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Abstract: Two distinct stx2f-carrying Escherichia coli (E. coli) strains, isolated from a child with uncom-
plicated diarrhea fifteen weeks apart, were characterized by combining short- and long-read sequenc-
ing to compare their genetic relatedness. One strain was characterized as Shiga toxin-producing E.
coli (STEC)/typical enteropathogenic E. coli (tEPEC) O63:H6 with a repertoire of virulence genes
including stx2f, eae (α2-subtype), cdt, and bfpA. The other STEC with serotype O157:H16, reported
for the first time as stx2f-carrying Escherichia coli in this study, possessed, in addition, eae (ε-subtype)
and cdt, amongst other virulence-related genes. BLAST comparison showed that the stx2f-harboring
prophage sequences of both strains were highly homologous (99.6% identity and 96.1% coverage).
These results were corroborated by core Stx2f phage Multilocus Sequence Typing (cpMLST) as the
stx2f-harboring prophages of both isolates clustered together when compared to those of 167 other
human stx2f-carrying Escherichia coli. Overall, the stx2f-harboring prophages of the two distinct E. coli
strains isolated from the present case were highly similar, suggesting that the stx2f-harboring phage
might have been transferred from the STEC/tEPEC O63:H6 strain to the atypical EPEC (aEPEC)
O157:H16 strain in the gut of the child.

Keywords: Shiga toxin-producing Escherichia coli (STEC); Stx2f; Escherichia coli O157:H16; whole-
genome sequencing

1. Introduction

Shiga toxin-producing Escherichia coli (STEC) are causing a wide spectrum of gastroin-
testinal symptoms in humans, ranging from uncomplicated forms of intestinal illnesses to
bloody diarrhea and life-threatening hemolytic uremic syndrome (HUS) [1]. The produc-
tion of Shiga toxin (Stx1 and/or Stx2 subtypes, i.e., 1a, 1c–1e, 2a–2o), Stx2 in particular, is a
major virulence factor associated with the development of severe symptoms [2]. However,
the Stx2f subtype has rarely been isolated from patients with HUS and is generally linked
to mild gastrointestinal symptoms [3,4].

In Europe, a substantial proportion of STEC strains involved in human infections are
carrying stx2f [3,5,6]. The number of cases might even be underreported, as some molecular
gastrointestinal assays for the laboratory diagnosis of STEC infection do not detect the
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stx2f gene, encoding the most divergent Stx2 subtype (by nucleotide and amino acid
sequence) [4,7]. In Belgium, stx2f-carrying E. coli consisted of 12.1% (76/626) of all culture-
positive cases of STEC infection in the period 2021–2023, with the highest number recorded
in 2023 (58/331) [8]. During this period, the dominant stx2f-positive E. coli serotype was
O63:H6 (67.1%; 51/76). The same was observed in 2021 in the European Union/European
Economic Area (EU/EEA) where 47.0% of the stx2f-carrying E. coli isolates were serotyped
as O63:H6 (data from 23 EU/EEA countries) [9]. Remarkably, this serotype has mainly
been reported in humans [5,10] while other serotypes of stx2f-carrying E. coli have been
described in pigeons [10,11] and other bird species [12].

The genes encoding the Shiga toxins (stx) are harbored by bacteriophages, which
can be integrated as prophages within the chromosome of a susceptible E. coli strain or
another member of Enterobacteriaceae, upgrading, for example, a non-pathogenic E. coli
to a pathogenic STEC [13]. Several chromosomal insertion sites for Stx phages have been
reported, including ssrA, which encodes a transfer-messenger RNA (tmRNA) [14]. This
gene has been described as a typical insertion site for Stx2f phages in E. coli and other
Enterobacteriaceae, including E. albertii [15,16].

In addition to stx, a subset of STEC strains possess the locus of enterocyte effacement
(LEE) pathogenicity island (PAI), which contains genes that mediate colonization of the
human intestine [17]. These genes encode type III secretion system proteins (T3SS), the
intimin protein (Eae) and its translocated receptor (Tir), as well as chaperones, regulators,
and secreted effector proteins (Esp). The LEE PAI is also found in enteropathogenic E.
coli (EPEC) [18]. Yet, EPEC can be divided into typical EPEC (tEPEC) and atypical EPEC
(aEPEC) based on the presence or absence, respectively, of the E. coli adherence factor
plasmid carrying the bundle-forming pilus (BFP) operon; tEPEC are commonly stx-negative,
LEE-positive, and BFP-positive, while aEPEC are also stx-negative and LEE-positive but
BFP-negative. Consequently, the latter are thought to be of concern as they can acquire the
Stx phages [19].

