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Introduction 
The REACH (Raising co-creativity in cyber-human musicianship) project aims at 

modeling and enhancing co-creativity as it arises in improvised interactions 

between human and artificial agents (or between agents), through a wide spectrum 

of practices spanning from performing live with computers to mixed reality 

involving instrumental physicality and musician embodiment.  REACH is a wide 

ranging project funded by the European Research Council, directed by Gérard 

Assayag and led in partnership with UCSD (Pr Shlomo Dubnov) and EHESS (Pr 

Marc Chemillier).  

Modeling and enacting improvisation through AI algorithms (Assayag 2021, 

Dubnov 2021, Chemillier 2021) has been an ongoing activity at Ircam in the group 

led by Assayag for a number of years, with a conception of human-machine co-

improvisation founded on structuring oppositions such as : anticipation / surprise, 

reactivity / planification, discovery / action, purpose / conformism etc. These 

qualities inspired by observation of great human improvisers have raised significant 

research challenges when it came to master them through engineered, cognitive or 

machine learning approaches.  

These works have led to a family of operational systems such as the Omax 

environment (Assayag & al 2004, 2006) and its many heirs (Nika & al 2017) that 

have made their mark as evidenced by the number of scientific and artistic 

production (more than a hundred public performances including world-class — 

human — musicians and concert places). 

From there, REACH is now pushing further the boundaries in three main 
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directions : integration of deep learning methods  (VAE, transformers, Gan, etc.) to 

deepen the latent spaces underlying these systems’ musical knowledge (Dubnov & 

al 2022, Dong & al 2023, Carsault & al 2021) ; developing the self-reliance (in the 

sense of agent autonomy) of artificial players to enhance their co-creative offerings 

in interaction ; and set a strong social sciences research context to observe, interpret, 

and get feed-back from the new praxis induced by these radically new directions in 

music (Chemillier 2021). 

Achievements of REACH in the software domain so far are the recent 

finalization of Dyci2 (Nika & al 2017) as a full scale environment and the inception  

of Somax2. This article will focus on Somax2.  

After exposing the research methodology of REACH, from the epistemological 

underpinnings to the learning strategies, the article will proceed shortly through the 

genealogy stemming from the founding Omax interaction paradigm, explaining the 

specificity of each new branch that split up from it in terms of diversification of 

cognitive improvisational abilities, then the Somax2 philosophy, model and 

architecture will be described. 

REACH 
As for the working hypothesis, REACH is based on the idea that co-creativity in 

cyber-human systems (Assayag 2020, 2021, Lewis 2021) results merely from the 

spontaneous emergence of joint behaviors in collective settings, building up non-

linear regimes of audible structural occurences, leading to rich musical co-evolution 

of forms. We assume that this distributed creation is induced by cross-learning 

mechanisms between (artificial or human) agents, involving multiple feedback 

loops and reinforcement channels. As is usually the case for emergence phenomena 

in complex systems, the resulting musical dynamics is not reducible to, nor 

explainable by the mere observation of individual agents’ behavior : it is a 

transitional, sometimes ephemeral effect of the interaction itself and as such 
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intrinsically a co-creative production. This recalls of course Norbert Wiener's 

Cybernetics as self-guided systems, with an emphasis on the idea of cross-feed-

backs and influence between agents (Wiener 1948). 

By producing emergent information structures as a result of cyber-human 

interaction, we might achieve an epistemological leap beyond the classical 

philosophical difficulty of conceding the faculty of creativity to artificial systems 

(which are not reflexive subjects — yet), by assessing that creativity is not a state 

anyway, but rather a highly dynamical (and ephemeral) effect of agent interaction 

in a complex system. This is why we put forward the term “co-creativity”, enforcing 

the idea (often noted in computer music) that a highly creative system can very well 

be based on interacting components that are pretty simplistic themselves. 

We put in place a multi-disciplinary (music, computer science, social sciences, 

cognition) research ecosystem allowing us to answer two central questions:  

• How to augment the digital agents capacities with enhanced 

computational creativity and cyber-physical extensions, so they can 

develop convincing interactions with humans ;  

• How to augment the human capacities by expanding their individual 

and social creative potential through novel collaborative strategies and 

mixed realities, so they can naturally immerse themselves in complex 

settings involving digital intelligence.  

In effect, we believe that “computational creativity” (Wiggins 2006) will socially 

take root when it eventually creates the conditions of emergence of cyber-human co-

creativity as presented above, and when it actually clings to an augmented physical 

reality allowing users to experience a rewarding embodied relation. 

Somax2 is an early step in that direction allowing rich improvised interaction 

scenarios that we can experiment in real-life performances with top-level musicians 

bringing invaluable feed-back and musical ideas. Somax2 is quickly gaining 
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momentum in professional scenes with major artists such as Bernard Lubat or Joëlle 

Léandre (whose lifetime achievement award ceremony is organized in 2023 in New 

York) actively experimenting and creating content, with concerts scheduled at 

mainstream venues such as IRCAM - Centre Pompidou in Paris and the Improtech 

Festival where the software will be on stage with the legendary Evan Parker in 

addition to the above. Other scenes where the software has been performing at 

different stages of development include the Onassis Center in Athens, the 

Annenberg Center in Philadelphia, the KLANG festival in Copenhagen, the 

Philarmonie de Paris Concert Hall. 

