 the tensorized Gauss points and weights for Ω , and denote by {yjwj}

m
j=1 the tensorized Gauss points and weights

or ∂Ω ,. Then there exist 0 < C1, C2 not depending on µ such that for every f ∈ W 1,∞(Ω) ∩ W 1,∞(∂Ω) we have:⏐⏐⏐⏐⏐
∫

Ω

f (x) dx −

M∑
i=1

Wif (xi)

⏐⏐⏐⏐⏐ ≤ C1(Ω)
µ

√
d

2
∥f ∥W1,∞ ,⏐⏐⏐⏐⏐⏐

∫
∂Ω

f (s) ds −

m∑
j=1

wjf (yj)

⏐⏐⏐⏐⏐⏐ ≤ C2(∂Ω)
µ

√
d − 1
2

∥f ∥W1,∞ .

Remark that for domains Ω which can be obtained by deforming hypercubes, similar results concerning numerical
integration are valid.
3
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. The case of some second order self-adjoint elliptic PDE in d-dimension

Consider an operator A in a divergence form, Av =
∑d

i,j=1 −Di(aijDjv) + a0v, with aij = aji ∈ C1,1(Ω); 0 < a ≤ a0 ∈

C1,1(Ω) and where there exists 0 < α such that

α∥ξ∥
2
Rd ≤

d∑
i,j=1

aij(x)ξiξj

for all x ∈ Ω and ξ ∈ Rd. Problem PE reads: for g ∈ C1(Ω) be given, find u ∈ W 1,2(Ω) verifying:

Au = g in Ω;

u = 0 on ∂Ω
(5)

roblem PE has one solution in W 2,2(Ω) ∩
(
W 1,2(Ω) ∩ Ker(γ )

)
, where γ : W 1,2(Ω) → W

1
2 ,2(∂Ω) ⊂ L2(∂Ω) is the trace

perator (see [17] Chapter 2 or [18]).
It is not possible to include the boundary conditions in the space C(L, θ ), thus a penalization strategy is proposed for

he Dirichlet boundary condition γ (u) = 0 in the same way as in [7]. For 0 < η, define V the Hilbert space W 1,2(Ω)
ndowed with the following scalar product:

(v, w)η =

∫
Ω

d∑
i,j=1

aijDivDjw + a0vw dx +
1
η

∫
∂Ω

vw ds, ∀v, w.

he associated norm is denoted by

|||v|||
2
η =

∫
Ω

d∑
i,j=1

aijDivDjv + a0v2 dx +
1
η

∫
∂Ω

v2 ds (6)

Lemma 4. The norm ||| · |||η defined by (6) is equivalent to the norm of W 1,2.

For a proof see Lemma 3 in [7] where
∫

Ω
|∇v|

2 dx is replaced by
∫

Ω

∑d
i,j=1 aijDivDjv + a0v2 dx.

We have u ∈ W 2,2(Ω) ∩
(
W 1,2(Ω) ∩ Ker(γ )

)
the solution to Problem PE verifies the following minimization

roblem:

u =Argmin Jη(v) =

v∈W1,2(Ω)∩Ker(γ )

1
2

∫
Ω

d∑
i,j=1

aijDivDjv + a0v2
− 2gv dx +

1
2η

∫
∂Ω

v2 ds (7)

= Argmin Jη(v) =
v∈W1,2(Ω)∩Ker(γ )

1
2

(
|||v − u|||2η − |||u|||2η

)
(8)

since a variational formulation of Problem PE reads:∫
Ω

d∑
i,j=1

aijDiuDjv + a0uv − gv dx = 0∀v ∈ W 1,2(Ω) ∩ Ker(γ ).

When approximating Problem PE with a NN, it will be needed to keep parameters θ bounded, therefore a penalized
term is added to Jη . Let 0 < B be given, define

Jη(RσN(L, θ )) =
1
2

(
|||RσN(L, θ ) − u|||2η − |||u|||2η

)
+

1
4η

|θ |∑
q=1

(
θ2
q − B2)+2

(9)

u = Argmin JGη (RσN(L, θ )) =
Rσ N(L,θ )∈C(L,θ )

1
2

∑M
i=1 Wi

( ∑d
k,l=1 aij(xi)DlRσN(L, θ )DkRσN(L, θ )(xi)+

a0(xi) (RσN(L, θ ))2 (xi) − 2gRσN(L, θ )(xi)
)

+

1
2η

∑m
j=1 wj (RσN(L, θ ))2 (yj) +

1
4η

∑
|θ |

q=1

(
θ2
q − B2

)+2
.

