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Analysis of dominant terms in Reynolds-stress budgets for a hot
free subsonic jet using Large-Eddy Simulation

B. Desmolin∗, E. Laroche†, J. Troyes‡
ONERA/DMPE, Université de Toulouse, F-31055, Toulouse, France

A. Langenais§
ONERA/DMPE, Université Paris Saclay, F-91123, Palaiseau, France

Bridges reference hot subsonic jet is simulated using a Reynolds Stress Model. The obtained
results confirm that this approach, even if sophisticated, is not satisfactory and it requires
extra-modelling efforts. Then, a LES is set up to compute the Reynolds Stress budgets. The LES
is first validated by comparing average fields obtained with that measured by Bridges. Since
the differences are small, the terms making up the Reynolds stress balance are computed from
processing the archived unsteady quantities. The two main regions studied are the potential
area and the self-similar area. The results show a dominance of production and pressure strain
correlation terms close to the convergent nozzle exit. In the self-similar area, turbulent diffusion
and dissipation become significant, and the convection term becomes non-negligible. On the
other hand, pressure and viscous diffusion terms remain negligible far from the walls. These
results emphasize the importance of accurately modelling the redistribution term.

Nomenclature
Symbols

𝑥, 𝑦, 𝑧 = Cartesian coordinates [m]
𝑟 = Radial coordinate [m]
𝜃 = Orthoradial coordinate
D = Convergent nozzle diameter [m]
Δ𝑟 = Mesh spacing [m]
𝐿 = Characteristic size [m]
𝑢𝑖 = Instant velocity component [m.s−1]
𝑝 = Pressure [Pa]
𝑇 = Temperature [K]
𝜌 = Density [kg.m−3]
𝜈 = Kinematic viscosity [m2.s−1]
𝜇 = Dynamic viscosity [Pa.s]
𝑘 = Turbulent kinetic energy [m2.s−2]
𝑆𝑖 𝑗 = Strain tensor [s−1]
𝜏𝑖 𝑗 = Viscous stress tensor [Pa]
Δ = LES cut-off characteristic size [m]
V = Volume of a cell [m3]
A = Surface area of a cell [m2]
𝑎 = Speed of sound [m.s−1]
𝛿0.5 = Half-velocity jet radius [m]
𝐶𝑆 = Smagorinsky constant
𝜂 = Self-similarity parameter
M = Mach number
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Ma = Acoustic Mach number
𝛿𝑖 𝑗 = Kronecker tensor

Subscripts

∞ = Ambiant condition
𝑗 = Nozzle exit condition
𝑡 = Turbulent variable

Superscripts

˜ = Favre average
′′ = Favre fluctuation
− = Reynolds average
′ = Reynolds fluctuation
𝑟 = Subgrid variable

I. Introduction

Propulsive jets are complex flows that can evolve under extreme conditions due to the high speeds and temperatures
encountered. The study of hot supersonic jets is motivated by various needs, including the reduction of noise

induced by launchers [1] on a launch pad, which places heavy constraints on the rocket, its payload and the surrounding
structures. Research is also being carried out in the military field, in which a good understanding of the physics and
structure of these jets is essential, particularly for the assessment of infrared signatures [2]. In addition, predicting the
ejection temperature is very important when sizing the nozzle. It must be able to resist temperatures over 3000 K [3].

Many experimental studies were performed on subsonic [4–8] and supersonic jets [9–13]. In particular, they made it
possible to understand the complex structure of these flows using Schlieren images [9] and hot/cold wires [7]. These
studies highlighted the presence of a potential core, defined as an area without mixing between the fluid leaving the jet
and the ambient air, whose length depends strongly on the Mach [14] and the Reynolds numbers [15]. Downstream of
this zone, there is a so-called self-similar area. Several variables, such as velocity and Reynolds stresses, depend only on
a self-similarity parameter 𝜂 [16]. This area generally starts further upstream for the velocity than for the second-order
moments [17]. Finally, the study of the influence on the noise generated by jets of certain parameters such as the Mach
number [10], temperature [11] and nozzle pressure ratio [12] led to the creation of several databases.

These studies took advantage of technological advances in measurement techniques such as Laser Doppler
Velocimetry (LDV) or Particle Image Velocimetry (PIV) to obtain increasingly complete and accurate data, particularly
for measuring Reynolds stresses. However, the limitations of these campaigns are that they are very costly to set up and
difficult to apply to complex configurations such as those used in the aerospace industry. As a result, numerical simulation
of these flows is playing an increasingly important role in current research. Several unsteady jet simulations [18–24]
were also carried out. They resulted in a complete archiving of various turbulent quantities such as the double [22] and
triple [24] moments of the velocity, leading to a better understanding of the jet physics.

Some Reynolds-Averaged Navier-Stokes (RANS) simulations of propulsive jets were performed by Dash et al. [25–
27] and Georgiadis et al. [28]. These studies revealed the large discrepancies between the turbulence models. No model
correctly predicts the entire jet. This is partly because turbulence models are generally calibrated for boundary layer
flows rather than free shear flows [29]. RSM models transporting Reynolds stresses are not immune to this problem. The
Reynolds stress transport equation is made up of convection, production, dissipation, diffusion and redistribution terms.
Eisfeld [30] showed that the constants used in the Speziale Sarkar Gatski (SSG) model [31] for the redistribution term
do not provide the right level of turbulent anisotropy in a mixing layer. The redistribution term dispatches the turbulent
kinetic energy between the different Reynolds stresses, and is responsible for restoring isotropy to the turbulence.
Experimental studies by Panchapakesan et al. [32] and Toutiaei et al. [33] as well as numerical simulations proposed by
Pantano et al. [24], Colombié et al. [23] and Bogey et al. [22] confirmed that the redistribution term is dominant in
shear flows. Correct modelling of this term is therefore essential.

