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Abstract

In this article, we investigate a simple model of notched ferromagnetic nanowires using tools

from calculus of variations and critical point theory. Specifically, we focus on the case of a single

unimodal notch and establish the existence and uniqueness of the critical point of the energy. This

is achieved through a lifting argument, which reduces the problem to a generalized Sturm-Liouville

equation.

Uniqueness is demonstrated via a Mountain-Pass argument, where the assumption of two distinct

critical points leads to a contradiction. Additionally, we show that the solution corresponds to a

system of magnetic spins characterized by a single domain wall localized in the vicinity of the notch.

We further analyze the asymptotic decay of the solution at infinity and explore the symmetric case

using rearrangement techniques.

Keywords: Micromagnetism, Nanowires, Calculus of Variations, Mountain-Path Theorem, Notched
Nanowires, Stability.

MSC classification: 49J05 49K05 49K40 34K04 34K16 35B38

1 Introduction

1.1 Presentation of ferromagnetic nanowires

Ferromagnetic nanowires are nanoscale devices with significant potential for applications in micro-
magnetic engineering. These include high-density data storage, magnetic logic gates, microelectronics,
radar stealth coatings, transformers and so on ([20]). A ferromagnetic nanowire is a nanoscale crystal of
ferromagnetic atoms, characterized by a cylindrical shape with a small cross-section and a much greater
length in one direction. The ferromagnetic interactions among the crystal’s atoms cause the magnetic
spins to align with one another, while the shape anisotropy of the crystal promotes alignment along the
wire’s principal axis. When the magnetization points in different directions at the wire’s ends, the mag-
netic spins must reverse orientation in the middle of the wire to satisfy the topological constraint. This
narrow region where the magnetization changes rapidly is known as a Néel wall. Its stability and dy-
namics have been the subject of extensive research; see, for example, [4, 5, 11, 9, 12, 15, 16, 18, 22, 23]
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and references therein. Control theory for Néel walls has also been extensively studied and devel-
oped [6, 7, 21]. For a more comprehensive introduction to micromagnetism, we refer readers to [13].

In nanowires designed for industrial applications, it is common to introduce defects to stabilize the
Néel wall near a specific defect. One such defect involves adding notches to the nanowire, which are
small regions with reduced radius, thereby decreasing the exchange interaction locally. In this article,
we study a simplified model introduced in [3, 8], which is based on a 1D modified Sturm-Liouville
equation. The existence of a solution was demonstrated using a shooting method, while a uniqueness
result was later established in [14].

The primary aim of this work is to reinterpret the results of [3, 8] using the framework of the calculus
of variations and a minimization problem, making the approach more aligned with the underlying
physics. We provide a new proof of existence and establish a more general uniqueness result based on
a detailed analysis of the critical points of the associated energy.

1.2 A model for a notched ferromagnetic nanowire

We are interested in a model of a straight notched ferromagnetic nanowire. The direction of the
nanowire is assumed to be e1 where

e1 =



1
0
0


 , e2 =



0
1
0


 , e3 =



0
0
1




is the canonical basis of R3. The magnetization m = (m1,m2,m3) : R → S2 of this nanowire takes
its values into the unit sphere S2 ⊂ R3. We will consider models introduced in [3, 8], in which the
magnetization behavior is obtained due to a Γ-convergence reasoning: a cylindrical material Dη is
considered, given in B by

Dη = {(x, y, z) ∈ [−L,L]× R2, y2 + z2 ≤ η2ρ(x)2},

whose circular section, parameterized by a function ρ, has radius ηρ(x) with η > 0.

Figure 1: An example of domain Dη.

A 1D model is then derived by making η tend towards 0. The 1D model involves the cross section
area s defined by s(x) = πρ(x)2 and the nanowire domain becomes Ω = Re1 ⊂ R3,

Let us denote by α > 0 the gyromagnetic ratio and by ℓ > 0 the exchange length. In what follows,
Ω stands for the nanowire domain and s ∈W 1,∞(Ω) for the residual cross-section area of the nanowire,
or in other words the shape of notches on the nanowire. The asymptotic Landau-Lifshitz model for
magnetization in notched nanowires, provided in [3, 8], reads

{
∂tm = −m×H(m)− αm× (m×H(m))

H(m) = ℓ2

s(x)∂x (s(x)∂xm)− (m2e2 +m3e3),
(LLG)

To avoid the nanowire collapse, it is assumed that

∃s0 > 0 such that s(·) ≥ s0 in Ω.

2



We will also impose a uniform upper-bound on s. Up to using a renormalization argument by dividing
s(x) by some s1 > 0 (it is important to note that m still satisfies (LLG) when we change s(x) by s(x)

s1
),

that will be fixed equal to 1:
s(·) ≤ 1 in Ω.

so that in particular, we must also assume that s0 < 1.
It will be convenient to consider cross sections s that are compactly supported :

Sa(Ω) = {s ∈W 1,∞(Ω, [s0, 1]) | s(x) = 1 in Ω \ [−a, a], s ≥ s0 in Ω}.

The (LLG) flow is equivariant under rotations Rϕ :=



1 0 0
0 cosϕ − sinϕ
0 sinϕ cosϕ


 around the axis e1 with

angle ϕ ∈ R. This transformation preserves S2 valued functions, and so acts on magnetization; it also
extends naturally to functions of space and time, for which it preserves solutions to (LLG).

1.3 Energy, functional spaces and Cauchy theory

From this formulation of the Landau-Lifschitz-Gilbert equation, it is possible to write an energetic
problem. Using a change of variable, we can reduce the problem to ℓ = 1 (which simplifies the
notations). We now observe that satisfying (LLG) is equivalent to being a critical point of the following
energy:

Es(m) :=
1

2

∫

R

|∂xm(x)|2s(x) dx+ 1

2

∫

R

(m2
2(x) +m2

3(x)) s(x) dx. (1)

To ensure that this energy has meaning, we introduce the energy space H1

H1 := {f = (f1, f2, f3) ∈ H1
loc(R) | f ′, f2, f3 ∈ L2(R) and |f | = 1 a.e.},

which is simply the same energy space on R as in [9], except that we add the weight s(x) dx in the
norm, so that

2Es(m) =

∫

R

|∂xm|2s(x) dx+
∫

R

(m2
2 +m2

3)s(x) dx =: ‖m‖2H1 .

Similarly are defined the spaces Hk and H∞. To the best of our knowledge, the Cauchy theory for
one-dimensional Landau-Lifshitz-Gilbert (LLG) equations with notches has not yet been developed.

1.4 Domain walls for notched nanowire: a variational formulation

Throughout this article we call a domain walls system or a Néel walls system any stationary solution
m to the uni-dimensional LLG equation (with or without notch) that is connecting the two constant
states −e1 and +e1. Without restriction of generality, we will focus of the case :

m(−∞) = −e1 and m(+∞) = +e1.

The steady-states m ∈ H1 for this system solve the equation
{

m×H(m) = 0 on R

H(m) = 1
s(x)∂x (s(x)∂xm)− (m2e2 +m3e3).

(2)

It has been proved in [3, 8, 14] that every steady solution in (2) lays in a single plane and then, up
to a constant rotation of angle ϕ, reads

m(x) = Rϕ



sin θ(x)
cos θ(x)

0


 , with Rϕ =



1 0 0
0 cosϕ − sinϕ
0 sinϕ cosϕ


 , (3)
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where θ solves the non-linear Sturm-Liouville equation

θ′′(x) +
s′(x)

s(x)
θ′(x) + cos θ(x) sin θ(x) = 0, x ∈ R, (4)

or, in another way, (
s(x)θ′(x)

)′
+ s(x) cos θ(x) sin θ(x) = 0 in R. (5)

This last expression leads to the variational formulation of the equation:

∀ ϕ ∈ D(R),

∫

R

θ′(x)ϕ′(x) s(x) dx =

∫

R

cos θ(x) sin θ(x)ϕ(x) s(x) dx.

It is natural to expect the presence of a "single domain wall," which refers to a unique reversal of
the spin from −e1 to −e1 when m is the global minimizer of Es. This configuration, simply called a
domain wall, holds for notchless nanowires but may not apply if the geometry of the notch does not
support such a configuration.

Before proceeding to state our theorem, we must first provide a rigorous definition of the concept
of a "single domain wall," which we outline here:

Definition 1. A solution to (LLG) is said to be a domain wall if it is stationary, local minimizer of the
energy Es in (1), and the associated angle θ define at (3) is monotonous and satisfy θ(±∞) = ±π/2.

1.5 A minimization problem for infinite unimodal nanowire

Our main result focuses on the case of an infinite nanowire with a single notch. To demonstrate that
the minimizer corresponds to a single domain wall, we restrict our analysis to a specific class of notches,
namely unimodal notches:

Ua(R) = {s ∈ Sa(R) | s is non-increasing on [−a, 0] and non-decreasing on [0, a]}. (6)

Such a notch decreases the exchange interaction between ferromagnetic atoms and we prove in this
article that in this case we have a “single domain wall” that is localized in a close neighborhood of the
notch. If we have good symmetry properties, we can prove more precise results. For that purpose we
introduce the symmetric notches :

Aa(Ω) = {s ∈ Sa(Ω) | s is even and non-decreasing on [0, a]}.

In particular, Aa(Ω) ⊂ Ua(Ω).

Figure 2: An infinite nanowire with one notch.

The energy Es represents the magnetic energy of the nanowire, and it is particularly relevant for
the study of domain walls. It is always non-negative, making it suitable for minimization problems.
However, it is crucial to correctly define the functional space on which the minimization is performed
to ensure the problem is non-trivial. Indeed, if we attempt to minimize directly within the space H1,
we find that min

m∈H1 Es(m) = 0, with the constant solutions e1 and −e1 as minimizers.
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To make the problem physically meaningful, boundary conditions at ±∞ must be imposed. This
additional constraint makes the problem non-trivial. For example, in the case of a notchless nanowire
(s ≡ 1), it is well-known that the domain wall solution w∗ is the unique minimizer (up to rotations and
translations) of E1(m) in H1, under the condition that lim±∞m = ±e1.

We will now apply this framework to study the following minimization problem in the case of a
nanowire with a notch:

m := inf
m∈H1

6=

Es(m), (7)

where
H1

6= := {m ∈ H1 : lim
−∞

m = −e1 and lim
∞
m = e1}.

Let us now state our main result:

Theorem 2. For any s ∈ Ua(R) such that s(·) 6= 1, there exists a unique domain wall1 ws connecting
−e1 to +e1 in the following sense:

• There exists a unique θs ∈ H1
loc(R) satisfying

– limx→±∞ θs(x) = ±π
2 ,

– The function ws :=



sin θs
cos θs
0


 is a steady state of (LLG) which belongs to H1

6=.

• The function θs is increasing and satisfy the following decay estimate :

∀ x ∈ R,

∣∣∣∣
∣∣θs(x)

∣∣− π

2

∣∣∣∣ ≤ π exp

(
−
∫ |x|

0

dy

s(y)

)
.

• If s ∈ A then θs is odd.

• Up to rotations Rϕ around e1, ws is the unique minimizer of the minimization problem (7).

If s ∈ Aa(R), we recover the existence and symmetry results for the domain wall with a new proof
compared to [3, 8]. Concerning uniqueness, the main improvement of our result compared to [14] lays
in the fact that we do not need to work up to translations and assume θs(0) = 0.

In fact, this hypothesis concerns both earlier results [8, 14]. We however feel that this hypothesis is
not very natural and rather restrictive, both for the existence and the uniqueness questions.

Regarding existence, assuming θ0(0) = 0 corresponds to solving a shooting problem; when s is non
symmetric, there is no reason that a domain wall satisfy this constraint. Similarly for uniqueness, there
is no reason that two domains walls reach 0 at the same point.

Our main hypothesis is that s is unimodal as mentioned in (6). This class of notch is natural both
for applications and for uniqueness. Indeed, one can construct s with 2 notches, such that two domain
walls exist (or even simply, in the case of a periodic s, infinitely many domains can be obtained by
translation of a period). One of the main point of this paper is that (under the unimodal assumption),
the presence of a non trivial notch rules out minimizing sequences where the transition from e1 to −e1

occurs at spatial infinity, and allows to recover compactness.

