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Explainability of CNN-based 
Alzheimer’s disease detection from 
online handwriting
Jana Sweidan1, Mounim A. El-Yacoubi1 & Anne-Sophie Rigaud2,3

With over 55 million people globally affected by dementia and nearly 10 million new cases reported 
annually, Alzheimer’s disease is a prevalent and challenging neurodegenerative disorder. Despite 
significant advancements in machine learning techniques for Alzheimer’s disease detection, the 
widespread adoption of deep learning models raises concerns about their explainability. The lack of 
explainability in deep learning models for online handwriting analysis is a critical gap in the literature 
in the context of Alzheimer’s disease detection. This paper addresses this challenge by interpreting 
predictions from a Convolutional Neural Network applied to multivariate time series data, generated 
by online handwriting data associated with continuous loop series handwritten on a graphical tablet. 
Our explainability methods reveal distinct motor behavior characteristics for healthy individuals and 
those diagnosed with Alzheimer’s. Healthy subjects exhibited consistent, smooth movements, while 
Alzheimer’s patients demonstrated erratic patterns marked by abrupt stops and direction changes. 
This emphasizes the critical role of explainability in translating complex models into clinically relevant 
insights. Our research contributes to the enhancement of early diagnosis, providing significant and 
reliable insights to stakeholders involved in patient care and intervention strategies. Our work bridges 
the gap between machine learning predictions and clinical insights, fostering a more effective and 
understandable application of advanced models for Alzheimer’s disease assessment.

Keywords  Alzheimer’s disease, Online handwriting, 1D-CNN, Explainability

Nowadays, over 55 million people worldwide suffer from dementia. Annually, almost 10 million new cases are 
reported. Dementia arises from diverse diseases and injuries impacting the brain, with Alzheimer’s disease (AD) 
accounting for approximately 60–70% of cases1. AD, a prevalent and progressive neurodegenerative disorder, 
exacts a heavy toll on those it afflicts, slowly eroding cherished memories and the very essence of one’s life. AD 
represents a formidable health challenge due to its elusive onset and devastating impact on cognitive function. 
Detecting AD at its early stages, therefore, is paramount for effective intervention and treatment.

In the early stages of AD, individuals may experience subtle but notable changes in their motor skills2. These 
changes can manifest as difficulties in tasks requiring fine motor control, such as writing or buttoning a shirt. 
As Handwriting (HW) is a complex psychomotor skill that requires fine motor control, specific neuromuscular 
coordination, and visuospatial functions3, HW analysis has been investigated to detect AD at early stage4–6. Early 
detection of AD gives hope to patients holding onto their life’s narrative, preserving invaluable moments that 
define who they are.

Existing research has leveraged machine learning (ML) and deep learning (DL) techniques to analyze 
HW dynamics7–10, yet the critical issue of model explainability remains unexplored. These models are often 
considered “black box” systems, lacking transparency in decision-making processes. This limitation impedes 
their clinical applicability and trustworthiness, particularly in healthcare settings where interpretability is 
paramount. In this paper, we take a further step from ML/DL helping in detecting AD early based on HW, as we 
aim to give healthcare experts an explanation of DL decisions.

Proposed Work: In this research, we build upon the 1DCNN model used in7 to achieve high-accuracy 
classifications. Our focus is on applying explainability methods to gain insights into the decision-making 
process. We employed three explanation methods: DeepSHAP11, 2-step TSR12, and CoMTE13, and analyzed 
their outcomes to understand the model’s decision-making and gain insights on the behaviors of the different 
classes, namely Early-stage Alzheimer’s disease and Healthy controls. Overall, our contributions are as follows:
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•	 We conduct comprehensive evaluations of the classification model at both loop and subject levels, utilizing 
diverse metrics.

•	 We propose an in-depth exploration of model explainability using sate-of-the-art techniques.
•	 We provide detailed analysis of the insights gained from the explainability methods, shedding light on the 

model’s decision-making processes, which is the first of its kind in the context of Alzheimer’s disease assess-
ment from online handwriting on tablet.

The rest of the paper is organized as follows: section  “Literature review” overviews the related work. 
Section  “Materials and methods” describes the dataset and classification model, and provides an in-depth 
exploration of the three explainability methods considered in this study. Section “Results” presents a thorough 
analysis of the obtained results, comparing the outcomes of the three methods in terms of explainability. 
Section  “Discussion” engages in a discussion of the findings, drawing connections to existing literature and 
highlighting the significance of identified patterns. Section “Conclusion” concludes the paper.