(10)

Now we give an existence result for Problem (10).

Lemma 5. Assume Ω = (0, 1)d and σ to be hyperbolic tangent or sigmoid function, then there exists u ∈ C(L, θ ) solution to
roblem (10).
4
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roof. In what follows the notation RσN(L, θ ) will be replaced by N(θ ) with θ a real parameter for keeping the
resentation as simple as possible, the case of the NN is a straightforward generalization. First, the case of function Jη
s considered, and we show the gradient flow structure of the minimization problem. After simple calculations we check
hat Jη is differentiable with respect to θ :

Dθ Jη(N(θ )) =

(
N(θ ) − u,

∂N(θ )
∂θ

)
η

+
1
η
(θ2

− B2)+θ

We have:
d
dt

Jη(N(θ (t))) = Dθ Jη(N(θ (t)))
d
dt

θ (t) =((
N(θ ) − u,

∂N(θ (t))
∂θ

)
η

+
1
η
(θ2

− B2)+θ

)
d
dt

θ (t)

Choose for a positive parameter h
d
dt

θ (t) = −hDθ Jη(N(θ )),

and we get that t ↦→ Jη(N(θ (t))) is a decreasing function, allowing to use a descent gradient strategy for minimizing the
function.

Now skip to Problem (10) with the function JGη . Introduce the positive semi-definite bilinear form (·, ·)Gη defined on
C(L, θ ) × C(L, θ ) and the linear form (g, ·)G defined on C(L, θ ) be such that

JGη (N(θ )) =
1
2

[
(N(θ ),N(θ ))Gη − 2 (g,N(θ ))G

]
+

1
4η

(
θ2

− B2)+2
.

he derivatives of function JGη are given by:

Dθ JGη (N(θ )) =

(
N(θ ),

∂N(θ )
∂θ

)G

η

−

(
g,

∂N(θ )
∂θ

)G

+ (11)

1
η
(θ2

− B2)+θ (12)

D2
θ2
JGη (N(θ )) =

(
∂N(θ )

∂θ
,
∂N(θ )

∂θ

)G

η

+

(
N(θ ),

∂2N(θ )
∂θ2

)G

η

− (13)(
g,

∂2N(θ )
∂θ2

)G

+
1
η

(
(θ2

− B2)+ + 2θ2sgn+(θ2
− B2)

)
(14)

or minimizing JGη a gradient descent algorithm is applied, which reads:

• Choose θ0, n = 0,
* θn+1 = θn − hDθ JGη (N(θn))
• While |θn+1 − θn| is not small enough do

– compute Dθ JGη (N(θn+1))
– n=n+1 and go to *

he function JGη is coercitive at infinity (lim|θ |→+∞ JGη (θ ) = +∞). Thus we can assume there exists 0 < B1 such that
for minimizing sequences θ2

n ≤ B2
1, otherwise, if θn were not bounded, it would not minimize JGη . Lemma 1 claims that

N(θn); ∂N(θn)
∂θ

; ∂2N(θn)
∂θ2

are bounded in L∞ norm. The second derivative of JGN is constituted of scalar products computed

with numerical integration, involving N(θn); ∂N(θn)
∂θ

and ∂2N(θn)
∂θ2

. Thus |D2
θ2
JGη (N(θn) + ξ (N(θn+1) − N(θn)))| is bounded. The

arameter h is chosen such that for all θ2
n , θ2

n+1 ≤ B2
1 we have:

h|D2
θ2
JGη (N(θn) + ξ (N(θn+1) − N(θn)))| < 1; ∀ξ ∈ (0, 1).

We have:

JGη (N(θn+1)) − JGη (N(θn)) = −h
(
Dθ JGη (N(θn))

)2
+

h2

2
D2

θ2
JGη (N(θn) + ξ (N(θn+1) − N(θn)))

(
Dθ Jη(N(θn))

)2
≤ −

h (
Dθ JG(N(θn))

)2
.