Although most propulsive jets are supersonic, the following study focuses on a heated subsonic jet. Supersonic jets
involve a large number of physical phenomena such as compressibility, thermal effects, shocks and expansion beams. It

2

D
ow

nl
oa

de
d 

by
 O

ff
ic

e 
N

at
io

na
l d

'E
tu

de
s 

et
 d

e 
R

ec
he

rc
he

s 
A

er
os

pa
tia

le
s 

(O
N

E
R

A
) 

on
 D

ec
em

be
r 

23
, 2

02
4 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/6

.2
02

4-
38

69
 



is therefore appropriate to validate the calculation and post-processing routine on a hot subsonic case before moving to
the study of hot supersonic jets.

The following article is divided into five parts. First, the studied jet is defined, and the experimental set up is
described. Next, RANS modelling of this jet is performed using the Elliptic Blending Reynolds-Stress Model [34]
(EBRSM) transporting Reynolds stresses tensor. The results being not convincing, so a Large-Eddy Simulation (LES) is
set up to directly compute the component terms of the Reynolds stress transport equation. As a result, the third part
introduces the computational domain, the meshes and the fourth one a comparison of mean fields obtained with LES
and experimental data. Finally, the fifth part presents an analysis of the balance terms of the Reynolds stress transport
equation in the two main jet regions.

II. Experimental case

A. Experimental set-up
The experimental case is an axisymmetric subsonic air jet experimentally tested by Bridges and Wernet [35]. Their

study aimed to provide PIV data on a wide range of turbulent isothermal or anisothermal jets. The jet is generated using
a simple convergent nozzle with an exit diameter of 𝐷 = 0.0508 m. The nozzle geometry is represented in Fig. 1.

Fig. 1 Convergent dimensions.

The experimental conditions for the whole range of tests performed are described in Table 1, with ambient conditions
𝑝∞ = 101 300 Pa and 𝑇∞ = 294 K. The acoustic Mach number and design Mach number are defined respectively in
Eq. 1 and 2.

Ma = 𝑈 𝑗/𝑎∞ (1)
M = 𝑈 𝑗/𝑎 𝑗 (2)

Table 1 Experimental conditions.

Test number Ma M 𝑇𝑗/𝑇∞ 𝑝 𝑗/𝑝∞
1 0.500 0.513 0.950 1.197
2 0.900 0.985 0.835 1.861
3 0.500 0.376 1.764 1.102
4 0.900 0.678 1.764 1.375
5 1.330 1.001 1.764 1.888
6 0.900 0.548 2.700 1.219
7 1.485 0.904 2.700 1.678

The focus of the study being temperature effects on the shear layer development, a hot jet configuration is examined.
For this reason, tests 3, 4 and 6 were considered (see table 1). Case 3 was already retained by NASA [36] as a validation
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case for the RANS turbulence models. This case is thus chosen to compare the results of our study with those found in
the literature. For this case, the ejection velocity is𝑈 𝑗 = 171 m.s−1 and the temperature is 𝑇𝑗 = 534 K, with a Reynolds
number Re 𝑗 ≈ 78 000.

B. Experimental results
Measurements of the velocity field, Reynolds stresses and turbulent kinetic energy, whose expression is defined by

Eq. 3, were obtained using a PIV plane for 𝑥 ∈ [1D, 25D] and 𝑦 ∈ [-1.4D, 1.4D] taking the centre of the convergent exit
as the origin.

𝑘 =
1
2

(
𝑢′𝑥𝑢

′
𝑥 + 𝑢′𝑟𝑢′𝑟 + 𝑢′𝜃𝑢′𝜃

)
(3)

These fields, plotted in Fig. 2, indicate the topology of the flow and locate the different areas of the flow represented
in Fig. 3. The symmetry of these fields confirms the convergence of the mean flow measurement. Considering the
definition of 𝑘 in Eq. 3 and assessing 𝑢′𝑥𝑢′𝑥 ≈ 𝑘 reveals the weak contribution of other stress components and highlights
the strong anisotropy of the flow. This is important because most RANS engineering-level turbulence models are
isotropic, and therefore satisfy Eq. 4.

𝑢′𝑥𝑢
′
𝑥 ≈ 𝑢′𝑟𝑢′𝑟 ≈ 𝑢′

𝜃
𝑢′
𝜃
≈ 2

3
𝑘 (4)

(a) Field of longitudinal velocity scaled by𝑈 𝑗 .

(b) Field of 𝑘 scaled by𝑈2
𝑗
.

(c) Field of 𝑢′𝑥𝑢′𝑥 scaled by𝑈2
𝑗
.

Fig. 2 PIV field measured experimentally by Bridges [35].

To complete these fields, the axial and radial profiles of velocity and turbulent kinetic energy at several axial stations
are plotted in Fig. 4 and Fig. 5 respectively. The measurement range is sufficiently large longitudinally to describe the
axial evolution of the jet. As a result, the potential core, defined as the area of the jet without mixing with the ambient
air, is within the measurement range, as shown in Fig. 4a. From Eq. 5 this core length is 4.8D.

𝑈 (𝑥 = 𝐿𝑐) = 0.99 ×𝑈 𝑗 (5)
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Nozzle Potential area Transition area Self-similar area

𝐿𝑐

Fig. 3 Schematic drawing of the different areas of a jet.
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0

0.2

0.4

0.6

0.8

1

𝑥/𝐷

𝑈
/𝑈

𝑗

(a) Longitudinal profile of 𝑘 scaled by𝑈2
𝑗
.

0 5 10 15 20 25
0

0.5

1

1.5

2

2.5
·10−2

𝑥/𝐷

𝑘
/𝑈

2 𝑗

(b) Radial profile of 𝑘 scaled by𝑈2
𝑎𝑥𝑖𝑠

.

