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Abstract

A stochastic SIR epidemic model taking into account the heterogeneity of the spatial
environment is constructed. The deterministic model is given by a partial differential
equation and the stochastic one by a space-time jump Markov process. The consistency of
the two models is given by a law of large numbers. In this paper, we study the deviation
of the spatial stochastic model from the deterministic model by a functional central limit
theorem. The limit is a distribution-valued Ornstein-Uhlenbeck Gaussian process, which is
the mild solution of a stochastic partial differential equation.
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limit theorem
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1 Introduction

A stochastic spatial model of epidemic has been described by N’zi et al. (2021) to study
the oubreak of infectious diseases in a bounded domain. Such a model takes into account
heterogeneity, spatial connectivity and movement of individuals, which play an important
role in the spread of the infectious diseases. It is based on the compartmental SIR model of
Kermack and Mckendrick (1927). Let us summarize the results in N’zi et al. (2021) in the case
of one dimensional space.

Consider a deterministic and a stochastic SIR model on a grid D of the torus T! = [0, 1) with
migration between neighboring sites (two neighboring sites are at distance € apart, e~ € N*).
Let Sg(f,x;) (resp. I¢(t,x;), resp. Re(t,x;)) be the proportion of the total population which is
both susceptible (resp. infectious, resp. removed) and located at site x; at time ¢. The dynamics
of susceptible , infected and removed individuals at each site can be expressed as

dSe B(x;)Se(t,xi)Ie(t,x;)

—(t ) — A S t ) —

dt ( ’x’) Hs Be 8( ’x’) Sg(t,xi)+Ig(t,xi)+Rg(l‘,xi)

dle B(xi)Se(t,xi)Is(f,xi)

—(t,xi) = W Aele(t,x; —o(x;) I (2,
5 (1%0) = iy Aele 7xl>+Sg(t,x,')+Ig(t,xi)+Rg(t,xi) o (x;) Ie (1, x;)

dR (1)
T;(t’xi) = ”RA€R8(t7xi)+a(xi)]8(t7xi)a (taxi) € (OaT) x D¢

SE(Oaxi)718(07xi)7R£(Oaxi) 2 Oa 0 < SS(Oaxi)+I£(07xi)+R£(07xi) S M7

for some M < oo,

Ag is the discrete Laplace operator defined as follows
Aef(xi) =€ [f(xi+&) = 2f (xi) + f(xi —€)].

The rates 8 : [0,1] — R4 and o : [0,1] — R are continuous periodic functions, and g,
Uy and ug are positive diffusion coefficients for the susceptible, infectious and removed
subpopulations, respectively.

Sg(t,xl) Ig(t,xl)
In what follows, we use the notations Sg(t) := : g (1) = : ,Re(2) :=
Sg(l‘,)([) Ig(t,)Cg)
Rg(l,xl)
: cand  Ze(t) = (Se(r), Le(r), Re(r))". Here £ = £
Re(t,xp)



Note that (1) is the discrete space approximation of the following system of PDEs

ds B (x)s(t,x)i(t, x)

3 ) s As( ) — e )

Ji B (x)s(t,x)i(t,x) ,

3¢ (%) =M + e e e ) @)

?( x) =UrAr(t,x) 4+ o(x)i(t,x), (t,x) € (0,T)xD
$(0,x),i(0,x),r(0,x) >0, 0 < s(0,x) +i(0,x) +r(0,x) <M

2
where A = —— . In the sequel, we set X := (s, i, r)t.

Let N be the total population size. The stochastic version of (1) is given by the following
system

)SNe (1) IN e (7, %;)
SNe(t,x:) = Sne(0,x;) pmf B (x; o
Ne (2, Xi) = Sne( N ( 0 SNe(rxi +[N€(rxl)+RNg(rx,)
L ([ i)+ § L, (5 [ o)
y;c,N le,y,( /O Nl y;c, S.yixi o €2 Ne(rYi)
)SNe (7 X)) Ine (7, Xi)
I t.x;) =1 0 me x, J
Ne(t,xi) = INe(0,xi) + ( 0 Sne(r) +Ine(rx) + Rue () r
1 t 1 .
NP;TC (N/() Of(xi)INﬁ(r,Xi)dr) — ;NPT;‘?W[ <N/O ;IN.E(raxi)dr>
Yir~Xi (3)
t
ng My ‘
+}§4x, Lyixi < /0 821N,8(r7yl)dr>
1 rec d
R (,%i) = Ry.e(0,%1) + pri N/O o (x; ) In e (1, x:)dr
t
p’ UR . Lk
,ygc N I?lxg, Vi ( /0 RNE 1, X; dr> Z PRu}ng ( / 2RN’8(r,yi)dr)

(t,x,-) S [O, T] X D¢

where all the P;’s are standard Poisson processes, which are mutually independent. For each
given site, these processes count the number of new infectious, recoveries and the migrations
between sites. y; ~ x; means that y; € {x; + €&, x; — €}.

Sne(t,x1) Ine(t,x1) RN g(t,x1)
Let Sne(r) = : Ne(t) = : RNe(t) = : ,
SN (t,x0) IN,s(t,xé) RN e(t,x0)
Zne(t) == (Sne(t), Ine(t), Rue(t))" and be (1, Zn e (1 Zh Bi(Zne(1)) (K being the

number of Poisson’s processes in the system), where the Vectors hj e {-1,0, 1}35 denote the



respective jump directions with jump rates ;. The SDE (3) can be rewritten as follows

it K t
Znelt) = Zn.e(0) + /O b (r,ZN,s(r)dH% Zlhjpj (N /0 B, (ZN,g(r))dr). )
£

Also the sytem (1) can be written as follows

dZ(1)

7 = be(1,Ze(1)). ®)

The authors show the consistency of the two models by a law of large numbers. More precisely,
the following two results were proved in N’zi et al. (2021).

Theorem 1.1 (Law of Large Numbers: N — oo, £ being fixed).
Let Zn ¢ denote the solution (4) and Zg the solution of (5).
Let us fix an arbitrary T > 0 and assume that Zn ¢(0) — Z¢(0), as N — oo,

Then sup HZN,«S(t) —Zs(t)H —0a.s., as N— +oo.
0<t<T

Moreover, for all x; € Dg, V; := [x; — €/2,x; + €/2) denote the cell centered in the site x;. We
define

-1 -1 -1

1] &€ &€

Sg(t,.x) = ZS&*(I,XZ):HV’( ) Ig t .x Zlg t s Xi ﬂv( ) Rg t .x ZRe t s Xi ]lv( )
i=1 i=1 i=1

Z B(xi) Ly (x Z a(x;) 1y, (x), and we set
Xe = (S£7I£7R£)T~ (6)
We introduce the canonical projection Pe : L?(T') — H, defined by

fr—Pef(x /f )dy, if x € V;.

Throughout this paper, we assume that the initial condition satisfies
Assumption 1.1. s(0,.), i(0,.), r(0,.) € C!(T"), Vx€&T!, S¢(0,x) = Pes(0,x), Z¢(0,x) =
Pei(0,x), Re(0,x) = Per(0,x), and / (s(0,x) +i(0,x) +r(0,x))dx = 1.