Audio and video examples of recent artistic experiments with Somax2 as well as 

Somax2 installation, sources (Somax2 is OpenSource)  and demos can be found here: 

https://www.stms-lab.fr/article/somax2-examples-for-cmj 

 

Similar Works 
The idea of improvising agents fed by AI-inspired algorithms and likely to 

enable situations of musician machine co-creativity has been pioneered by George 

Lewis with his system Voyager in the eighties (Lewis 2000, 2021). Lewis' agents 

were inspired by AI developments  of the time  and reproduce separate cognitive 

functions that cooperate or compete to make musical decisions. Since then several 

improvisation environments have been proposed. Tatar and Pasquier have 

published a general survey on "Computational Creativity, Multi-Agent Systems and 

Artificial Intelligence" (Tatar & Pasquier 2018). They have coined (along with 

Shlomo Dubnov, part of our REACH project) the expression "Musical MetaCreation" 

for this research field, which significantly intersects the topics discussed in this 

article. These authors have themselves used in some of their works the SOM Model 

discussed further in the Somax2 presentation (Tatar & Pasquier 2017). Following the 

agent classification they propose, the Somax2 system would be considered 
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ultimately hybrid since it combines architectural traits usually found separately : 

statistical learning (Conklin 2003), cognitive algorithm (Maxwell & al 2012), 

neural/SOM representation space (Briot 2019) and reflexivity through self-listening 

(a trait we have not seen elsewhere). Its interaction strategies encompass as well the 

three different modes identified by the authors : learning from humans, controlled 

by humans, and playing with humans — that may strongly contribute to a lively 

improvisation environment (Blackwell & al 2012). Somax2 pertains to the REACH 

co-creativity paradigm, where creativity can be understood only through the 

emergent properties distributed agency in live interaction, a depart from classical 

studies on artificial creativity (Wiggins 2006). As such Somax2 is to the best of our 

knowledge a unique and rich system, complete with a novel model of dynamic 

musical memory and advanced coordination of listening, recognition, matching, 

anticipation, and decision skills. 

The Omax galaxy 
Somax2 belongs to a family of related research and implementations on machine 

improvisation. They share a sequential model, that we call “memory”, learned from 

live or offline music streams, that is explored interactively at performance time with 

various types and degrees of constraints. These system stem from the seminal Omax 

system (Assayag & al 2006). 

Omax was dedicated to non-idiomatic and non-pulsed improvisation. It learns 

typical features of a musician's style in real-time (or off-line) and plays along with 

them interactively, giving the flavor of a machine co-improvisation. Omax uses a 

fast statistical sequence model delivering a semantic representation and allows 

immediate  recombination and transformation of the captured material. We coined 

the term Stylistic Reinjection to express this particular way of interacting with one's 

musical clone. Omax listens to learn, but does not listen to play, and it plays 

stochastically the model learned, so it is "low reactive" and "low planning". A first 
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descendant of Omax was ImproteK (Nika, Chemillier, Assayag 2017) now known as 

Djazz. In addition to Omax's listening and modeling capacities, Djazz features the 

notion of long term scenario and beat structure, where a scenario is an external 

sequence of labels in the same symbolic language as the representation learned. 

Djazz creates anticipations in the model that best match both the future of the 

scenario and the memory structure, and reconsiders them depending on the 

evolution of the context. DJazz is not reactive and thus "low reactive" "high 

Planning".  

Dyci2 was intended in the first place as a way to synthesize all these different 

flavors of an improvising musician ("high reactive" "high planning" while keeping 

all the fluidity of Omax free improvisation skills), in an integrated approach, but it 

actually evolved to yet a new improvisation paradigm, introducing the notion of 

short-term scenario ! Dyci2 builds on general audio-descriptors clustering methods 

and lets the user specify micro-scenario, expressed in this descriptors classes 

language, that are triggered as response to input flow. It is moderate on reactivity 

and on scenario. 

Thus Somax2 is the "high reactive" "low planning" environment described in this 

paper as we will see in the next section. It implements a complex memory model 

allowing to identify and evolve through time a collection of matches between the 

input and the model, and to provide both fast response and a sense of anticipation 

that make it fit for improvisation. 

Before all these interaction paradigms get a chance to be integrated in a full scale 

co-improvisor, we have pushed every of them to become highly sophisticated 

specialized environments, and it is not uncommon that we use several of these 

programs simultaneously  in concert  in order to cover the different flavors of 

improvisation. Figure 1 shows the Omax paradigm legacy and the large amount of 

research and development that it has inspired in many places. 
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Figure 1. The Omax legacy. 