Literature review
Neurodegenerative disorders profoundly impact fine motor movements, emphasizing the significance of HW 
patterns as crucial biomarkers. Previous research has delved into diseases such as Alzheimer’s, Parkinson’s, 
and Huntington’s, focusing keenly on the kinematic intricacies of HW movements14–16. Dynamic (online) 
HW acquisition17,18, capturing real-time temporal data, has emerged as pivotal, as it offers a comprehensive 
view compared to paper-based (offline) acquisition, which lacks nuanced temporal patterns19–22. Previous 
studies often rely on statistical tests that assess global kinematic parameters, each separately, assuming a single 
behavioral pattern for AD5,6. This approach, however, overlooks valuable temporal nuances embedded within 
the time series data. Recent research advocated for exploring the complete dynamics of raw data, highlighting 
the drawbacks of relying solely on global kinematic parameters7,17,23. El-Yacoubi et al.17 utilized advanced 
techniques based on temporal clustering with k-Medoids and Dynamic Time Warping (DTW), achieving 74% 
in classification accuracy. Another pioneering study adopted a 1D-Convolutional Neural Network (1DCNN) 
model for early-stage AD classification using HW dynamics as time series data, achieving an impressive 85% 
accuracy without data augmentation7. CNNs have been demonstrated to achieve state-of-the-art results in 
time series classification24. Their power lies in their ability to autonomously learn meaningful patterns and 
representations from the data, effectively eliminating the need for manual feature engineering. In alignment with 
these advancements, our work builds upon the same 1DCNN model architecture employed by7 and leverages its 
efficacy in unraveling intricate HW patterns associated with AD.

Despite their remarkable performance, however, neural networks are often referred to as “black box” 
models, due to the inherent challenge of explaining how and why they make particular decisions. The lack 
of explainability in these models presents a significant drawback, as it hinders our ability to understand the 
underlying reasons for model’s behavior. This has been a focal point of research, often referred to as the accuracy 
versus interpretability dilemma11, due to the trade-off between the remarkable accuracy achieved by DL models 
and the challenge of understanding their complex abstractions. This emphasis on interpretability is also crucial 
for establishing trust in models as a model that lacks trustworthiness is unlikely to find practical use, especially 
in health. Understanding the decisions made by ML models is crucial for building trust among healthcare 
professionals and patients25.

In the realm of AD detection from online HW, several ML and DL methods have been proposed7,8,17,23. 
However, a critical unexplored aspect is the explainability of these models’ decisions. Despite the advancements 
in accuracy achieved by DL models, the lack of attention to explainability poses a significant limitation in 
translating these models to practical and trustworthy tools for healthcare experts. To the best of our knowledge, 
existing literature does not address the explainability problem in the context of AD detection from online HW 
data.

Model explainability can be provided by either global or local methods: A global method interprets globally 
the model by seeking to understand the overall structure of how a model makes decisions. A local method, 
by contrast, seeks understanding how the model made a decision for a single instance. Within local methods, 
we distinguish sample-based explanations that provide different samples as explanations, and feature-based 
explanations that indicate the features impacting the decision the most13,26. One of the most prominent 
explainability methods, SHapley Additive exPlanations(SHAP), stands out for offering both global and local 
interpretations11. SHAP, a method derived from coalitional game theory, distributes fairly the “payout” 
(prediction outcome) across the inputs features. Recent research has underscored SHAP as an effective tool 
even for time series data, as it demonstrates superior performance compared to other methods not specifically 
tailored for time series data12,13,26. Furthermore, state-of-the-art research on the explainability of multivariate 
time series have converged on the efficacy of two specialized local methods: the Counterfactual explanation-
based method (Comte) and Two-Step Temporal Saliency Rescaling (TSR)12,13,26,27. These methods, purpose-
built for multivariate time series data, have showcased exceptional results and have their implementations 
readily accessible in the TSInterpret library27. In our work, we focus on three distinct methods: DeepSHAP11, 
offering both local and global explanations, CoMTE13, a sample-based local explainability method providing 
counterfactual explanations, and 2-Step TSR12, a feature-based local explanation method. Detailed discussions 
on each of these methods is given in the forthcoming explainability section.

Materials and methods
In this section, we begin by describing the dataset, including the participants and data collection process 
(section “Dataset”). This is followed by a discussion on the derivation and significance of velocity features from 
the raw data (section “Velocity features”). Next, we outline the architecture and configuration of our classification 
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model, including the training process and performance evaluation metrics (sections “Classification model” and 
“Evaluation of the classification model”). Finally, we detail the explainability methods applied to interpret our 
model’s predictions (section “Explainability”).

Dataset
The dataset utilized in this study is the same as the one reported in23. It was collected at Broca Hospital in 
Paris and consists of 54 participants, 27 Early-Stage Alzheimer’s Disease (ES-AD) patients and 27 Healthy 
Control (HC) subjects, with a mean age of 79.7 ± 6.4 and 73.2 ± 5.7 respectively. All participants freely signed 
an informed consent form after receiving information on the study’s aim and content, and all methods were 
carried out in accordance with relevant guidelines and regulations. Furthermore, all experimental protocols 
were approved by the French Advisory Committee on the Processing of Health Research Information (CCTIRS : 
Comité Consultatif sur le Traitement de l’Information en matière de Recherche dans le domaine de la Santé). The 
inclusion criteria for ES-AD patients followed the Diagnostic and Statistical Manual of Mental Disorders, Fifth 
Edition (DSM-5) criteria28, with a requirement for a Mini Mental State Examination(MMSE) score above 20. HC 
subjects underwent neuropsychological tests to confirm normal cognitive profiles, and individuals with medical 
conditions such as stroke and other neurodegenerative diseases were excluded from the study.

