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‡LIGM, Université Gustave-Eiffel, CNRS – Marne-la-Valée, France F-77454
Email: {felipe.belem,benjamin.perret,jean.cousty}@esiee.fr

Abstract—Numerous segmentation methods are able to pro-
duce several partitions of the same image by tuning a scale
parameter. In such a series of multilevel segmentations, if every
region at a given level is included in a single region of the
segmentation at the next level, then the series is called a hierarchy.
Hierarchies are often desired for multiscale image representation
and analysis due to their mathematical properties, leading
to accurate and efficient solutions. Although certain effective
strategies may not produce a hierarchy, it is uncertain whether
their multiscale output is close to be one. This work explores
several cases when analyzing two consecutive segmentations, as
full inflation and full merge, for instance. From those, we provide
three measures for evaluating the hierarchiness between two
subsequent partitions: (i) nestedness; (ii) refinement error; and
(iii) inflation ration. Using our proposals in a in-sequence pairwise
comparison, as shown by the experimental results, it is possible
to verify whether a multiscale segmentation is a hierarchy and,
if not, to analyze the nature and extent of the hierarchical errors
that prevent it from becoming hierarchical.

I. INTRODUCTION

In segmentation, an image is partitioned into several regions
so that the object can be built by its comprising parts (ideally
only one). However, in certain applications, the mere construc-
tion of one partition is insufficient for calculating, for instance,
the object’s saliency. For that, one may generate several
partitions so that the object information is presented in several
and different granularities, from few to many regions produced
(i.e., coarser to finer segmentations). Consequently, finer re-
gions describe the object’s characteristics with higher level of
details, crucial for extracting local information, whilst coarser
ones describe global information of the object, reducing the
redundancy from finer partitions. Several works [1], [2] recur
to such multiscale segmentation, where each segmentation is
named as scale or layer.

Two strategies are often used for computing a multiscale
segmentation. One builds a hierarchical segmentation so that
any desired partition can be obtained efficiently. If all possible
partitions are generated, then it is a dense hierarchy. But, if
only a subset of the latter suffices, then it is sparse [3], as
presented in Fig. 1. Conversely, non-hierarchical approaches
build the necessary amount of partitions through one or
several executions of the same algorithm. In the end, effective

hierarchical and non-hierarchical approaches aim to accurately
delineate the objects of interest in all scales.

Although every hierarchical segmentation sequence is a
multiscale one, the converse is not necessarily true since the
former only made possible if every region on a finer scale
is included in the subsequent coarser scale. By executing
the same algorithm with different parameters, several ap-
proaches [4], [5] output multiscales that violate two principles
in hierarchical segmentation [6]. If borders of coarser regions
do not overlap those at finer scales, then it violates the locality
principle. Also, if the quantity of regions varies in a non-strict
monotonical behavior within a multiscale, then it violates the
causality principle. As a result, numerous properties on hier-
archies, which may assist in terms of efficiency and efficacy,
are not applicable in such series of partitions, independently
of the degree of violation. For instance, the task of generating
scales presenting effective object delineation can be reduced
as a meticulous node-selection procedure only in hierarchical
approaches. Conversely, non-hierarchical strategies [5] allow
object delineation corrections at each new execution of their
strategy by not imposing a hierarchical nested relation between
scales. As an example, by removing one region existent in
a previous scale, the subsequent one may correct internal
inaccurate borders by inducing a novel competition for the
newly “orphan” elements. For hierarchical approaches, how-
ever, the existence of incorrect delineations is perpetuated or
even aggravated as the hierarchy is being built [7], since their
single region-operation is either merging or splitting regions.
The latter occurs independently whether is a top-down or
bottom-up approach. Furthermore, if no node presents accurate
object delineation within a hierarchy, generating an output that
maximizes delineation is challenging.

For a given non-hierarchical multiscale in which violations
exist, it may be possible to extract information so that the
objective is easily achievable. As an example, if there is
a causality violation, one may order the series so that the
quantity of regions is strictly monotonically decreasing. In
contrast, for locality violations, one must evaluate their mag-
nitude since they may be dismissed in non-crucial regions for
solving a problem , especially when state-of-the-art delineation
performance is achieved in such segmentation. If one aims to
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Fig. 1. Different multiscale segmentation outputs (borders depicted in cyan) of an image of a helminth egg. Images were cropped for visualization purposes.

hierarchically segment an object, it suffices to guarantee that
object regions present a nested behavior in between partitions,
implying that hierarchical background segmentation, although
existent, may not be necessary. Consequently, one may exploit
hierarchical properties for optimization and simplification of
segmentation tasks in regions crucial for the user. If a measure
determines the resemblance of a non-hierarchical multiscale
segmentation resembles to a hierarchical one, one could relax
several hierarchical definitions and exploit, up to some extent,
hierarchical properties if such ratio is significantly low.