 

Somax2 
As main characteristics with regard to its siblings, Somax2 features hyper-

reactive AI agents that may listen to, make musical sense from, and react to human 

musicians or other likewise agents (including themselves as a source of self-

assertiveness. By this we mean that there's a "self-listening" channel creating 

inferences that can contradict the external influences, just as it could happen with 

humans !). This strong autonomy is balanced by their instrumentality, that is the 

capacity for humans to take control and continuously drive their generative power 

as they would do for an instrument, so there’s a variety of flavors in  Somax2 from 

pure generativity to instrumented live electronics action. As for it siblings, Somax2 

is a memory based system, that is  it creates new content by forcing a new way 

through material it has learned off-line or live, based on statistical sequence 
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modeling (Assayag 2004, Déguernel & al 2018, 2019) and/or music information 

dynamics (Wang & al 2016, Dubnov 2021, 2022). 

Somax2 has been provided with a set of decisive features structured around 5 

mains “skills”  :   

1. a latent space built once for all by machine learning algorithms trained 

on large musical data collections, encoding the general harmonic and 

textural knowledge ;  

2. a discrete sequential learning model able to figure out the pattern 

organization of musical streams and form a state-based memory structure 

(a local or stylistic knowledge);  

3. a dynamic cognitive memory model able to evolve continuous 

activation maps over the state structure, representing the hotspots 

reacting to ever shifting internal and external influences and viewpoints ;  

4. a real-time machine listening device able to segment, analyze and 

encode musical streams in discrete components continuously matched 

against the memory through the latent space;  

5. a set of interaction policies determining how and when to react to 

influences. 

Creative agents (called Players) in Somax2 combine these skills in order to 

acquire stable semantic knowledge, create perceptual communication channels with 

the external world or between themselves, perceive or generate musical influences 

that will condition their individual reactions to an evolving context and to the fast 

transformations of their internal states. The AI learning aspects of these skills and 

the technical architecture by which agents combine them into highly efficient 

information flows and distributed processing will be described below. 

As for skill 1 (training), a collection of copyright-free Midi files with solo and 

ensemble music from baroque to XXth century was used in the first place. Although 
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this obviously involves cultural bias toward western tradition, this impacts only the 

textural / harmonic features used for matching. Continuous pitch tracking and the 

possibility to load agents with audio materials from any tradition makes Somax2 fit 

to co-improvise in other settings, as has been experimented already with Maqâm or 

Indian-Japanese instrument ShahiBaaja. 

As a reactive environment, Somax2 uses at its core the concept of “influence” 

understood as an interpretation of the raw musical content (audio, midi) circulating 

in the system, through multiple viewpoints chosen from available musical 

dimensions (melody, harmony, texture, timbre, rhythm, etc.). Flows of influences 

coming from multiple sources — including the “self” — constantly reshape the 

agents’ cognitive state and determine their purpose and their responsiveness in the 

context of a global performance where a collectivity of human and artificial subjects 

participate and bond together. This influence system acts asynchronously on the 

memory model by continusously shaping the activation profile, and all sources of 

influence (musicians, other agents, self-influence) are processed in a concurrent way 

and merged into the current profile. The decision to play at time t is conditioned by 

this rapidly evolving memory map mixing a great number of factors into a 

probability distribution. This influence system that somehow mimics the high 

parallelism of the brain is unique to Somax2 to the best of our knowledge. 

It proves to be a powerful way to evolve co-creative scenarios, as documented in 

audio and video archives we are preparing to make available to social science and 

experimental studies, such as the one we carried on  improvisers concordance 

strategies in (Golvet & al 2021). It is, in effect, fascinating to see how highly skilled 

human performers reshape their musicianship when interacting with AI algorithms 

trained on familiar or uncommon musical content (Bloch & al 2018). 

Somax2 Multi-Learning Model 
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Somax2's learning model is twofold. A general latent space embeds musical 

knowledge learned once and for all with a model trained on large collections of 

pieces spanning five centuries of western music. Agents are specialized by learning 

specific materials that  stylistically inform them and give them personality. So an 

agent always keeps a course between the general knowledge (of a textural nature), a 

specific style (navigating a musical memory subspace), and a live context 

(constraining the navigation by listening and reacting). 

AS for the general textural knowledge, a SOM (self organising map) and a 

Convolutional VAE (variational autoencoder) have been experimented with so far. 

SOM’s (Kohonen 2013) are pre-deep learning, unsupervised neural networks 

using competitive learning and producing topologically organized low dimensional 

feature spaces. They builds on biological models of neural organisation resembling 

cortical feature maps (Bednar & Wilson 2016). Toivianen pioneered the musical use 

of SOM’s (Toivianen 2005) to correctly map tonal centers, using a toroidal topology 

where close cells mapped close music-theoretic keys with fifth, relative, or parallel 

relations. We used a more massive approach, feeding the network with hundreds of 

midi-files segmented in beat units reduced to chroma vectors computed from the 

pitch content enriched by pitch harmonics up to a certain rank. As a result, 3600 

chromas were clustered into 121 SOM "textural" classes. While keeping the 

underlying tonal reference as a baseline, the idea was to provide a textural mapping 

engine that would apply to complex polyphonic or timbral mixtures as well in the 

symbolic (Midi) or the audio domain (where constant-Q chromagrams are used). 