LEE-positive E. coli strains of O157:H16 serotype are usually aEPEC [20–29]
(Supplementary Materials, Table S1). Strains of serotype O157:H16 have been reported
to cause sporadic cases and outbreaks of diarrheal diseases [23,30]. This serotype has also
been isolated from beef, cattle, dogs, and water [22,31]. Until now, only one stx-positive
O157:H16 strain isolated from cattle has been reported [32].

In the present study, we aimed to characterize two distinct stx2f-carrying E. coli strains
isolated from a child with uncomplicated diarrhea in order to compare their relatedness at
the whole-genome level.

2. Materials and Methods
2.1. Case Description

A 17-month-old child presented at the pediatrics department of the AZ Turnhout
on 18 October 2023 with symptoms of intermittent diarrhea for 10 days and rhinitis with
fluctuating fever. The patient was treated symptomatically for viral infection. A fecal
sample was collected on 26 October 2023.

On 6 November 2023, the child was diagnosed with a viral cough. A stool sample was
taken the same day due to intermittent stool consistency.

Fifteen weeks later, the child consulted the pediatrician with complaints of intermittent
vomiting, diarrhea for 4 days, and stomach cramps. The child was treated with probiotic
Enterol® (Saccharomyces boulardii) and oral rehydration solution. The child returned to
the pediatrician five days later with complaints of watery diarrhea. The child was treated
symptomatically with antidiarrheal Tiorfix® (10 mg racecadotril/sachet) and recovered
promptly. A fecal sample was collected on 12 February 2024.

2.2. Bacterial Isolates

At the AZ Turnhout, fecal specimens from patients presented to the pediatrician with
symptoms of gastrointestinal infection are routinely tested for a range of gastrointestinal
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pathogens with the AllplexTM Gastrointestinal Panel Assays (Seegene, Seoul, Republic of
Korea), i.e., AllplexTM GI-EB Screening Assay, AllplexTM GI-Virus Assay, and AllplexTM

GI-parasite Assay. Fecal specimens tested positive for stx by the AllplexTM GI-EB Assay
are referred to the NRC STEC for culture.

At the NRC STEC, all fecal specimens are cultured on to sorbitol MacConkey agar
bi-plates with and without cefixime (0.05 mg/L) and tellurite (2.5 mg/L) (SMAC/CT-
SMAC), and individual colonies are tested using in-house polymerase chain reaction (PCR)
assays targeting stx1, stx2 (including stx2f), and eae [3]. All STEC isolates are serotyped by
slide agglutination. To that end, the E. coli OK O Pool 1 antisera (anti-O26, O103, O111,
O145, and O157; Statens Serum Institut, Copenhagen, Denmark) is used. In the case of
a negative reaction, the serogroup of the isolate is defined as non-O157. Antimicrobial
susceptibility testing is performed on all STEC isolates by disk diffusion according to
EUCAST [33]. The panel of antimicrobials includes ampicillin, amoxicillin-clavulanic
acid, piperacillin-tazobactam, cefadroxil, cefuroxime, ceftriaxone, ceftazidime, cefepime,
aztreonam, temocillin, meropenem, ciprofloxacin, gentamicin, amikacin, and trimethoprim-
sulfamethoxazole. All STEC isolates are analyzed with whole-genome sequencing.

2.3. DNA Extraction and Whole-Genome Sequencing

Genomic DNA was extracted from pure cultures of E. coli isolates grown overnight
on Sorbitol MacConkey Agar (Neogen, Lansing, MI, USA) by using the Maxwell RSC
Cell DNA purification kit (Promega Corporation, Madison, WI, USA) according to the
manufacturer’s instructions.