2 η

5
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he sequence JGη (N(θn)) is decreasing, and since JGη (N(θn)) ≤ JGη (N(θ0)) = 0 we deduce the following bound for θn:

θ2
n ≤ B2

+ 2
√

η
2
a

M∑
i=1

Wig2(xi).

We have:

−
2
a

M∑
i=1

Wig2(xi) ≤ JGη (N(θn)) ≤ JGη (N(θ0)).

he function JGη is bounded from below there exists a subsequence JGη (N(θnp )) and a real a with JGη (N(θnp )) → a. The
equence JGη (N(θnp )) converges.

∞∑
p=1

−h
(
Dθ Jη(N(θn))

)2
+

h2

2

D2
θ2
JGη (N(θn) + ξ (N(θn+1) − N(θn)))

(
Dθ Jη(N(θn))

)2
;

is bounded from above by
∞∑
p=1

−
h
2

(
Dθ Jη(N(θn))

)2 and thus since JGη (N(θnp )) converges

∞∑
p=1

h
2

(
Dθ Jη(N(θn))

)2 converges .

There exists a constant C(a0) such that

0 ≤ Jη(N(θnp )) + C(a0) (g, g)G .

Then we have the following estimates:[
JGη (N(θnp )) + C(a0) (g, g)G

] 1
2 −

[
JGη (N(θnp+1)) + C(a0) (g, g)G

] 1
2 ≤⏐⏐⏐⏐[JGη (N(θnp )) + C(a0) (g, g)G

] 1
2 −

[
JGη (N(θnp+1)) + C(a0) (g, g)G

] 1
2

⏐⏐⏐⏐ ≤

[
JGη (N(θnp )) − JGη (N(θnp+1))

] 1
2 ≤

[
h
2
Dθ Jη(N(θnp ))

2
] 1

2

.

he function
√
(·) is continuous, thus the sequence

{
[
Jη(N(θnp )) + C(a0) (g, g)

] 1
2 }

∞

p=1

converges and the serie
√

h
2

∑
∞

p=1 Dθ Jη(N(θnp )) absolutely converges. We get the existence of a subsequence {θnp}p∈N

onverging towards θ . Since the realization map Rσ ∈ C0(Z; C1(Ω;R)) we have

RσN(θnp ) → RσN(θ ),

nd JGη (RσN(θnp )) → JGη (RσN(θ )) which is a solution to Problem (10).

In what follows, we deal with the expression (7) for function Jη since function u is not known. We have the following
xistence and error estimate for Problem (10):

heorem 6. Assume Ω = (0, 1)d and σ to be the hyperbolic tangent or the sigmoid function, let 0 < η and 0 < ϵ < 1
2 be

given, denote by u ∈ W 2,2(Ω) the solution to Problem (5) and by RσN(L, θu) ∈ C(L, θ ) the approximation of u into C(L, θ )
iven by Theorem 2. Then there exists u ∈ C(L, θ ) solution to Problem (10). Moreover, assuming θu ∈ B(0, B) and RσN(L, θu) is

not a minima of JGη , then there exists a constant 0 < C independent of η and ϵ be such that

1
4
∥|u − u∥|2η ≤

3
4
∥|RσN(L, θu) − u∥|2η + 8ηCγ ∥u∥W2,2(Ω) + (15)

µ

(
C(u, g) + C(RσN(L, θu), g)

)
; (16)

and thus thanks to Theorem 2
1
∥|u − u∥|2 ≤ Cϵ2

+ 8ηCγ ∥u∥ 2,2 + µ

(
C(u, g) + C(RσN(L, θu), g)

)
(17)
4 η W (Ω)

6
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roof. Lemma 5 yields the existence of u = RσN(L, θ ) solution to Problem (10). Since RσN(L, θu) is not a minima of JGη
e have:

JGη (u) ≤ JGη (RσN(L, θu)).