As for VAEs (Diederick 2019) an autoencoder is a non-supervised machine 

learning model consisting in an encoder e which compresses the data x in a lower-

dimensional (latent) space, and a decoder d that "reconstructs" the data such that 

 . A variational autoencoder (VAE) consists in an inference (encoder) 

and a generative (decoder) deep neural networks that parametrize the likelihood 

̂x = d(e(x)) ≈ x
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and approximate the posterior of a latent Gaussian model. Since latent codes are 

parameters of probability distributions (mean and deviation) for each data sample, 

VAEs latent space naturally underpins a Riemannian manifold structure (where 

points are probability densities) susceptible to be studied by information geometry 

(Chadebec & al 2022). So a latent code is really a distribution from which a new 

sample can be generated. 

Using a corpus of J.S. Bach Chorales available in Music21, and reducing the 

corpus again to beats-chromas (enriched by harmonics)  "slices", we trained a β-

VAE with 2D convolutional layers,  effectively shaping a structured latent space of 

chromas (Feldman 2021). In order to evaluate this space and compare it to the SOM, 

we built a labeled synthetic data set of chromas, comprising of the 24 major and 

minor chords enriched harmonically, and projected this set into the VAE latent 

space by feeding it into the encoder. We did the same in the SOM space, this time by 

matching the elements of the set with the closest SOM chroma class center. We then 

considered only the 24 centroids of the clouds corresponding to each chord in the 

2D space obtained by PCA reduction as in figure 2. 

 
Figure 2. Chords data set projected in the VAE latent space. Variants of the same chord appear as compact 

clouds. 3dimensional VAE codes reduced to 2D by PCA. 100 learning epochs (left), 299 epochs (right). From 
(Feldman 2021) report. 

We set a measure of compacity C to evaluate the latent spaces power of 

representation, i.e. to what extent close points in the latent spaces do correspond to 

close elements in the harmonic system. We compute the average euclidean distance  
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of each  point to its K nearest neighbors in the chroma domain (Carsault & al 2018) 

and average over the whole space to give it a global score C. We take as a ground 

reference the Tonnetz where chords neighbors are related by neo-riemann LPR 

relations (Cohn 1997) expressing largely accepted common harmonic proximity. 

Compacity is computed the same way (chroma distance between close neighbors) 

for the SOM and the Tonnetz. The compacity results are C = .28 for the Tonnetz, C = 

.42 for the VAE 3 dimensions latent space (the number of dimensions achieving the 

best result), and C = .52 for the SOM, showing that the VAE is the best learning 

model so far. The difference with the Tonnetz supposedly optimal result also shows 

that by training over polyphonic data sets presenting a great variety of pitch 

combinations, we are able to organize a significant amount of complex textures, but 

we thereby introduce noise in the latent space, somehow blurring the simple 

harmonic relations : constructing a latent space that is friendly to arbitrarily 

complex sonic textures while maintaining optimal coherence with simple harmonic 

relations is yet an open research issue, so we stick with this compromise for now. 

Somax2 In a nutshell 
Somax2 agents are loaded with a local stylistic knowledge space (called a 

Corpus) providing a dynamic musical memory at run time, and weave a "co-

improvisation" by navigating their musical memory while being sensitive and 

reactive to the external context (live musicians or other agents). 

Let's say you hear the first notes of the song “Michelle” by the Beatles (or any 

other melody that you actually know). This automatically activates the memory of 

that melody, that should then keep singing in your head even in the absence of the 

external input, lighting up areas of cortical maps and creating brain activation 

patterns. This simple analogy serves as the basic behavioral model for Somax2. 

Musical streams unfold over time. Different views can be used to interpret them, for 

instance as sequences of pitch, mfcc vectors, chromagrams, onsets etc. When an 
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element or a sub-trajectory is recognized from a stream (e.g. a fragment of a melody, 

a chord progression, a rhythmic pattern),  corresponding areas of the musical 

memory get activated like hotspots. At all times, the machine tries to ‘understand’ 

the current musical situation, which comprises both its own playing and the live 

environment, under all the different musical views available. Hotspots are 

considered relevant for the current musical time and map materials that apply as 

best candidates to be played in order to fit the current musical flow and move it 

forward. 

Navigation strategy 

To build a Corpus from musical data in the form of an audio or midi  file, the 

first step is to segment the musical stream into discrete units or «slices» between 

two event onsets. Each slice is analyzed and classified with regards to a number of 

musical features, s.a. pitch, texture, timbre, dynamics, rhythm etc., , and these 

features will serve as the main basis for constructing the navigation model. The 

textural clustering is done with regard to the latent space chosen, i.e. two slices 

belong to the same class if their texture (more precisely their chroma content) 

encodings are close in the latent space.  