Assumption 1.2. There exists a constant ¢ > 0 such that mf s(0,x) > c.

x€T!
We use the notation || ]| := sup |f(x)] to denote the supremun norm of f in [0, 1] and define
x€[0,1]
| o) = A1+ gl + el

We have the



Theorem 1.2. Forall T >0, sup
0<i<T

‘xg(r) fX(t)H s 0,as £—0.

oo

-1 g—l

&€
Next, defining Sne(2,x) := Y Sne(t,x) Ly, (x), Ine(t,x) =) Ine(t,xi) Ly, (x),
i=1 i=1
el

Rne(t,x) == ZRN,E(t,xi)]lVi(x), and setting XN := (SN.E,IN.E,RN,S)T, the following
i=1
theorem is proved in N’zi et al. (2021).

Theorem 1.3. Let us assume that (€,N) — (0,0), in such way that

(i) L—)ooasN%ooandS%O;

log(1/¢)
(i) HXNﬁ(O) ~X(0) Hw —+ 0 in probability.

Then forall T >0, sup

0<r<T

[Xne(t) = X(0)||_ —> 0 in probability

We devote this paper to study the deviation of the stochastic model from the deterministic one
as the mesh size of the grid goes to zero. In this work, we focus our attention to the periodic
boundary conditions on the unit interval [0, 1], which we denote by T'. Let us mention that
Blount (1993) and Kotelenez (1986) described similar spatial model for chemical reactions.
The resulting process has one component and is compared with the corresponding deterministic
model. They proved a functional central limit theorem under some restriction on the respective
speeds of convergence of the initial number of particles in each cell and the number of cells.

The rest of this paper is organized as follows. In section 2, we give some notations and
preliminaries which will be useful in the sequel of this paper. In section 3, we establish a
functional central limit theorem, the main result of this paper, by letting the mesh size € of the
grid go to zero. The fluctuation limit is a distribution valued generalized Ornstein-Uhlenbeck
Gaussian process and can be represented as the solution of a linear stochastic partial differential
equation, whose driving terms are Gaussian martingales.

2 Notations and Preliminaries

In this section, we give some notations and collect some standard facts on the Sobolev spaces
HY(T!), y € R. First of all, let us describe some of the properties of the (discrete)-Laplace
operator. Let He C LZ(TI) denote the space of real valued step functions that are constant on
each cell V;. For f € Hg, let us define

flxite) = flx)

Ve ) = T and Vy f () = fli) — fli—€)

£

For f,g € L*(T"), ( f,g) := /1 f(x)g(x)dx denotes the scalar product in L>(T").
T

It is not hard to see that

<V£+fag> = _<favgig> and Aef:V;VJfZVJVgﬁ



For m even and x € R we define

(x) = 1, for m=0

PmlX) = V/2cos(mmx), for m # 0 and even,
() = 0, for m=0

WYinX) = V/2sin(mmx), for m # 0 and even.

{1, ®n, W, m =2k, k> 1} is a complete orthonormal system (CONS) of eigenvectors of

Ain L*(T") with eigenvalues —A,, = —*m?. Consequently, the semigroup T (r) :=exp(At)

acting on Lz(Tl) generated by A can be represented as

T = (£.1)+ Y exp(—Aaut) | (£ 02 ) oot f Vx| £ € LA(T).

k>1

Assume that €' is an odd integer. For m € {0,2,---,e7' =1}, we define @f(x) =

V2cos(mmje), if x € V; and yE(x) = V2sin(mmje), if x € V. {@%, &, m} form an
orthonormal basis of He as a subspace of L2 (Tl). These vectors are eigenfunctions of Ag
with the associated eigenvalues —Af5 = —2¢ *(1 — cos(mne)). Note that A5 — A, as
€ — 0. Basic computations show that there exists a constant c, such that for each m and &,
8’2(1 — cos(nme)) > cm?. Let us set ng = 8712_1. A¢ generates a contraction semigroup
Te(t) := exp(Agt) whose action on each f € H, is given by

Tel0)f = Y exp(=250)[( £,05 )05+ (£ Vi vE ] ™
k=0

Note that both A¢ and T¢(¢) are self-adjoint and that T¢(£)Ac @ = A Te(2) Q.

For any J € {S,I,R}, the semigroup generated by u,A is T(u,7). In the sequel, we will use
the notation T,(r) := T(y,¢) and similarly, in the discrete case, we will use the notation
Te s (1) :==Te(y,t). Also, for any J € {S,I,R}, we set A, ; := W, A, and l,fu =AL.

For y € R, we define the Hilbert space HY(T") as follows.

HY(TY) = {f e L (T"), /17, = ¥ [(fr0m)+(F 0 )] (14 2)7 < oo}
meven

We shall use the notations HY := HY(T!) and L? := L*(T").

Note that [|@]|, = [|(T— A)y/z(pHLz, where I is the identity operator on L* (T'). For any

three-dimensional vector-valued function ® = (®;,®,,®3)", we use the notation [|®|| ., :=
1/2

(112, + 12212, + s]2,)

For y € R, we also define

1/2

1 e ::l Y (foon )+ (fwn)?)(1+2)7], f € He.

meven



For f, g € He, we have

[(F.8)| < WL yellglpe s ¥>0. (8)

Elementary calculation shows that for f € He, and ¥ > 0 there exist positive constants ¢ ()
and ¢ () such that for all € > 0

AW Ny re <Ml < 2 llyre- ©)

d
f= —f will denote the derivative of f.

ox

In the sequel of this paper we may use the same notation for different constants (we use the
generic notation C for a positive constant). These constants can depend upon some parameters
of the model, as long as these are independent of € and N, we will not necessarily mention this
dependence explicitly. However, we use C(y,T) to denote a constant which depends on 7y and
T (and possibly on some unimportant constants). The exact value may change from line to line.

Let us now consider the deviation of the stochastic model around its determinsitc law of large
numbers limit. To this end we introduce the rescaled difference between Zy ¢ (¢) and Z, namely

Une(t)
Wne(t) = Wel) |,
Wxe(t)

where

\/N(SNﬁ(t,xl) —Sg(t,xl)) \FN(zN,g(t,xl) flg(t,xl))
Une(t) := : s WNe(t) i= :

VN (Snelt,x0) = Se(,x2) ) VN (I (t,00) — Te(t,x)

and

\FN<RN,3(I7X1) - Re(t,m))
WN.E(Z‘) =
VN (RNﬁ(t,xg) - Rg(t,xg))

In the sequel, we denote by ” =" weak convergence. By fixing the mesh size € of the grid
and letting N go to infinity, we obtain the following theorem.