The HW data used in our work corresponds to the cursive-l dataset, where participants were instructed 
to produce a series of four sets of four ′ℓ′ letters, specifically ′ℓℓℓℓ′, by writing them on a tablet to create the 
pattern illustrated in Fig.  1a. These handwritten patterns were collected using a WACOM Intuos Pro Large 
Tablet, operating at a sampling rate of 125  Hz. The tablet systematically records several variables, including 
the x-coordinate (X), y-coordinate (Y), pen pressure (P), pen azimuth (Az), and the pen’s altitude during its 
movement slightly above the tablet’s surface (Al). Notably, the tablet enables real-time data acquisition by also 
registering the time-stamp for each point during the data collection process, as illustrated in Figure 1 of the 
Appendix A.

Loops series can serve as a valuable indicator of behavioral patterns associated with individuals’ health status, 
by allowing us to uncover meaningful trends while filtering out fluctuations caused by variations in words or 
characters17. Indeed, when individuals create a series of loops, particularly when drawing or writing, their motor 
skills, coordination, and overall cognitive functioning are put to test. These loops represent a unique and dynamic 
aspect of their handwriting. By focusing on these loops and disregarding variations introduced by changes in 
the actual words or characters being written, researchers can gain deeper insights into the underlying behavioral 
trends related to the subjects’ health conditions and not the changes between subjects due to the different words 
they write. By isolating and analyzing the loop patterns independently of the text content, it becomes possible 
to discern subtle but meaningful alterations in motor function or cognitive abilities, which could serve as early 
indicators of health conditions.

Considering our dataset’s limited size, comprising just 54 subjects, there is a crucial need to increase the 
sample count, especially for training DL models. Drawing inspiration from23, a repetitive pattern within the ′ℓ′ 
letter loops is identified. These loops could be separated into unique training instances, resulting in substantial 
data expansion. Specifically, for each subject, where there are typically 16 ′ℓ′ letter loops, we strategically split 
the samples into strokes. We then retain only the loops, by discarding ligatures between them, as depicted in 
Fig. 1a. This approach significantly boosts our training dataset, providing approximately 16 times more data. It 
is important to note that this transformation now treats the loops as distinct training samples. Note that while 

Fig. 1.  Extracted loops and their velocity color mappings. (a) Example of cursive ℓ loops drawing data for one 
subject and the corresponding extracted loops7. (b) Example of HC subject’s loop color coded with its velocity 
magnitude (c) Example of an AD patient’s loop color coded with its velocity magnitude.
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the typical count of loops is 16 for most subjects, there may be variations where some patients produce fewer or 
more loops.

Velocity features
In addition to the raw features provided by the recording tablet, new features can be encoded from HW dynamics 
to better represent the differences in task performance between HC and AD subjects. Previous research23 
has demonstrated the effectiveness of velocity features, calculated from the coordinates and timestamps, in 
improving classification performance. Velocity represents the rate of change of position w.r.t time. It provides 
crucial insights into the speed and direction of movement. After synchronizing the timestamps of the loops, we 
calculate velocity features, namely Vx(n) (velocity in the x-direction) and Vy(n) (velocity in the y-direction), 
from the synchronized positions, as defined in Eqs. (1) and (2) below:

	
Vx(n) =

x(n + 1)− x(n− 1)

t(n + 1)− t(n− 1)
� (1)

	
Vy(n) =

y(n + 1)− y(n− 1)

t(n + 1)− t(n− 1)
� (2)

By incorporating the additional velocity features, the total number of time series channels expands to eight, 
encompassing timestamps, X, Y, P, Az, Al, Vx and Vy. However, the findings of7 indicated that the best performance 
was achieved solely with the two velocity features. Introducing extra features did not yield improved accuracy. 
Therefore, we selected the vertical and horizontal velocities as our features, where the trajectory of each loop 
is now captured by its individual point-wise velocities, Vx(n) and Vy(n), illustrating the pen’s movement path. 
Figure 1b, c show examples of extracted loops, belonging to the AD and HC classes, color-coded with their 
feature values Vx and Vy.

Classification model
Instead of doing feature engineering to extract parameters from the time series data, the CNN itself performs 
feature extraction automatically by learning meaningful patterns from the raw input data. The convolutional 
layers of the CNN act as feature detectors, capturing local patterns or motifs within the time series. The CNN 
learns features directly from the data without relying, therefore, on predefined feature engineering, influenced 
by human biases or assumptions, and not always aligning with the intricate patterns present in the data. These 
biases could inadvertently shape the features in a way that reflects the engineer’s perspective rather than the 
objective patterns in the data. The inherent objectivity of the CNN allows the model to uncover patterns that 
might be overlooked or misinterpreted by human-designed features. As a result, CNNs not only offers us a more 
automated and efficient approach but also provides an unbiased perspective, enhancing thereby the model’s 
ability to capture diverse and subtle data patterns to discriminate ES-AD from HC.