From the sequence of slices a statistical sequence model is built that expresses 

the motivic organization (the structure of repetitions and variations). Statistical 

models used so far are variable markov models (Cheng-I Wang & al 2016) such as 

Factor Oracles as in Omax  (Assayag & Dubnov 2004) or simply collections of n-

grams. This is repeated for each feature in the analysis, effectively resulting in a 

multilayer representation (StreamViews). The statistical model accounts for short 

term memory and continuity when recombining patterns at generation time. The 

original musical content along with the metadata generated by the multilayer 

classification and sequence model are stored as a corpus file. At run time, an agent 

loads a Corpus file into a dynamic musical memory structure, or navigation model. 
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Figure 3. Somax2 basic workflow (in the Midi version), with as example pitch and chromas (harmony or 

texture) descriptors layers or StreamViews, and the "self" (feedback) layer. Not shown here, the feedback itself 
subdivides similarly into feature layers. 

Influences and activations 

When a musician interacts with an agent, their stream goes through the same 

process of segmentation and multilayer feature analysis and classification, 

producing a stream of “influences” of different types. Moreover, the stream of input 

features goes through an echoic memory simulator based on a leaky integrator that 

simulates the persistence of percepts and "thickens" the textures, and through a 

sequence model that groups unit "slices" into patterns, so a short term memory of 

the input stream is always maintained up to a given depth that is a parameter of the 

system. Influences are matched to the content of the navigation model, generating 

continuous activations, or «peaks», at certain locations in the musical memory, 

where the input recent history is similar to memory subsequences ending up at 

these locations, with regard to features / classes. 

Each peak is similar to a narrow gaussian over a location in the memory, so the 

entire set of peaks can effectively be seen linearly as a one-dimensional continuous 

influence curve, after peaks from all the feature layers (StreamViews) have been 

merged by linear combination as in figure 4 
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Figure 4. linear combination of influence peak profiles organized by StreamViews (left) and the 
Shift/Decay/Merge mechanism updating the memory peak profile at each time step (right) 

 

Somax2 updates the memory peak profile at time t  by merging the current 

influence curve with the peak profile at time t-1 shifted by one memory time unit 

and exponentially decayed. This shift/decay/merge mechanism expresses a form of 

persistence of the influences, and reinforces the short term sequential model : 

suppose an influence A has raised hotspots at a series of locations {Ai} in memory. 

At next time unit t+1 an influence B arrives and lights up locations {Bj}. If it 

happens that there are memory locations where AB appear in sequence, the peak in 

B will be enforced by the shifted A from time t. This of course enforces matches with 

subsequences matching the input history, moreover this extends the primitive 

sequential model to a novel fuzzy pattern recognition scheme. In effect, it is easy to 

see that if ABC is heard at the input, all the ABC-conformant patterns will be 

reinforced in the memory, but also (and with a lesser gain) more loosely similar 

ones such as AxC, xBC etc (see figure. 5). 
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Figure 5. When inputting the sequence ABC, shift/decay/merge mechanism will recognize patterns ABC, 

but also BC, ADC, C, etc. effectively resulting in a fuzzy pattern recognition.  

In addition to “external” streamviews that characterize the external input to a 

player, there's also a feed-back layer that listens to the generated output of the agent 

itself. It uses the same influence mechanism and generates peaks at locations 

“predicted” (by the sequence model) from the recent events played by the agent. So 

the self-coherence induced by the sequence model, that encourages the player to 

generate stylistic variations induced by its learned corpus, comes into balance with 

the sharp reactivity to context, which prompts the player to go into directions that 

respect and magnify the recent history of external influences. This tends to  conform 

an agent somehow gifted both with a musical ear and a stylistic “culture”. 

Finally, all the different views are weighted and combined so as to give an 

activation profile pointing to places in the musical memory that best match the 

current musical flow. Depending on the relevance of each view (how much they get 

activated), as well as the weights attributed to each of them, the machine will be 

showing a more “harmonic” (or melodic, or timbral, or rhythmic etc.) ear. It will 
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also be more prone to respect its internal logic and follow its own idea, or rather 

match as closely as possible the current external musical situation and show that it 

does “listen”. 

Finally, .. let’s Play 

Finally the peak distribution in an influence profile,  continuously shifting and 

reshaping with the evolution of the external context and of the 

navigation/generation  process itself is observed as a probability distribution in 

order to make a decision on the next element to play, by choosing a memory event 

at a significant peak location, until the request to play. 

An important control of interaction dynamics consists in tuning the balance 

between the different musical dimensions of influences, as well as that between self-

influence and sensitivity to external context. The Somax2 GUI gives an extensive set 

of controls for these and many other  parameters (figure 6a). 

So the general interaction loop for a player can be summed up as : continuously 

collect influences coming from all sources (self, input, other players etc.) and update 

memory peak profile accordingly ; respond to next-event requests by choosing an 

event in memory and output it. Next-event requests depend on the chosen 

interaction strategy which is a  parameter of the system controllable through the 

GUI : it may depend on triggers induced by input events recognition based on 

energy, feature recognition such as pitch or texture estimation, pattern recognition, 

self auto-play next-event signals, clock signals, etc. 
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Figure 6. Somax2 usual GUI (right) and a player detailed (left). Inside a player, from top to bottom : 

source influence routing interface, streamview layers balance for self and external influence, statistical model 
variable memory length, matches visualisation, output influence interface, rendering interface. 