2.3.1. Illumina Sequencing

Fragmentation of 500 ng of genomic DNA was carried out using the NEBNext®

UltraTM II FS module. Sequencing libraries, with an insert size of 550 bp on average, were
prepared using the KAPA Hyper Plus kit (Kapa Biosystems, Wilmington, NC, USA). To
avoid PCR bias, the PCR amplification step was omitted, and every sample was assigned
an in-house Truseq style adapter with a unique dual indexed 8-bp barcode. After equimolar
pooling, libraries were sequenced on a Novaseq 6000 instrument (Illumina, San Diego, CA,
USA) using the NovaSeq 6000 SP Reagent kit (300 cycles) generating 2 × 150 bp reads. For
this, the library was denaturated and diluted according to the manufacturer’s instructions.
A 1% PhiX control library was included in each sequencing run.

2.3.2. Oxford NanoPore Sequencing

In parallel, the sequencing libraries were prepared using the Rapid barcoding kit v14
(SQK-RBK114.96, Oxford Nanopore Technology, Oxford, UK) and sequenced for 12 h on a
PromethION R1041 flowcell (FLO-PRO114M, Oxford Nanopore Technology, Oxford, UK).
Sequencing was performed using MinKNOW 23.07.5, and basecalling was performed using
Guppy 7.0.9.

2.4. In Silico Multilocus Sequence Typing Analysis and Identification of Genes Linked to Serotype,
Virulence, and Antibiotic Resistance

The raw reads were imported and de novo hybrid-assembled using Unicycler 0.5.0 (normal
mode) in the Galaxy Europe platform [34]. Subsequent prediction of sequence types (STs),
serotypes, and acquired antibiotic resistance genes was performed using tools available from
the Center for Genomic Epidemiology platform (https://www.genomicepidemiology.org/
services/ (accessed on 14 June 2024)) (MLST 2.0, SerotypeFinder 2.0 and ResFinder 4.5.0).
A % identity threshold of 85% and a minimum length for coverage of 60% was used. The
phylogroups were predicted using the Clermont Typing online tool [35]. The virulence
gene profiles were predicted starting from the genome assemblies as described by van
Hoek et al. [10].

https://www.genomicepidemiology.org/services/
https://www.genomicepidemiology.org/services/


Pathogens 2024, 13, 1002 4 of 12

2.5. Comparative Genetic Analysis

The assembled genome of the stx2f-carrying O157:H16 isolate (EH4279) was annotated
with Prokka 1.14.6 and visualized using Proksee 1.1.1 [36]. The sequence was BLAST
(BLAST+ 2.12.0 and BLAST Formatter 1.0.3)-compared with the genome of a publicly avail-
able stx-negative E. coli O157:H16 strain 98-3133 (Genbank accession number: CP051001) of
ST10 [37] and the other stx2f-carrying O63:H6 strain, EH4183. The predicted prophages,
including the stx2f-harboring prophage, were detected using Phigaro 2.3.0 [38]. The whole-
genome Average Nucleotide Identity (ANI) was calculated with FastANI 1.3.3 [39]. The
two stx2f-harboring prophages were characterized and compared to those of 167 human
stx2f-carrying E. coli isolates based on the core Stx2f phage (cpMLST) scheme as described
by van Hoek et al. [10].

3. Results
3.1. Stool Samples and Bacterial Isolates

The fecal sample collected on 26 October 2023 from the patient in this study tested
positive for multiple gastrointestinal targets including E. coli O157 and stx1/2 at the labora-
tory of the AZ Turnhout (Table 1). This presumptive STEC-positive result was confirmed
by the NRC STEC through isolation of a STEC strain (EH4183), which was characterized
as non-sorbitol-fermenting non-O157, stx2f-positive, and eae-positive. STEC strain EH4183
showed selective growth on CT-SMAC and was susceptible to the tested antimicrobials.

Table 1. Laboratory results obtained for the fecal specimens collected from the patient in this study.

Date of Sampling
Gastrointestinal Targets

Detected in Stool 1

(Cycle Threshold [Ct]-Value)

Isolate Characteristics
(Identifier) 2

26 October 2023
E. coli O157 (33.16), stx1/2 (28)

Campylobacter (36 3),
Sapovirus (26)

Non-O157 stx2f + eae + (EH4183)

6 November 2023 E. coli O157 (28.47), stx1/2 (26)
Sapovirus (27) No isolate 4

12 February 2024
E. coli O157 (37.69), stx1/2 (36)

Adenovirus (25 5),
Cryptosporidium (30)

O157 stx2f + eae + (EH4279)

1 Results obtained with the AllplexTM GI-EB Screening Assay, the AllplexTM GI-Virus Assay, and the AllplexTM

GI-parasite Assay (Seegene, Seoul, Republic of Korea); 2 results obtained with the conventional NRC STEC tests;
3 Campylobacter culture-negative; 4 sample not referred to the NRC STEC; 5 adenovirus culture-positive.