The proof of the main theorem relies on the calculus of variations, partially inspired by [14], but the
key part of our argument differs. Indeed, the most challenging part concerns the uniqueness property
of the domain wall. This is established under the assumption of unimodality of the notch. It involves

1see Definition 1
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assuming the existence of two distinct critical points and constructing a third one using the mountain-
pass theorem. This construction leads to a contradiction with a previously established stability result
in [3, 8], thereby concluding the proof.

The rest of the article is organized as follows: Section 2 focuses on proving the existence of a
minimizer to Problem (7), with the main result detailed in Proposition 13. In Section 3, we demonstrate
that the functional Es has a unique critical point on H1

6=. The main result of this section is presented
in Theorem 30.

2 Existence of the domain wall

2.1 A useful change of variables

In the following sections, we will sometimes use the following standard change of variable for Sturm-
Liouville equation (see e.g. [10])

y : x 7−→
∫ x

0

du

s(u)
. (8)

This function is a C0,1-diffeomorphism on R since we have s(x) ≥ s0 > 0. Thus, for any function f , we
can define a new function g through this change of variable: g(y) = f(x). Saying it in another way,
g := f ◦ y−1. In particular, we also define σ such that σ(y) = s(x), which is constant equal to 1 outside
(a−, a+) where a± := y(±a). With such a change of variable, the steady-state of (LLG) gain a bit of
regularity.

Lemma 3. For any steady-state m ∈ H1 (solution of (2)), the function m̃ = m ◦ y−1 ∈ H1 satisfies
∂yym̃ ∈ L2 + L1 and m̃ ∈ C1.

Proof. It is easy to compute that

∂ym̃(y) = s(x)∂xm(x),

∂yym̃(y) = s(x)∂x

(
s(x)∂xm

)
(x),

H(m)(x) =
1

σ(y)2
∂yym̃(y) + m̃2(y)e2 + m̃3(y)e3 =

1

σ(y)2
H̃(m̃)(y),

where
H̃(m̃)(y) := ∂yym̃(y) + σ2(y)

(
m̃2(y)e2 + m̃3(y)e3

)
.

Thus, the equation (2) that m satisfies implies for m̃:

m̃× H̃(m̃) = 0.

Since |m̃| = 1, which implies that ∂yym̃ · m̃ = −|∂ym̃|2, this equation can be redrafted as

H̃(m̃) = Λ̃ m̃, (9)

where
Λ̃ = H̃(m̃) · m̃ = −|∂ym̃|2 + σ2(y)

(
m̃2

2 + m̃2
3

)
∈ L1.

This leads to Λ̃ m̃ ∈ L1 as m̃ ∈ L∞. Since σ ∈ L∞ and m̃2, m̃3 ∈ L2, we get that σ2(y)
(
m̃2(y)e2 +

m̃3(y)e3

)
∈ L2, thus ∂yym̃ ∈ L1 + L2. The conclusion follows.

6



2.2 Steady-states are planar

In this section we rewrite the arguments presented in [3, 8] to obtain a problem written in term of
Sturm-Liouville equation on the angle θ.

Lemma 4. For any m ∈ H1 such that m2 and m3 are colinear in H1, there exists ϕ ∈ [0, 2π] and a

lifting θ ∈ C 1

2 (R) such that

m(x) = Rϕ



sin θ(x)
cos θ(x)

0


 . (10)

If m ∈ H2, then θ ∈ C1, 1
2 (R).

Proof. The proof follows from easy arguments presented in [3, 8].

Lemma 5. For any steady-state m ∈ H1, there exists ϕ ∈ [0, 2π] and a lifting θ ∈ C1(R) such that
(10) holds.

Proof. The function m̃ as defined in Lemma 3 satisfies (9). Let us show that it implies

m̃2∂ym̃3 − m̃3∂ym̃2 = 0 on R. (11)

Indeed, using (9), there holds

∂y

(
m̃2∂ym̃3 − m̃3∂ym̃2

)
= m̃2∂yym̃3 − m̃3∂yym2

= m̃2(∂yym̃3 + σ2(y)m̃3)− m̃3(∂yym̃2 + σ2(y)m̃2)

= m̃2(Λ̃(y)m̃3)− m̃3(Λ̃(y)m̃2)

= 0,

which shows that m̃2∂ym̃3 − m̃3∂ym̃2 is constant on R. On the other hand, since m̃ ∈ H1, we have
m̃2, m̃3 ∈ H1, and thus m̃2∂xm̃3−m̃3∂xm̃2 ∈ L1. This proves (11), which implies that (m̃2(y), ∂xm̃2(y))
and (m̃3(y), ∂xm̃3(y)) are colinear in R2 for every y in R. On the other hand, by (9), these two vector
fields solve the same first order linear ODE system in (u, v):

∂xu = v, ∂xv = (1 + Λ̃(y))u.

By uniqueness in the Cauchy-Lipschitz theorem, the colinearity factor is constant in y, and thus m2

and m3 are colinear. We can then use Lemma 4 to lift m̃. The conclusion for m follows by defining
θ = θ̃ ◦ y.

2.3 Energy of the lifting

We introduce the energy for the lifting Es(θ) defined as

Es(θ) :=
1

2

∫

R

θ′(x)2s(x) dx+
1

2

∫

R

cos2 θ(x) s(x) dx. (12)

Moreover, we define the following spaces for lifting:

W :=
{
θ : R → R : θ′ ∈ L2, cos θ ∈ L2

}
. (13)

The relation between the two energies is given in the following lemma.
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Lemma 6. The energy Es is preserved by rotations with constant angle: more precisely, let ϕ ∈ [0, 2π],
Rϕ the rotation matrix given by (3) and θ ∈ C1(R) such that

m = Rϕ



sin θ
cos θ
0


 ∈ H1.

Then θ ∈ W and Es(m) = Es(θ).

This relation explains why we took the same notation for both energies, as there will be no confusion
between them. Furthermore, the limits of θ at ±∞ are related to the limits of m at ±∞. For instance,
if lim±∞m = ±e1, then there exists k± ∈ Z such that

lim
±∞

θ = ±π
2
+ 2πk±.

Since θ is defined up to a 2πZ additive constant, we can assume that k− = 0, so that lim−∞ θ = −π
2 .

Moreover, θ can be changed in −π − θ by a rotation around e1 of angle π, so we can also assume that
k+ ∈ N. This is why we also define the following functional space for lifting:

W6= := {θ ∈ W : lim
−∞

θ = −π
2

and lim
+∞

θ ∈ π

2
+ 2πN}.

From the previous properties, the minimization of the energy Es(m) is related to the minimization
of the energy of the lifting Es(θ).

Lemma 7. If m0 is a critical point of Es(m) in H1
6=, then there exists θ0 ∈ W6= and ϕ0 ∈ R such that

• θ0 is a lifting of m0:

m0 = Rϕ0



sin θ0
cos θ0
0


 , (14)

• θ0 is a critical point of Es(θ) in W6=,

• If m0 is a minimizer of Es(m), then θ0 is a minimizer of Es(θ).

Conversely, if θ0 minimizes Es(θ) in W6=, then, for any ϕ0 ∈ R, m0 defined by (14) is a minimizer of
Es(m) in H1

6=.

Proof. The conclusions of Lemma 5 hold for any critical point (which is a steady state for (LLG)), and
we can assume θ0 ∈ W6= with the discussion above. Moreover, it is easy to verify that this θ0 is a critical
point of Es(θ) in W6=, or even a minimizer if m0 is a minimizer for Es(m). Conversely, a minimizer θ0
of Es(θ) would be a minimizer of Es(m) for m which can be lifted as (10). We show now that, for any
m ∈ H1

6=, we can find some m̃ ∈ H1
6= such that m̃3 = 0 and Es(m̃) ≤ Es(m). Such a m̃ can be lifted

by some θ̃ ∈ W6=, so that Es(m̃) = Es(θ̃) ≥ Es(θ0), and thus Es(m) ≥ Es(m0) where m0 is defined
by (14), which is a sufficient property for the second part of the result to hold true.

With the different limits of m at ±∞ and its continuity (since H1 ⊂ C0, 1
2 , we can easily prove that

there exists x0 ∈ R such that

• m(x0) 6∈ {−e1, e1},

• m(a) = −e1 if a := sup{x < x0,m(x) 6∈ {−e1, e1}} > −∞,

• m(b) = e1 if b := inf{x > x0,m(x) 6∈ {−e1, e1}} < +∞.
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From the regularity of m, we also know that −∞ ≤ a < x0 and x0 < b ≤ +∞ and m1(x) ∈ (−1, 1)

for all x ∈ (a, b). So we can define θ := arcsinm1 ∈ C0, 1
2 ((a, b), (−π

2 ,
π
2 )). As |m|2 = 1, we know that(

m2

cos θ

)2
+
(

m3

cos θ

)2
= 1. Since m2, m3 and cos θ are C0, 1

2 function on (a, b) and the latter does not

vanish on this interval, we can find ϕ ∈ C0, 1
2 ((a, b),R) such that cosϕ = m2

cos θ and sinϕ = m3

cos θ . In
consequence, with this definition of θ and ϕ, there holds for all x ∈ R

m(x) =




sin θ(x)
cos θ(x) cosϕ(x)
cos θ(x) sinϕ(x)


 .

We also point out that for a.e. x ∈ (a, b)

m
′(x) = θ′(x)




cos θ(x)
− sin θ(x) cosϕ(x)
− sin θ(x) sinϕ(x)


+ ϕ′(x)




0
− cos θ(x) sinϕ(x)
cos θ(x) cosϕ(x)


 ,

∣∣m′(x)
∣∣2 = (θ′(x))2 + (ϕ′(x))2 cos2 θ(x) + 2θ′(x)ϕ′(x)




cos θ(x)
− sin θ(x) cosϕ(x)
− sin θ(x) sinϕ(x)


 ·




0
− cos θ(x) sinϕ(x)
cos θ(x) cosϕ(x)




= (θ′(x))2 + (ϕ′(x))2 cos2 θ(x).

Therefore,

Es(m) ≥
∫ b

a

(
∣∣m′(x)

∣∣2 +m2(x)
2 +m3(x)

2)s(x) dx

≥
∫ b

a

(
(θ′(x))2 + (ϕ′(x))2 cos2 θ(x) + cos2 θ(x)

)
s(x) dx.

In particular, θ′ ∈ L2((a, b)). Now, we define

m̃(x) =







sin θ(x)

cos θ(x)

0


 if x ∈ (a, b)

−e1 if −∞ < x ≤ a,

e1 if b ≤ x < +∞.

From the regularity of θ and the (possible) continuous junction(s) at a and b, we can easily see that
m̃ ∈ H1

6= and

Es(m̃) =

∫ b

a

(
θ′(x)2 + cos2 θ(x)

)
s(x) dx

≤
∫ b

a

(
θ′(x)2 + (ϕ′(x))2 cos2 θ(x) + cos2 θ(x)

)
s(x) dx

≤ Es(m).

The conclusion holds.

2.4 Existence of a domain wall

2.4.1 Transforms of function

We know that steady states m ∈ H1
6= of (LLG) are critical points of Es(m). On the other hand, they

are also planar (Lemma 4) and can be lifted with some function θ ∈ W6= such that Es(m) = Es(θ).
Therefore any steady state is related to a lifting θ which is a critical point for Es(θ) in W6=.
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Our problem has thus been reduced to finding the critical points of the energy Es(θ) on W6=, but
we can reduce even more this set. For this, we define the set W defined by

W0 :=
{
θ ∈ W : lim

x→±∞
θ(x) = ±π

2

}
⊂ W6=.

W :=
{
θ ∈ W6= : θ(R) ⊆ [−π/2, π/2]

}
⊂ W6=. (15)

We must point out that the limit at ±∞ of any function in W is completely determined.

Lemma 8. There holds W ⊂ W0.

Proof. For any θ ∈ W6=, we know that lim+∞ θ exists and satisfies lim+∞ θ ≥ π
2 . Thus, if θ(R) ⊂

[−π/2, π/2], the opposite inequality is obvious, which yields the equality.