By keeping a parsimonious trace of the different places that were activated and 

by accumulating evidence for places that are relevant sequentially and in time, the 

process is able to detect the places in the memory that make more sense in the 

current musical situation, while taking into account recent past activations, hence 

proposing a solution to the locality problem (when a system reacts with a limited 

listening time scope thus missing the long term coherence of the input), and 

providing a form of anticipation. Typical example of the locality problem is that if 

you actually play literally the melodic part of a given corpus, the agent should 

theoretically respond by following the original path and purely replicating the 

corpus, which does not happen in general.  

An important question arising when proposing a generative model is that of 

evaluation. How do we establish that the Somax2 productions are satisfying ? Of 
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course, the first intention is to observe human reactions. Are they pleased and 

stimulated to play with the system, are they ready as professional artists to engage 

their reputation by performing in major venues with the system, do they consider 

the musical experience as novel, rewarding, and creative. These questions are 

handled by the social science research branch of the REACH project using the 

methods of interviews, collecting artists feed-back, and audience feed-back as well. 

More deeply, these researches pose the question of social acceptability of new 

musical forms involving interactive AI on stage in the musical communities 

concerned. An upcoming publication in the "Cahiers d'ethnomusicologie" by Marc 

Chemillier and Yuri Prado in the REACH project will address this question in the 

case of a popular French-Malagasy musician, Charles Kely Zana-Rotsy, who has 

included AI REACH software in his Malagassy-Funk band line-up for a series of 

concerts, thus validating the acceptability criteria in this particular situation indeed. 

On a more computational track, Shomo Dubnov has recently initiated researches in 

REACH to characterize the info-theoretic transfer of information between a control 

signal (the human) and a resulting signal (the response of the virtual improviser). 

Two known measures, the mutual information and the information rate (Dubnov 

2021) are combined to propose an estimation of the transfer entropy, whose value 

could be considered as a marker of the quality of co-articulation between two co-

improvisers (Dubnov, Assayag, Gokul 2022). This approach could not only bring 

progresses in the evaluation question, but also provide a new kind of loss function 

for deep generative learning of improvised styles. 

Somax2 Model 
We detail here only the memory activation - selection part of the Somax2 core 

model.  

Memory activation model 
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The guidance of SoMax is fully conducted according to the activity principle. An agent 

possesses a sequential musical memory constituted by musical content (e.g. an audio buffer, 

midi data, ) and analytical metadata organized in memory views (StreamViews). A memory 

view is a segmentation of the memory into m events {eventi} at places i=1...m, classified 

with regard to some general space of representation (called κ-space). An example of κ-space 

is the set of pitches, or the textural latent  space modeled by the chroma SOM described 

above.  Now let Ot be an observation "heard" either from the external context or from the 

generation itself.  For a given StreamView and associated κ-space each place i of the 

memory will be stimulated according to an activity level  αi ∈  (0..1) , which quantifies the 

similarity between eventi and observation Ot as evaluated through the chosen κ-space. This 

means that a certain class of representation κi (e.g. a pitch class, a chroma class, a chroma 

VAE encoding) from the κ-space has been deemed the same for Ot and eventi. 

For example, with κ-space = SOM, αi is related to the Euclidean distance di between 

two chromagrams : the one extracted from Ot and the one at the center of the SOM class 

that relates Ot  and eventi :  αi = exp(-cdi), for some scalar c. 

By extending this principle to sequences of states, it is possible to obtain an activity 

depending on the past of the improvisation, by comparing the sequences Ot-n... Ot  with 

∀	i ∈		)n, m) κi-n…κi , i.e. a continuity with a past of n states. In order to facilitate the fast 

access to these sequences, an efficient statistical sequence model s.a. a Factor Oracle or an n-

gram hash-table is built over the memory and associated to the view. 

Let be a relative time scale function of time, ξ≡Ψ(t) which can be dependent e.g. 

on a beat/tempo structure (in the case when beat is relevant, the decimal part will 

represents phase inside the beat).  

If a memory place j whose corresponding eventj is located at date ξj (in memory time) is 

activated, the activity is modeled as a Gaussian around this date ξj. For any other memory 

date ξ , the contribution of j to its own activation level is : 
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where σ represents an activation time spread, and aj the activation at j . The total 

activation of the position ξ in the memory is therefore the sum of these contributions 

 

 

It is important to make the difference here between the two temporal scales that we 

manipulate :  the time of the memory and the time of the performance. Up to now, 

performance time was “frozen” and we were reasoning on memory time. 

Let us stimulate at performance time t a place j in the memory by an observation O(t). 

The peak caused by this observation at memory time ξj will not just appear and disappear 

when the external observations context will change. It will rather continuously shift forward 

in memory time as well as in performance time with an exponential  attenuation (as already 

seen in figure 5). This property can be written: 

 

 

Where τ	 is the time decay factor. This corresponds to a principle of perceptive 

persistence of information similar to echoic memory (Radvansky 2005) : it means that a 

place in memory, if it does not agree right now with the observation context but experiences 

a common past with it, is nevertheless perceptually relevant. Its activity level, i.e. its 

adequacy with the context, is however smaller than a direct match. This approach makes it 

possible to react to the present of the improvisation, without forgetting the near past, and 

enriches the strict sequential models with a fuzzy recognition capacity as seen in figure 5. In 

the end, the improvisation will be guided towards the places of the memory selected through  

a probability distribution directly  derived from the activity profile, sometime choosing 
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places that are not the best match with the present but that make sense with regards to the 

motivic memory, thus increasing the creativity of the system. 