Fig. 4 Experimental longitudinal profiles of velocity and turbulent kinetic energy along the symmetry line.

However, the measurement area is not radially large enough, so the radial evolution of the various flow quantities is
not completely measured for 𝑥 > 10D. This lack of measurement makes the study of the self-similar area more difficult,
which defines an area downstream of the potential core where certain quantities such as velocity, temperature and
Reynolds stresses depend only on 𝑦/𝑥. This area is reached as early as 10D as shown in Fig. 5a for axial velocity, where
experimental points at 𝑥 = 10D and 𝑥 = 15D are superimposed, and later for turbulent kinetic energy. It is not possible
to obtain the self-similar profile for Reynolds stresses, as the measurement range is too narrow.

III. RANS modelling

A. Computational method
The jet presented in part II is first simulated using RANS modelling. The simulation is performed with the CHARME

compressible Navier-Stokes solver of the CEDRE [37] multiphysics code developed by ONERA. This is a cell-centred
finite volume code on unstructured meshes. This code has already been used and validated on supersonic jets [38–41],
and more generally in the aerospace field [42].

The computation is performed using a 2D axisymmetry model with a 2nd-order Monotonic Upstream-centered
Scheme for Conservation Laws (MUSCL) reconstruction for face interpolation using the 𝑘-exact method [43]. Flux are
calculated using a Harten-Lax-van Leer-Contact [44] (HLLC) scheme. These numerical methods are described in detail
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𝑥
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(a) Radial profile of axial velocity scaled by𝑈𝑎𝑥𝑖𝑠 .

0.00 0.05 0.10 0.15 0.20 0.25
0.00

0.03

0.06

0.09

0.12

0.15

𝑟/𝑥

𝑘
/𝑈

2 𝑎
𝑥
𝑖𝑠

(b) Radial profile of 𝑘 scaled by𝑈2
𝑎𝑥𝑖𝑠

.

Fig. 5 Experimental radial profiles of velocity and turbulent kinetic energy at several axial stations: • 𝑥 = 5𝐷 ,
• 𝑥 = 10𝐷 , • 𝑥 = 15𝐷.

Table 2 Boundary conditions values.

T𝑟𝑒 𝑓 294 K
p𝑟𝑒 𝑓 101 300 Pa
M𝑟𝑒 𝑓 0.01
P0 111 500 Pa
T0 534 K

by Courbet et al. [45]. The computation is carried out with a 1st-order time implicit scheme, with a local time step set at
𝐶𝐹𝐿𝑙𝑜𝑐 = 20 in each cell.

As the flow under study is compressible, Favre notation is used to separate the flow variables into an average part
and a fluctuating part as written in Eq. 6, to preserve the classical form of mass conservation [46]. The Favre mean is
defined in Eq. 7.

𝑢𝑖 = 𝑢𝑖 + 𝑢′′𝑖 (6)

𝑢𝑖 =
𝜌𝑢𝑖

𝜌
(7)

The RANS model used is the EBRSM model [34], transporting Reynolds stresses 𝜌�𝑢′′
𝑖
𝑢′′
𝑗
, dissipation 𝜀 and a wall

damping factor 𝛼. This model was validated on a channel flow case by comparison with a direct numerical simulation
(DNS) solution [47], with excellent accuracy.

B. Computation domain and mesh
The computation domain is shown in Fig. 6, and the boundary conditions are defined in table 2. Total pressure and

total temperature are set upstream of the convergent. The convergent surface is an adiabatic wall. Turbulence levels are
set to match the experimental level at 𝑥 = 1𝐷. An external flow is prescribed at 𝑢𝑥 = 3.41 m.s−1, i.e. M= 0.01 and a
static temperature at 294 𝐾 . This velocity value is suggested as optimal by the study proposed in Turbulence Modelling
Resource [36] to stabilise the calculation, while having a negligible influence on the results.

Mesh convergence was carried out by NASA [36], and the intermediate mesh comprising 72 000 elements is selected
as representing the best trade-off between accuracy and computational cost.
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Symmetry axis
Inlet 1

Inlet 2

Outlet

Fig. 6 Computation domain.

C. Results
The axial velocity and Reynolds stress fields are plotted in Fig. 7. Comparison with the PIV fields shown in Fig. 2

highlights that the potential core length is overestimated by the EBRSM model compared with experimental data.
Indeed, when looking at Fig. 8a, the model estimates 𝐿𝑐 to be 8𝐷, almost twice as large as that measured experimentally.

(a) Field of longitudinal velocity scaled by𝑈 𝑗 .

(b) Field of �𝑢′′𝑥 𝑢′′𝑥 scaled by𝑈2
𝑗
.

Fig. 7 Axial Reynolds stress and velocity field obtained with the EBRSM model.

Radial velocity profiles plotted at several axial stations in Fig. 8b highlight a significant gap between experimental and
simulated data, both in the potential area and in the self-similar area.

The model is therefore poor at predicting propulsive jet behaviour accurately. The potential area is not correctly
represented, and the self-similar velocity profile does not match those obtained experimentally. These results are in
line with the literature on hot propulsive jet [25–28], which highlights the significant discrepancies between jet RANS
simulations and experimental data.

Except for production, each of these terms as to be modelled. However, they are calibrated mostly on homogeneous
turbulence or boundary layer cases. A LES is set up to calculate these sub-terms directly on the same case study to
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(a) Longitudinal profile of axial velocity along the axis of
symmetry: • Exp, EBRSM.
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/𝑈

𝑎
𝑥
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(b) Radial profile of axial velocity at several axial stations:
𝑥 = 5𝐷, 𝑥 = 10𝐷, 𝑥 = 15𝐷.

Fig. 8 Comparison of EBRSM ( ) and experimental (•) velocity profiles.

compare their respective magnitude and influence.