The patients’ stool was still positive for both E. coli O157 and stx1/2 targets two weeks
later (Table 1). The fecal sample was not referred to the NRC STEC for confirmation.

Yet, fifteen weeks later, an additional stool sample with a positive result for E. coli O157
and stx1/2 targets was provided to the NRC STEC. The isolated STEC strain (EH4279) was
reported as sorbitol-fermenting O157, stx2f-positive, and eae-positive (Table 1). No growth
was observed on CT-SMAC. The isolate was susceptible to the tested antimicrobials.

3.2. In Silico Multilocus Sequence Typing Analysis and Identification of Genes Linked to Serotype,
Virulence, and Antibiotic Resistance

The traditional typing results obtained for both stx2f-carrying strains, EH4183 and
EH4279, were confirmed by whole-genome sequencing. The former isolate was charac-
terized as O63:H6, ST583, with a repertoire of virulence genes including stx2f and several
LEE genes (eae [α2-subtype], espA, espC, espF, and tir), non-LEE encoded effector nleC, the
cdtABC genes–coding for the cytolethal distending toxin CDT type I—as well as the tEPEC
determinant bfpA (Table 2 and Supplementary Materials, Table S2). The latter isolate was
characterized as stx2f-positive O157:H16, ST10, with several LEE genes (eae [ε-subtype],
espA, espB, espF, and tir), non-LEE encoded effectors (nleB, nleC), and the cdtABC genes
(Table 2 and Supplementary Materials, Table S2). This isolate was negative for bfpA. The
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full repertoire of virulence genes identified in the genomes of both stx2f-carrying strains is
presented in Supplementary Materials, Table S2.

Table 2. Characterization of both stx2f-carrying E. coli isolates, with indication of phylogroup,
pathotype, serotype, the sequence type (ST), and major virulence genes.

Strain Phylogroup Pathotype Serotype ST Major Virulence
Genes

EH4183 B2 STEC/tEPEC O63:H6 583
stx2f, eae

(α2-subtype),
cdtABC, bfpA

EH4279 A STEC/aEPEC O157:H16 10
stx2f, eae

(ε-subtype),
cdtABC

Based on ResFinder analysis, no acquired antimicrobial resistance genes were found
in both isolate genomes.

3.3. Comparative Genomics

The genome sequence of STEC O63:H6 strain EH4183 was assembled into three circular
contigs: the 4,954,036 bp chromosome; a 163,213 bp IncFIB-type plasmid named pEH4183_1;
and a 2753 bp plasmid named pEH4183_2 (Supplementary Materials, Figure S1). Consis-
tent with the PCR result indicating that the strain was stx2f-positive, the chromosome
of strain EH4183 contained the stx2f-harboring prophage sequence–42.8 Kb in length
(Supplementary Materials, Figure S2). The plasmid pEH4183_1 contained the bfpA gene.

The genome sequence of STEC O157:H16 strain EH4279 was assembled into three cir-
cular contigs: the 4,834,419 bp chromosome; an 83,358 bp IncFIIpHN7A8-type plasmid named
pEH4279_1; and a 34,261 bp IncFII29-type plasmid named pEH4279_2 (Supplementary Materials,
Figure S3). Here also, the chromosome of strain EH4279 contained the stx2f-harboring
prophage, predicted 44.3 Kb in length (Figure 1A).

The predicted stx2f-harboring prophage—a long-tailed phage belonging to the Siphoviri-
dae family—was inserted adjacent to the ssrA gene on both the EH4183 and EH4279 genomes
(Figure 1B). Moreover, the cdtABC gene cluster was located on the extremity of the stx2f-
harboring prophage within EH4183 and EH4279 (Figure 1B).