Our 1DCNN model architecture, inspired from7, is shown in Figure  2 of the Appendix A . It comprises 
two 1D convolutional layers, each sequentially followed by Rectified Linear Unit (ReLU) activation. The first 
convolutional layer comprises 128 1D filters, while the second layer utilizes 64 filters, all with dimensions of 4 × 
1. Both convolutional layers are followed by Max Pooling layers with filter sizes of 2 × 1. After each Max Pooling 
operation, dropout with a rate of 0.2 is applied, based on7. The model’s output is then flattened and passed 
through a fully connected layer (FC) before being subjected to a sigmoid activation function that provides the 
probability of ES-AD given the HW data. The learning rate is fixed and set to 0.001, also follows the settings 
described in7.

Evaluation of the classification model
Our results are assessed using three pivotal metrics: accuracy, sensitivity, and specificity as defined in Eqs. (3), (4), 
and (5) respectively:

•	 Accuracy evaluates the overall capability of the model to make accurate classifications

	
Accuracy =

tp + tn

tp + tn + fp + fn
� (3)

•	 Sensitivity measures the model’s ability to correctly identify AD

	
Sensitivity =

tp

tp + fn
� (4)

•	 Specificity measures the model’s ability to accurately classify HC

Scientific Reports |        2024 14:22108 4| https://doi.org/10.1038/s41598-024-72650-2

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


	
Specificity =

tn

tn + fp
� (5)

These metrics are essential for comprehensively evaluating the model’s performance and ensuring reliable 
comparison with existing literature. To assess the performance and generalization capabilities of the proposed 
model, we conducted comprehensive evaluations, taking into account both loop-based and subject-based 
assessments. We employed a leave-one-out cross-validation (LOOCV) approach. In each iteration of LOOCV, 
we held out one subject along with their corresponding loops for testing, while training the model on the 
remaining subjects. This process was repeated iteratively, systematically excluding each patient in turn. We have 
in total, therefore, 54 folds corresponding to the 54 subjects. In each fold, the model undergoes training for a 
specific number of epochs determined by early stopping, with a patience of 10 that monitors the validation 
loss to prevent overfitting. The training process stops when the model no longer shows improvement on the 
validation set after 10 consecutive iterations.

Loop based classification
In the loop-based evaluation, we treat each of the 866 individual loops as a separate sample, enabling us to 
examine the model’s performance at the loop level, without considering the broader subject context leveraging 
all their loops. The results presented in Table 1 show the different metrics with the input features normalized and 
without normalization. With normalized features, we observe a slight increase in accuracy (86.76%) compared 
to non-normalized features (85.43%). Similarly, sensitivity improves from 85.99% to 88.26% with normalization, 
indicating refined detection of Alzheimer’s-related patterns. Specificity also shows a slight enhancement from 
84.86% to 85.27%. These findings underscore the importance of feature normalization, showcasing subtle yet 
valuable improvements at the individual loop level.

In light of the observed performance enhancement resulting from the normalization of velocity features, 
the subsequent experiments were conducted exclusively with normalized features, as the improvement in the 
metrics is essential for guaranteeing the reliability of our subsequent explainability methods. A robust and highly 
accurate model is fundamental to producing insightful and dependable explanations. With these enhancements, 
we are ensuring the groundwork for rigorous and reliable model interpretations.

Subject based classification
For subject-based evaluation, we adopt two distinct approaches to evaluate the model. Firstly, we employ a 
hard voting mechanism (majority voting) to determine the final classification for each subject, by aggregating 
the predictions of all the loops of a particular subject and assigning the subject to the class receiving the 
majority of votes. This method showcases the model’s ability to classify subjects based on their individual loops’ 
classifications.

Secondly, we utilize a soft voting strategy for subject-based evaluation, which aggregates class probabilities 
assigned to each loop, reflecting the model’s confidence in its predictions. The final output is determined by 
calculating the average probability for each class, assigning the subject to the class with the highest average 
probability. This method allows us to discern subtle distinctions in the classification process. Voting methods are 
illustrated in Figure 3 of the Appendix A.

Table  1 provides the different performance metrics for both soft and hard voting methods. Notably, the 
soft voting approach exhibits a remarkable accuracy of 94.44%, surpassing the accuracy achieved through 
hard voting, which stands at 90.74%. Moreover, we observe that the model’s sensitivity remains high for both 
methods, with soft voting achieving 92.86% and hard voting 89.29%. Additionally, the model exhibits exceptional 
specificity, further affirming its ability to accurately classify healthy subjects, with soft voting achieving 96.15% 
and hard voting 92.31%. These results demonstrate the robustness of our model in capturing subtle patterns and 
underscore the potential of employing soft voting for enhanced predictive performance and model reliability.