IV. Large-Eddy Simulation

A. Computational method
The quantities are separated into a solved part and a sub-filtered part as indicated in Eq. 8.

𝑢𝑖 = 𝑢𝑖 + 𝑢′′𝑖 (8)

The LES relies on the compressible Navier-Stokes equations described by Vreman et al. [48]. The momentum transport
equation is detailed in Eq. 9.

𝜕𝜌𝑢𝑖

𝜕𝑡
+
𝜕𝜌𝑢𝑖𝑢 𝑗

𝜕𝑥 𝑗
= − 𝜕𝑝

𝜕𝑥𝑖
+ 𝜕

𝜕𝑥 𝑗

(
𝜏𝑖 𝑗 + 𝜏𝑟𝑖 𝑗

)
(9)

where 𝜏𝑖 𝑗 is the mean viscous stress tensor and 𝜏𝑟
𝑖 𝑗

the subgrid stress tensor, defined in Eq. 10 and 11 respectively.

𝜏𝑖 𝑗 = 2𝜇𝑆𝑖 𝑗 −
2
3
𝜇𝑆𝑘𝑘𝛿𝑖 𝑗 (10)

𝜏𝑟𝑖 𝑗 = 𝜌
(
𝑢𝑖𝑢 𝑗 − 𝑢𝑖𝑢 𝑗

)
(11)

The subgrid-scale turbulence model used is the one proposed by Smagorinsky [49] and is detailed in Eq. 12 and 13.

𝜏𝑟𝑖 𝑗 = 2𝜌𝜈𝑡
(
𝑆𝑖 𝑗 −

1
3
𝛿𝑖 𝑗𝑆𝑙𝑙

)
(12)

𝜈𝑡 = (𝐶𝑆Δ)
√︃

2𝑆𝑖 𝑗𝑆𝑖 𝑗 (13)

Δ = 2 × 3 × V
A (14)

where 𝐶𝑆 is the model constant set to 0.1 and Δ is a LES characteristic cell size, defined Eq. 14.
Computations are 3D with a 2nd-order MUSCL reconstruction for face interpolation using the 𝑘-exact method [43]

previously mentioned. Flows are calculated using a HLLC [44] scheme. Unlike the RANS calculation, LES is performed
through a 2nd-order time integration technique.
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B. Computation domain and boundary conditions
The computation domain is an extrusion of the one used for 2D RANS as shown in Fig. 9, with 𝑥 ∈ [-6𝐷, 40𝐷],

𝑟 ∈ [0, 25𝐷] at 𝑥 = −6𝐷 and 𝑟 ∈ [0, 30𝐷] at 𝑥 = 40𝐷. The same boundary conditions are imposed as for the RANS
computation.

(a) Full calculation domain. (b) Zoom on the convergent.

Fig. 9 Representation of the computation domain.

C. Meshes
Two unstructured meshes using tetrahedrons and prisms were created using Centaur software. The main characteristics

of these two meshes are described in table 3.

Table 3 Characteristics of the two meshes.

Number of
elements

Δ𝑟𝑚𝑎𝑥/𝐷 Δ𝑟𝑚𝑖𝑛/𝐷
Δ𝑟/𝐷 average on the
self-similar area
(𝑥 = 15𝐷)

Azimuthal
resolution at the
nozzle exit

Mesh A 180 millions 0.52 1.8 × 10−4 0.13 310
Mesh B 210 millions 1.2 1.3 × 10−4 2 × 10−2 2000

Two-dimensional cross-sections of the mesh spacing Δ𝑟 of the two meshes are plotted in Fig. 10a in the whole
domain and in Fig. 10b near the nozzle. These fields highlight the three main differences between the two meshes:

1) The longitudinal cell size increases along the symmetry axis, and is smoother and more gradual for mesh B than
for mesh A. This is confirmed by the Fig. 11a representing this evolution.

2) A higher azimuthal resolution at the nozzle lip is imposed for mesh B to better capture the mixing layer’s early
development.

3) The refined zone, designed to capture physical phenomena in the mixing layer, is enlarged for mesh B as shown
in Fig. 11b and 11c with the aim of better simulating the evolution of the various turbulent quantities in this
part of the flow. A larger mesh size is also imposed further from the jet axis for mesh B, to dissipate potential
recirculation areas.

D. Validation of the Large-Eddy Simulation
In order to reduce computational costs, the initial state is interpolated from RANS results with the 𝑘 − 𝜔 SST [50]

turbulence model obtained on a coarser grid. A physical time of 200 𝐷/𝑈 𝑗 is computed with the LES on both meshes
to evacuate the transient regime. The calculation is carried out on 3120 CPUs for mesh A and 3800 for mesh B. Details
of the calculations are summarised in table 4. The RANS calculation used to obtain the initial state has a much lower
computational cost with 2600 CPUs during 2 hours.

Converging the average solution of the LES simulation is very costly in terms of computing time, especially for
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(a) Mesh spacing scaled by 𝐷 in the jet development region for meshes A (top) and B (bottom).

(b) Mesh spacing scaled by 𝐷 near the base for meshes A (top) and B (bottom).

Fig. 10 2D cross-section of the mesh spacing scaled by 𝐷.

third-order moments and gradients. Since the computational domain is axisymmetric, it is possible to perform azimuthal
averaging to improve statistical convergence. The Python Antares library [51] is used for this purpose. All the quantities,
initially in cartesian coordinates, were converted to cylindrical coordinates, and the computation domain is divided into
1000 slices starting from the 𝑥 axis. The 1000 slices were averaged, then a 2𝐷 field is obtained.

As an example, the 2D velocity field obtained after the post-processing on mesh B is shown in Fig. 12.
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0
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𝑥/𝐷

Δ
𝑟
/𝐷

(a) Longitudinal profile at 𝑟 = 0.