A BLAST comparison showed that the STEC O157:H16 strain EH4279 shared a high
nucleotide identity (99.97% ANI) to the diarrheagenic aEPEC O157:H16 strain 98-3133, but
the latter displayed a gap of around 42 Kb largely corresponding to the stx2f-harboring
prophage sequence. Contrarily, but not surprisingly, the chromosome of STEC O157:H16
strain EH4279 shared a lower overall nucleotide identity to the STEC O63:H6 strain EH4183
(96.69% ANI). Yet, the stx2f-harboring prophage sequence within EH4279 shared 99.6%
identity over 96.1% coverage of the stx2f-harboring prophage sequence within EH4183.
The upstream extremity of the prophage sequences with two coding DNA sequences
(CDSs) predicted to encode for an integrase (intA) and a putative integrase (gene1107
[Phigaro identifier]) showed no similarity (Figure 1B). Yet, adjacent to this region, both
stx2f-harboring prophages shared identical integrase-coding sequence intQ.

It is remarkable that the two CDSs, intA and gene1107, located on the upstream ex-
tremity of the predicted stx2f-harboring prophage sequence within EH4279 were identical to
two CDSs (intA and gene4248 [Phigaro identifier]) in the genome of aEPEC O157:H16 strain
98-3133 (Figure 1B). Both CDSs were located on the extremity of a predicted stx-negative
prophage integrated into the ssrA gene within 98-3133 (Supplementary Materials, Figure S4).
As no similar CDSs were found in the genome of EH4183 (Supplementary Materials, Figure
S2), they likely correspond to leftovers of an ancient stx-negative prophage similar to
the predicted one found in aEPEC O157:H16 strain 98-3133, rather than being part of the
integrated stx2f-harboring prophage (Figure 1B).
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Chromosome comparison of 98-3133 to EH4279 using BLAST demonstrates a gap of around 42 Kb 
in 98-3133, largely corresponding to the stx2f-harboring prophage sequence. Conversely, this region 
is highly similar in both sequences of EH4183 and EH4279. The aligned genomes of 98-3133 and 
EH4183 are colored by sequence identity, ranging from 0 to 100%, using BLAST Formatter. (B). 
Closer view on the stx2f-harboring prophage and its surrounding region. The predicted stx2f-
harboring prophage detected in the EH4279 genome using Phigaro is shown in dark green. The 
prophage genes (top track) are color-coded based on their biological functions. Hypothetical 
proteins are not labeled in the present figure. 

A BLAST comparison showed that the STEC O157:H16 strain EH4279 shared a high 
nucleotide identity (99.97% ANI) to the diarrheagenic aEPEC O157:H16 strain 98-3133, but 

Figure 1. BLAST genome comparison of STEC O157:H16 strain EH4279 with aEPEC O157:H16 strain
98-3133 and STEC O63:H6 strain EH4183, with indication of the predicted prophages. (A). Chromo-
some comparison of 98-3133 to EH4279 using BLAST demonstrates a gap of around 42 Kb in 98-3133,
largely corresponding to the stx2f-harboring prophage sequence. Conversely, this region is highly
similar in both sequences of EH4183 and EH4279. The aligned genomes of 98-3133 and EH4183 are
colored by sequence identity, ranging from 0 to 100%, using BLAST Formatter. (B). Closer view on
the stx2f-harboring prophage and its surrounding region. The predicted stx2f-harboring prophage
detected in the EH4279 genome using Phigaro is shown in dark green. The prophage genes (top
track) are color-coded based on their biological functions. Hypothetical proteins are not labeled in
the present figure.

The high similarity of the stx2f-harboring prophages within EH4183 and EH4279 was
confirmed by a comparative cpMLST analysis of 169 stx2f-harboring prophages from human
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STEC strains, which revealed that the stx2f-harboring prophages from EH4183 and EH4279
clustered together in a phylogenetic tree (Figure 2). More precisely, the analysis showed
that 60 out of the 67 stx2f-prophage associated genes, according to van Hoek et al. [10],
had identical alleles in both analyzed genomes of EH4183 and EH4279 (Supplementary
Materials, Table S3). Yet, three genes were not found in the genome of EH4279. These
three CDSs, present in EH4183 and located upstream of the integrase-coding sequence intQ,
were predicted to encode for a transposase, an integrase, and a hypothetical protein. This
observation matches the above-mentioned results.
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Figure 2. Neighbor-joining phylogenetic tree of 169 human stx2f-carrying E. coli isolates based on the
core Stx2f phage MLST (cpMLST) data. The isolates are color-coded based on serotype except for the
two black-colored isolates of this study, O63:H6 EH4183 (2023, BE) and O157:H16 EH4279 (2024, BE).
In addition, the isolates are labeled by year and country of isolation.