Theorem 2.1 (Central Limit Theorem : N — o, € being fixed).
Assume that v'N(Zn£(0) — Z¢(0)) — 0, as N — oo,
Then, asN — +oo, { WNe(1), 1 >0 } = { We(t), 1 > 0 }, for the topology of locally uniform



Ue(t)
convergence, where the limit process We(t) :== | Ve(t) | satisfies
We(t)

t K
)= [, Vebe s 2e) e + X | VB (rze)aBin. =0, o)

and {B;(t),B,(t),--- ,Bk(t)} are mutually independent standard Brownian motions.
More precisely, by setting Ag = Sg + I + Re, for any site x;, the limit (Ug, Ve, Wg)T satisfies the
following system

i) (le(r,xi) +R i) Ve(r,xi
IX1 —.U-S/ AgUs 1, X dr—/ﬁxl rX)(g(rx>—i_er(rX)) 8<rx>dr

t Se(r,x;) (Se(r,xi) + Re (r,x;) ) Ue (1,x;) Se(rxi)le(rxi) ing
B /o Bxi) AZ(r,x;) / Ag rx,) dBy; (r)

_ Z/ ussgrx, dB} . ( +Z/ ”SSgryl dBy . (r)

YineXi Yin~Xi

I )X +R VX V \ X
Velt,xi) = [Jl/ AeVe (r,xi dr—i—/ B(x:) rx,)( g(rx,)z g(rx,)) e(rxl)dr
Ag(r,x,-)

rxl Ss(r,xi)Jng(r,x,-))Ug(r,xi) 4
+ / B e dr— /O o (xi)Ve (1, x)dr

/ \/ rx, Ig(rxz dBmf +/ \/m dBreC
o AXrx)

_ Z/ I'L] rx,d —|—Z/ ‘ul e (1)) dB§x’

We(t,x;) = uR/OtAgWg(r,xi)dr—i—/ol(x(x,-)Vg(r,xi)dr—/Ol\/Oc(xi)ls(r,x,») dBe(r)

_ Z/ ‘uR e (1,%7) dBﬁyl + Z / \/ = Re(r,yi) dBﬁxl
Yi~~Xi

Yin~Xi

where {Bi’:f :x; € D¢}, {B;fc :x; €Dg}, {Bﬁiyi 1y ~x; € Dg}, {B)I(I,yi 1y; ~x; € D¢} and
R LIV X € D, } are families of independent Brownian motions.

Theorem 2.1 is a special case of Theorem 3.5 of Kurtz (1971) (see also Theorem 2.3.2 in

Britton and Pardoux (2019) ). Then, here, we do not give the proof and refer the reader to

those references for a complete proof. [J



Let X = (s, i, r)T satisfying the system (2) on [0, 1]. Thanks to Proposition 1.1 of Taylor (1991)
(chapter 15, section 1) we have the following lemma.

Lemma 2.1. Let ¥ > 0 and assume that the initial data X(0) bebong to (H?)3, then the
parabolic system (2) has a unique solution X € C([0,T]; (H?)?).

The rest of this section is devoted to the proof of some estimates for the solution of the system
of equations (1). We first note that S¢ (¢,x;) > 0,1 (¢,x;) > 0,R.(t,x;) >0 forallt > 0, x; € D,
and € > 0. Moreover for any T > 0, there exists a contant Cr such that

sup ([ISe(?)llea V([ (1) [|e= V [[Re (2) []0) < Cr, VE > 0. (1)

0<r<T
Indeed we first note that ||Se ()|| < M, since S¢ is upper bounded by the solution of the ODE

dX.
d—;‘(t,x,-) = UsAeXe(t,x7), Xe(0,x;) =M. (12)

Next /¢ (¢, x;) is upper bounded by the solution of the ODE (with B := sup, B(x))

dy, _
d—:(r,xi):uIAng(t,xi)JrﬁYg(t,xi), Yg(O,x,-):M.

The result for R, is now easy.
Let us set A := Sg +Z¢ + R . We have the

Lemma 2.2. For any T > 0, there exists a positive constant cp such that

Ae(t,x)>cr, foranye>0,0<t<T,xeT'.

Proof: We consider the ODE

ds;
dt

(x)Se (t,x)Z¢ (2, x)

(1) = e ) = e Teltn) + Rel)’

Since Sg(t,x) +Re(t,x) > 0 and Zg(¢,x) > 0, it is plain that

B(x)Ze(t,x) _ _
: Sf(t7x)+18(tax)+Rg(t,x) SB’ where B 7)65611’1[1?1 |B<x)|

Define S¢(f,x) = eP'Se(t,x). We have

dgg
dt

(t’x) = ,u'SAggg(l‘,x) + ([3 ﬁ(X)Ig(t,x) > —=

— Se(t,x).
Sg(t,X)+Ie(t,X)+Rg(t7x) 3( )
Combining this with the last inequality, we deduce that

Se(t,x) > [et”5A5§8(0,~)](x) >c,



from Assumption 1.2.

Going back to Sg, we note that we have proved that

Se(t,x) > ce P!
In other words, for any T > 0, there exists a constant cr := ce’BT which is such that
Se(t,x) >cr, foranye>0,0<t<T, xeT!.

And since I (¢,x;) + Re(2,x;) > 0, Ag (2, x) satisfies the same lower bound.

Lemma 2.3. Forany T > 0, there exists a constant C such that for each € >0

0<t<T

wp (useawiz+u:fs<t>||i2+||ne<r>niz)

T
+2/0 (usuvgsg(r)|\i2+u,|\vs+zg(r)Hi2+uR|\VjR£(r)Hi2>drgc. (13)

Proof: For all (¢,x) € [0,T] x [0, 1], we have
dSe B (x) Se(t,x)Ze (2,x)
dt Ae(t,x) ’

which implies

([,x) = lJSAgSg(t,X) -

2Se(1), dd—‘%(m - zuS<Agsg(z),sg(t)>—z<W,sg(t)>
(1) Se(t)Ze(t)

= —2us( Ve Se(r), VESe(r) ) —2( T(I) , Se(r))-

Then, V¢ € [0,T],

2 d 2, 2 "t B()Se(r)Ze(r)
HSS(Z)HL2+2“3/O [VESe(r)||2dr = HSE(O)||L2—2/O <T(r),8.e(r) ydr.

In the same way, we obtain

" 1 . Sg VIS r
e+ 200 [ 95T e = o) +2 [ {EOSOL

_2/0"<a(.)z€(r),zs(r)>dr,

, Ze(r) >dr

10



and

HRg(l)Hinrz,uR/ot ||V£+7z€(r)||i2dr = HRg(O)HizwLZ/Ot<(X(.)Ig(r),7?,g(r)>dr.

Then, we deduce that
1
H&mmﬁwammfwmam@+zg(mWﬁ&vWL+mW¢ammfuwwamﬁQw
t _
SH&®N2+WM®MHHRNWZ+A(@BHDWwNZ+MWAM@>M

where @ = sup |at(x)].
x€T!

It then follows from Gronwall’s lemma that

t
[0 2+ 1Ze(o) [+ [Re) 32 +2 (usnwse(r)rliz+m||vzfe<r>||iz+uR||v:Re<r>||iz>dr

< <HS&‘<O)H§,2 + ]|Ig(0)]|i2 + Hng(o)uiz)ec(aﬁ)
<C(a,B).

We now add the following assumption.
Assumption 2.1. The functions 3, o satisfy a € C'(T') and B € C*(T").