0 1 2 3
0

0.1

0.2

0.3

𝑟/𝐷

Δ
𝑟
/𝐷

(b) Radial profile at 𝑥 = 5𝐷.

0 2 4 6 8
0

0.1

0.2

0.3

𝑟/𝐷

Δ
𝑟
/𝐷

(c) Radial profile at 𝑥 = 20𝐷.

Fig. 11 Comparison of mesh spacing scaled by 𝐷 for mesh A ( ) and mesh B ( ) in different flow zones.

Table 4 Characteristics of the calculations.

Mesh A Mesh B
Time step [s] 10−6 5 × 10−7

Simulated physical time [𝐷/𝑈 𝑗 ] 700 1000
Number of runs 25 60
Machine time [h.CPU] 990 000 2 400 000
Storage space [To] 3.6 18

Fig. 12 Average axial velocity 2D fields scaled by𝑈 𝑗 using mesh B.

1. Mesh study
Axial velocity and turbulent quantities are plotted in Fig. 13 and 14 for the two meshes and compared with

experimental data from Bridges [35].
The longitudinal velocity decay plotted in Fig. 13a is more accurate for mesh B than for mesh A, particularly up to

𝑥 = 10𝐷. The size of the potential core is well reproduced with both meshes. Two slope breaks are present on the
longitudinal evolution of turbulent kinetic energy plotted in Fig. 13b with mesh A at 𝑥 = 8𝐷 and 𝑥 = 12𝐷. Mesh B
provides an improved distribution, approaching the experimental peak values reached at 𝑥 = 8𝐷.

Longitudinal profiles of velocity and shear rate are plotted in Fig. 13c and 13d respectively, at 𝑦 = 𝐷/2. Mesh B has
less effect on the results. Overall, axial velocity is well simulated by the two meshes, with an overestimation lower than
5%. However, the shear rate is very different from experimental data. A peak located at 𝑥 = 1𝐷 overestimates this rate
by around 100%, but the evolution is well recovered from 𝑥 = 10𝐷. This peak is probably due to a too harsh boundary
layer transition leaving the convergent [52, 53]. As the goal is the aerodynamic study of the jet and not the near-wall
flow neither aeroacoustics, this is not considered of first order here.

At last, the radial profiles of velocity and shear rate are plotted in Fig. 14a and 14b respectively at 𝑥 = 12𝐷, i.e. in
the self-similar zone. The velocity profiles obtained with the two meshes are similar to the experimental one. The shear
rate is underestimated by 20% with mesh B. However, the evolution is correct. Mesh A gives a value for the maximum

11

D
ow

nl
oa

de
d 

by
 O

ff
ic

e 
N

at
io

na
l d

'E
tu

de
s 

et
 d

e 
R

ec
he

rc
he

s 
A

er
os

pa
tia

le
s 

(O
N

E
R

A
) 

on
 D

ec
em

be
r 

23
, 2

02
4 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/6

.2
02

4-
38

69
 



0 5 10 15 20 25
0

0.25

0.5

0.75

1

𝑥/𝐷

𝑈
/𝑈

𝑗

(a) Longitudinal profile of axial velocity along the axis of
symmetry.
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1

2
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2 𝑗

(b) Longitudinal profile of turbulent kinetic energy along the
axis of symmetry.
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𝑈
/𝑈

𝑗

(c) Longitudinal profile of axial velocity in 𝑟 = 𝐷/2.

0 5 10 15 20 25
0
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2
·10−2

𝑥/𝐷

� 𝑢′′ 𝑥𝑢′′ 𝑟
/𝑈

2 𝑗

(d) Longitudinal profile of �𝑢′′𝑥 𝑢′′𝑟 in 𝑟 = 𝐷/2.

Fig. 13 Comparison of longitudinal profiles for mesh A ( ), mesh B ( ) and experimental data (•).
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𝑟
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(a) Radial profile of axial velocity at 𝑥 = 12𝐷.

0 0.5 1 1.5 2
·10−2

0
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�𝑢′′𝑥 𝑢′′𝑟 /𝑈2
𝑎𝑥𝑖𝑠

𝑟
/𝐷

(b) Radial profile of �𝑢′′𝑥 𝑢′′𝑟 at 𝑥 = 12𝐷.

Fig. 14 Comparison of radial flow magnitude profiles for mesh A ( ), mesh B ( ) and experimental data (•).
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closer to measured experimentally but is unphysical qualitatively because the shear rate is not zero at the axis, indicating
that the flow is not perfectly symmetrical. In addition, spurious slope breaks are visible at 𝑟 = 0.1𝐷 and 𝑟 = 1.3𝐷.

In conclusion, mesh B provides a better simulation of the flow, and is therefore chosen as the reference mesh for the
rest of this study.

2. Longitudinal evolution of anisotropy
The longitudinal profile at 𝑟 = 𝐷/2 of anisotropy tensor components, defined by the Eq. 15, is plotted in Fig. 15.

𝑏𝑖 𝑗 =

�𝑢′′
𝑖
𝑢′′
𝑗

2𝑘
− 1

3
𝛿𝑖 𝑗 (15)

0.00 5.00 10.00 15.00 20.00

0.10

0.20

0.30

𝑥/𝐷

𝑏
𝑥
𝑥

(a) Component 𝑏𝑥𝑥 of anisotropy at 𝑟 = 𝐷/2.

0.00 5.00 10.00 15.00 20.00
0.00

0.05

0.10

0.15

0.20

𝑥/𝐷

𝑏
𝑥
𝑟

(b) Component 𝑏𝑥𝑟 of anisotropy at 𝑟 = 𝐷/2.

0.00 5.00 10.00 15.00 20.00
−0.20

−0.15

−0.10

−0.05

0.00

𝑥/𝐷

𝑏
𝑟
𝑟

(c) Component 𝑏𝑟𝑟 of anisotropy at 𝑟 = 𝐷/2.