Lemma 3 yields estimates between Jη and JGη which combined with previous inequality give:

Jη(u) − µC(u, g) ≤ Jη(RσN(L, θu)) + µC(RσN(L, θu), g). (18)

enote by (·, ·)A the inner product induced by the differential operator A. We have u ∈ W 2,2(Ω) with γ (u) = 0, thus
ntegrating by parts leads to:∫

Ω

gu dx =

∫
Ω

Auu dx = (u, u)A +

∫
∂Ω

d∑
i,j=1

aijDj u niu ds

here n is the outward normal to ∂Ω . By using the continuity of the trace operator γ for the normal derivative:
nA =

∑d
i,j=1 aijDj · ni (see [17] for example) we get ∥γ (∂nAu)∥L2(∂Ω) ≤ Cγ ,A∥u∥W2,2(Ω). The young inequality, provides:

− 4ηCγ ,A∥u∥W2,2(Ω) −
1
4η

∫
∂Ω

(u − u)2 dx ≤

∫
∂Ω

|∂nAuu| dx (19)

e deduce the following bound from below for Jη:

1
4
∥|u − u∥|2η −

1
2
(u, u)A − 4ηCγ ,A∥u∥W2,2(Ω) ≤ Jη(u) (20)

Arguing in the same way and since θu ∈ B(0, R), we get the following bound from above for Jη(RσN(L, θu))

Jη(RσN(L, θu)) ≤
3
4
∥|RσN(L, θu) − u∥|2η −

1
2
(u, u)A + 4ηCγ ,A∥u∥W2,2(Ω)

nd we get the announced error estimate.

emark 7. There does not exist a unique minimum for function JGη . While local minima are numerous, they are relatively
asy to find, and they are all more or less equivalent. This peculiar property is analysed for the loss function of a typical
ultilayer net with ReLU activation function in [20] with the use of random matrix theory applied to the analysis of
ritical points in high degree polynomials on the sphere.
In practice R can be chosen sufficiently large for satisfying θu ∈ B(0, R).

emark 8. The penalization function is positive, thus does not play any role in the bound from below in the error estimate.
ince R is sufficiently large for θu be in the ball B(0, R), the penalization function does not appear in the bound from above

in the error estimate.

4. The case of some second order elliptic PDEs in d-dimension

Consider an operator A in divergence form,

Av =

d∑
i,j=1

−Di(aijDjv) +

d∑
j=1

bjDjv + a0v,

with aij ∈ C1,1(Ω); b ∈ C1(Ω);Rd
; 0 < a ≤ a0 ∈ C0(Ω) with 0 < a0 −

1
2div(b) (to keep technical difficulties as simple as

possible) and where there exists 0 < α such that

α ≤

d∑
i,j=1

aij(x)ξiξj

for all x ∈ Ω and ξ ∈ Rd. Problem (21) reads: for g ∈ C1(Ω) be given, find u ∈ W 1,2(Ω) verifying:

Au = g in Ω;

u = 0 on ∂Ω.
(21)

et us denote by W 1,2
0 (Ω) = W 1,2(Ω) ∩ Ker(γ ), Problem PE has one solution in W 2,2(Ω) ∩ W 1,2

0 (Ω) (see [17] Chapter 2).
A variational formulation for problem PE reads:∫

Ω

d∑
aijDiuDjv + v

d∑
bjDju + a0uv − gv dx = 0∀v ∈ W 1,2

0 (Ω) (22)

i,j=1 j=1

7
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he variational formulation (22) can be expressed in form of the following saddle point problem with J : W 1,2
0 (Ω) ×

1,2
0 (Ω) → R defined by:

J(w, v) =

∫
Ω

d∑
i,j=1

aijDiwDjv + v

d∑
j=1

bjDjw + a0wv − gv dx, (23)

inf
w

sup
∥v∥W1,2=1

J(w, v) (24)

he function J is bilinear, and twice continuously differentiable. The optimality conditions for the saddle point (u, v)
verifying:

∀ϕ, w ∈ W 1,2
0 (Ω), J(u, w) ≤ J(u, v) ≤ J(ϕ, v)

read: there exists λ ∈ R be such that ∀w ∈ W 1,2
0 (Ω):

D1J(u, v)w =
∫

Ω

∑d
i,j=1 aijDiwDjv + v

∑d
j=1 bjDjw + a0wv dx = 0;

D2J(u, v)w =
∫

Ω

∑d
i,j=1 aijDiuDjw + w

∑d
j=1 bjDju + a0uw − gw dx

= λ(v, w)W1,2(Ω)

(25)

he expression (·, ·)W1,2(Ω) denotes the inner product of W 1,2, and the right hand side of the second equation is due to

the constraint (v, v)
1
2
W1,2 = 1. From the first equation of (25) associated to the W 1,2-coercivity of the bilinear form defined

y v, w ↦→ D1J(u, v)w we deduce that v = 0 and thus the second equation of (25) reduces to the variational formulation
(22).