Several transforms which can decrease this functional are at our disposal. In particular, the thresh-
old function T (x) := max{−π/2 ; min{x;π/2}}, which is a 1-Lipschitz function, constant outside
[−π/2, π/2], allows us to reduce our search of a minimizer in W .

Lemma 9. For any θ ∈ W6=, we define the function θ♮ := T ◦ θ. Then θ♮ ∈ W and Es(θ♮) ≤ Es(θ).
Moreover, if θ 6∈W , this inequality is strict.

Proof. Let θ ∈ W6=. If θ(R) ⊂ [−π/2, π/2], then θ♮ = θ and lim+∞ θ = π
2 , and the properties are easy.

Assume now that θ(R) ) [−π/2, π/2]. Then,

Iθ :=
{
x ∈ R : θ(x) /∈

[
− π

2
;
π

2

]}

is non-empty. We recall that θ is an absolutely continuous function as a consequence of the definition
of W6=. Since there exists x ∈ R such that θ(x) ∈ (−π/2, π/2) for some value of x, this function cannot
be identically constant on the set Iθ. Thus,

∫

Iθ

∣∣θ′(x)
∣∣2 dx > 0. (16)

By definition of Iθ and T , θ♮ is constant on Iθ. On the other hand, on R \ Iθ, T ◦ θ = θ. Therefore
∫

R

∣∣θ′♮(x)
∣∣2s(x) dx =

∫

R\Iθ

∣∣θ′♮(x)
∣∣2s(x) dx

=

∫

R\Iθ

∣∣(T ◦ θ)′(x)
∣∣2s(x) dx

=

∫

R\Iθ

∣∣θ′(x)
∣∣2s(x) dx.

Combined with (16), we get
∫

R

∣∣θ′♮(x)
∣∣2s(x) dx <

∫

R

∣∣θ′(x)
∣∣2s(x) dx. (17)

Moreover, since the function x 7→ cos2(x) is minimal at x = ±π/2, then by property of the function T :
∫

R

cos2
(
T ◦ θ(x)

)
s(x) dx ≤

∫

R

cos2
(
θ(x)

)
s(x) dx. (18)

Therefore, (17) and (18) imply that f ◦ θ1 ∈ W and

Es

(
f ◦ θ1

)
< Es

(
θ1).

Last, the property of T shows that θ♮(R) ⊂ [−π/2, π/2] and lim±∞ θ = ±π
2 . Thus, θ♮(R) = [−π/2, π/2].

10



Therefore, we can only consider functions θ ∈ W . Let us define the following quantity for any of
these functions:

ρ[θ] := inf
{
x ∈ R : θ(x) ≥ 0

}
. (19)

Due to their opposite limits at infinity and their continuity, we know that ρ[θ] ∈ R. It corresponds to
the first time where θ vanishes. We can therefore reduce our problem to monotonous functions. This
is done in two steps.

Lemma 10. For any function θ ∈W , let

θ̃(x) :=

{
θ(x) ≤ 0 if x ≤ ρ[θ]
|θ(x)| ≥ 0 otherwise,

(20)

and the best non-decreasing upper bound

θ†(x) :=

{
infy∈[x,+∞) θ̃(y) if x ≤ ρ[θ]

supy∈(−∞,x] θ̃(y) otherwise,

where ρ[θ] is defined at (19). Then θ̃, θ† ∈ W , θ† is non-decreasing and Es(θ
†) ≤ Es(θ̃) ≤ Es(θ).

Moreover,

• if θ is non-decreasing, then θ̃ = θ,

• if θ̃ is non-decreasing, then θ† = θ̃.

Proof. To start-with one can check directly that ‖θ‖L∞ = ‖θ̃‖L∞ = ‖θ†‖L∞

Step 1: Since the function cos2 is even, we have cos2 y = cos2 |y| for any y ∈ R. Thus,

∫

R

cos2 θ(x)

2
s(x) dx =

∫

R

cos2 θ̃(x)

2
s(x) dx. (21)

On the other hand, the triangle inequality gives that
∣∣|f(x + y)| − |f(x)|

∣∣ ≤ |f(x + y) − f(x)|, which
implies ∫ ∣∣|f |′(x)

∣∣2s(x) dx ≤
∫ ∣∣f ′(x)

∣∣2s(x) dx. (22)

We now observe that since ρ[θ] is a zero of θ, then the transformation giving θ̃ from θ does not create
a discontinuity at the point ρ[θ]. Therefore the function θ̃ is weakly differentiable if and only if θ is
weakly differentiable. Its weak derivative satisfy for almost every x ∈ R:

∣∣θ̃′(x)
∣∣ =

∣∣θ′(x)
∣∣ (23)

If we now combine (22) and (23), we get:
∫

R

∣∣θ′(x)
∣∣2s(x) dx ≥

∫

R

∣∣θ̃ ′(x)
∣∣2s(x) dx. (24)

Thus, (21) and (24) together imply
Es

(
θ̃
)
≤ Es(θ). (25)

In particular this implies θ̃ ∈W .
Step 2: The function θ† is indeed non-decreasing. One can check that the set of x such that θ†(x) 6= θ̃(x)

is a reunion of 2-by-2 disjoint intervals and on each of these intervals the function θ† is constant (for
more details and properties, see [17]). As a consequence, we have:

∫

R

∣∣(θ†
)′
(x)
∣∣2s(x) dx ≤

∫

R

∣∣θ̃′(x)
∣∣2s(x) dx,

11



with equality if and only if θ̃ ≡ θ†.
From the properties of W , there holds

∀x ≤ ρ[θ], −π
2
≤ θ†(x) ≤ θ̃(x) ≤ 0.

Thus, ∫ ρ[θ]

−∞
cos2

(
θ†(x)

)
s(x) dx ≤

∫ ρ[θ]

−∞
cos2

(
θ̃(x)

)
s(x) dx

Similarly,

∀x ≥ ρ[θ],
π

2
≥ θ†(x) ≥ θ̃(x) ≥ 0.

Thus, ∫ ∞

ρ[θ]
cos2

(
θ†(x)

)
s(x) dx ≤

∫ ∞

ρ[θ]
cos2

(
θ̃(x)

)
s(x) dx

Combining these inequalities gives:
∫

R

cos2
(
θ†(x)

)
s(x) dx ≤

∫

R

cos2
(
θ̃(x)

)
s(x) dx

Similarly as before, this gives an inequality of the energy for this transform. Combining it with (25)
yields the conclusion.

Last, if the notch is symmetric, there is also another transform using symmetric decreasing rear-
rangement (see [19] for details about rearrangements) that we can use.

Lemma 11. Assume that s ∈ Aa(Ω) and s(·) 6= 1. For θ ∈W non-decreasing, we define

ϑ = θ ◦ y−1, (26)

where y is defined in (8), and

ϑ‡(y) :=

(
π

2
− |ϑ|

)♯

(y)− π

2
and θ∗(x) := ϑ̃‡ (y),

where ♯ denotes the symmetric decreasing rearrangement of non-negative functions on R and ∼ denotes
the transform of Lemma 10. Then θ∗ is a non-decreasing odd function in W , and Es(θ

∗) ≤ Es(θ). The
inequality is strict if θ is not odd.

Proof. By the Pólya–Szegő inequality for the rearrangements, we have
∫

R

(
ϑ‡
)′
(y)2 dy ≤

∫

R

ϑ′(y)2 dy. (27)

Since the function θ is assumed to be non-decreasing, so is ϑ. Using the case of equality in the
Pólya–Szegő inequality, we infer that the inequality above is an equality if, and only if,

∃ a ∈ R, ∀y ∈ R, −
∣∣ϑ(y − a)

∣∣ = ϑ‡(y). (28)

On the other hand, since the function x 7→ s(x) belongs to Aa(R), then we have −s(x) = (−s)♯(x). It
is direct to check that this property is then also satisfied for σ. We now recall that if f is a non-negative
non-decreasing function then we have f ◦ (g♯) = (f ◦ g)♯ almost everywhere. Thus, almost everywhere:

cos2
(
ϑ‡
)
= sin2

((
π

2
− |ϑ|

)♯)
=

(
sin2

(
π

2
− |ϑ|

))♯

12



and then cos2
(
ϑ‡
)
= cos2

(
ϑ
)♯
. Therefore, by the Hardy-Littlewood rearrangement inequality, we have

∫

R

cos2
(
ϑ(y)

)
(−σ2)(y) dy ≤

∫

R

(
cos2

(
ϑ
))♯

(y) (−σ2)♯(y) dy =

∫

R

cos2
(
ϑ‡(y)

)
(−σ2)(y) dy. (29)

We combine (27) and (29) and get
Es(θ

∗) ≤ Es(θ), (30)

and the case of equality is given by (28).
To conclude that θ∗ is an odd function, there remain to prove that the number a ∈ R appearing

in (28) is actually 0. We consider a function ϑ such that (28) holds for some value of a > 0 and we
prove that in this case (29) is actually a strict inequality. The same reasoning also holds in the case
a < 0. First, using the parity of cos2 and (28), we write

I(ϑ) :=
1

2

∫

R

cos2
(
ϑ(y)

)
σ2(y) dy =

1

2

∫

R

cos2
(
ϑ‡(y + a)

)
σ2(y) dy.

=

∫

R

(∫ ϑ‡(y+a)

−π
2

cos(ν) sin(ν) dν

)(∫ σ2(y)

0
dµ

)
dy

=

∫

R

∫ 0

−π
2

∫ +∞

0
1

{
ϑ‡(y+a)≥ν

}
1

{
σ2(y)≥µ

} cos(ν) sin(ν) dµ dν dy,

where for the last inequality we used the fact that ϑ‡ ≤ 0. By the Fubini theorem,

I(ϑ) =

∫ 0

−π
2

∫ +∞

0
meas

({
y ∈ R : ϑ‡(y + a) ≥ ν and σ2(y) ≥ µ

})
cos(ν) sin(ν) dν dµ.

Since the function y 7→ −σ2(y) is symmetric decreasing, we have

{y ∈ R : σ2(y) ≤ µ
}
= [−mµ, mµ],

where mµ := meas{y ∈ R : σ2(y) ≤ µ
}
/2. Similarly, since the function y 7→ ϑ‡(y) is symmetric

decreasing, we have
{y ∈ R : ϑ‡(y + a) ≥ ν

}
=
[
− qν − a, qν − a

]
,

where qν := meas{y ∈ R : ϑ‡(y) ≤ ν
}
/2. Thus,

I(ϑ) =

∫ +∞

−π
2

∫ +∞

0
meas

([
− qν − a, qν − a

]
\ [−mµ, mµ]

)
cos(ν) sin(ν) dν dµ. (31)

Similar computations lead to

I(ϑ‡) =

∫ +∞

−π
2

∫ +∞

0
meas

([
− qν , qν

]
\ [−mµ, mµ]

)
cos(ν) sin(ν) dν dµ. (32)

It is a direct consequence of the Hardy-Littlewood rearrangement inequality to have:

meas
([

− qν − a, qν − a
]
\ [−mµ, mµ]

)
≥ meas

([
− qν , qν

]
\ [−mµ, mµ]

)
(33)

Therefore, we get the announced strict inequality if and only if the inequality above is strict for a set
of ν that have a non-vanishing Lebesgue measure. More precisely, we study

Rµ :=
{
ν ∈

[
− π

2
, 0
]

: Inequality (33) is strict.
}
.
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We first remark that since x 7→ s(x) is not constant, so is x 7→ σ(x) and thus

M :=
{
µ ≥ 0 : 0 < mµ < +∞

}

is an interval with non-empty interior. Moreover, we have
{
y ∈ R : ϑ‡(y) ≥ 0

}
= {0}, and

{
y ∈ R : ϑ‡(y) ≥ −π

2

}
= R.

Then, since the function ϑ is continuous increasing, we have for all p > 0 a unique ν such that qν = p.
Therefore, assuming for instance that2 a > 0,

∀ µ ∈M,
{
ν ∈

[
− π

2
, 0
]

: mµ − a < qν < mµ + a
}

is a non-empty interval.

We now observe that (33) is a strict inequality if and only if qν − a < mµ or −qν − a < −mµ. It is in
particular true when mµ − a < qν < mµ + a. Thus,

∀ µ ∈M, meas Rµ > 0.