Se(t,x) | Se(tx)+Re(tx Te(tx) | Ze(tx)+Re(tx
Let ulr) 1= B9 S SR g1, = oy 2 Pl e

Lemma 2.4. For any T > 0, there exists a positive constant C such that for all € > 0,

r + 2 + 2
/0 (Hvsfs(t)HL2+Hvsgs(t)HLz)dffc (14)

Proof: Vx € T!, V¢ > 0 we have

B(x+€)Se(t,x+€)[Se(t,x+€)+Re(t,x+€)| [Ae(t,x+ &) + Ae(1,x)| VE Ae (2, %)
AZ(t,x) AZ(t,x+ €)

V:fi?(tvx) - =

B(x+¢€)Se(t,x+¢€)
A2(t,x)

B(x+e) [Sg(t,x) + Rg(t,x)}
AZ(t,x)

Vi (Se(t,x) + Re(t,x))

ViSe(t,x) (15)

11



Se(1,x) [Se(t,%) + Re(t,x)]
AZ(t,x)

VEB(x),
from which we obtain

r 2 T 5
| Lvésenaa<c [ [ (]vgﬁ(x)\h‘vjsg(t,x)‘
+ ‘v;Rg(r,x)]2+‘v;Ae(;,x)m dxdt,

where we have used Assumption 2.1, inequality (11) and Lemma 2.2. The result now follows
from Lemma 2.3.

O

Lemma 2.5. Forany T > 0, there exists a positive constant C such that

Sup (IVESe®lloo VIVEL(D) oo V IVERe(t)lloo V IVE fe(0) |0 V [ VE e (1)) <C, (16)

T 2 2 2
| (l8eseI +IAZe0)]7: + [aeRe )2 ) ar < €. a7y
r 2 2
| (l8esetz + [[2ege)]7:)ar < €. 1)

and

sup ([|e@)llue V[lse@]e) <. (19)

0<t<T

Proof: We first etablish (16). Applying the operator V! to the first equation in (1), we get

dvV{Se
dt

(t,x) = UsAe Ve Se(t,x) — V¢ (ﬁigzg) (t,x) (20)
£

The last term on the above right hand side is easily explicited thanks to a computation similar to
that done in (15). Combining that formula with Assumption 2.1, inequality (11) and Lemma 2.2,
we deduce that

v (P57 ) ol <e(vzsao] +vezo]_+]

vgng(z)Hm) .

From the Duhamel formula,

t 7.
VES(0) = VLS 0)+ [ el sty <Bifg ) (s)ds

12



Since the semigroup e’#s%¢ is contracting in L=, we deduce that
1
Ve Se(t)lloo <1V Se(0)]]o- +C/0 (IVESe($)lleo+ Ve Ze (5)l|eo + [IVERe(5)|o0) s -
Applying similar arguments to the two other equations in (1), we obtain
Ve Se()lleo+ Ve Ze(t)l|o + Ve Re(t) o < Ve Se(0)l|eo + Ve Ze (0) [lco + [ Ve Re (0) 1
1
+C/0 (IVESe()lloo+ Ve Ze(5) o + | Ve Re (5)]|o0) s -
(16) now follows from Gronwall’s Lemma and Assumption 1.1.
We now multiply (20) by V¢ Se(t,x) and integrate on [0,¢] x T!, yielding

ﬁ SE IE
Ag

t
< Crt s [ [AeSe(s) Fads,

! t
Ve Sel+ 20 [ 1aeSeo)ads =2 || (B522 ) 05:6) ) as

which yields one third of (17). The rest of (17) is proved by similar computations applied to
the equations for V‘jI‘g and VI Re. Next (18) follows from (17), (16), Assumption 2.1, (11)
and Lemma 2.2.

Since
14elfoe < € (el + 1% A0 ).

the estimate (19) follows from (16), Assumption 2.1, inequality (11), Lemma 2.2 and the fact
that the norm in L?(T") is bounded by the norm in L*(T").

O
Lemma 2.6. Forany T >0, as € — 0
fe—f, g —8 Vife—Vf, and Vige— Vg in C([0,T};L*(T"),
where £(t,x) = s(t,x) [s(t,x) +r(z,x)] and g(t,x) = i(z,x)[i(z,x) +r(t7x)]’ Ve [0,T], x e

az(z‘,x) az(t,x)

T'.
Moreover f, g € I? (O,T ; Hl).
Proof: Let d be the function such that, V¢ € [0,T] ,x € T' and € >0

fe(t,x):d(Sg(t,x),Ig(t,x),Rg(t,x)) and f(t,x):d(s(t,x),i(t,x),r(t,x)).

Furthermore, we know that Se —+s, Z; — i and Re — r uniformly on [0,7] x T'.
Since d is continuous on {(s,i,r) € (Ry)3:s+4i-+r > 0}, then we deduce that fo — f

13



uniformly on [0,7] x T', and in particular in C ([0, 7]; L*(T")).
From (20) and similar equations for V." Z¢(¢,x) and V."R¢(t,x), we obtain the convergence of
VI fe — Vf by an argument similar to the previous one.

The proofs of g- —> g and V{ g¢ — Vg are obtained in the same way.
O

In the sequel, we will write " f¢(t) — f(¢) in H'" to mean that " f¢(t) — f(¢) in L*>(T"') and
V. fe(t) — V£(t) in L*(T")".

We have the following compactness result.

Lemma 2.7 (Theorem 1.69 of Bahouri et al. (2011), page 47).
For any compact subset E of R? and s\ < s,, the embedding of H" (E) into H*' (E) is a
compact linear operator.

In the next section, we study the behavior of the process {We, 0 < € < 1} as € goes to zero.
3 Functional Central Limit Theorem

871 871

Let us define % (t,x) = # Y Ue(t,xi)ly,(x), Ye(t.x) = # Y Ve(r,xi) Ly, (x),
i=1 i=1

el

1
We(tvx) = m ZWE(Iaxi)]lVi(x)'
i=1

Moreover, we set

A0.5) - I”N P g0 )
i [T F VG L g
¢ i=1 lwgcj
M) = - —1/22¢ )PPl 1 (3) amf

+ / ’1/22 (i) Ie (r,x:) v, (x) dB“(r)

. \/;T,/Ot&‘l/zz Z /Ig(r,x,')(]lvj(x)e())dl?fx]( ),

Xi~Xj

14



MR(t,x) = —/ 1/22 a(er)le (i) v, (x) B (r)

n \//’TR/O[sl/zi Z /Rs(”,xi)deixj(r)-

Xj~Xj

(%, Ve, #e ) satisfies the following system

0= [ usactnar— [ Bo) <ri;(7r§e(r>)%<r> .
Se(r) (Se(r) + Re (r)) % (r)
,/0 ﬁ() A%( ) dVJr///eS(I)
/uer"ffe dr+/ B(.) iJ(R)E( ) Ve(r) 1)

Se " g(r)+R5(r))%g(F)
+/O B()

0 dr—/ota(.)“//g(r)err///é(t)

/uRAg% dr+/ (r)dr+.4%(1).