In the same way that have been done in Section 3, for defining the approximated problem we need to consider two
NNs: N(L, θ ) for functions u and N(L̃, θ̃ ) for functions v. In what follows, for simplifying the notations RσN(L, θ ) and
RσN(L̃, θ̃ ) will be denoted by N(θ ), and by N(θ̃ ). Consider the bilinear form (·, ·)Gη C(L, θ ) × C(L̃, θ̃ ) → R and the linear
forms (g, ·)Gη : C(L, θ ) → R defined by:

(ϕ, v)Gη =
∑M

i=1 Wi

(∑d
k,l=1 aklDlϕDkv(xi) + v

∑d
j=1 bjDjϕ(xi) + a0ϕv(xi)

)
+

1
η

∑m
j=1 wjϕv(yj);

(g, v)G =
∑M

i=1 Wi

(∑d
k,l=1 gv(xi)

)
.

(26)

Introduce the two following bilinear forms:

Jη(ϕ, v) =
∫

Ω

∑d
i,j=1 aijDiϕDjv + v

∑d
j=1 bjDjϕ + a0ϕv − gv dx+

1
η

∫
∂Ω

ϕv ds +
1
4η

(
θ2

− B2
)+2

JGη (ϕ, v) = (ϕ, v)Gη − (g, v)G +
1
4η

(
θ2

− B2
)+2

.

(27)

emark that whatever 0 < M is, we have (since Jη is linear with respect to v):

Argmin
N(θ )∈C(L,θ )

Argmax
N(θ̃ )̸=0 ∥N(θ̃ )∥W1,2≤M

Jη(N(θ ),N(θ̃ ))
∥N(θ̃ )∥W1,2

=

Argmin
N(θ )∈C(L,θ )

Argmax
N(θ̃ )̸=0 ∥N(θ̃ )∥W1,2=1

Jη(N(θ ),N(θ̃ ))
(28)

and thus thanks to Lemma 1

Argmin
N(θ )∈C(L,θ )

Argmax
N(θ̃ )̸=0 ∥N(θ̃ )∥W1,2=1

Jη(N(θ ),N(θ̃ ))

Argmin
N(θ )∈C(L,θ )

Argmax
θ̃∈B(0,B̃),∥N(θ̃ )∥W1,2=1

Jη(N(θ ),N(θ̃ ))
(29)

The NN approximated problem is defined by:{
u, v

}
= Argmin

N(θ )∈C(L,θ )
Argmax

˜ ˜ ˜

JGη (N(θ ),N(θ̃ )). (30)

θ∈B(0,B),∥N(θ )∥W1,2=1

8
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he function JGη is twice continuously differentiable since it is a bilinear function added to a C2 functions. Simple
alculations provide for all ϕ, v:

Dθ JGη (N(θ ), v) = ( ∂N(θ )
∂θ

, v)Gη +
1
η
(θ2

− B2)+θ;

Dθ̃ J
G
η (ϕ,N(θ̃ )) = (ϕ,

∂N(θ̃ )
∂θ̃

)Gη − (g,
∂N(θ̃ )

∂θ̃
)G;

D2
θ2
JGη (N(θ ), v) = ( ∂2N(θ )

∂θ2
, v)Gη +

1
η

(
(θ2

− B2)+ + 2θ2sgn+(θ2
− B2)

)
;

D2
θ̃2
JGη (ϕ,N(θ̃ )) = (ϕ,

∂2N(θ̃ )
∂θ̃2

)Gη − (g,
∂2N(θ̃ )

∂θ̃2
)G;

D2
θ θ̃
JGη (N(θ ),N(θ̃ )) = ( ∂N(θ )

∂θ
,

∂N(θ̃ )
∂θ̃

)Gη .