0.00 5.00 10.00 15.00 20.00
−0.20

−0.15

−0.10

−0.05

0.00

𝑥/𝐷

𝑏
𝜃
𝜃

(d) Component 𝑏𝜃 𝜃 of anisotropy at 𝑟 = 𝐷/2.

Fig. 15 Longitudinal profiles of anisotropy components at 𝑟 = 𝐷/2 measured experimentally (•) and compute
with mesh B ( ).

The main information given by these graphs is that the 𝑥𝑥, 𝑟𝑟 and 𝜃𝜃 components are non-zero. Turbulence is
therefore not isotropic in this region of the jet. The anisotropy components are generally well reproduced, except near
the nozzle (i.e. 𝑥 < 3𝐷) where the peak in turbulent kinetic energy corresponds to an anisotropy relaxing to zero. The
asymptotic values of the 𝑥𝑥, 𝑟𝑟 and 𝜃𝜃 components are approximately 𝑏𝑥𝑥,∞ = 0.12, 𝑏𝑟𝑟 ,∞ = −0.07 and 𝑏𝜃 𝜃,∞ = −0.05
in the self-similar area. The 𝑏𝑥𝑟 component does not appear to reach a plateau.

The anisotropy values in the self-similar jet area are particularly important because they are used to calibrate the
SSG model constants [31]. However, the values of anisotropy measured in a mixed layer and in a boundary layer are
very different. As a result, Eisfeld [30] used the anisotropy values obtained in a flat subsonic mixing layer [54] to
calibrate this model, which significantly improved the accuracy of the results by obtaining the correct open rate.
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3. Radial evolution
Radial profiles of velocity and turbulent quantities are plotted in the potential area and compared with experimental

data in Fig. 16.

0 0.25 0.5 0.75 1
0

0.2

0.4

0.6

0.8

1

𝑈/𝑈 𝑗

𝑟
/𝐷

(a) Radial velocity profile scaled by𝑈 𝑗 .

0 1 2 3 4 5
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0.8

1

�𝑢′′𝑥 𝑢′′𝑥 /𝑈2
𝑗

𝑟
/𝐷

(b) Radial profile of �𝑢′′𝑥 𝑢′′𝑥 scaled by𝑈2
𝑗
.

0 0.5 1 1.5 2
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0

0.2

0.4

0.6

0.8

1

�𝑢′′𝑥 𝑢′′𝑟 /𝑈2
𝑗

𝑟
/𝐷

(c) Radial profile of �𝑢′′𝑥 𝑢′′𝑟 scaled by𝑈2
𝑗
.

0 1 2 3 4 5
·10−2

0

0.2

0.4

0.6

0.8

1

𝑘/𝑈2
𝑗

𝑟
/𝐷

(d) Radial profile of 𝑘 scaled by𝑈2
𝑗
.

Fig. 16 Radial profiles of velocity and turbulent variables in the potential area measured experimentally (•) and
compute with mesh B ( ) at several axial stations: 𝑥 = 1𝐷, 𝑥 = 3𝐷.

The axial velocity simulated is similar to that measured experimentally. Turbulent kinetic energy is greatly
overestimated at 𝑥 = 1𝐷, but this peak is quickly dissipated and a rate similar to the one that was measured
experimentally is obtained from 𝑥 = 3𝐷. These profiles validate the correct development of the simulated jet. In
particular, the mixing layer spreads correctly close to the nozzle. This is a crucial region, as it largely determines the
subsequent structure of the jet.

The same profiles are plotted in the self-similar area of the jet (from 𝑥 = 10𝐷) in Fig. 17. Profiles are not plotted at
𝑥 = 15𝐷 due to the small range of experimental measurements.

The self-similar velocity profile is perfectly reproduced by LES. Turbulence intensity levels are slightly underestimated,
notably because the velocity at the𝑈𝑎𝑥𝑖𝑠 is overestimated, but the overall trend is correctly simulated.

The mean field is rendered correctly, both in the potential area and in the self-similar area. As a result, an in-depth
study of the Reynolds stress transport equations is possible.
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(a) Radial velocity profile scaled by𝑈𝑎𝑥𝑖𝑠 .
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(b) Radial profile of �𝑢′′𝑥 𝑢′′𝑥 scaled by𝑈2
𝑎𝑥𝑖𝑠

.
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(c) Radial profile of �𝑢′′𝑥 𝑢′′𝑟 scaled by𝑈2
𝑎𝑥𝑖𝑠

.
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(d) Radial profile of 𝑘 scaled by𝑈2
𝑎𝑥𝑖𝑠

.

Fig. 17 Radial profiles of velocity and turbulent variables in the self-similar area measured experimentally (•)
and compute with mesh B ( ) at several axial stations: 𝑥 = 10𝐷, 𝑥 = 12𝐷.

V. Reynolds-stress budgets

A. Transport equations
With the results obtained being in close agreement with Bridges data, it is now possible to study the different terms

making up the Reynolds stress transport equation. For a compressible flow, this equation reads:

𝜕

(
𝜌�𝑢′′

𝑖
𝑢′′
𝑗

)
𝜕𝑡

+ C𝑖 𝑗 = P𝑖 𝑗 + 𝜙𝑖 𝑗 + D𝑡
𝑖 𝑗 + D 𝑝

𝑖 𝑗
+ D𝜈

𝑖 𝑗 − 𝜀𝑖 𝑗 + Σ𝑖 𝑗 (16)

with the convective term detailed in Eq. 17, as well as the production term 18, the redistribution term 19, turbulent 20,
pressure 21 and viscous 22 diffusion terms, dissipation term 23 and mass flow coupling term 24.
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C𝑖 𝑗 =