Plugging this back into (31) and (32) gives that (29) is a strict inequality. Thus, we proved that
Inequality (30) is an equality if and only if −|ϑ| = ϑ‡. This property is equivalent to ϑ odd, and thus
θ odd. This concludes the proof.

2.4.2 The switch must be performed inside the notch

The last transform is a simple but still powerful translation in order to localize the switch in (or near
enough) the notch. This property will be very important, in particular in order to get a compactness
property for the minimizing sequence for the problem.

Lemma 12 (Localization of the spin switch). Let θ ∈ W non-decreasing. Assume that the notch
profile s is equal to 1 outside some interval [a, b] and is below 1 inside this interval. Then, there exists
a non-decreasing function θ0 ∈W such that:

(i) The set of zeros of θ0 intersects the interval [a, b].

(ii) We have Es(θ) ≥ Es(θ0).

Proof. In the case where the sets of zeros for θ intersects the interval [a, b], it is enough to define θ0 ≡ θ.
Otherwise, we proceed to a translation of the function θ until this property is satisfied. We first observe
that the set of zeros {x ∈ R : θ(x) = 0} is an interval [x0, x1] since θ is non-decreasing. Assume now,
without loss of generality, that x1 < a we consider again the change of variable θ ↔ ϑ given by (26) so
that we can work with the following formulation of the energy:

Es(θ) =
1

2

∫

R

ϑ′(y)2 dy +
1

2

∫

R

cos2
(
ϑ(y)

)
σ2(y) dy.

Since the change of variable is an increasing diffeomorphism of R, then σ is equal to 1 outside [a−, a+].
We also have that the largest zero of ϑ, which we denote x′1 (and that is the image of x1 by the change
of variable) is such that x′1 < a′. We define

ϑ0(x) := ϑ(x− δ)

where δ = a′ − x1 > 0 and we define the function θ0 from ϑ0 using the change of variable formula (26).
To compute the difference of the energies between θ and θ0, we first observe that

∫

R

ϑ′(y)2dy =

∫

R

ϑ′0(y)
2dy.

2In the case a < 0, we can do the same reasoning by simply swapping signs.
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On the other hand, one has:

cos2
(
ϑ(y)

)
= sin2

(
π

2
−
∣∣ϑ(y)

∣∣
)

= 2

∫ π
2
−|ϑ(y)|

0
cos ν sin ν dν =

∫ π
2
−|ϑ(y)|

0
sin(2ν) dν

Therefore with the Fubini theorem, we are lead to

∫

R

cos2
(
ϑ(y)

)
σ2(y) dy =

∫

R

∫ +∞

0
1

{
π
2
−|ϑ(y)|>ν

} sin(2ν)σ2(y) dν dy (34)

The same computation holds for ϑ0. We observe that since θ and then ϑ is increasing, then the function
π
2 −|ϑ| is unimodal (i.e non increasing on (−∞, x′1] and non decreasing on [x′1,+∞)). As a consequence,
the super-level sets

{
π
2 − |ϑ(y)| > ν

}
are intervals and they satisfy:

yν(ϑ) := inf

{
π

2
− |ϑ(y)| > ν

}
≤ x′1 ≤ sup

{
π

2
− |ϑ(y)| > ν

}
=: zν(ϑ) (35)

We also have

yν(ϑ) ≤ yν(ϑ) + δ = yν(ϑ0), and zν(ϑ) ≤ zν(ϑ) + δ = zν(ϑ0). (36)

We now compute
∫

R

1

{
π
2
−|ϑ(y)|>ν

} σ2(y) dy −
∫

R

1

{
π
2
−|ϑ0(y)|>ν

} σ2(y) dν dy

=

∫ yν(ϑ)+δ

yν(ϑ)
σ2(y) dy −

∫ zν(ϑ)+δ

zν(ϑ)
σ2(y) dy

(37)

We now observe that, combing (35) and (36):

yν(ϑ) ≤ yν(ϑ) + δ ≤ a′.

Therefore, σ2 is identically equal to 1 on the interval of integration [yν(ϑ); yν(ϑ) + δ]. Since 1 is the
maximal value of σ2 we conclude that

∫ yν(ϑ)+δ

yν(ϑ)
σ2(y) dy ≥

∫ zν(ϑ)+δ

zν(ϑ)
σ2(y) dy

Plugging this back into (37) and then in (34), we eventually conclude:

Es(θ) ≥ Es(θ0).

2.4.3 The main result

We are now in the position to prove the existence of a minimizer for Es(θ).

Proposition 13 (Existence of a minimizer). Let s ∈ Ua(R) such that s 6≡ 1. Then the following
properties holds.

(i) The energy Es introduced at (12) admits a minimizer in W6=. In particular, Equation (4) admits
a solution.

(ii) If θ1 ∈ W6= \W , there exists θ0 ∈W such that

Es(θ0) < Es(θ1).

In particular, any minimizer of Es belongs to W .
(iii) Any θ minimizer of the energy Es in W is an increasing function on R.
(iv) If s ∈ Aa(Ω), then any minimizer is odd.

15



Proof. First, we point out that, from the assumption that s ∈ Ua(R) and s 6≡ 1, s ≡ 1 outside some
interval [a, b] and is strictly below 1 inside this interval. The property (ii) is proved by Lemma 9. For
(iii), we first use Lemma 10 in order to show that any minimizer is non-decreasing. Invoking now the
strong maximum principle for elliptic equations, we get that any solution to (5) cannot be constant
on a non trivial interval without being constant on the whole R. This is eventually contradictory with
θ ∈W so that a minimizer of Es in W is necessarily increasing. Moreover, Lemma 11 leads to (iv).

In order to prove (i), let θn ∈ W6= be a minimizing sequence, that is Es(θn) → m (defined in
(7)). Using the transformations in Lemmas 9 and 10, we can assume that every θn belongs to W and
is non-decreasing. Moreover, due to Lemma 12, we can also assume that, for any n ∈ N, we have
some xn ∈ [a, b] such that θn(xn) = 0. Since ‖θ′n‖2L2 ≤ 2

s0
Es(θn), θ

′
n is uniformly bounded in L2(R).

Therefore there exists θ ∈ H1
loc such that (up to a sub-sequence) θ′n converges weakly to θ′ in L2 (and

in particular θ′ ∈ L2(R)) and θn → θ in C(K) for any compact K. Moreover, since f(x, u) = u2s(x) is
convex in u, there holds

∫
(θ′(x))2 s(x) dx ≤ lim inf

n→+∞

∫
(θ′n(x))

2 s(x) dx. (38)

We must also point out that, since xn ∈ [a, b] is uniformly bounded, we have some x ∈ [a, b] such that
(up to a further sub-sequence) xn → x. From the uniform convergence of θn on compact sets and the
fact that θn(xn) = 0, there holds θ(x) = 0. Moreover, every θn is non-decreasing and satisfies |θn| ≤ π

2 ,
which implies that θ is also non-decreasing and that |θ| ≤ π

2 due to the uniform convergence on compact
sets.

On the other hand, we also have a uniform bound of cos θn in H1. Indeed, (cos θn)
′ = −θ′n sin θn,

so that

‖cos θn‖2H1 ≤ ‖cos θn‖2L2 +
∥∥θ′n
∥∥2
L2 ≤ 2

s0
Es(θn).

This estimate proves that there exists ζ ∈ H1(R) such that (also up to a further sub-sequence) cos θn
converges towards ζ weakly in H1 and in particular cos θn → ζ in C(K) for any compact K. But we
also have cos θn → cos θ in C(K) for any compact K, since cos is continuous. Thus, ζ = cos θ. Similar
arguments as for θ′ yields

∫
cos2(θ(x)) s(x) dx ≤ lim inf

n→+∞

∫
cos2(θn(x)) s(x) dx. (39)

In particular, we get cos θ ∈ H1(R), which proves that lim|x|→∞ cos θn(x) = 0. But θ is non-
decreasing and satisfies θ(x) = 0 and |θ| ≤ π

2 , we have −π
2 ≤ θ(x) ≤ 0 for x ≤ x and 0 ≤ θ(x) ≥ π

2 for
x ≥ x. Thus, it is now easy to get that lim±∞ θ = ±π

2 . From all these properties, we get θ ∈ W , and
from (38) and (39)

Es(θ) =

∫ [
(θ′(x))2 + cos2(θ(x))

]
s(x) dx

≤ lim inf
n→+∞

∫
(θ′n(x))

2 s(x) dx+ lim inf
n→+∞

∫
cos2(θn(x)) s(x) dx

≤ lim inf
n→+∞

∫ [
(θ′n(x))

2 + cos2(θn(x))
]
s(x) dx

≤ lim inf
n→+∞

Es(θn) = m.

Thus, θ is a minimum for Es(θ) and m defined as (10) for any φ is a minimum of Es(m).
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3 Uniqueness of the domain wall

3.1 First properties

3.1.1 Energy point-wise inequality

It is notable that θ solving (4) satisfies a point-wise energy-like property.

Lemma 14. For any θ ∈ W satisfying (4), there holds

θ′2(y)− cos2(θ(y)) ≥ 0 for a.e. y ∈ R. (40)

This inequality is an equality if |y| > a. There also holds θ′2 − cos2(θ) 6≡ 0 if s(·) 6= 1 and if θ is not
constant.

Proof. Let ϑ(y) = θ(x) where y is defined in (8). Then ϑ is a weak solution to

ϑ′′ + σ2 cos ϑ sinϑ = 0. (41)

We also know that cos ϑ ∈ L2, so that ϑ′′ ∈ L2, and the previous equality is true in L2. We can
therefore multiply this equality by ϑ′ ∈ L2, so that

d

dy
(ϑ′)2 − σ2

d

dy
cos2(ϑ) = 0.

This equality is true in L1. Thus, integrating it on (y0, y1) for any y0, y1 ∈ R leads to

(ϑ′)2(y1)−
∫ y1

y0

σ2(y)
d

dy
cos2(ϑ(y)) dy = (ϑ′)2(y0).

Moreover, there also holds

∫ y1

y0

σ2(y1)
d

dy
cos2(ϑ(y)) dy = σ2(y1)

(
cos2(ϑ(y1))− cos2(ϑ(y0))

)
,

so that

(ϑ′)2(y1)− σ2(y1) cos
2(ϑ(y1))−

∫ y1

y0

(σ2(y)− σ2(y1))
d

dy
cos2(ϑ(y)) dy = (ϑ′)2(y0)− σ2(y1) cos

2(ϑ(y0)).

Using the fact that ϑ′ ∈ H1 and cos ϑ ∈ H1, we know that, for y1 fixed, the right-hand side goes to 0
when |y0| → ∞. Thus we get, for any y1 ∈ R,

(ϑ′)2(y1)− σ2(y1) cos
2(ϑ(y1))−

∫ y1

−∞
(σ2(y)− σ2(y1))

d

dy
cos2(ϑ(y)) dy = 0,

(ϑ′)2(y1)− σ2(y1) cos
2(ϑ(y1)) +

∫ ∞

y1

(σ2(y)− σ2(y1))
d

dy
cos2(ϑ(y)) dy = 0.

If y1 ≤ 0, define σy1 by

σy1(y) :=

{
σ2(y1)− σ2(y) if y < y1,

0 if y ≥ y1.

Recall that σ is equal to 1 outside an interval denoted [a−, a+], according to the proof of Lemma 12.
From the properties of σ, we know that σy1 is a non-decreasing function with bounded variation, which
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is constant for y ≤ a− and for y ≥ y1. Thus, its derivative is a (non-negative) measure supported on
[a−, y1], that we call dσy1 , and for any non-negative continuous function f , there holds

∫

R

σy1(y)f
′(y) dy = −

∫
f(y) dσy1(y) ≤ 0.

This inequality becomes an equality if f is supported outside of [a−, y1] (and in particular if y1 < a−).
Thus, since ϑ is continuous (and then so is cos2 ϑ), there holds

∫ y1

−∞
(σ2(y)− σ2(y1))

d

dy
cos2(ϑ(y)) dy = −

∫

R

σy1(y)
d

dy
cos2(ϑ(y)) dy ≥ 0,

and the last inequality is an equality if y1 < a−. The case y1 ≥ 0 can be treated similarly, so that, for
all y1 ∈ R,

(ϑ′)2(y1)− σ2(y1) cos
2(ϑ(y1)) ≥ 0

(ϑ′)2(y1)− σ2(y1) cos
2(ϑ(y1)) = 0 if y1 ≤ a− or y1 ≥ a+.