Explainability
For interpretability, we apply three different state-of-the-art explainability methods that proved to work best 
for multivariate time series data. In this section, we introduce these methods to understand the behavior of 
the different subjects. A comprehensive study is done on examples from the data to have an overall view of the 
methods, how they agree or disagree, and draw conclusions about the behavior of the two classes (ES-AD vs. 
HC) and the efficiency of the explainability methods.

Metric Accuracy (%) Sensitivity (%) Specificity (%)

Individual loops

 With normalized features 86.76 88.26 85.27

 Without normalization 85.43 85.99 84.86

Subject-based evaluations

 Soft voting 94.44 92.86 96.15

 Hard voting 90.74 89.29 92.31

Table 1.  Model performance.
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Counterfactual explanations for machine learning time series (CoMTE)
Counterfactual (CF) explanations aim to provide insights into why a model made a particular prediction 
by showing what would have happened if the input data had been different in some way. This idea for ML 
explainability was first introduced by29. With CoMTE13, the objective is to offer CF explanations specifically 
tailored to ML models designed for multivariate time series data. For a black-box ML model that accepts 
multivariate time series as input and produce class probabilities as output, the explanations aim to highlight 
which time series components require modification, and precisely how those modifications should occur in 
order to achieve the desired alteration in the classification outcome for a given sample. The method is specifically 
designed to identify the smallest number of time series substitutions from the chosen distractor instance Xdist. 
A distractor is a sample selected from the training dataset that belongs to the counterfactual class (opposite to 
the predicted class), and that can result in a change in the prediction. A two-step process is used involving the 
selection of suitable distractors from the CF class and the application of the Sequential Greedy Approach. The 
latter is an iterative method that replaces the time series modalities, i.e. Vx and Vy, in the test sample with those 
from chosen distractors, to maximize prediction probability until it surpasses a predefined threshold (0.95 in 
CoMTE).

In CoMTE, if Vx alone is sufficient for a CF, it returns only Vx’s counterfactual, excluding Vy. In cases where 
both modalities are crucial, both are provided. This aligns with human preference for concise explanations, 
highlighting most significant factors rather than extensive lists of potential causes, especially in multivariate data 
sequences where each time series corresponds to a distinct metric13.

Two-step temporal saliency rescaling (TSR)
Among the frequently employed explainability techniques of black-box classifiers, saliency methods stand 
out as a popular choice. The concept of “saliency” has its roots in explaining image models, where it entails 
identifying the most crucial pixels responsible for a classifier’s output, typically depicted in a saliency map. This 
concept is not limited to image models and can be extended to explain Time Series Classification (TSC)30. 
Common methods for obtaining saliency-based explanations in TSC include two main approaches, gradient 
backpropagation-based and perturbation-based methods31. The authors in12 conducted a comparison of well-
known saliency methods that assess the importance of input features at specific time steps. They observed that 
classical saliency techniques do not yield satisfactory interpretations when used for multivariate time series 
data. To tackle this issue, they introduced the Two-Step Temporal Saliency Rescaling (TSR) approach, a novel 
technique designed to enhance the adaptability of any existing saliency method for time series data. In summary, 
this approach functions as follows:

•	 Initially, a time-relevance score is computed for each time step by determining the cumulative alteration in 
saliency values when that specific time step is masked.

•	 Subsequently, within time steps where the time-relevance score surpasses a predefined threshold, a fea-
ture-relevance score is computed for each individual feature. This is achieved by quantifying the collective 
change in saliency values upon masking a particular feature.

•	 The ultimate importance score for a given (time, feature) pair is then determined as the product of the corre-
sponding time and feature relevance scores.

Remarkably, this approach enhances the quality of saliency maps generated by various methods when applied 
to time series. In particular, the authors found that TSR combined with GRAD32 (the gradient of the output 
w.r.t the input) outperformed other saliency methods. Thus, we used TSR coupled with GRAD in deriving our 
model’s explanations.

SHAP DeepExplainer
SHAP (SHapley Additive exPlanations) is one of the most used techniques of explaining a ML model and 
understanding how the features of the data are related to the model’s output. It is a method derived from 
coalitional game theory to provide a way to distribute the “payout” (prediction outcome) across the features 
fairly. One of the biggest advantages of SHAP Values is that they provide both global and local explainability. 
DeepLIFT33, another method developed for interpreting DL predictions, calculates the influence of changing 
inputs from their original values to reference values. The authors in11 recognized a connection between 
DeepLIFT and Shapley values and opened the door to a novel approach, Deep SHAP. Deep SHAP leverages both 
the SHAP framework and the DeepLIFT method to provide explanations for DL models. While Deep SHAP 
does not inherently accommodate the direct utilization of time series data, it is the responsibility of the user to 
bridge the gap between the explanations and the framework13.