𝜕

(
𝜌�𝑢′′

𝑖
𝑢′′
𝑗
𝑢𝑘

)
𝜕𝑥𝑘

(17)

P𝑖 𝑗 = −𝜌
(�𝑢′′

𝑖
𝑢′′
𝑘

𝜕𝑢 𝑗

𝜕𝑥𝑘
+ �𝑢′′

𝑗
𝑢′′
𝑘

𝜕𝑢𝑖

𝜕𝑥𝑘

)
(18)

𝜙𝑖 𝑗 = 𝑝
′

(
𝜕𝑢′′

𝑖

𝜕𝑥 𝑗
+
𝜕𝑢′′

𝑗

𝜕𝑥𝑖

)
(19)

D𝑡
𝑖 𝑗 =

𝜕

𝜕𝑥𝑘

(
𝜌�𝑢′′

𝑖
𝑢′′
𝑗
𝑢′′
𝑘

)
(20)

D 𝑝

𝑖 𝑗
=

𝜕

𝜕𝑥𝑘

(
𝑝′𝑢′′

𝑗
𝛿𝑖𝑘 + 𝑝′𝑢′′𝑖 𝛿 𝑗𝑘

)
(21)

D𝜈
𝑖 𝑗 =

𝜕

𝜕𝑥𝑘

((
𝜏′
𝑖𝑘
𝑢′′
𝑗
+ 𝜏′

𝑗𝑘
𝑢′′
𝑖

))
(22)

𝜀𝑖 𝑗 =

(
𝜏′
𝑖𝑘

𝜕𝑢′′
𝑗

𝜕𝑥𝑘
+ 𝜏′

𝑗𝑘

𝜕𝑢′′
𝑖

𝜕𝑥𝑘

)
(23)

Σ𝑖 𝑗 = 𝑢
′′
𝑖

(
𝜕𝜏 𝑗𝑘

𝜕𝑥𝑘
− 𝜕𝑝

𝜕𝑥 𝑗

)
+ 𝑢′′

𝑗

(
𝜕𝜏𝑖𝑘

𝜕𝑥𝑘
− 𝜕𝑝

𝜕𝑥𝑖

)
(24)

Starting again from the equations, it is possible to show that the turbulence in a simple sheared flow is self-sustaining.
The mechanism is illustrated in Fig. 18. Shear creates a transverse velocity gradient that produces axial Reynolds
stress, which is redistributed to the other components and then partly dissipated. The radial and orthoradial components
produce shear stress, which in turn creates �𝑢′′𝑥 𝑢′′𝑥 , thus forming a cycle.

Redistribution 19 Dissipation 23Production 18

Production 18

Fig. 18 Turbulence cycle for shear flow, adapted from Leschziner [55].

The LES conducted in this study will verify whether this cycle is occurring. In order to calculate these terms,
numerous quantities were archived, including velocity, pressure and temperature, as well as the double and triple
products of velocity 𝑢𝑖𝑢 𝑗 and 𝑢𝑖𝑢 𝑗𝑢𝑘 , the velocity/pressure correlation 𝑝𝑢𝑖 and the viscous stress tensor 𝜏. Using these
stored quantities, it is then possible to compute all the terms making up the Reynolds stress transport equation with the
help of relationships 25, 26 and 27.

�𝑎′′𝑏′′ = 𝑎𝑏 − �̃��̃� (25)

𝑎′𝑏′′ = 𝑎′𝑏′ (26)

𝜌𝑢′′
𝑖
𝑢′′
𝑗
= 𝜌𝑢𝑖𝑢 𝑗 − 𝜌𝑢𝑖𝑢 𝑗 (27)

Velocity, pressure and stress tensor gradients were computed directly while other gradients or divergences were
computed in post-processing using the Antares python library [51].

Due to the use of LES instead of DNS, unaffordable because of the high Reynolds number, the viscous diffusion 22
and dissipation 23 terms are strongly subject to filtering effects, so it is complex to compute them directly. Also, as the
solution is averaged over a large period of time, it can be assumed to be stationary. As a result, the time derivative is
assumed to be zero. Moreover, our study focuses on regions far from walls and at high Reynolds numbers. Consequently,
viscous diffusion 22 is assumed to be negligible. Following the same methodology as Colombié et al. [23], dissipation
is therefore deduced from the balance as described in Eq. 28.

−𝜀𝑖 𝑗 = C𝑖 𝑗 − P𝑖 𝑗 − 𝜙𝑖 𝑗 − D𝑡
𝑖 𝑗 − D 𝑝

𝑖 𝑗
− Σ𝑖 𝑗 (28)
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As the objective is to analyse the relative importance of the budget terms, the quantities are scaled by the maximum
production of the 𝑥𝑥 component. So, for example, the 𝑥𝑟 component of dissipation 23 becomes:

𝜀∗𝑥𝑟 =
𝜀𝑥𝑟

max (P𝑥𝑥)
(29)

Two regions were studied. The first zone is at 𝑥 = 3𝐷, close to the nozzle but far enough away from it so as not to be
affected by the peak turbulent kinetic energy presents near 𝑥 = 2𝐷. This zone is particularly interesting to analyse the
creation of the mixing layer between the jet and the ambient air. The second is at 𝑥 = 20𝐷 to study these terms in the
self-similar area.

B. Potential area
The balance of the four non-zero Reynolds stress components is plotted at 𝑥 = 3𝐷 in Fig. 19. The coupling and

viscous diffusion terms are negligible and are not plotted to improve the readability of the graph. Dissipation is computed
on the assumption of equilibrium described in Eq. 28.
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(a) Budgets of �𝑢′′𝑥 𝑢′′𝑥 .
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(b) Budgets of �𝑢′′𝑥 𝑢′′𝑟 .
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𝑟/𝐷

(c) Budgets of �𝑢′′𝑟 𝑢′′𝑟 .
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𝑟/𝐷

(d) Budgets of �𝑢′′
𝜃
𝑢′′
𝜃
.