The conclusion is reached by coming back into the x variable, along with the fact that (σ(y))−1ϑ′(y) =
θ′(x) in L2.

As for the last property, if θ′2 − cos2(θ) = 0 in L1, then from classic ODE techniques cos θ and θ′

can never vanish unless θ is constant and θ is actually smooth. Thus, differentiating this expression,
we get

θ′′ + cos θ sin θ = 0.

Then (5) becomes
s′θ′ = 0 in D′.

As θ′ is smooth and never vanishes, there holds s′ ≡ 0 in D′, which means that s is constant and is
therefore equal to 1.

3.1.2 Strict monotonicity of the critical points

Lemma 15. If s ∈ Aa(R) is a symmetric notch, then any critical point θ of the energy Es in W6= is
strictly monotone.

Proof. The functions ϑ and σ as defined in (26) satisfy (41). This shows that ϑ′′ ∈ L∞(R). We
already know that θ ∈ L∞(R) from θ′ ∈ L2(R) and lim±∞|θ| < ∞, so that ϑ ∈ L∞(R). Therefore
ϑ ∈W 2,∞(R), and in particular ϑ′ ∈ C(R). On the other hand, we also know from (40) that θ′2− cos2 θ
is non-negative in R. We also have

θ′(x) =
1

s(x)
ϑ′
(∫ x

0

du

s(u)

)
. (42)

Thus we get for all y ∈ R

ϑ′2(y) ≥ σ(y)2 cos2 ϑ(y). (43)

From this, we know that ϑ′ does not change sign. Indeed, if so, then, from the continuity of ϑ′, we
have y0 ∈ R such that ϑ′(y0) = 0, which leads to cos ϑ(y0) = 0 with (43). Solving the Cauchy problem
of (41) with this initial condition leads to ϑ = cste, which is in contradiction with the limits at ±∞ of
θ. Therefore, from (42), θ′ has the same sign all over R, which leads to the conclusion.
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3.1.3 Strict coercivity of a Schrödinger operator

In [3, Theorem 1] and [8, Theorem 1.1], existence of a (stationary) solution to Problem (4) is proved for
admissible sections s ∈ Aa(R). Furthermore, this solution is stable and asymptotically stable modulo
rotations around the wire axis. The proof of this result rests upon the rewriting of System (LLG) in
the mobile frame (M 0(x),M 1(x),M 2), with

M0(x) =



sin θ(x)
cos θ(x)

0


 , M1(x) =



− cos θ(x)
sin θ(x)

0


 , M 1 =



0
0
1


 ,

where θ solves (4). Furthermore, by introducing r = [r1, r2]
⊤ such that

m(t, x) =
√

1− |r(t, x)|2M 0(x) + r1(t, x)M 1(x) + r2(t, x)M 2,

one shows that Eq. (LLG) can be recast as

∂

∂t

(
r1
r2

)
=

(
−L1 −L2

L1 −L2

)(
r1
r2

)
+R(r),

where R is shown to be a remainder term in the stability analysis and

{
L1(r) := −∂xxr − s′

s ∂xr + (sin2 θ − cos2 θ)r,

L2(r) := −∂xxr − s′

s
∂xr + (sin2 θ − θ′2)r.

On L2(R), let us introduce the weighted inner product 〈·, ·〉s given by

〈u, v〉s =
∫

R

u(x)v(x) s(x) dx.

We recall some properties of L1 and L2 proved in [8].

Lemma 16. If θ is such that θ′ ∈ L2 and satisfies (4) and θ(x) ∈ (−π
2 ,

π
2 ) for all x ∈ R, then

• L2 = ℓ∗ℓ where ℓ = ∂x + θ′ tan θ, and L2 is non-negative with kerL2 = R(cos θ).

• L1 is a positive definite operator, and

∃α > 0 | ∀u ∈ H2(R), 〈L1u, u〉s ≥ α‖u‖2s , (44)

where ‖u‖2s = 〈u, u〉s.

Proof. One easily shows that for any u, v in H2(R), one has

〈L2u, v〉s = 〈ℓu, ℓv〉s, with ℓ = ∂x + θ′ tan θ.

This implies L2 = ℓ∗ℓ and we infer that L2 is non-negative. Moreover, it is easy to see that L2 cos θ = 0,
and it never vanishes on R, which implies that kerL2 = R(cos θ) as L2 is a Schrödinger operator. It is
also shown in [8] that the essential spectrum of L2 is [1/2,+∞).

Regarding now L1, observe that L1 = L2 + (θ′2 − cos2 θ) Id. We also know that θ′2 − cos2 θ is
non-negative in R, but θ′2 − cos2 θ 6≡ 0 in L1. Thus we infer that L1 is positive definite on H2(R) and
that (44) holds.

Remark 17. The fact that kerL2 = R(cos θ) corresponds to the invariance of the equation (LLG) with
respect to rotations around the nanowire axis.
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θ

θ′

Figure 3: Phase portrait of a notched nanowire: (dashed line) separatrix lines are modified (continuous
line). Dη.

3.2 Critical point and strict local minimizer

Lemma 18. Each critical point of Es is a strict local minimum: for every θ0 critical point of Es

in W6=, there exists ε > 0 and α2 > 0 such that, for every θ ∈ H1(R) such that ‖θ‖L∞ < ε, then
Es(θ0 + θ)− Es(θ0) ≥ α2‖θ‖2s.

Proof. The fact that Es is three times differentiable is standard. Let us roughly compute its differentials.
There holds

dEs(θ).h =

∫

R

(θ′h′s+ cos θ sin θhs) dx

=

∫

R

h(−(sθ′)′ + s cos θ sin θ) dx

We thus infer that

d2Es(θ).(h1, h2) =

∫

R

h1
(
−(sh′2)

′ + sh2 cos(2θ)
)
dx = 〈L1h1, h2〉s (45)

where the operator L1 has been introduced in Section 3.1.3, and finally,

d3Es(θ).(h1, h2, h3) = −2

∫

R

h1h2h3s sin(2θ) dx.

It follows that ∣∣d3Es(θ).(h1, h2, h3)
∣∣ ≤ 2‖h1‖L2(s(x) dx)‖h2‖L2(s(x) dx)‖h3‖L∞ (46)

Thus, there holds

Es(θ0 + θ)− Es(θ0)− dEs(θ0).θ −
1

2
d2Es(θ0).(θ, θ) =

1

2

∫ 1

0
(1− t)2 d3Es(θ0 + tθ)(θ, θ, θ) ds,

and, with (46) and the assumption ‖θ‖L∞ < ε,

∣∣∣∣Es(θ0 + θ)− Es(θ0)− E′
s(θ0).θ −

1

2
d2Es(θ0).(θ, θ)

∣∣∣∣ ≤
1

3
‖θ‖2L2(s(x) dx)‖θ‖L∞

≤ ε

3
‖θ‖2L2(s(x) dx)
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On the other hand, if θ0 is a critical point of Es, then E′
s(θ0).θ = 0 and more precisely θ′′0 + s′

s θ
′
0 +

cos θ0 sin θ0 = 0. Then, from this property and Lemma 16, (45) shows that

E′′
s (θ0).(θ, θ) > α‖θ‖2L2(s(x) dx).

By taking ε = α, we get the conclusion with α2 =
α
6 .

3.3 Transformation of the energy and convexity

Es is not convex, because of cos2 θ in the potential energy, which is not convex itself. However, we have
a way to make this function somehow convex. For this, we introduce the function

L : R× (0, 1) → R

(y, z) 7→ y2

1− z2
.

and the functional spaces, defined for any x0 ∈ R by

J−
x0

:= {ψ ∈ L2 ∩H1
loc(−∞, x0) | 0 < ψ(x) < 1 for a.e. x ∈ (−∞, x0) and L(ψ′, ψ) ∈ L1(−∞, x0)},

(47)

J +
x0

:= {ψ ∈ L2 ∩H1
loc(x0,∞) | 0 < ψ(x) < 1 for a.e. x ∈ (x0,∞) and L(ψ′, ψ) ∈ L1(x0,∞)}, (48)

from which we define the following partial functionals

E−
x0
(ψ) =

1

2

∫ x0

−∞

(
L(ψ′(x), ψ(x)) + ψ(x)2

)
s(x) dx, (49)

E+
x0
(ψ) =

1

2

∫ ∞

x0

(
L(ψ′(x), ψ(x)) + ψ(x)2

)
s(x) dx, (50)

respectively defined on J −
x0

and J +
x0

. The reason why we introduce this functional is the fact that it is
related to our initial energy Es(θ), or more specifically to its partial integrals

E−
s,x0

:=
1

2

∫ x0

−∞

(
θ′(x)2 + cos2 θ(x)

)
s(x) dx, (51)

E+
s,x0

:=
1

2

∫ ∞

x0

(
θ′(x)2 + cos2 θ(x)

)
s(x) dx. (52)

Lemma 19. For any θ ∈ W such that −π
2 < θ(x) < 0 for a.e. x ∈ (−∞, x0), there holds

E−
s,x0

(θ) = E−
x0
(cos θ).

A similar property holds for E+
s,x0

, with 0 < θ(x) < π
2 for a.e. x ∈ (x0,∞).

The proof is obvious and left to the reader. We also point out that, when −π
2 < θ(x) < 0, then

θ(x) = − arccos cos θ(x), whereas we have θ(x) = arccos cos θ(x) when 0 < θ(x) < π
2 .

We continue by some simple properties on L.

Lemma 20. L is a non-negative convex function on R× (0, 1).

Proof. From the definition of L, it is indeed positive as soon as z2 < 1. As for the convexity, we point
out that

HessL(y, z) =

(
2

1−z2
4yz

(1−z2)2

4yz
(1−z2)2

2y2

(1−z2)2 + 8y2z2

(1−z2)3 .

)
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In particular, it is easy to see that its trace is non-negative for all y ∈ R and z ∈ (0, 1). As for the
determinant, we get

detHessL(y, z) =
2

1− z2

[
2y2

(1− z2)2
+

8y2z2

(1− z2)3

]
−
(

4yz

(1− z2)2

)2

=
4y2

(1− z2)3
≥ 0.

This proves that HessL(y, z) is a non-negative symmetric form for all y ∈ R and z ∈ (0, 1), and thus
that L is convex on this space.

Such a property on L induce the convexity of the partial functionals E±
x0

on J±
x0

.

Lemma 21. J±
x0

are convex sets and E±
x0

are convex functionals on these respective sets.

Proof. We will focus on J−
x0

and E−
x0

. The proof can be easily adapted for J +
x0

and E+
x0

.
Let ψ0, ψ1 ∈ J−

x0
and λ ∈ (0, 1), and define ψλ := (1− λ)ψ0 + λψ1 ∈ L2 ∩H1

loc(−∞, x0). Of course,
0 < ψλ(x) < 1 for a.e. x ∈ (−∞, x0). We know that, due to the convexity of L,

L(ψ′
λ(x), ψλ(x)) ≤ (1− λ)L(ψ′

0(x), ψ0(x)) + λL(ψ′
1(x), ψ1(x)).

Since L is non-negative on R × (0, 1), this shows that L(ψ′
λ, ψλ) ∈ L1(−∞, x0), which proves that

ψλ ∈ J ±
x0

, and that

∫ x0

−∞
L(ψ′

λ(x), ψλ(x))s(x) dx ≤ (1− λ)

∫ x0

−∞
L(ψ′

0(x), ψ0(x))s(x) dx+ λ

∫ x0

−∞
L(ψ′

1(x), ψ1(x))s(x) dx.

On the other hand, we also have

∫ x0

−∞
(ψλ(x))

2s(x) dx ≤ (1− λ)

∫ x0

−∞
(ψ0(x))

2s(x) dx+ λ

∫ x0

−∞
(ψ1(x))

2s(x) dx.

Thus,
E−
x0
(ψλ) ≤ (1− λ)E−

x0
(ψ0) + λE−

x0
(ψ1).