For y € R, we denote by C ([0, T];H_V) the complete separable metric space of continuous
functions defined on [0, '] with values in H?. For any € > 0, %, ¥ and #; can be viewed
as continuous processes taking values in some Hilbert space H~?. Hence we will study the
weak convergence of the process (%, %, #¢) in C([0,T]; (H™7)?).

t
In the sequel we will need to control the stochastic convolution integrals / Tey(t—r)d. 4L (r),
0

with J € {S,1,R}. For that sake, we shall need a maximal inequality which is a special case of
Theorem 2.1 of Kotelenez (1984), which we first recall.

Lemma 3.1 (Kotelenez (1984)).

Let (H;||.|u) be a separable Hilbert space, M an H-valued locally square integrable cadlag
martingale and T (t) a contraction semigroup operator of L(H). Then, there is a finite constant
¢ depending only on the Hilbert norm ||.||u such that for all T > 0

2 2
( sup H/ T(t — r)dM(r) ) gce“GT]E(HM(T)H ) 22)
0<r<T H H
where O is a real number such that HT(t) HL(H) <e%.

We want to take tke limit as € — 0 in the system of SDEs (21) satisfied by %¢. To this end we
will split our system into two subsystems.

15



First, we consider the following linear system

due (1) = s Agute (t)dt +d A3 (1)
dve(t) = Wy Agvedt +d AL (1)
(t)

)

(23)
dwe (1) = Pg Aewe (t)dt +d. A (1)
(0 = ( )—Ws(O):O.
Next, we shall consider the second system

%@ = Hs Acie (1) = fe (1) (1) = e (1)7e (t) — fo ()ue(t) = ge()ve(r)

%(l‘) = W AVe(t) + fe(t)te(t) + (ge(t) — @)Ve(t) + fe (t)ue(t) + (ge(t) — &) ve ()

dZS (1) = UR AeWe + 0t (Ve +Ve)

7 (0) = 7e(0) = ¢ (0) =0,

(24)

and finally, we note that
%e:u£+ﬁ£7 Ve = Ug + Vg, We = we +We.

Then the convergence of % := (%, Ve, #:) will follow from both the convergence of
(ug,ve,we) and of (Tg, Ve, We).

Let us first look at the convergence of (ug,ve, we).
Let M = (M5, ML, ME)".
Recall that we denote by ” = the weak convergence.

Proposition 3.1. For any y > 3/2, the Gaussian martingale My = M := (M5, %’,J//R)T
in C([0,T]; (HY)3) as € — 0, where for all ¢ € HY

(001 == [ [ ot [P b ) = /2 [ [ 005G Watana)

//T PLo)strni(rx) drder// () /o )i(r,x) W3 (dr, d)
V| Tl¢’<x>mw4<dr,dx>,

(MR(0),0) = — /0 l [ 00V i)W drdx) = v/ 21 /0 t [ /) V/x() Ws ),
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and Wy, W, Ws, Wy and Ws are standard space-time white noises which are mutually
independent.

Proof: First, we are going to show that there exists a positive constant C independent of € such

sup IE( sup ||//lg H y) < C. (25)

O<e<l1 0<t<T

Recall that |2 ()| = |.4Z)|]_ + |4 O +[l-20|

2.

Applying Doob’s inequality to the martingale .#>, we have

(e 20, ) < (2o,

0<t<T
=4 Y E((AET)8)) (14 A) 7, With £ € {0, Yin}

meven

/ y Z LBl Sjgrrx;je(r ) < wfm(x)dx)z(“rlm)_mr

meven j—

4“5/ ZZSgrx, l(/v*rm ) (/Vf )

meven j=

(14 M) dr

Se(rxi) e (r,x;) I (1, x;)
Ae(r,x;) Ae(r,x;)
which follows) and |VZf, (x)| < 2x%m?, then we obtain

But since

< M (indeed <1 and S¢(r,x;) <M, see (11) and the line

_ 1 1
E( sup |2 (t H y> < C(ﬁ,.us,T)( Y n127+m§gnmz(71))

0<t<T m even

Since Z j <o iff y > 3/2, we then have
m CVCH
sup E( sup |.25(0)|° > < C(B,us,T), forally>3/2. (26)
0<e<l \O<t<T HTY

Similar inequalities hold for the martingales ./ and .#R. Hence we obtain

sup ]E( sup H///e H ) <C. (27)
0<e<l \O<t<T Y

Inequality (27) and standard tightness criteria for martingales (see e.g. the proof of
Theorem 3.1) implies that the martingale .#Z is tight in C([0,T]; (H™?)?), with y > 3/2.

In what follows <<.Z; S >>, denotes the operator—valued increasing process associated to the
L?(T')—valued martingale .2; ’70( 1), whose trace is the increasing process associated to the

17



||L2 TI)" .Let ¢ € H”. We set A5 = (M5, ). A} and
ME? are defined in the same way. V7 € [0,T], we have

t€ -1 I 2
< MEP>> = / Zx’)r;()r i) ( /V (p(x)dx> dr
8 1 i

(/Vivg(p(X) dx)2+ (/Vivs_‘P(x)dx)Z] dr.

real valued submartingale ||.Z2 ™ (1)

Ns/’g
+ — N s A
P Ol:Zl 8(r.x)

We have

LRp? ;?:;f;%./vﬁouwx)%
~ o) ZB o) EERS ([ giwyar) | [ (060~ 0t) ] ar

i

/ /]1‘1 Zﬁ W‘P(x)(l?(xi)]lvxi (x)dxdr.

On the one hand we have

i SR o) 00

Be (x)Se (r,x)Ze (r,x) | @(x)|
<ceu<o|\m L

dx — 0,

(X)Se (1,x)Ze (r,x) | @ (x) |

because the quantity / Pe(x dx is bounded uniformly in €.

Ag(r,x)
Me(
Hence f/ e (r i) le (1, </(p dx){/ (p()—(p(x,-))dx}—>0,ase—>
A8 7, X;)
On the other hand, the fact that sup HX€ (1) —X() Hm —0,as € — 0, leads to
0<I<T

/T] Zﬁ x1) W(p(x)(p(x,-)]lvm(x)dx—/wﬁ(x)wgo%x)dx 0.

This shows that

’8 ! rx, e ( rx, )
/ o(rx) (/ o(x dx) dr—>/ Tlﬁ arx) ©? (x)dxdr,

18



as € — 0. Similar computation shows that

(/V;f(p( /Vs(p dx ]dr—)Zug// r,X) dxdr
Vi

from which we deduce that

<<///§¢>>, = / /1 )(p dxdr+2u5/ / s(r,x) dxdr
T

rx

Us /’82{ (r.x;)
. SS I, Xi
e Jo &

Hence, if W) , W, and W5 are space-time white noises which are mutually independent, so the
limit of the centered Gaussian martingale ./Z;"? (t) can be identified with

' B(x)s(r,x)i(r,x) . T ‘
_/O /qu)(x)mwl(dr,dx)—\/%/o [0/ ()/s(rx) Wa(dr, d).

In the same way

VAR t IXE P)str1)i(rx) (x)z((r:‘;)i(r’x) Wa(drdn)+ | l [, 060Vl (.
_\/27,/0' '/Tl ¢’ (0)/i(r.x) Wa (dr, dx)

and
M= | t [ 90Vl W () — /24 | t L, 90 Ve(m0 Ws(ar.as),

where W3, Wy and Ws are also space-time white noises which are mutually independent, and
independent from Wy, Ws.