Fig. 19 Radial profiles of the terms making up the Reynolds stress transport equation in the potential area
(𝑥 = 3𝐷): P∗

𝑖 𝑗
, 𝜑∗

𝑖 𝑗
, − C∗

𝑖 𝑗
, D 𝑝∗

𝑖 𝑗
, D𝑡∗

𝑖 𝑗
, −𝜀∗

𝑖 𝑗
.

The balance of the 𝑥𝑥 and 𝑥𝑟 components, plotted garphs 19a and 19b respectively, shows several similarities:
1) Production and redistribution terms predominate at 𝑟 = 𝐷/2, i.e. in the mixing layer created between the jet and

the ambient air.
2) Diffusive and convective terms are relatively weak.
3) A balance between production, redistribution and dissipation terms is described in Eq. 30. The turbulence

produced by 𝑥𝑟 et 𝑥𝑥 components is mostly redistributed to the other components and slightly dissipated in the
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𝑥𝑥 direction.
P∗
𝑖 𝑗 − 𝜑∗𝑖 𝑗 − 𝜀∗𝑖 𝑗 ≈ 0 (30)

The balance of the 𝑟𝑟 and 𝜃𝜃 components, plotted in Fig. 19c and 19d respectively, initially shows that all terms
except dissipation are weaker than those in the 𝑥𝑥 and 𝑥𝑟 directions. The present balance between redistribution and
dissipation suggests that the turbulence transferred from the 𝑥𝑥 and 𝑥𝑟 components to the 𝑟𝑟 and 𝜃𝜃 components of the
Reynolds stresses by the redistribution term is directly dissipated by the small scales of the turbulence.

Although the topology of the potential area is strongly impacted by the jet ejection Mach number, similar conclusions
can be drawn from the work of Colombié et al. [23] and Toutiaei et al. [33] on isothermal jets at Mach 0.1 and 0.14
respectively.

C. Self-similar area
The same stress components are plotted in Fig. 20 in the self-similar area at 𝑥 = 20𝐷 as a function of the jet

half-opening defined by Eq. 31, and compared with data obtained via LES by Bogey et al. [22] on an isothermal jet at
Mach 0.9. To make the comparison possible, the magnitudes obtained by Bogey are also scaled as described in Eq. 29.

𝑈 (𝑟 = 𝛿0.5) =
1
2
𝑈𝑎𝑥𝑖𝑠 (31)
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Fig. 20 Radial profiles of the terms making up the Reynolds stress transport equation compute with LES from
Bogey [22] (▲) and current study ( ) in the self-similar area (𝑥 = 20𝐷): P∗

𝑖 𝑗
, 𝜑∗

𝑖 𝑗
, − C∗

𝑖 𝑗
, D 𝑝∗

𝑖 𝑗
,

D𝑡∗
𝑖 𝑗

, −𝜀∗
𝑖 𝑗

.
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The first observation is that the data obtained from this study is very close to that of Bogey although the Mach
difference between the two jets is significant. The results are very different from those obtained in the potential area
for the 𝑥𝑥 component in Fig. 20a. Production still predominates with redistribution, but dissipation, convection and
turbulent diffusion become equally important. So, unlike in the potential area, turbulence is partly transferred to the
small scales of turbulence and then dissipated, even if an important part is always redistributed.

However, the findings are very close to those found in the potential area for the 𝑥𝑟, 𝑟𝑟 and 𝜃𝜃 components. A large
part of the turbulence produced by the 𝑥𝑟 component is redistributed to the other components, and most of it is dissipated
by the 𝑟𝑟 and 𝜃𝜃 components.

The relative weight of each term is summarized in table 5. The turbulence cycle shown in Fig. 18 is therefore

Table 5 Predominance of the different terms in the Reynolds stress transport equation.

Area Direction P∗ 𝜑∗ C∗ D𝑡∗ 𝜀∗

Potential
area

𝑥𝑥 ++ ++ - - -
𝑥𝑟 ++ ++ - - -
𝑟𝑟 - ++ - - ++
𝜃𝜃 - ++ - - ++

Self
similar
area

𝑥𝑥 ++ ++ + + +
𝑥𝑟 ++ ++ - - -
𝑟𝑟 - ++ - - ++
𝜃𝜃 - ++ - - ++

verified. In the light of the results obtained both close to the nozzle and in the self-similar area, it is clear that the
most important terms in the Reynolds stress balance equations are production and redistribution for jet-type flows.
Since production is computed and not modelled by RSM, the redistribution term is very important. These results
explain Eisfeld’s conclusions [30], presented in the introduction, on the importance of calibrating the constants of the
redistribution model.

VI. Conclusion
Jets are complex flows to model due to a large number of involved physical phenomena, including a strong turbulence

anisotropy. Consequently, the use of RSM-type RANS models seems to be a good choice.
However, the first simulation carried out with the EBRSM model failed to obtain the correct jet behaviour. The aim

of this study is therefore to compute the different terms of the Reynolds stress balance to understand which ones are
predominant.

First, the LES mean field has been validates on Bridges’ experimental data, so the terms making up the Reynolds
stress balance could be calculated. A strong predominance of production and redistribution terms is verified, both near
the nozzle and in the self-similar area. It is therefore clear that correct modelling of the redistribution term is necessary
to obtain accurate results with RANS models containing Reynolds constraints.

Eisfeld’s study of the anisotropy rates obtained in a mixing layer with the SSG model suggests that the constants
chosen to create this model are not suitable for jets.

In the future, it will be interesting to check whether the constants of the SSG model can be adjusted to improve its
reliability for jet flows. In addition, a more in-depth analysis of the dissipation transport equation may also be of interest,
given its importance in the Reynolds Stress budgets.
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