Results
This section discusses the results of the interpretability methods used to analyze the model’s predictions. First we 
present the results obtained with CoMTE (section “Counterfactual explanations for machine learning time series 
(CoMTE)”), then 2-step TSR (section “Two-step temporal saliency rescaling (TSR)”), followed by DeepSHAP 
(section “SHAP DeepExplainer”). Finally, we analyze the results to understand how velocity features influence 
model decisions (section “Results analysis”).

Counterfactual explanations for machine learning time series (CoMTE)
To implement the CoMTE method, we utilized the TSInterpret library27, which offers a comprehensive and 
user-friendly framework for generating explanations for time series data. Figure 2 shows several examples of 
CoMTE output for loops of different subjects. The blue curve displays the feature values of the input instance 
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Vx or Vy corresponding to a loop, while the pink curve represents its CF from the training data, i.e. the closest 
curve from the training data to the input instance that would flip the predictions if replaced with it. In all figures, 
class 1 refers to AD, and class 0 refers to HC. Feature 0 refers to Vx modality, and feature 1 refers to Vy. Note that 
the horizontal line where the two curves overlap at the beginning and end of each graph correspond to the zero 
padding done in the preprocessing step. Let us take for example Fig. 2a. Suppose a medical expert wants to know 
how the original instance is predicted as AD (blue) instead of HC. In such a case, the expert applies CoMTE to 
generate a CF in the class direction of HC, resulting in a different velocity of Vx during certain time steps.

To better visualize the important regions of an input loop that need to be changed, and also to compare 
CoMTE results with the other explainability methods, we create new plots for this method. To find the regions 
that need to be changed, we need to take the point-wise difference between the original input instance and the 
produced CF. Unfortunately, since CoMTE produces the CF as a sample from the training data, and not the 
minimal time-steps that should be changed, there will always be a small difference between the two curves over 
all the time series steps as they cannot be identical. This brings the need to have a threshold to be able to plot the 
really important regions. By experimenting, we choose the threshold to be Th = 0.05, as a smaller value would 
make most loop parts important, and a higher value might lead to missing important regions. Figure 3 shows 
this approach for a loop, where red points form the important regions for the Vx modality.

Fig. 3.  Sample loop that shows the effect of the threshold on the visualization. (a) 2-step TSR relevance scores 
for HC subject loop. (b) 2-step TSR relevance scores for AD patient loop.

 

Fig. 2.  Counterfactual explanations for an AD patient (a–c) and HC subject (d–f). (a) Only Vx modality 
(feature 0) is returned. (b) Only Vy modality (feature 1) is returned. (c) Both Vx and Vy modalities are returned. 
(d) Only Vx modality (feature 0) is returned. (e) Only Vy modality (feature 1) is returned. (f) Both Vx and Vy 
modalities are returned.
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Two-step temporal saliency rescaling (TSR)
We used the TSInterpret library27 to implement the 2-step TSR method. Given an input instance, TSR returns 
normalized time slices and feature importance scores in range [0, 1]. We then color-code the loops with these 
relevance scores and display them alongside the loops color-coded with velocity features. This allows for a detailed 
analysis of the distinct regions in the loops, considering both the velocity values and importance scores. Figure 4 
shows two examples of TSR output for loops of subjects belonging to different classes. In Fig. 4a, belonging to 

Fig. 5.  DeepSHAP local and global interpretations. (a) Right: DeepSHAP importance values for HC subject 
loop. Since it belongs to HC class, negative values (blue color) are the relevant points. Left: loop color coded 
with its velocity features. (b) Right: DeepSHAP importance values for AD patient loop. Since it belongs to AD 
class, positive values (red color) are the relevant points. Left: loop color coded with its velocity features. (c) 
DeepShap global interpretation

 

Fig. 4.  2-step TSR relevance scores for HC and AD subjects.
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HC, high TSR values for specific points mean that these points contributed to the prediction of a HC. We observe 
higher TSR scores during the ascending and descending phases of the loop with high velocities Vx and Vy. On 
the other hand, in Fig. 4b, belonging to an AD patient, it is harder to relate the velocity values to the TSR scores 
and uncover a pattern. In this case, high TSR scores for certain points means that these points contributed to 
the prediction of AD patient. For Vx, we observe some scattered points that have high importance; as for Vy, 
TSR sheds importance especially on the ascending phase, during which there are sudden changes of direction.

Fig. 6.  Local explanations for different healthy subjects and Alzheimer’s patients. (a) Healthy subject. (b) 
Healthy subject. (c) Alzheimer’s patient. (d) Alzheimer’s patient.
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SHAP DeepExplainer
Given an input instance, unlike TSR, DeepSHAP produces values attributing a directionality to the contribution. 
The magnitude of these values is the measure of how strong the effect is. Positive SHAP values positively impact 
(increases the probability of) the prediction of the AD class, while negative values have a negative impact on the 
AD class. After obtaining the shap values, we color-code the loop figures with these values and compare them 
with the loops color-coded with the velocity features to get insights about the important regions and their effect 
on the prediction.