3.4 Construction of a particular path

From such properties, we can construct some interesting paths connecting a critical point to a translated
basic domain wall without notch, whose angle is given by θ∗(x) = arctan(sinh(x)).

In particular, we have

cos θ∗(x) =
1

cosh(x)
and sin θ∗(x) = tanh(x).

Lemma 22. Let θ0 ∈ W be a critical point of Es and x0 ∈ R such that θ0(x0) = 0. For any λ ∈ [0, 1]
and x ∈ R, we define

Pλ(θ0)(x) = sgn(x− x0) arccos
(
(1− λ) cos θ0(x) + λ cos θ∗(x− x0)

)
.

Then λ 7→ Pλ(θ0) is a path with values in W , continuous with respect to the H1 norm, connecting θ0
and θ∗(· − x0), and for any λ ∈ (0, 1),

Es(Pλ(θ0)) ≤ (1− λ)Es(θ0) + λEs(θ∗(· − x0)). (53)
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Proof. First, from Lemma 15, we know that −π
2 < θ0(x) < 0 for all x ∈ (−∞, x0) and 0 < θ0(x) <

π
2

for all x ∈ (x0,∞). The same property holds for θ∗(x−x0) and for Pλ(θ0)(x). Then, using Lemma 19,
it is easy to see that cos θ0 ∈ J±

x0
, and so is cos θ∗, therefore so is cosPλ(θ0) = (1−λ) cos θ0+λ cos θ∗ by

the convexity of these spaces due to Lemma 21. Concerning the regularity of the map λ 7→ Pλ(θ0) ∈W ,
the only point that may create a singularity is the multiplicative signum function. This is not the case
here as a consequence of Lemma 32 in Appendix A. To apply this lemma, it is easy to check that for
all λ ∈ [0, 1], the function

x 7−→ arccos
(
(1− λ) cos θ0(x) + λ cos θ∗(x− x0)

)
,

vanishes when x = x0. As a consequence of Lemma 32 but also Lemma 33 and its corollary 34 in
Appendix A, we can write λ 7→ Pλ(θ0) ∈ W as a composition of continuous functions (for W being
endowed with the Ḣ1 norm).

For the estimate, decomposing Es(Pλ(θ0)) leads to

Es(Pλ(θ0)) = E−
s,x0

(Pλ(θ0)) + E+
s,x0

(Pλ(θ0))

= E−
x0
(cosPλ(θ0)) + E+

x0
(cosPλ(θ0))

≤ E−
x0
((1− λ) cos θ0 + λ cos θ∗(· − x0)) + E+

x0
((1− λ) cos θ0 + λ cos θ∗(· − x0)).

By using Lemma 21 and Lemma 19 once again, we get

Es(Pλ(θ0)) ≤ (1− λ)E−
x0
(cos θ0) + λE−

x0
(cos θ∗(· − x0)) + (1− λ)E+

x0
(cos θ0) + λE+

x0
(cos θ∗(· − x0))

≤ (1− λ)E−
s,x0

(θ0) + λE−
s,x0

(θ∗(· − x0)) + (1− λ)E+
s,x0

(θ0) + λE+
s,x0

(θ∗(· − x0))

≤ (1− λ)Es(θ0) + λEs(θ∗(· − x0)).

Lemma 23. The function γ 7→ θ∗(· − γ), which takes values in W , is continuous with respect to the
H1 topology. Moreover, for any s ∈ Ua(R) such that s(·) 6= 1 and for any γ∗ ∈ R,

max
γ∈[−γ∗,γ∗]

Es(θ∗(· − γ)) < E1(θ∗).

Last,
lim

γ→±∞
Es(θ∗(· − γ)) = E1(θ∗)

Proof. Since s ≤ 1 and θ∗ is strictly increasing (in particular it is not constant on supp(s − 1), which
is of positive measure), it is easy to show that Es(θ∗(· − γ)) < E1(θ∗(· − γ)) = E1(θ∗). Moreover,

Es(θ∗(· − γ)) =
1

2

∫ (
|∂xθ∗(x)|2 + cos2(θ∗(x))

)
s(x+ γ) dx

−→
|γ|→∞

1

2

∫ (
|∂xθ∗(x)|2 + cos2(θ∗(x))

)
dx,

as it is easy to prove that, since s− 1 is compactly supported, there holds s(· − γ)− 1⇀ 0 as |γ| → ∞
for the Radon measure topology M(R) but also for the local uniform convergence.

Also, there also holds ∂xθ∗ ∈ L2(R) and cos θ∗ ∈ L2(R), thus γ 7→ ∂xθ∗(· − γ) and γ 7→ cos θ∗(· − γ)
are continuous with respect to the L2 norm, which gives the continuity of γ 7→ Es(θ∗(· − γ)). We also
point out that θ∗ converges exponentially to its limits at ±∞, so that for any γ ∈ R, θ∗(·−γ)−θ∗ ∈ L2,
and the continuity of γ 7→ θ∗(· − γ) with respect to the L2 norm can be easily proven.

We are now in position to bound from above the energy of the critical points by comparison with
the notchless case:
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Lemma 24. Any critical point θ0 of Es satisfies Es(θ0) ≤ Es(θ∗(· − x0)) < E1(θ∗), where x0 ∈ R is
such that θ0(x0) = 0.

Proof. The second inequality is given by Lemma 23. On the other hand, we know that Pλ(θ0) defined
in Lemma 22 is a path continuous with respect to the H1 topology. Therefore, by Lemma 18, there
exists λ0 > 0 such that, for every λ ∈ (0, λ0), Es(Pλ(θ0)) ≥ Es(θ0). Putting these inequalities in (53),
we find

Es(θ0) ≤ (1− λ)Es(θ0) + λEs(θ∗(· − x0)),

for any λ ∈ (0, λ0). Thus,
0 ≤ λ(Es(θ∗(· − x0))− Es(θ0)),

which leads to the conclusion.

Corollary 25. For any critical point θ0 of the energy Es, the maximal energy of the path Pλ(θ0) is
maxλ∈[0,1]Es(Pλ(θ0)) = Es(θ∗(· − x0)), where x0 is such that θ0(x0) = 0.

Proof. Combining (53) and Lemma 24, we get that Es(Pλ(θ0)) ≤ Es(θ∗(· − x0)) for all λ ∈ [0, 1]. The
conclusion comes from the fact that P1(θ0) = θ∗(· − x0).

The set P of continuous path on [0, 1] connecting the critical point θ0 to the minimizer θs of the
energy Es is defined as an affine subspace included in C([0, 1],W ), where W , as defined in (15), is
an affine space whose associated vector space is H1. Thus, P is naturally endowed with a distance
inherited from the H1 norm.

The structure of our proof can be easily guessed : we would like to use the so-called mountain pass
theorem between θ0 and θs to find a new critical point of the energy Es. Such a function should be a
saddle point, but it is actually a strict local minimizer due to Lemma 18, giving a contradiction with
the existence of another critical point than θs.

From such a tactic, it is classic to show that the functional satisfies the Palais-Smale property.
However, such a property is false for Es generally speaking : one can think of θ∗(. − n), which is a
notchless domain wall for the nanowire without notch translated to infinity, and whose energy converge
to E1(θ∗). Nonetheless, this is probably the "minimal" counter-example which can be found, and such
a thing can not happen in our problem. To be more precise, first, from all the previous results, we can
construct a path, whose maximal energy is strictly lower than the notchless energy of the notchless
domain wall.

Lemma 26. Let θs a minimizer of Es in W and θ0 be any other critical point in W0. Define, for any
λ ∈ [0, 1],

c0(λ) :=





P3λ(θ0) if λ ∈ [0, 13 ],

θ∗(· − (2− 3λ)x0) if λ ∈ (13 ,
2
3),

P3−3λ(θs) if λ ∈ [23 , 1].

Then c0(λ) is a path in C([0, 1],W ), connecting θ0 and θs. Moreover, it satisfies

max
λ∈[0,1]

Es(c0(λ)) = Es(θ∗(· − x0)) < E1(θ∗).

Proof. This path is a continuous concatenation of three continuous paths with respect to the H1 norm,
whose maximal energies are known to be respectively Es(θ∗(·−x0)) (due to Corollary 25), Es(θ∗(·−x0))
(due to Lemma 23) and Es(θ∗) (using again Corollary 25 with θs, which is a particular critical point).
The conclusion follows from Lemma 23 once again.
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3.5 Palais-Smale property

Due to this particular path, the problem is much more reduced : the Palais-Smale condition has to be
proved only for sequences of functions whose energies are strictly smaller than E1(θ∗). Actually, we
can prove that, up to a sub-sequence, we have a strong convergence with respect to the H1 norm. But
before that, we need two properties. The first one gives a weakly/strongly converging sub-sequence for
any sequence whose energy is uniformly bounded.

Lemma 27. Let θn ∈ W such that supnEs(θn) < ∞. Then, for any xn ∈ R, there exists θ ∈ W such
that, up to an omitted extraction,

• θn(.+ xn) −→ θ in L2(I) and C(I) for any bounded interval I,

• θ′n(.+ xn)⇀ θ
′
in L2,

• cos θn(.+ xn) → cos θ in C(I) for any bounded interval I,

• cos θn(.+ xn)⇀ cos θ in L2,

• sin(2θn(.+ xn))⇀ sin(2θ) in L2,

• if |xn| → ∞, then θ can be chosen so that E1(θ) ≤ lim infn→+∞Es(θn).

Proof. The proof of all but the last point follows from the fact that θ′n(. + xn), cos θn(. + xn) and
sin(2(. + xn)) are bounded in L2 and due to the compact Sobolev embeddings H1(I) →֒ C(I) for any
bounded interval I.

As for the last point, we can show in the case |xn| → ∞ that
√
s(.+ xn)θ

′
n(.+xn)⇀ θ

′
in L2. Indeed,√

s(.+ xn)θ
′
n(.+ xn) is uniformly bounded in L2 and, since s ≡ 1 outside [−a, a], converges weakly to

θ
′
in L2(I) for every bounded interval I. The same thing can be done for

√
s(.+ xn) cos θn(.+xn) and

thus

E1(θ) =
∥∥∥θ′
∥∥∥
2

L2

+
1

2

∥∥cos θ
∥∥2
L2

≤ lim inf
n→+∞

∥∥∥
√
s(.+ xn)θ

′
n(.+ xn)

∥∥∥
2

L2

+
1

2
lim inf
n→+∞

∥∥∥
√
s(.+ xn) cos θn(.+ xn)

∥∥∥
2

L2

≤ lim inf
n→+∞

Es(θn).

Then, we need a property showing that, roughly speaking, no big bump can go to infinity if the
energy is too low and if the sequence is close to be a critical point of Es.

Lemma 28. Let θn ∈ W and |xn| → +∞ such that −3π
8 < θn(xn) <

3π
8 and (sθ′n)

′ + s
2 sin(2θn) → 0

in H−1. Then lim infn→+∞Es(θn) ≥ E1(θ∗).

Proof. We can assume that the energy of at least a sub-sequence of θn is bounded, otherwise the property
is obvious. If so, take a sub-sequence (still denoted θn) whose energy converge to lim infn→+∞Es(θn).
Then, we can use Lemma 27 with θn(. + xn), from which we deduce for the provided limit θ of a
sub-sequence that :

• −3π
8 ≤ θ(0) ≤ 3π

8 ,

• E1(θ) ≤ lim infn→+∞Es(θn).

Furthermore, for ψ ∈ C∞
c (R), ψ(. − xn) is uniformly bounded in H1, so that

〈(sθ′n)′ +
s

2
sin(2θn), ψ(. − xn)〉 −→

n→∞
0.
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On the other hand,

〈(sθ′n)′ +
s

2
sin(2θn), ψ(. − xn)〉 = −

∫
s(x)θ′n(x)ψ

′(x− xn) dx+
1

2

∫
s(x) sin(2θn(x))ψ(x − xn) dx

= −
∫
s(x+ xn)θ

′
n(x+ xn)ψ

′(x) dx

+
1

2

∫
s(x+ xn) sin(2θn(x+ xn))ψ(x) dx

and since s(.+ xn) ≡ 1 on suppψ for n large enough,

= −
∫
θ′n(x+ xn)ψ

′(x) dx+
1

2

∫
sin(2θn(x+ xn))ψ(x) dx

−→
n→∞

−
∫
θ
′
(x)ψ′(x) dx+

1

2

∫
sin(2θ(x))ψ(x) dx.