(31)

onsider the two following intermediate optimization problems. For u, ∈ C(L, θ ), v ∈ C(L̃, θ̃ ) given find v(u), u(v) ∈

(L̃, θ̃ ) × C(L, θ ) verifying:

v(u) = Argmax
θ̃∈B(0,B̃)∥N(θ̃ )∥W1,2=1

JGη (u,N(θ̃ )) (32)

u(v) = Argmin
N(θ )∈C(L,θ )

JGη (N(θ ), v) (33)

emma 9. Assume Ω = (0, 1)d and σ to be hyperbolic tangent or sigmoid function, and let u ∈ C(L, θ ) be given, then there
xists v(u) ∈ C(L̃, θ̃ ) solution to Problem (32), calculated with a gradient ascent algorithm.

roof. See Annex A

emma 10. Assume Ω = (0, 1)d and σ to be hyperbolic tangent or sigmoid function, and let v ∈ C(L̃, θ̃ ) be given, then there
xists u(v) ∈ C(L, θ ) solution to Problem (33) calculated with a gradient descent algorithm.

roof. See Annex B

Now, we give the algorithm for solving Problem (30). With Lemma 9 and Lemma 10 we are able to compute a double
ndex sequence {N(θnp ),N(θ̃nq )}p,q∈N which for p fixed converges when q goes to infinity towards a solution to Problem
32), and which for q fixed converges when p goes to infinity to a solution to Problem (33). By using the diagonal
xtraction principle we have a converging sequence {N(θnp ),N(θ̃np )}p∈N towards a solution to Problem (30). The proposed
scent–descent algorithm reads:

• 0 < h and 0 < h̃, be given, define n = 0,

□ n = n + 1
– Choose θ̃0 ∈ B(0, B̃), N(θ̃0) =

N(θ̃0)
∥N(θ̃0)∥W1,2

– For p = 0, to n

∗ θ̃p+1 = θ̃p + hDθ̃ J
G
η (N(θn),N(θ̃p))

∗ θ̃p+1 = its projection into the ball B(0, B̃)
∗ N(θ̃p+1) =

N(θ̃p+1)
∥N(θ̃p+1)∥W1,2

∗ compute Dθ̃ J
G
η (N(θ̃n),N(θ̃p+1))

– end of loop for p
– choose θ0 = 0
– For q = 0, to n
– θq+1 = θq − hDθ JGη (N(θq),N(θ̃n))
– compute Dθ JGη (N(θq+1),N(θ̃n))
– end of loop for q
– If |θ̃n+1 − θ̃n| and |θn+1 − θn| are not small enough go to □

Define the norm |∥ · |∥
2
η = ∥ · ∥

2
W1,2 +

1
η
∥ · ∥

2
L2(∂Ω)

which is equivalent to the W 1,2 norm (see [7]). Finally we have the
ollowing existence and error estimate results.

heorem 11. Assume Ω = (0, 1)d and σ to be the hyperbolic tangent or the sigmoid function, let 0 < η and 0 < ϵ < 1
2 be

iven, denote by u ∈ W 2,2(Ω) the solution to Problem (22) and by RσN(L, θu) ∈ C(L, θ ) the approximation of u into C(L, θ )
iven by Theorem 2. Then there exists (u, v) ∈ C(L, θ )× C(L̃, θ̃ ) solution to Problem (30). Moreover, assuming θ ∈ B(0, B) and
u

9
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σN(L, θu) is not a solution to Problem (33) with v = v, then the following estimate is valid

∥|u − u∥|η ≤ C(A, γ )∥|RσN(L, θu) − u∥|η + (34)

C(A, γ , α, η)∥|Rσ (N(L̃, θ̃u−u)) − (u − u)∥|
η
+ (35)

µ

(
C(u, g) + C(RσN(L, θu), g)

)
; (36)

and thus thanks to Theorem 2

∥|u − u∥|η ≤ C(A, γ )ϵ + C(A, γ , α, η)ϵ1 + µ

(
C(u, v, g) + C(RσN(L, θu), g)

)
(37)

roof. Lemmas 9, 10 yield the existence of (u, v) solution to Problem (30). Since RσN(L, θu) is not a minima of JGη (·, v) we
have:

JGη (u, v) ≤ JGη (RσN(L, θu), v).