O

Let set 3, = (ug , Ve, WS)T.
We need to check tightness of the sequence of process {3¢(7),7 € [0,T],0 < e < 1}.

Theorem 3.1. For any y > 3/2, the process {3¢(t),t € [0,T],0 < € < 1} is tight in
C([0,T];(H™7)%).

Proof: : We denote by G the collection of F¢-stopping times T such that T < 7. Following
Aldous’ tightness criterion (see Joffe and Metivier (1986)), in oder to show that the process
{Se(t),1 €10,T],0 < & < 1} is tight in C([0,T]; (H™7)?), it suffices to establish the two
following conditions:

3
[T] for 3 <Y < 7, and M > 0 there exists C such that ]P’(HSS(I)H
t€[0,T],

> M) <C, forall

H 0
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[A] lim lim sup E(“SE(T+9)_3£(T) 2 ):O.
Y

0 08%0,
— gT 2]

3
Let F<W<Y. Let us set ul? (1,x) = (1— A¢) "0/%u,(t,x). V1 € [0, T], we have

le@I , = (0. @))-

If we define .75 (t) := (I— Ag)~0/2.23(t), since Y > 3/2, it follows from (3.1) that

S0 (1) is bounded as € — 0, as an L?(T"')—valued martingale. Applying the Itd formula to
|u (¢,x)|* and integrating over T! leads to

e ()] - —2/ (Ve ul (r), Vi ul ( >dr—|—2/ (u(r), d AN (r) )
H 0

+ /1 << MM (., x)>>dx.
T

Letting = T and taking the expectation, we deduce that

2 T 4 2 _ AN} 2
E([lue(T) 2, ) +25E [ Ve e, de =E (|42 (T )

Next we want to take the supremum on [0, 7’| in the previous identity. For that sake, we use the
Burkholder Davis Gundy inequality, which implies that

/(u ), dAMEP(r) H <3E\/<</ r),d e (r) y>>r
% S5
< 3JE< sup ||ud (¢)];2\ Tr<<Hg >>T>
0<t<T

1 9
< 58 (s 1 0IR: ) + 5B

0<t<T

{ sup

0<s<T

We then obtain, thanks to (26),
IE( sup Hug(t)Hz_y ) =11 IE( sup |2 >Hi2>
0<t<T H 0 0<t<T
<44 C(B,us,T).

We also obtain similar inequalities for v¢ and we. Hence there exists a constant C such that for
all € >0,

]E( sup [s(0)2, -+ sup e, + sup s HM)

0<t<T H0  o<i< H 0 o<<T
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T
+2E [usnv;us(r)\!z || Vive )|+ e[ Vwe(n)|]*|dr<c. @8)
0 H H H W

Then [T] follows by using Markov’s inequality.

Let 8 >0and T € GI 9. We have

So,

2
ug(T+0) —ue(7)

T+60
Ue(T+0) —ue(T) = [Tg’s(e)—l]ug(f)f/? Tes(T+60 —r)d.a(r).
E( y) < zx@(H[Tg,s(e)I]us(r) 2y>
+ 215:(‘ ’ )

T+6
[ Tes(T+ 0 — r)d.a5(r)
T
Let us deal with each term separately. First using the inequality (9), there is a constant C(y)

2 )
H— V€

H

2

E(H[Tg,s(e)l]ue(f) ) < C(}/)]E(H[T&S(G)I]ue(r)

HY

Let3/2 < ¥ <y, and let ¢ a positive constant. We have

[ (Te.s(6) ~1ue)|

Af<c
and
Y ([Tes(6) ~Hue(®).£,)° (1+45) 7
AE>c
< (1+c)?/*7 Z ([Tes(8) —T]ue(7) fﬁl>2(1+l;fl)_’/
A5 >c
<(1 -I-C)?/*YH [Te.s(6) _I]MS(T)H:{—%
Then

2

E(H [Te.s(0) 1] ue(2)

> < C(y)(1+¢) "k <H [Te.s(6) 1] us(r)Hi_y,)

) Y (70— 1)’E((ue(7).85,)7) (1+45) 7

AE<c

H~Y
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2
On the one hand, since E (H [Te,s(6) —X]ue (T)HH* V) < C, we can choose ¢ large enough

such that C(y)(1 +¢)’ ~'E (H [Te.s(0) 1] ug(r)Hi_» <e/2.

On the other hand, we have

Y (ﬂée—1)2E(<u£(f),f;>2)(1+;L,§)*7

Af<c
< sup l—e o Z E( e (7). 1) )(1-}-&,2)77
AE<c Af<c
< sup (1 _e—lyﬁG)ZE(Hug(T)Hi%S)

Af<c

_e_/lrfze 2 Ug 2 .
< () sup (1 )E(H (T)”H)

m<c

Since

IN

E< sup ||ug(¢)||27)
0<t<T
<c

5( eI, )

then for the previous choice of ¢, we can choose 6 small enough such that C(7) sup (
Af<c

e—/l,ie)z]E(Hug(T)Hiy) < €/2. Hence

2
):0.
H~Y

lim lim sup IE(H[TS,S(G)—I]IAS(‘E)

0,
6—0e— gT 0

Secondly, using the equivalence of the norms |.[[,,_, and [|.|| . .

and the fact that Tg g is a
contraction semigroup on He we have

2 -6
E(| —E H/ Tes(6 — r)d.AS(r +7)

HY 0

Sz s (= |2
<COE|( |4z +0)-a7)
H~Y:E

2
HY
THO & (xi) | Se(r,xi)le(r,x;
[y B[Sty

S
| Tes@ro-n.aie)
T

2
€ Ae(r,x;) S

i=1
/T+9 Y W(ﬂw“ ()>dB§'x’( ) jl_y's>

12C(7)E (‘ [
T i,j
x,-~x]-

< 2C(7>1E<]
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p Selrmle(n) (/V_ffn(X)dx>2(l+lrfl)ydr>

Ag rx,)

?+9 e
ZC(;/)“SE</ Sg LX) /Vg o dx 1+/'L£) 7dr>
T m i=

C(B,us)® —0, as6 —0.

+

Hence the condition [A] is proved.
In the way, we prove similar estimates for v and we. Then the process {Sg(t), t€[0,T],0 <
€ < 1}istightin C([0,T];(H™7)?), y> 3/2.

O

Lemma 3.2. For3/2 <y <2, the process {S¢(t), t € [0,T], 0 < € < 1} converges in law in
C([0,T]; (H™")*)NL*(0,T;(H1)3).