Memory Selection 

Indeed, it is possible to interpret the activity of a place i at date ξ as the probability of  

being selected as the most context-sensitive with respect to current observation of the context 

o, using the softmax function 

   (1) 

where β  is a regularization factor.  P(ξ|o) can be seen as the probability of choosing ξ as 

a best match to the current musical flow. Alternatively, this probability can be seen as the 

probability that everything that has been observed comes from some unknown process that 

ends at ξ. What follows next in the musical memory is thus a potential candidate for a future 

match : 

 

Now it is easy to generalize to multiple memory views. Let us consider a case involving 

two views, corresponding to observations o1 and o2 with respective activities Γ1 and Γ2 

(generalization to more than two views is straightforward). Views o1 and o2 might be 

selected from e.g. external listening / harmonic view, and self-listening, pitch view (the UI 

lets the user configurate and weight such selections). We want to find the event that best 

matches the current musical flow, ie that maximizes P(ξ| o1 o2 ). Following Bayes rules this 

can be written as : 

 

Assuming independence and conditional independence given ξ of the observations and 

using Bayes’ rule one more time yields: 
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Assuming a uniform prior, we can write P(ξ)−1 as a constant K. Taking the log and using   

(1)  thus gives: 

 

Given that we are only interested in the argmax, we finally have: 

 

 

 

In other words, considering total activity Γ as the weighted sum of the two activities Γ1 

and Γ2 is actually motivated by Bayesian considerations. This is reminiscent of (and inspired 

by) multimodal sensory cue integration as in (Landy et al., 2011; Fetsch et al., 2012). The 

weight given to each of the views can be seen as the confidence in the relevance of the 

corresponding view. This concept of multiple activity is powerful because it allows us to 

extend the dimensionality of our reactive listening and to weigh the contribution of each 

viewpoint specific to different influence sources (external, self, players) and to various  

musical features (harmony, texture, melody, rhythm, ..). In addition, activity time is modeled 

continuously even though the memory’s event structure is discrete and sequential, so our 

different viewpoints do not need to be fragmented at the same granularity (ie event 

segmentation of the same musical content can be different from a viewpoint to another), 

which fits well musical reality where different dimensions progress at different paces (e.g. 

harmonic rhythm is slower than melodic rhythm). 

Heuristic guidance.  
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It is also possible to guide Somax2  through a “heuristic lead”  by artificially generating 

activity patterns that will constrain the navigation to serve a given musical purpose. For 

example predefined scenarios could be approximated by activating locations that match the 

scenario’s elements in an appropriate κ-space (e.g. soloing over a given harmony could be 

achieved by enforcing activity in the locations that match the current chord). We use in 

particular heuristic guidance to adapt dynamically Somax2 to pulse based context. Providing 

the corpus includes beat markings and the external signal has a pulsative nature, a memory 

view can adapt its clock to the external observations stream and try to continuously align to 

the external beat (using beat-tracking, a tap tempo or otherwise). Before selecting a location 

to jump to, the view generates a heuristic activity profile in the shape of a cosine with a 

period equal to the current beat duration and  with a phase equal to the current position 

within the beat (shared between memory time and performance time) .  

 

 

This will create strong activity peaks at positions {ξbeat-phase-i } in the memory that fall at 

the correct beat/phase place, thus making sure that the next jump will not violate the beat 

alignment. In the case ξbeat-phase-i  does not correspond to an event boundary, some heuristics 

has to be employed in order to keep the coherence of the generation stream. As possible 

solutions, a filter can be applied to select only dates ξj  that are close enough to an event 

boundary, ξe then account for the offset δ = ξj  - ξe then try to resorb this difference, either by 

slightly acting on the scheduler, or by reabsorbing it in the next jumps. 

Somax2 Architecture 
We give some details here on the concrete implementation. Somax2 is designed 

in a modular way as a framework composed  of two main components: (a) a server, 

written in Python, handling the offline construction of the corpus as well as the real-

time mapping and scheduling occurring in the navigation model described above, 
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and (b) clients (possibly running on different machines), written in MaxMSP (but 

other clients may be developed in other environments), handling the real-time I/O, 

the GUI, and the audio and midi rendering (figure 7). Each of these clients has a 

highly modular design, allowing the user to freely recombine the modules and 

easily extend them to implement new behavior. Main objects in the Max front-end 

have their own GUI and they communicate with a python back-end model through 

an OSC communication channel. 