Figure 5a, b show two examples for loops of subjects belonging to different classes. In Fig. 5a, belonging 
to a HC subject, negative shap values for specific points mean that these points contributed positively to the 
prediction of HC class. The bigger the magnitude (dark blue), the more the effect on the prediction. We see that 
we have negative values during the start of the descending phase of the loop where the velocity Vx is moderate, 
and at the end of the descending phase where Vx is slow. As for Vy, negative shap values are observed during the 
descending and ascending phases when Vy is high. On the other hand, in Fig. 5b, belonging to an AD patient, 
the focus is on the positive shap values that that highlight the points contributing positively to the prediction of 
AD class; the bigger the magnitude (dark red), the more the effect on the prediction. We observe positive values 
during the start of the descending phase of the loop where the velocity Vx is very slow and then gets faster, and 
at the end of the descending phase where Vx is high and an unusual direction change occurs. As for Vy, positive 
shap values are observed during the ascending and descending phases when Vy is low and sudden direction 
changes take place.

It is worth noting that DeepSHAP stands out as the only method out of the three offering both local and 
global interpretations. DeepSHAP allows us to understand the model’s behavior across the entire dataset. This 
broader perspective is valuable, helping us grasp overall patterns in our time series data. To produce global 
interpretations, we aggregate the DeepSHAP shapley values from all folds into a unified plot as shown in Fig. 5c. 
Our classifier outputs probabilities between 0 and 1, where an output above 0.5 is assigned to the AD class. In 
the visualization, negative SHAP values correspond to HC while positive values indicate AD. Red-colored points 
signify features with high values, whereas blue represents low feature values. Notably, horizontal velocity feature, 
Vx, demonstrates greater overall importance than Vy in influencing the model’s predictions.

The global view of SHAP illuminates notable distinctions between the loops of AD patients and HC subjects. 
Key areas of AD patients’ loops often display a tendency towards slower Vy and faster Vx, whereas HC subjects 
exhibit the opposite trend. Note that while this pattern is dominant in our visualization, it is not absolute; there 
are regions of scattered red and blue colors, indicating variability and a less definitive pattern. It is crucial to 
consider that discriminating AD from HC subjects do not rely solely on velocity features. Factors such as the 
loop’s region, whether it is in the ascending or descending phase, slant, and other characteristics, may also play 
a significant role. Therefore, the global view might not reflect a definitive trend in some cases. Instance-based 
explanations are essential for a deeper understanding of varied factors influencing predictions and uncovering 
nuances in the classification process.

 Results analysis
In this subsection, we delve into a comprehensive comparison of the local explainability results obtained through 
the three methods: DeepSHAP, 2-step TSR, and CoMTE. To facilitate a comprehensive analysis, these results 
are visually presented in a unified figure alongside the loop color-coded with the velocity features Vx and Vy

. This setup allows us to spot similarities and differences in how these methods explain the model’s decisions. 
Our aim is to uncover common ground, disparities, and potential limitations in these explanation techniques. 
This comparison helps us understand how each method contributes to our model’s interpretations, and gain 
insights into how well we can interpret our model’s classifications. We showcase explanations for distinct loops 
belonging to different HC subjects and AD patients in Fig. 6. More examples can be found in Figures 4 and 5 of 
the appendix A. Note that we selected the loops that were well classified with probability greater than 90%, to 
make sure the interpretations represent correctly their respective classes.

Analyzing HC loops’ explanations
Observations from the instance-based explanations of HC subjects reveal several consistent patterns. First, there 
is a notable emphasis on the importance of vertical velocity Vy during both the loops’ ascending and descending 
phases. Second, there is a distinct focus on Vx at the transition between the ascending and descending phases, 
particularly at the initiation of the descending phase. Lastly, there is a noteworthy emphasis on slow Vx at the 
end of the descending phase, as indicated by both CoMTE and DeepSHAP explanations. These observations 
collectively depict a characteristic profile for HC subjects’ loops, characterized by fast vertical velocities during 
both the ascending and descending phases, a transitional phase marked by medium to fast Vx and slow Vy, and 
slow Vx at the end of the descending phase. Importantly, these observations align with the global explanations 
provided by SHAP, where regions of high importance for Vx exhibit slow to medium velocities, while regions of 
high importance for Vy correspond to high velocities. This consistency reinforces the robustness and reliability 
of the DeepSHAP method.