Proof: On the one hand, from Theorem 3.1, the process {S¢(¢), t € [0,T], 0 <€ < 1} is
tight in C([0,T]; (H™7)?), then along a subsequence, it converges in C([0,T]; (H™7)*). On
the other hand the sequence {3 (), r € [0,T], 0 < € < 1} is bounded in L2( T 5 (HI77)3).
Indeed for all € , we have

([ o, )

AN
QO
—~
=
&=
VR
<
)
~—
~
-
<
o
QU
-~
~
—
c
<«
[
<]
=
g9
—
=
[¢]
—
=
[¢]
e}
[
1Y)
=3
<«
~~
\O
N
S~—

Il
Q
=

&

VN
k\\\
2
<
o
=
By
5

Q

-~
+
oy
o

0

4

A ||
—N /—/‘\
\ \

= =

) by
o] :E
%&‘ ~<

™
N S

+

&

- E\
T —
— =~

< e

01:+ m<

™ <

= X

= 3
p— ~—

) pr—
¥}

Q =

=
N— <%
—_ =

= —

where the third equality follows from the fact that

|| Ve ue (1) Hi—y.e = Z<”8 (),£)2AE s(I424; 5)77 (see Lemma A.2(i) in the Appendix below).

T
The inequality (28) ensures that E / ue®)[[*,dr + |[Veue()||*  |ar is bounded by a
0 H™ H™

constant independent of €. It then follows that

sup B [ o), ar) < €.

O<e<l1
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‘We have similar estimates for v, and we. Thus

T
sup E(/o HSg(t)Hzlydt) <C.

O<e<l

This implies that, from the sequence {S3¢(7), # € [0,T], 0 < € < 1}, we can extract a sub-
sequence which converges in law in L?(0,7 ; (H!~7)) endowed with the weak topology.
Furthermore, since the imbedding of H' =7 into H™! is compact and we have the convergence in

C ([0,7];(H")3), then the extracted sequence converges in fact in L*(0,7 ; (H™!)?). Hence,
we deduce that there exists a subsequence which converges in law in C([0,7]; (H"7)*) N
L*(0,T; (H™')?).
We note that the limit 3 := (u, v, W)T of any convergent subsequence satisfies the following
system of stochastic PDEs
du(t) = us Au(t)dt +d.#5(t)
dv(t) = wAvdt +d.4" (t) (29)
dw(t) = ur Aw(t)dt +d.# (1)
and the solution of that system is unique. Then the whole process { S¢(¢), 1 €[0,7],0<e<1}
converges in C([0,T]; (H™?)*)NL*(0,T ; (H™')?).
O
Lemma 3.3. As &€ — 0, feue = fu, and geve = gv in L? (O,T;H’l).
Proof: The convergence feug = fu follows to the fact that ue = u in L*(0,7 ; H™") and
fe— finC ([O, T]; Hl). The proof of the convergence geve = gv is similar.
O
We are now interested in the convergence of the process Qe = (te, Ve, We).
Lemma 3.4. Forany T > 0, there exists a positive constant C such that

_ 2 B 5 B )
s (50 + el + [0

T
+C/0 (IV &z 7 + IVEve(s) |72 + [VEme()|72 ) ds < Cnpe T, (30)

T
where 1, ::/0 (Hug(s)le_rl + ||v8(s)||i,1)ds.

Proof: Forallz € [0,T], we have

[HGEG)  meods=ps [ {acte(s)  me(s))ds — [ (elo)ae(s)  we(s))ds

t

— [ eloImels)  Te)ds— [ felshues), me(s)s— [ leels)els) , Tels)ds.
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Then
e (0)]172 + 205 /O Vi) s = =2 | el5)e(s) . Te(s))ds 2 / (gels)els)  e(s))ds
2 [ elshuels) Te(ods 2 [ lge(oels) el
Since fe (t)ue(t) € H™' and ge (f)ve(r) € H™', then
[0l +20s [ 9700 s < 2 sup (o)l [ (0]t
(3o e e + e 92
#2500 o9 e | o)l )5+ 9 9] s
42 s0p el 161 () + 15 (o)) s,

Let 6 be some constant such that 0 < 6 < % We have

||ﬁs(t)||i2 +2.US/O ||V2rﬁe(s)||izd5 < C/O ’|ﬁs(s)||izds+/() (CHVS(S)HIZQ‘FHﬁe(s)Hiz)ds
! 2 2
s {25||u£<s>||§2 28V (o) + e o) 1+ 5||vg(s)||12{,} ds.
Then

! 1 ot
||u£(r)||iz+2(us—06)/0 Vit (s)|[2ds < (c+2c5)/0 y|u£(s)||jzds+c/0 [7e(s)]

2C [t

+5 ) (llte ) fjis +Ive(s) 51 ). 31y

In the same way, we prove that

t ‘ '
va(t)lli2+2<u1—06)/0 Ve (s) || Pads < (C+2C§)/0 Hug<s)|\§2ds+c/0 e (s)]%

2c
5 ), (Hue(s)lﬁl_.+||vg(s)||§_1)ds, (32)

and

t C t
[e0) 32+ 20 [ ([VEwe(s) s < 5 [ [lvel)y v

t t
JrC/0 HWS(S)Hiz‘FC/O [V (5)]|2dls. (33)
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By adding the inequalities (31) , (32) and (33), we obtain

_ 2 _ 2 _ 2 ! i 2 i 2 L 2
Hus(f)||Lz+||v£<t>HLz+HWe<f>HLz+C/O (IvETe() 2 +1VETeIIE + Vil )ds
t t
<C [ (Ime(s) 2+ 7o)+ (02 )ts +-€ [ (llael s + el ) s
Hence applying Gronwall’s Lemma we obtain
sup (([e(0)[ [z -+ [[7e (1) |2 + e ()] )
0<t<T
T
+c/ (IV &z + 1VETe(s) |72 + [ VEme(s)|[72 ) ds < CrreC.
JO

O

We want to deduce from the fact that the pair (ug,ve) converges in law towards (u,v) in
L?(0,T;(H1)?), the convergence in law of (ig, Ve, We ).

Lemma 3.5. The process {(ug(t),ve(t),we(¢)),0 <t < T, 0< e <1} =
{(@(t),(1),w(1)),0 <t < T} in L*(0,T;(L*)*) N C([0,T];(H')?), where the limit
{(@(),v(t),w(t)),0 <t < T} is the unique solution of the following system of parabolic
PDEys

%(f ) = usAu(t) — f(1)a(r) —g(t)v(r) — f(t)ult) — g(e)v(r)

Z,:(t) = W AV(t) + f(0)u(t) + g(r)v(t) + f(1)u(t) + g(r)v(t) — a (v(t) +v(r) .
%V(f) = ur Aw(t) + o (v(t) + V(1))

u(0) =v(0) =w(0) =0.

Proof: Let

_ g (1) —fe(t)ue(t) — ge(t)ve(t)
Se(t): Vs(t)) ) Fe(t): Je(t)ue(t) + (ge(t) — o)ve(t) |,

Wwe(t ave(r)
UsAe — fe(t) —ge(?) 0
Ae(t) = fe(t)  wAe+ge(t) —a 0 .
0 0 URAe + O

Note that both 3¢ and F belong to L?(0,T; (He)?). We have the following system of ODEs

dSe
dt

(t):AE(t)gs(t)+Fe(t)a 38(0)20‘ (35)
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Lemma 3.3 tells us that whenever, as € — 0,

Fe=>F inL*(0,T;(H')%),

where
—f(t)u(t) —g(t)v(r)
F(t)= | f{®)u(z —i—g(t()v(t) —ov(t) | . (36)
ov(t

We apply the well-known theorem due to Skorohod, which asserts that redefining the probabil-
ity space, we can assume that F; — F a.s. strongly in L>((0,7); (H")?). Our assumptions and
the hypotheses imply that both 3 and V{3 are bounded in (L>((0,T) x T'))3. Hence along
a subsequence 3¢ — 3 and Vi3, — G in (L*((0,T) x T'))? weakly. However, it follows
from a duality argument that G= V§, and taking the weak limit in (35), we deduce that S is
the unique solution of the system of parabolic PDEs

)= A0S0+ F), 5(0) =0,
with
WA () gl 0
A= f@&)  wA+e)-a 0 . (37
0 0 URA+

Hence all converging subsequences have the same limit, and the whole sequence converges.