Lemma 3 yields estimates between Jη and JGη which combined with previous inequality and since θu ∈ B(0, B) give:

Jη(u, v) − µC(u, v, g) ≤ Jη(RσN(L, θu), v) + µC(RσN(L, θu), v, g). (38)

e have:

Jη(RσN(L, θu), v) =

∫
Ω

d∑
i,j=1

aijDi(RσN(L, θu) − u)Djv +

v

d∑
j=1

bjDj(RσN(L, θu) − u) dx +∫
Ω

a0(RσN(L, θu) − u)v dx +
1
η

∫
∂Ω

(RσN(L, θu) − u)v ds

which is bounded:

|Jη(RσN(L, θu), v)| ≤ C(A, γ , η)|∥RσN(L, θu) − u|∥η.

hatever w ∈ C(L̃, θ̃ ) is with a W 1,2 norm one, for getting a bounded from below, start from the inequality:∫
Ω

d∑
i,j=1

aijDi(u − u)Djw + w

d∑
j=1

bjDj(u − u) dx +∫
Ω

a0(u − u)w dx +
1
η

∫
∂Ω

(u − u)w ds ≤ Jη(u, v).

Then choose

w =
Rσ (N(L̃, θ̃u−u))

∥Rσ (N(L̃, θ̃u−u))∥W1,2
=

1

∥Rσ (N(L̃, θ̃u−u))∥W1,2

(
u − u + Rσ (N(L̃, θ̃u−u)) − (u − u)

)
,

with thanks to Theorem 2

∥Rσ (N(L̃, θ̃u−u)) − (u − u)∥W1,2 ≤ ϵ1 and ∥Rσ (N(L̃, θ̃u−u))∥W1,2 ≤ ∥(u − u)∥W1,2 + ϵ1

y using the coercivity of the bilinear form, we have:

1

∥Rσ (N(L̃, θ̃u−u))∥W1,2[
min (α, 1)∥|u − u∥|2η − C(A, γ )∥|u − u∥|η∥|Rσ (N(L̃, θ̃u−u)) − (u − u)∥|

η

]
nd we get the following bound from below:

1
2∥u − u∥W1,2[
min (α, 1)∥|u − u∥|2 − C(A, γ )∥|u − u∥| ∥|R (N(L̃, θ̃ )) − (u − u)∥|

]
.
η η σ u−u η

10
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ince the norms ∥ · ∥W1,2 and |∥ · ∥|η are equivalent, there exists a constant C(η) such that for all v, 0 < C(η) ≤
|∥v∥|η

∥v∥W1,2
and we get the following bound from below for Jη(u, v):

C(η)
2

[
min (α, 1)∥|u − u∥|η − C(A, γ )∥|Rσ (N(L̃, θ̃u−u)) − (u − u)∥|

η

]
≤ Jη(u, v).

athering this bound from below with the bound from above gives the announced estimate.
Let us end this section with some comments about some existing ways for enforcing the Dirichlet boundary condi-

ions [21]. One can use an approximate distance function to exactly impose the boundary conditions by modifying the last
ayer of the NN, or by adding this distance function to the variational formulation. The Nitsche method [22] where the
oundary conditions are variationally imposed, and finally the penalization method presented in this study. The gradient
trategy and the existence and error estimates results presented in this paper can be extended to the Nitsche method.

ata availability

No data was used for the research described in the article.

nnex A

roof of Lemma 9. A gradient ascent algorithm is applied, which reads:

• Choose θ̃0 ∈ B(0, B̃), n = 0, N(θ̃0) =
N(θ̃0)

∥N(θ̃0)∥W1,2

* θ̃n+1 = θ̃n + hDθ̃ J
G
η (u,N(θ̃n))

• θ̃n+1 = its projection into the ball B(0, B̃)
• N(θ̃n+1) =

N(θ̃n+1)
∥N(θ̃n+1)∥W1,2

• While |θ̃n+1 − θ̃n| is not small enough do

– compute Dθ̃ J
G
η (u,N(θ̃n+1))

– n=n+1 and go to *

Since θ̃n ∈ B(0, B̃) for all n, Lemma 1 implies N(θ̃n) is bounded in W 1,∞ norm. We deduce that JGη (u,N(θ̃n)) is bounded.
The sequence JGη (u,N(θ̃n)) is increasing. We have:

JGη (u,N(θ̃n+1)) − JGη (u,N(θ̃n)) = hDθ̃ J
G
η (u,N(θ̃n))2 (39)

+
h2

2
D2

θ̃2
JGη (u,N(θ̃n+1) + ξ (N(θ̃n+1) − N(θ̃n)))Dθ̃ J

G
η (u,N(θ̃n))2 (40)

emma 1 implies D2
θ̃2
JGη (u,N(θ̃n+1) + ξ (N(θ̃n+1) − N(θ̃n))) is bounded, thus we can choose h sufficiently small such that

h|D2
θ̃2
JGη (u,N(θ̃n+1) + ξ (N(θ̃n+1) − N(θ̃n)))| < 1 and we get the following inequality:

h
2
Dθ̃ J

G
η (u,N(θ̃n))2 ≤ JGη (u,N(θ̃n+1)) − JGη (u,N(θ̃n)). (41)

here exists a subsequence np be such as {JGη (u,N(θ̃np ))}p∈N converges towards a. We get the convergence of the following
eries:∑

p∈N

Dθ̃ J
G
η (u,N(θ̃np ))

2.

G
η (u,N(θ̃np )) is bounded there exists a constant C such that 0 ≤ JGη (u,N(θ̃np )) + C . Arguing in the same way as for the
roof of Lemma 5 and by using the

√
· function we deduce the convergence of the series∑

p∈N

Dθ̃ J
G
η (u,N(θ̃np )),

which implies the convergence of the sequence {θ̃np}p∈N and since the realization map Rσ is continuous, the convergence
of {Rσ (N(L̃, θ̃np ))}p∈N towards a maximum of function JGη
11
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nnex B

roof of Lemma 10. Thanks to Lemma 1, we have
∥N(θ )∥W1,∞

|θ |
≤ C(σ , Z), we deduce that the function JGη is coercitive at

nfinity (lim|θ |→+∞

JGη (θ )
|θ |

= +∞).
There exists 0 < B2 such that minimizing sequences verify θn ∈ B(0, B2). Otherwise, if θn were not bounded, it would

not minimize JGη .
A gradient descent algorithm is applied, which reads:

• Choose θ0, n = 0,
* θn+1 = θn − hDθ JGη (N(θn), v)
• While |θn+1 − θn| is not small enough do

– compute Dθ JGη (N(θn+1), v)
– n = n+1 and go to *

Let us prove the convergence of the algorithm for a subsequence. The parameter h is chosen such that for all θn, θn+1 ∈

B(0, B2) the following inequality is verified:

h|D2
θ2
JGη (N(θn) + ξ (N(θn+1) − N(θn)))| < 1.

which is possible thanks to Lemma 1.
We have:

JGη (N(θn+1)) − JGη (N(θn)) = −h
(
Dθ JGη (N(θn))

)2
+

h2

2
D2

θ2
JGη (N(θn) + ξ (N(θn+1) − N(θn)))

(
Dθ Jη(N(θn))

)2
≤ −

h
2

(
Dθ JGη (N(θn))

)2
.

The sequence JGη (N(θn), v) is decreasing, and since JGη (N(θn), v) ≤ JGη (N(θ0), v) = 0. We deduce the following bound for θn:

|θn| ≤ B + 4ηC(A, C(σ , Z), g)∥v∥W1,∞ .

As a consequence of Lemma 1, the sequence {JGη (N(θn), v)}n∈N is bounded, thus there exists a subsequence and a real a
such that: limp→+∞ JGη (N(θnp ), v) = a. We get the convergence of the following series:∑

p∈N

Dθ JGη (N(θn), v)2.

JGη (N(θnp ), v) is bounded there exists a constant C such that 0 ≤ JGη (N(θnp ), v) + C . Arguing in the same way as for the
proof of Lemma 5 and by using the

√
· function we deduce the convergence of the series∑

p∈N

Dθ JGη (N(θnp ), v),

which implies the convergence of the sequence {θnp}p∈N and since the realization map Rσ is continuous, the convergence
f {Rσ (N(L, θnp ))}p∈N towards a minimum of function JGη
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