 

 
Figure 7a.The client / server architecture of Somax2 

Max Front End architecture 

The Max architecture currently consists of four main objects: AudioInfluencer, 

MidiInfluencer, Player and Server. The AudioInfluencer and MidiInfluencer read 

from external inputs a continuous stream of audio or MIDI data respectively and 

perform the slicing and feature analysis steps described above. In the front end, the 

data resulting from this process is called an influence, which has to be routed to a 

player (and its Python back-end model) that will compute the following steps in the 

influencing process. The Player object is essentially a client for the corresponding 

Player class in the Python back-end, which handles all of the agent runtime 

architecture. Finally, the Server object handles communication with the Server class 
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in the Python back-end, which is the root of the entire system, handling all players 

models as well as the transport (i.e. the master clock of the event scheduling). A 

simplified diagram of the entire system can be seen in figure 7a, and a display of the 

same workflow through within the Max API in figure 7b. 
 

 
Figure 7b. Somax2 basic workflow. Somax2 can also be programmed directly as a Max library to build one's 

own application and GUI (tutorial by Marco Fiorini) 

The Player object in Max in addition to its main role as a reactive generator,  has 

been given two additional roles: routing and re-influencing. The routing module of 

the player (whose user interface is depicted in figure 8) lists all available influencers 

and players and receives influences based on what the user selects. The player also 

contains an influencer module (PlayerInfluencer) so it can itself act as a source of 

influence to other players. This way, arbitrarily complex interconnected networks of 

players / input modules can be setup and reshaped dynamically, also allowing 

circular relationship (Player A listens to Player B who listens to Player A, creating a 

form of “homeostatic” equilibrium). 
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Figure 8. The routing module of each player. Here, all influencers and other players are listed, and the 

user can select whether to listen to pitch influences (P), onsets (O) and/or chroma influences (C) from that 
particular source. As chroma influences are continuous, it’s also possible to give weight to chromas from 

different sources.  

A Model-View-Controller design pattern has been applied to ensure that no 

inconsistencies exist between the Python back-end (model) and the Max user 

interface (view and controller). Each object has been modeled so that multiple 

views/controllers may exist for the same data, so the GUI complexity can be 

tailored to everyone’s need. 

Python Back End Architecture  

The Python back-end is implemented as a parallel multicore architecture. This 

solution was chosen since an influence-generate cycle for a single player can in 

extreme cases take 30 milliseconds or more. This is still manageable providing the 

latency stays fairly constant. However this latency would cumulate for multiple 

concurrent players on a single core leading to unacceptable temporal unevenness. 

 

 
Figure 9.  Simplified class diagram over the Python component architecture  

Each Player runs in its own Process, thereby not impacting each other in terms of 
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performance, as long as there are fewer players running than free cores on the 

system. The Server is running two coroutines using the python asyncio module, 

where one coroutine  continuously receives messages from the (client) Max Server 

object over OSC and the other coroutine continuously updates the time of the 

scheduler Transport class and forwards the time to each Player. The controlled 

transport is intended for the case when an external time source is to take control 

(e.g. Ableton Live, a Max patch etc.) 

The Player class is also running two coroutines; one coroutine continuously 

receiving messages from the Max Player object (parameter updates, influences and 

onsets triggers) and one coroutine continuously receiving messages from the 

pipeline connected to the Server. These messages are queued through each Player’s 

scheduler (figure 9). 

Runtime architecture 

The runtime architecture (figure 10) handles all the influencing and output 

generation, it’s basically the core of the system. It can be seen in figure 9. At the root 

of the system is the Player class, through which all interaction with the system 

occurs. At the opposite end is the Atom, where each Atom corresponds to one of the 

r = 1, . . . , R layers. The Atom contains one Classifier instance, corresponding to a 

classifier Θ(r), one MemorySpace instance, corresponding to a model M(r) and one 

ActivityPattern instance, which handles storing, shifting, decaying and 

concatenation of peaks P(r). Inbetween the Player and the Atoms is the StreamView 

class. Each Player contains any number of StreamViews, which in turn is a recursive 

structure containing any number of StreamViews and any number of Atoms, 

effectively forming a tree structure where the Player correspond to the root of the 

tree, each StreamView correspond to a branch and each Atom correspond to a leaf 

of the tree. Each Atom and StreamView is assigned a weight α(r) (controlled by the 

user in the GUI) and at each branch in the tree, merging and user-controlled 
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filtering are performed by the MergeAction 

 
Figure 10. Interaction architecture. Dotted arrow lines denote "wireless" communication between objects 

while filled arrow lines denote their traditional UML relations (composition, generalization) and 
corresponding cardinality.  

Conclusion 
The Somax2 co-improvisation environment has been developed as the last 

descendant in date of the successful seminal Omax system based on real time style 

modeling and interaction. It brings radically new features such as strong reactivity 

based on machine learning and  a cognitive memory dynamic interaction model. It 

takes place in the framework of a large European Project, REACH, that addresses 

co-creativity between human and machines. Somax2 has shown during 

experimentations with world-class musicians that it is ready from the outset to 

interact with them and provide them, without any preparation on their side, with 

renewed playing interest. Somax2 is already scheduled to perform on stage with 

world-class musicians in mainstream concert venues and festivals.  
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