Moreover, four genes differed, which encode for a phage tail tape measure protein
(99.6% identity and 100% coverage), a minor tail protein—the phage minor tail protein
L—(99.7% identity and 100% coverage), a phage tail fiber protein—the host specificity
protein J—(96.6% identity and 100% coverage), and an attachment invasion locus protein
precursor (99.5% identity and 100% coverage). Interestingly, the sequence differences at
the position of the gene for the host specificity protein J were in the last distal portion of
the gene.
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4. Discussion

To the best of our knowledge, this is the first report of a stx2f-carrying E. coli O157:H16
isolated from a child with uncomplicated diarrhea, underlining, once more, the great
capacity of E. coli to evolve due to gain of genes [13]. But identification of this Stx subtype
in strains belonging to serotypes previously unknown to harbor stx2f has been reported
before [40,41]. Subtype Stx2f is generally associated with a limited number of serotypes of,
which serotype O63:H6 predominates in Belgium [8]. Until now, as far as we know, only one
animal STEC O157:H16 strain, possessing the stx1 and stx2 genes, has been reported [32].
The latter strain should not carry the stx2f gene as the primers used by Ennis et al. [32]
allowed amplification of all Stx subtypes, except Stx2f [42].

Sequencing data showed that the genome of the STEC O157:H16 EH4279 ST10
strain was closely related to that of an aEPEC O157:H16 strain (98-3133) of ST10 (LEE-
positive, bfpA-negative, stx-negative). aEPEC O157:H16 are generally associated with
mild disease. Sporadic and familial cases of diarrhea and bloody diarrhea have been
reported [22,23,27,30]. However, one aEPEC O157:H16 has already been isolated from a
HUS case, but it was unclear whether the HUS-associated E. coli O157:H16 strain lost stx
prior to laboratory diagnostics or whether it was a coinfection with a stx-harboring strain
that was the cause of the HUS, while STEC isolation was unsuccessful from the patient’s
stool sample [26].

Since another stx2f-carrying E. coli strain, identified as STEC/tEPEC hybrid pathotype,
with serotype O63:H6 was isolated from the same patient in this study fifteen weeks
earlier, we speculated that the stx2f-encoding phage was transferred from this strain to
the O157:H16 strain in the intestine of the present case. This hypothesis is plausible as
stx2-harboring phages, released from STEC strains, infecting other E. coli strains have
been described [13,19]. Based on comparative genomics, three lines of evidence support
this hypothesis. First, the same integration site, near the ssrA gene, was identified for
the predicted stx2f-harboring prophages obtained from both strains, EH4183 and EH4279.
The ssrA locus was also present in the aEPEC O157:H16 strain 98-3133 examined in this
study and represents a hot spot for the integration of phages into the bacterial genome
of Enterobacteriaceae [15]. Second, the results in this study showed that the predicted stx2f-
harboring prophage sequences obtained from both strains, EH4183 and EH4279, were
highly similar (99.6% identity over 96.1% coverage). The uncovered region, located in the
upstream extremity of the predicted stx2f-harboring prophage sequence within EH4279,
contains an integrase-encoding gene (intA) and a gene annotated with a predicted function
of integrase (gene1107). These CDSs shared 100% identity to two CDSs present in the aEPEC
strain 98-3133, suggesting that these CDSs are part of the bacterial host genome, flanking the
integrated stx2f-harboring prophage. This is possible as, adjacent to these genes, both stx2f-
harboring prophages in EH4183 and EH4279 shared the identical integrase-coding sequence
intQ, which is absent in strain 98-3133. Third, based on comparative cpMLST analysis,
both prophage sequences clustered together and differed only by seven out of the 67 stx2f-
phage associated genes. Indeed, three CDSs—coding for a transposase, an integrase, and a
hypothetical protein—found on the extremity of the predicted stx2f-harboring prophage
in EH4183 showed no significant similarity to those in EH4279. The additional differing
four genes were predicted to encode tail-related proteins (96.6–99.5% identity and 100%
coverage). A previous study demonstrated that the tail fiber gene encoding protein J,
associated with host recognition, was highly conserved among most of the short-tailed
phages [43]. Another phylogenetic study showed that both short- and long-tailed phages
contained tail fiber genes sharing high nucleotide identities [44]. Yet, it has also been shown
that mutations associated with a host range are located in the C-terminal part of protein
J [45]. In the present study, we observed that the differences between both analyzed stx2-
harboring prophages were also in the last distal portion of the gene encoding for protein J.
We could emphasize that, under selective pressure, e.g., a prolonged period of intermittent
diarrhea, these mutations enabled adaptation of the phage to a new bacterial host in the
gut of the present case [46]. Taken together, these data largely support the fact that the
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stx2f-encoding phage was incorporated within the E. coli strain EH4279 in the intestine of
the presented case during infection.