We now show that the pair (3¢, V{S,) converges strongly in (L>((0,T) x T'))®. We first
note that both 3 and V{3, are bounded in (L*((0,7T) x T'))3, but also %gg is bounded in
L*((0,T); (H '(T"))?). From these estimates, we deduce with the help of Theorem 5.4 in
Droniou et al. (2018) that 3¢ — 3 strongly in (L?((0,T) x T'))3. Next we deduce from (35)
that o
1d[[Se(0)]]

3 a = (Ae3e(1),3e(1)) + (Fe(1),3e(2)),

hence
%ng(T)”iz +/OT {“SHV;ESU)H; +H1}|V§Vg(t)||iz Jr“RHVst(f)H;} dt (38)
= /OT [<fs(t)ﬁe(t)+ge(t)ve(t)ﬁe(t) — e (1)) + [V we (1) 32 — ||V ve () || + <Fg(t),§g(t)>}dt.

We have an analogous identity for the limiting quantities, namely:

1, — T
SISO+ [ [us]Va0) 52 41| 9500) [+ b [95500) ] (39)
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:./OT[<f(t)ﬁ(t)—|—g(t)?(t),?(t)—ﬁ(t)>—|—H\/aw HLZ—H\/&V HL2 (1),3(¢ M

It follows from the strong convergence of Fe to F in L?(0,T; (H™")3), the strong convergence of
e — Jin (L?((0,T) x T'))3 and the weak convergence of Vi 3¢ to V3 in (L?((0,T) x T'))3
that the right hand side of (38) converges to the right hand side of (39). Hence the left hand
side of (38) converges to the left hand side of (39). Consequently

1,—
By =S + [ [l Vimete) - Va0 [} + |7 Evete) - w0

+ ]| V(1) = V(o) |12 | de — 0. 40)

This last result follows from the convergence of the left hand side of (38) to that of (39), and
the facts that

(Se(1),3(T)) = 37|12,

and
[ 700, V) + 1009 £700), V900) + (Vi e, T
—>/O'T {”SHVE(I)H;+”’||W(’)||i2+NR||VW(t)||iZ}dt

The second convergence follows from the fact that V{3, — V3 in (L?((0,T) x T'))? weakly.
Concerning the first one, we deduce from the equations and the above statements that 3¢ (7 ) —
3(T) weakly in (H™!)3. But since that sequence is bounded in (L>(T"))?, it also converges
weakly in (L*(T!))3.

The fact that V{3 — V3 strongly in (L?((0,T) x T'))3 clearly follows from (40).

The above arguments imply that a.s.
(e, VESe) = (3,V3) strongly in (L2((0,T) x T1))®.

Now the convergence 3¢ — 3 in C([0,T]; (H~')?) follows readily from the equation.

([
Lemma 3.2 says that 3¢ = S in C([0,T]; (H™")*) NL?(0,T;(H™')?), we have used in
Lemma 3.5 the Skorohod theorem to deduce that 3¢ = 3 in L?(0, T (L?)*)NC([0,T]; (H™")~1).

Hence the same Skorohod theorem allows us to take the limit in the sum S¢ + 3¢, which yields
the following result.

Theorem 3.2 (Functional central limit theorem). For3/2 <y <2, as€—0, {#(),0<t<
Thocec1 = {# (), 0<t <T}inC([0,T]; (H?)®)NL*(0,T; (H™")3), where the limit &
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is solution of the following system of SPDEs : for all ¢ € H'

0.0 g0 =t [0 80 )y r+ [ 0,50 GO gy
+/Ol<02/(r),ﬁ(~)W¢>HI,Hld"+<%s(t), -
(F0.0 o =11 [V A0y oo [ (70 B(-)Wco —
,/Ot<ﬁz/(r),ﬁ(.)s( )(;zz;;“( r) lHldr+/ )0 Vg1 dr+ (A1), ¢

(41)

Final remarks: e Our functional central limit theorem is established in dimension 1. The
difficulty in higher dimension is the following. ¥ > 3/2 has to be replaced by y > 1+d/2.
Then in Lemma 3.2 we have convergence in L>(0,T; (H'~7)3) NC([0,T]; (H~7)?). Note that
1 —y < —d/2. Already in dimension 2, we have 1 —y < —1, and there is a serious difficulty
with the analog of Lemma 3.5.

e In this work, we have first let N — oo, while € > 0 is fixed, and then let € — 0. The case
where N — 40 and € — 0 together, with some constraint on the relative speeds of convergence
(which does not allow N to converge too slowly to co while € — 0) will be the subject of future
work.
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Appendix A

Lemma A.1. Let (he)o<e<1 be a sequence of He. If (he)o<e<1 is bounded in H"¢, then it is
relatively compact in L?, and the limit of any convergent subsequence belongs to H'.

Proof: By using the fact that the sequence (k¢ ) is bounded in L?* and HV;thLZ < C||hg || >
H

then the result of the compactness follows from the compactness theorem of Kolmogorov in L.
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The fact the limit of any convergent subsequence belong to H!, follows from the discrete

integrating by part
/ Vi he (x) / he(y)dy , Vi g,

and letting € go to zero in this equation.

Lemma A.2. Forall u; € He
_||V+”e||H o= X (e, @5 + (e, yi )?) A (14 A5) 7

m

Ve e

H™ V€

Proof: We have

Ve Op = —bme@p—ameV, and Vg Wy = ape @y —bneWy,

where d,,r = €~ !'sin(me) and by, = £ (cos(wme) — 1).

‘We have
ms +bme = lg

Let us € He. We have

HV;"‘EH;N ue, Ve Om) +<”87V87Wm>2) (I+ 2,77

Ug, — me(Pm ams‘lfm> <”eaam,s(Pri*bm,ell’:1>2)(1+Arfl)_y

1n8+bm£ ueﬂ(prfz>2+<u£>ll/ri>2})(1+)‘rfl)7y

Il
EM s[VJ §M EM s[V]

(¢
(¢
([~bme (e, @) — ame (e, Y )1 + [ame (e, @) = bune (e, Yi)17) (14 A5) 7
(la
(¢

ué’a(pm M&'all/m> )A’Yﬁ(l—’_z’ri)_y

The proof of ||V£*u,g||i7%E =Y ((ue, @5)% + (ue, w5 )*) A5(1+ A5) 7 is similar by noting
m

that
Ve O = bine @y — ameWy, and VW = ap e @ + b e V-
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