This proves that θ
′′
+ 1

2 sin(2θ) = 0 in D′(R), and thus in L2 and therefore θ ∈ C∞(R). In particular,
θ is a critical point of E1, which is not constant since −3π

8 ≤ θ(0) ≤ 3π
8 . Thus, up to a translation,

θ = θ∗ ([9]) and lim infn→+∞Es(θn) ≥ E1(θ) = E1(θ∗).

Now, we have all the materials to prove a Palais-Smale property as announced previously.

Lemma 29 (Weak-strong Palais-Smale property). Let θn ∈W such that

• −5π
8 ≤ θn(x) ≤ 5π

8 for all x ∈ R and n ∈ N,

• supnEs(θn) < E1(θ∗),

• (sθ′n)
′ + s

2 sin(2θn) −→
n→∞

0 in H−1(R).

Then, up to a sub-sequence, there exists a critical point θ ∈W of Es such that
∥∥θn − θ

∥∥
H1

→ 0.

Proof. Let θ given by Lemma 27 applied to θn. Since we also have

sθ′n ⇀ sθ
′

and s sin(2θn)⇀ s sin(2θ) in L2,

then we can easily shows that (sθ
′
)′ + 1

2s sin(2θ) = 0, which shows that θ is a critical point of Es. On
the other hand, from Lemma 28, there exists L > 0 such that

• for all x ≥ L and all n ∈ N, 3π
8 ≤ θn(x) ≤ 5π

8 ,

• for all x ≤ −L and all n ∈ N, −5π
8 ≤ θn(x) ≤ −3π

8 .

Thus, such properties are still valid for θ. Since cos θ ∈ H1 ⊂ C0(R), we thus get lim±∞ θ = ±π
2 , so

that θ ∈ W0, and thus θ ∈ W by Lemma 15. This proves that, for all n ∈ N, θn − θ ∈ H1. From the
strong convergence of θn in L2 on bounded intervals, we also get

Bn :=

∫ L

−L

(θn − θ)2 dx −→
n→∞

0.

Then, for any y, z ∈ (3π8 ,
5π
8 ), we know that

|cos(y)− cos(z)| ≥
√
3

2
|y − z|.
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From the previous property, we get
∫ ∞

L

(θn − θ)2 dx ≤ 2√
3

∫ ∞

L

(
cos(θn)− cos(θ)

)2
dx

≤ 2√
3

∥∥cos θn − cos θ
∥∥2
L2

≤ 4√
3

(
‖cos θn‖2L2 +

∥∥cos θ
∥∥2
L2

)

≤ 4√
3s0

(Es(θn) + Es(θ))

≤ 8√
3s0

E1(θ∗).

A similar property holds for the interval (−∞,−L). Obviously, there also holds

∥∥(θn − θ)′
∥∥
L2 ≤

∥∥θ′n
∥∥
L2 +

∥∥θ′
∥∥
L2 ≤ 1√

s0

(√
Es(θn) +

√
Es(θ)

)
≤ 2√

s0

√
E1(θ∗).

Therefore,
∥∥θn − θ

∥∥
H1 is bounded uniformly in n. Hence,

∣∣∣〈(sθ′n)′ +
s

2
sin(2θn), θn − θ〉

∣∣∣ ≤
∥∥∥(sθ′n)′ +

s

2
sin(2θn)

∥∥∥
H−1

∥∥θn − θ
∥∥
H1 −→

n→∞
0.

However, we also have (sθ
′
)′ + s

2 sin(2θ) = 0, which yields

An := 〈(sθ′n)′ +
s

2
sin(2θn), θn − θ〉 = 〈(s(θ′n − θ

′
))′ +

s

2
(sin(2θn)− sin(2θ)), θn − θ〉

= −
∫
s(θ′n − θ

′
)2 dx

+
1

2

∫
s(sin(2θn)− sin(2θ))(θn − θ) dx

We decompose the last integral into three intervals : (−∞,−L), (−L,L) and (L,∞). From the property
of the function sin(2z), it is easy to estimate the second integral:

∣∣∣∣
∫ L

−L

s (sin(2θn)− sin(2θ))(θn − θ) dx

∣∣∣∣ ≤ C Bn.

On the other hand, for the third integral, we know that, as soon as y1, y2 ∈ (3π8 ,
5π
8 ), there exists

y3 ∈ (3π8 ,
5π
8 ) such that

sin(2y1)− sin(2y2) = 2(y1 − y2) cos(2y3),

and thus
(sin(2y1)− sin(2y2))(y1 − y2) = 2(y1 − y2)

2 cos(2y3) ≤ −
√
2(y1 − y2)

2.

Therefore, assuming also L ≥ a so that s ≡ 1 on (L,∞), we obtain

∫ ∞

L

s (sin(2θn)− sin(2θ))(θn − θ) dx ≤ −
√
2

∫ ∞

L

(θn − θ)2 dx ≤ 0.

A similar estimate holds for (−∞,−L). Gathering these estimates, we get
∫
s(θ′n − θ

′
)2 dx+

1√
2

∫
(θn − θ)2 dx ≤ An + CBn +

1√
2
Bn −→

n→∞
0.

This proves that θn → θ strongly in H1.
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3.6 A contradiction by the mountain pass theorem

With such a Palais-Smale property, we are able to prove the uniqueness of the critical point of Es by
contradiction through the method of the mountain pass theorem.

Theorem 30. The critical point of Es in W0 is unique.

Proof. We have already constructed θs in Proposition 13: it is a minimizer of Es in W0 and therefore
a critical point. By contradiction, let θ0 be another critical point.

Step 1 : Setting up the mountain pass problem.
Let P be the set of continuous path (with respect to the H1 norm) on [0, 1] connecting θ0 to θs.

We want to solve the problem
m̃ := min

c∈P
max
λ∈[0,1]

Es(c(λ)). (54)

We know that Es(θ0) < E1(θ∗) by Lemma 24, and that there exists a path c0 (constructed in Lemma
26) whose maximal energy is strictly smaller than E1(θ∗). Thus, m̃ < E1(θ∗).

On the other hand, let c ∈ P such that maxλEs(c(λ)) < E1(θ∗). We know that, for any λ1, λ2 ∈
[0, 1],

‖c(λ1)− c(λ2)‖L∞ ≤ C‖c(λ1)− c(λ2)‖
1

2

L2

∥∥c(λ1)′ − c(λ2)
′
∥∥ 1

2

L2

≤ C‖c(λ1)− c(λ2)‖
1

2

L2

(∥∥c(λ1)′
∥∥
L2 +

∥∥c(λ1)′
∥∥
L2

) 1

2

≤ C

√
2E1(θ∗)

s0
‖c(λ1)− c(λ2)‖

1

2

L2 .

Take some δ > 0 (independent on the path c chosen) such that

δ ≤ 1

2
‖θ0 − θs‖L2 (55)

and

C

√
2E1(θ∗)

s0
δ

1

2 ≤ min(ε0, εs), (56)

where ε0 (resp. εs) is given by applying Lemma 18 to θ0 (resp. θs). We know that there exists λ1 ∈ [0, 1]
such that ‖c(λ1)− θ0‖L2 = δ due to (55) and the fact that c(0) = θ0. Then, (56) along with Lemma
18 ensures that

Es(c(λ1)) ≥ Es(θ0) + α2δ
2.

Similar arguments lead to
Es(c(λ2)) ≥ Es(θs) + α2δ

2.

This shows that maxλEs(c(λ)) > α2δ
2 +max(Es(θ0), Es(θs)), and therefore

m̃ ≥ α2δ
2 +max(Es(θ0), Es(θs)). (57)

Step 2 : Constructing a good minimizing sequence of paths.
Take a minimizing sequence cn for problem 54. Let f2 ∈ C1(R) such that

• f2(x) = x for all x ∈ [−π
2 ,

π
2 ],

• f2(x) =
π
2 for all x ≥ 9π

16 ,

• f2(x) = −π
2 for all x ≤ −9π

16 ,

28



• f2 is 1-Lipschitz and ‖f2‖L∞ ≤ 9π
16 .

Then c̃n(λ) := f2(cn(λ)) ∈ P and for all λ ∈ [0, 1], Es(c̃n(λ)) ≤ Es(cn(λ)), with a similar proof as
in that of Proposition 13. Therefore, c̃n is also a minimizing sequence, with the further property that
‖c̃n(λ)‖L∞ ≤ 9π

16 .
From this sequence, we can use the theory developed for the mountain pass theorem (see for instance

[1, Chapter 5, Section 5]). To be more precise, since Es is Gâteaux-differentiable and E′
s is strong-to-

weak∗ continuous (i.e. continuous from W to H−1), applying Corollary 3.2 of [1] (see also Theorem
5.5) with c̃n as reference sequence yields another sequence of paths cn ∈ P as well as some sequence of
moments λn such that

• maxλ‖cn(λ)− c̃n(λ)‖H1 −→
n→∞

0,

• Es(cn(λn)) = maxλ∈[0,1]Es(cn(λ)) −→
n→∞

m̃,

• E′
s(cn(λn)) −→

n→∞
0 in H−1.

Step 3 : Convergence of the sequence cn(λn)
We know that m̃ < E1(θ0), so we can assume that supn∈N,λ∈[0,1]Es(cn(λ)) < E1(θ0)− ε. Moreover,

for all λ ∈ [0, 1] and n ∈ N,

‖cn(λ)‖L∞ ≤ ‖c̃n(λ)‖L∞ + ‖cn(λ)− c̃n(λ)‖L∞ ≤ 9π

16
+ C‖cn − c̃n‖C([0,1],H1) −→

n→∞

9π

16
,

so we can assume that ‖cn‖L∞ ≤ 5π
8 .

Since E′
s(θ) = (sθ′)′+ s

2 sin(2θ), we proved that the sequence cn(λn) satisfies exactly the assumptions
of Lemma 29. Therefore, up to a sub-sequence, cn(λn) converges strongly to some critical point θ in
H1. In particular, Es(cn(λn)) converges to Es(θ), therefore Es(θ) = m̃ < E1(θ∗). Thus, with (57), we
know that θ is neither θs or θ0.

Step 4 : Contradiction with θ being a strict local minimizer.

Since θ is a critical point of Es, Lemma 18 also applies. Let ε, α2 > 0 given by this result and take
δ > 0 such that

δ ≤ 1

2
min

{∥∥θ − θ0
∥∥
L2 ,
∥∥θ − θs

∥∥
L2

}

and

C

√
2E1(θ∗)

s0
δ

1

2 ≤ ε.

Then, for any n (possibly large enough), similar arguments as in step 1 shows that there exists λn such
that

∥∥cn(λn)− θ
∥∥
L2 = δ, and also that

Es(θ) + α2δ
2 ≤ Es(cn(λn)) ≤ Es(cn(λn)) −→

n→∞
Es(θ),

thus a contradiction.

3.7 Property of the solution

Now that we have obtained existence and uniqueness of the solution, we prove here a property of the
solution concerning its decay :

Lemma 31. Let θs be the critical point of Es in the set W . Then

∀ x ∈ R,

∣∣∣∣
∣∣θs(x)

∣∣− π

2

∣∣∣∣ ≤ π exp

(
−
∫ |x|

0

dy

s(y)

)
.
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Proof. By symmetric arguments, it is enough to consider the case x ≤ 0. We recall that

(
s(x) θ′s(x)

)′
= −s(x)sin(2θs(x))

2
.

Multiply this equation by s(x) θ′s(x) and integrate gives

1

2

∣∣s(x) θ′s(x)
∣∣2 = −

∫ x

−∞

sin(2θs(y))

2
θ′s(y) s(y)

2 dy.

Since −π/2 ≤ θs(x) ≤ 0 (with x ≤ 0), we use the convexity properties of the sine function to write

−sin(2θs(y))

2
≤ π

2
+ θs(y).