Analyzing ES-AD loops’ explanations
Upon detailed analysis of the instance-based explanations for loops belonging to ES-AD patients, several 
consistent patterns and irregularities emerge, providing valuable insights into their movement dynamics. 
For instance, opposite to HC behavior, high importance is given to fast Vx near the end of the descending 
phase, often followed suddenly by very slow Vx, indicating a tendency towards abrupt stops in their movement. 
Additionally, importance to fluctuations in both Vy and Vx during ascending and descending phases highlight 
the lack of smoothness and rhythm in their loops. These fluctuations often lead to sudden changes in both speed 
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and direction, further underscoring the erratic nature of their movements. In some cases, high importance is 
given to Vy at the end of the ascending phase, specifically when the change of direction occurs early when the 
y-position is still very small (< 0.1 in Fig. 6d for example). On the contrary, in HC loops, the y-position is mostly 
> 0.4, indicating larger loop sizes. Notably, these sudden and sharp changes of directions were captured mostly 
by DeepSHAP and CoMTE, while TSR struggles to highlight such critical areas, emphasizing the limitations 
of this method in extracting meaningful explanations where subjects fail to sustain a regular rhythm in their 
movements. Overall, DeepSHAP gives better insights on the importance of the features in specific regions of the 
loops. If a medical expert wants to know why the model predicted a normal instance instead of AD, conclusions 
can be drawn from the counterfactual approach with its initial visualization as depicted in section “Counterfactual 
explanations for machine learning time series (CoMTE)”. This is because the choice of the threshold might not 
be optimal, and might be the reason for missing on important information.

Discussion
The regions highlighted as significant, especially by DeepSHAP, remarkably match the conclusions drawn 
in the previous work by17. Similar characteristics were identified for HC and AD loops although they used 
a completely different approach consisting of a two-stage clustering of loops based on velocity trajectories, 
and then uncovering patterns in the clusters. As documented in17, for AD loops, DeepSHAP highlights the 
areas where ES-AD subjects “write faster at the onset of the ascending or descending phase” but then “fail to 
maintain the rhythm.” These highlighted regions precisely correspond to the “loss of fluidity”, characterized by a 
“sudden change of loop velocity or slant”. Similarly, in the case of HC loops, DeepSHAP emphasizes regions with 
“highly fluid loops” and “medium to high velocity during their ascending and descending phases.” These specific 
correlations not only validate the efficacy of our explainability methods, but also affirm these highlighted regions 
as pivotal indicators of unique movement styles, and, in particular, highlight in a fine way how ES-AD patients 
fail to maintain a fluid handwriting.

Ultimately, the consistent patterns revealed in healthy subjects’ and Alzheimer’s patients’ loops provide 
valuable insights into the underlying movement dynamics. The emphasis on specific velocity features at different 
phases of the loops sheds light on the distinctive characteristics of healthy and Alzheimer’s movements. Recent 
research has found that AD patients’ handwriting shows alterations in spatial organization and poor movement 
control. Several studies have also identified common anomalies such as micrographia, slower movements, 
jerkiness, and loss of fluidity34,35. For instance, our findings of smaller loop sizes for AD patients align with 
the characteristic of micrographia. Additionally, the abrupt stops and erratic changes in direction observed in 
AD patients’ loops indicate irregularities in their motor patterns, aligning with the clinical understanding of 
Alzheimer’s disease as a condition affecting motor control.

Employing three distinct explanation methods -CoMTE, TSR, and DeepSHAP- strengthens our diagnostic 
approach. While these methods may sometimes yield diverse results, we view this variety as an asset rather 
than a limitation. In the complex landscape of medical diagnosis, having multiple perspectives enhances our 
understanding. It equips healthcare professionals with a range of insights, allowing them to select the method 
that best aligns with the specificities of a given case. It is important to note that the methods employed in 
our research are generic and can be applied across various deep learning models, ensuring broad applicability 
beyond the specific models utilized in this study.

Conclusion
Our study delved deep into the intricate handwriting patterns of healthy individuals and Alzheimer’s patients, by 
employing advanced interpretability methods. Through this exploration, distinctive motor behaviors emerged. 
Healthy subjects exhibited consistent, smooth movements, while Alzheimer’s patients demonstrated erratic 
patterns marked by abrupt stops and direction changes. Indeed, our dataset’s limited size and diversity might not 
cover all possible variations in motor patterns. Future research could explore larger and more diverse datasets to 
validate and expand upon our findings. These findings not only enhance our understanding of disease-related 
motor behavior, but also pave the way for targeted interventions and therapies. Clinically, these insights could 
aid in the early diagnosis and monitoring of patients. Moreover, they provide a foundation for developing 
assistive technologies and rehabilitation strategies tailored to the specific needs of individuals with Alzheimer’s. 
By focusing on the identified patterns, interventions can be designed to enhance smoothness and regularity in 
movements, potentially improving the quality of life for affected individuals. Conversely, the deep learning and 
interpretability techniques developed in this study could be leveraged for rehabilitation to monitor how a patient 
is improving their fine motor skills through therapy. In essence, our study acts as a stepping stone, bridging the 
gap between machine learning predictions and clinical understanding, ultimately striving for better outcomes 
and improved patient care.

Data availability
The datasets analysed during the current study are not publicly available due to the consent rules signed by the 
participants. However, the data may be made available from the corresponding author upon reasonable request.
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