The other well-known virulence factor identified in the genome of EH4279, while
absent in publicly available aEPEC O157:H16 strain 98-3133, is CDT type I. CDT type I
has previously been reported in numerous human stx2f -carrying E. coli isolates [10]. In the
EH4279 strain, the cdtABC gene cluster was located on the extremity of the stx2f -harboring
prophage as reported previously for phages carrying genes for CDT type I [47]. To our
knowledge, the association of CDT and stx2f on a prophage has only been reported once
for stx2f -carrying E. albertii isolated from humans and wild birds in the USA [15]. The
production of CDT is thought to be associated with increased invasion, persistence, and
disease severity in various bacterial pathogens [15]. So, in the present study, CDT type I
could have contributed to the pathogenicity of EH4183 and EH4279.

It is a well-known fact that infections caused by stx2f-carrying E. coli strains tend to be
underreported since certain molecular gastrointestinal assays for laboratory diagnosis of
STEC infection do not detect stx2f [4,7]. Indeed, subtype Stx2f is the most divergent of the
known Stx2 subtypes, showing very low homology with other subtypes [48]. Therefore, as
stated already in previous reports, the inclusion of stx2f primers can be of importance for
the accurate diagnosis of STEC infections, certainly in patients with HUS.

Although the benefits of gastrointestinal assays have been demonstrated [49], the
clinical interpretation of co-infections can be challenging. Indeed, in the present report, the
gastrointestinal targets E. coli O157-stx1/2 were detected in combination with Campylobacter
spp. and Sapovirus. A similar combination without Campylobacter spp. was obtained
2 weeks later, which is in line with previous reports showing that follow-up tests within
4 weeks of a positive test redemonstrate the initial pathogen(s) due to residual genetic
material or colonization [49]. Of particular attention is the E. coli O157-stx1/2 combination
that, once detected, was notified to the regional health inspection authorities, suggesting
the presence of a highly virulent STEC of serotype O157:H7. Additionally, the E. coli
O157-stx1/2 combination was detected over a time interval of 15 weeks, assuming that the
child continued to shed STEC during this period of time. Prolonged shedding of STEC
has been reported in children aged <6 years [50], questioning the need for the isolation
of long-term STEC carriers to prevent its spread. Yet, most endemic STEC strains have a
low pathogenicity and would not substantiate social exclusion stipulations [51]. So, the
true composition of the clinical sample could be of importance for proportionate case
investigation, balancing the risk of pathogen transmission against imposing unnecessary
restrictions on cases.

In summary, we describe the first report of two stx2f-carrying E. coli strains with
serotypes O63:H6 and O157:H16 isolated from a child with uncomplicated diarrhea. Com-
parative genomic analysis revealed that the STEC O157:H16 strain was closely related
to aEPEC O157:H16 strain 98-3133. The stx2f-harboring prophages of the two distinct
STEC strains isolated from the present case were highly similar, suggesting that the stx2f-
harboring phage might have been transferred from the STEC/tEPEC O63:H6 strain to the
aEPEC O157:H16 strain in the gut of the child.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/pathogens13111002/s1, Figure S1: Circular maps of the chro-
mosome and two plasmids of strain EH4183; Figure S2: Circular map of the chromosome of STEC
O63:H6 strain EH4183, with indication of the predicted prophages; Figure S3: Circular maps of
the chromosome and two plasmids of strain EH4279; Figure S4: Circular map of the chromosome
of Escherichia coli O157:H16 strain 98-3133, with indication of the predicted prophages; Table S1:
Non-exhaustive list of publication with characterized O157:H16 strains; Table S2: Absence/presence
of E. coli virulence factors in the two stx2f-carrying strains of the present study; Table S3: Allelic
profile of the stx2f-prophage associated genes obtained for the two stx2f-carrying strains of the
present study based on the core Stx2f phage Multilocus Sequence Typing (cpMLST) scheme of van
Hoek et al. [10].
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