Thus,
s(x)2

2

∣∣θ′s(x)
∣∣2 ≤

∫ x

−∞

(
π

2
+ θs(y)

)
θ′s(y) s(y)

2 dy.

Since the function θs is increasing, we can continue the estimate of this integral by writing s(y)2 ≤ 1.
We eventually get

s(x)2

[(
π

2
+ θs(x)

)′
]2

≤ 1

2

∫ x

−∞

[(
π

2
+ θs(y)

)2]′
dy =

(
π

2
+ θs(x)

)2

.

The signs of the quantities appearing above being known, we can remove the square and get:

∀ x ≤ 0, 0 ≤
(
π

2
+ θs(x)

)′

≤ 1

s(x)

(
π

2
+ θs(x)

)
.

We know that θs(0) ≤ π
2 and then the announced estimate follows from the Grönwall lemma applied

to the function π
2 + θs.
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A Continuity properties for paths in infinite dimension

Lemma 32. We consider the space Xp := {f ∈ Ẇ 1,p(R) : f(0) = 0} for p ∈ [1,+∞]. We define the
multiplication by the signum function:

S : Xp −→ Xp

f 7−→
[
x 7→ sgn(x) f(x)

]
.

The functionnal S is a well-defined linear involution on Xp that satisfy ‖Sf‖Lp = ‖f‖Lp (whether finite
or infinite) and ‖∇(Sf)‖Lp = ‖∇f‖Lp . In particular, it is a continuous endomophism on the Banach
space Lp ∩Xp (endowed with the standard W 1,p norm) and on the Banach space Xp endowed with the
norm f 7→ ‖∇f‖Lp .

Proof. First, we can check directly that S is indeed a linear involution that preserves all the Lp norms.
We prove here that it maps Xp into itself and preserves ‖∇f‖Lp .
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Let f : R → R be a C1 function in Ẇ 1,p such that f(0) = 0. It is direct to check that x 7→ sgn(x) f(x)
is C1 on R \ {0} and

∀x 6= 0, |∇f(x)| = |∇ sgn(x) f(x)|.
Concerning what happens at x = 0, since we have f(0) = 0, then Sf(0) = 0 and it is continuous at
x = 0 as a consequence of f being continuous. Since f is absolutely continuous, so is Sf and its weak
derivative is given by the following formula:

∀x ∈ R, ∇(Sf)(x) = sgn(x)∇f(x). (58)

It is indeed direct to check that

∀x ∈ R, Sf(x) =

∫ x

0
sgn(y)∇f(y) dy

We can then conclude from (58) that ‖∇(Sf)‖Lp = ‖∇f‖Lp .

Lemma 33 (Ponctual estimates for composition). Let Ω be an interval of R and let Γ0,Γ1 be two
intervals of R and let A be an increasing C0 homeomorphism that maps Γ0 into Γ1. Define for f, g two
measurable increasing functions that map Ω → Γ0:

∀λ ∈ [0, 1], ∀x ∈ Ω, Tλ(x) := A−1
[
λA ◦ f(x) + (1− λ)A ◦ g(x)

]
,

where λ ∈ [0, 1] is fixed. Then we have, for all p ∈ [1,+∞):

∀x ∈ Ω,
∣∣Tλ(x)− ψ(x)

∣∣p ≤
∣∣f(x)− ψ(x)

∣∣p +
∣∣g(x) − ψ(x)

∣∣p, (59)

where ψ is any measurable function.
If moreover f and g are non-decreasing and A and A−1 are C1 in the interior of Γ0 or Γ1 respectively,

then:
∀x, y ∈ Ω,

∣∣Tλ(x)− Tλ(y)
∣∣p ≤ 2p−1

(∣∣f(x)− f(y)
∣∣p +

∣∣g(x) − g(y)
∣∣p
)

(60)

Proof. Part 1. Let x ∈ Ω. Using the layer-cake representation of functions [19],

|Tλ(x)− ψ(x)|p = p

∫ +∞

0
νp−1

1

(
{|Tλ(x)− ψ(x)| > ν}

)
dν

= p

∫ +∞

0
νp−1

1

({
|A−1

(
λA ◦ f + (1− λ)A ◦ g

)
(x)− ψ(x)| > ν

})
dν,

where 1 refers to the indicator functions. We treat separately the two cases depending on the sign of
Tλ(x)− ψ(x). We are led to :

|Tλ(x)− ψ(x)|p

= p

∫ +∞

0
νp−1

1

({
A−1

(
λA ◦ f + (1− λ)A ◦ g

)
(x)− ψ(x) > ν

})
dν

+ p

∫ +∞

0
νp−1

1

({
A−1

(
λA ◦ f + (1− λ)A ◦ g

)
(x)− ψ(x) < −ν

})
dν

= p

∫ +∞

0
νp−1

1

({
λA ◦ f(x) + (1− λ)A ◦ g(x) > A(ψ(x) + ν)

})
dν

+ p

∫ +∞

0
νp−1

1

({
λA ◦ f(x) + (1− λ)A ◦ g(x) < A(ψ(x) − ν)

})
dν.

(61)

We now use the general fact, since λ ∈ [0, 1],

λ|A ◦ f(x)|+ (1− λ)|A ◦ g(x)| > µ =⇒ |A ◦ f(x)| > µ or |A ◦ g(x)| > µ,
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for any µ ∈ R. We also know that for X,Y two subsets of R, we have 1(X ∪ Y ) ≤ 1(X) + 1(Y ). Then

1

({
λA ◦ f(x) + (1− λ)A ◦ g(x) > A(ψ(x) + ν)

})

≤ 1

({
A ◦ f(x) > A(ψ(x) + ν)

})
+ 1

({
A ◦ g(x) > A(ψ(x) + ν)

})

= 1

({
f(x) > ψ(x) + ν

})
+ 1

({
g(x) > ψ(x) + ν

})
.

Where the last equality is given by the inversibility of A. Similarly,

1

({
λA ◦ f(x) + (1− λ)A ◦ g(x) < A(ψ(x) − ν)

})

≤ 1

({
f(x) < ψ(x) − ν

})
+ 1

({
g(x) < ψ(x)− ν

})
.

Plugging these estimates in (61) eventually gives

|Tλ(x)− ψ(x)|p ≤ p

∫ +∞

0
νp−1

1

({
f(x) > ψ(x) + ν

})
dν + p

∫ +∞

0
νp−1

1

({
g(x) > ψ(x) + ν

})
dν

+ p

∫ +∞

0
νp−1

1

({
f(x) < ψ(x)− ν

})
dν + p

∫ +∞

0
νp−1

1

({
g(x) < ψ(x)− ν

})
dν

= +p

∫ +∞

0
νp−1

1

({
|f(x)− ψ(x)| > ν

})
dν + p

∫ +∞

0
νp−1

1

({
|g(x)− ψ(x)| > ν

})
dν

= |f(x)− ψ(x)|p + |g(x) − ψ(x)|p,

Part 2. Let x, y ∈ Ω with x ≤ y. Assume that f, g,A are increasing. We then have,

∣∣Tλ(y)− Tλ(x)
∣∣ =

∫ λA◦f(y)+(1−λ)A◦g(y)

λA◦f(x)+(1−λ)A◦g(x)

d

dt
A−1(t) dt.

We can estimate this integral as follows, since λ ∈ [0, 1]:

∫ λA◦f(y)+(1−λ)A◦g(y)

λA◦f(x)+(1−λ)A◦g(x)

d

dt
A−1(t) dt ≤

∫ max{A◦f(y);A◦g(y)}

min{A◦f(x);A◦g(x)}

d

dt
A−1(t) dt.

We continue this estimate by adding a non-negative term and reorganize the bounds of the integrals:

∫ max{A◦f(y);A◦g(y)}

min{A◦f(x);A◦g(x)}

d

dt
A−1(t) dt

≤
∫ max{A◦f(y);A◦g(y)}

min{A◦f(x);A◦g(x)}

d

dt
A−1(t) dt+

∫ min{A◦f(y);A◦g(y)}

max{A◦f(x);A◦g(x)}

d

dt
A−1(t)

=

∫ A◦f(y)

A◦f(x)

d

dt
A−1(t) dt+

∫ A◦g(y)

A◦g(x)

d

dt
A−1(t) dt

=
∣∣f(y)− f(x)

∣∣+
∣∣g(y)− g(x)

∣∣.

As a consequence, using the standard convexity inequality for power functions:

∣∣Tλ(y)− Tλ(x)
∣∣p ≤ 2p−1

(∣∣f(x)− f(y)
∣∣p +

∣∣g(x)− g(y)
∣∣p
)

Corollary 34. With the same assumptions:

(i) If f and g belong to the affine space ψ+Lp(Ω; Γ0) with p < +∞ (endowed with the standard Lp

norm) then the function λ 7→ Tλ draws a continuous path with respect to the Lp topology that connects
f to g.
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(ii) If f and g belong to Ẇ 1,p(Ω; Γ0) with p < +∞ (endowed with the standard Ẇ 1,p half-norm)
and are increasing, then the function λ 7→ Tλ draws a continuous path with respect to the Ẇ 1,p(Ω; Γ0)
topology that connects f to g.

Proof. First, by continuity of A−1, we have

∀x ∈ Ω, Tλ(x) −→ Tµ(x), as λ→ µ.

As a consequence of (59), we can apply the Lebesgue dominated convergence theorem and conclude:

∫

Ω

∣∣Tλ(x)− Tµ(x)
∣∣p dx −→ 0, as λ→ µ.

Similarly, by continuity of (A−1)′ on Γ1 and of A′ on Γ0, we also have

∀x ∈ Ω, ∇Tλ(x) −→ ∇Tµ(x), as λ→ µ.

Since (60) implies that |∇Tλ(x)|p . |∇f(x)|p + |∇g(x)|p for any λ and x, the Lebesgue dominated
convergence theorem also applies to the gradients:

∫

Ω

∣∣∇Tλ(x)−∇Tµ(x)
∣∣p dx −→ 0, as λ→ µ.

This corollary gives the continuity of the path λ 7→ Tλ with respect to the Ẇ 1,p topology. In the
case of the Lp topology, it is possible to improve the result and get that this path is actually C1 using
the implicit functions theorem:

Lemma 35. Let Ω be an interval of R and let Γ0,Γ1 be two open sets of Rp such that there exists a C1

diffeomorphism A that maps Γ0 into Γ1. Assume that Γ1 is convex. Let X ⊆ Lp(Ω; Γ0) be a Banach
space such that for all function ϕ ∈ X we have A ◦ φ in the affine space ψ0 + L2(Ω; Γ1), for some
function ψ0. We further assume that the map φ ∈ X 7→ A ◦ φ− ψ0 ∈ L2(Ω; Γ1) is C1. We now define

∀λ ∈ R, ∀x ∈ Ω, Tλ(x) := A−1
[
λA ◦ f(x) + (1− λ)A ◦ g(x)

]
,

where f, g are two fixed functions in X. Then the function λ 7→ Tλ with values in X is a C1 function
(where X is endowed with a Lp or Ẇ 1,p norm).

Proof. Let f and g be two functions in X. We first remark that for all λ ∈ R we have Tλ ∈ X, as
a consequence of Γ1 convex and Lemma 33. We recall that every separable Hilbert space admits a
Hilbertian base (see Theorem V.10 in [2]). In particular, any subspace of L2 admits a Hilbertian base
(associated to the standard scalar product of L2). We denote by (en)n∈N a Hilbertian base of the space
{(A ◦ f −A ◦ g)}⊥ ⊆ L2(Ω; Γ1).

F : X −→ ℓ2(R)
φ 7−→ 〈A ◦ φ−A ◦ f | en〉L2 .

It is direct to check that F(φ) = 0 if and only if A ◦ φ − A ◦ f belongs to the affine straight line
A ◦ g + (A ◦ f −A ◦ g)R. Namely,

F(φ) = 0 ⇐⇒ ∃ λ ∈ R, A ◦ φ = λA ◦ f + (1− λ)A ◦ g.

This last equality is equivalent to φ = Tλ. To conclude to the regularity of λ 7→ Tλ we use the implicit
functions theorem applied to the function F . The fact that A is a C1 diffeomorphism ensures that the
differential of F is not degenerate.
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