Although one may analyze the nested behavior between
sequential partitions to verify whether a given multiscale
segmentation is hierarchical or not, such binary measure does
not provide insights into whether the given multiscale is “al-
most” a hierarchy (i.e. slight or severe violations). Even using
hierarchical structures, violations may occur when defining
objects [8]. Also, if one considers the possibility of adding,
removing, or reordering scales, such problem becomes com-
binatorial. The latter stays unchanged even when considering
only two subsequent partitions in the multiscale.

As consequence, and to the best of our knowledge, the
existence of such a measure is unknown. Most of the works
somewhat related require a ground-truth for segmentation
quality assessment [9]–[11], but not for a hierarchiness mea-
surement. Simply put, such proposals do not assist in determin-
ing whether a multiscale segmentation is close to a hierarchy,
but whether a hierarchical segmentation achieves an effective
object delineation. One could recur to our approach and of
others for two, but different analysis. Although one may argue
that, in our approach, the next scale is the contour ground-truth
of its predecessor, we consider all borders equally relevant,
differing from [12], which weights differently based on the
object’s contours. Consequently, the study of strategies for
transforming a multiscale segmentation into a hierarchical one
are hampered by such challenge.

In this work, we characterize eight different modifications
a region may present when considering two subsequent parti-
tions: (i) full inflation; (ii) full merge; (iii) merge and inflation;
(iv) instability; (v) stability; (vi) full deflation; (vii) full split;

and (viii) deflation and split. From such characterization, we
propose three distinct measures for measuring the degree of
locality violations in a series of partitions: (a) nestedness;
(b) inflation ratio; and (c) refinement error. For evaluating
whether a multiscale segmentation resembles a hierarchy, one
may apply such measures for each pair of subsequential
partitions in the sequence. Using nestedness, we estimate
the ratio of nested regions between the segmentations, being
maximum when it is a hierarchy. On the other hand, inflation
ratio calculates the ratio of inflation, which leads to locality
violations. Finally, refinement error is an error measure that
estimates the cost of “correcting” the precedent scale to be-
come nested in its subsequent one. Experimental results show
that, using the proposed measures, it is possible to verify if a
multiscale segmentation is a hierarchy and, if not, to measure
the degree of locality errors from a local or global perspective,
that is, to provide a deep analysis of the violations in between
partitions in a multiscale segmentation, each measure can be
computed with respect to each region or to the whole partition,
respectively. Finally, from the information computed by each
measure, one can assert the nature of the errors that prevent
it from becoming hierarchical.

This work is organized as follows. Section II presents the
necessary mathematical background for a full understanding of
our proposal, which is presented and detailed in the subsequent
section (i.e., Section III). Using a state-of-the-art multiscale
segmentation algorithm, experimental results are shown and
discussed in Section IV and, finally, we draw some conclusions
and possible future work in Section V.

II. MATHEMATICAL BACKGROUND

In this section, we recall mathematical definitions based on
the work of [13], [14] necessary for comprehending our work.
Throughout this paper, Υ denotes the universe of elements
(i.e., a set). The size (i.e., number of elements) of Υ, for
instance, is here denoted by |Υ|. Also, let Π : Υ 7→ P(Υ),
being P the power set, be a function which defines all
partitions in Υ such that, ∀ P ∈ Π(Υ), ∪P = Υ and ∩P = ∅.
We term each element of a partition as blocks or regions. When
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Fig. 2. Diagram depicting all eight possible cases for building a region Yj ∈ Y from the regions of the partition X .

each element u ∈ Υ is, also, a block in a partition P ∈ Π(Υ),
then we say that P is the identity partition. Conversely, if
P = {P1} is composed of a single block P1 in which,
∀ u ∈ Υ, u ∈ P1, then P is said to be the universal partition.
Finally, given a subset E ⊆ Υ, we may term Q ∈ Π(E) and
Q ∈ Π∗(Υ) as a partial partition of Υ, thus, Π∗(Υ) is the set
of all partial partitions of Υ since it is a partition of E but not
necessarily of Υ.

We may order the set Π(Υ) by quantity. Thus, given two
partitions P,Q ∈ Π(Υ), we say that P is bigger than Q
(denoted by P ⊵ Q) if, and only if, |P | ≥ |Q|. Then, in such
case, Q is said to be smaller than P (denoted by Q ⊴ P ).
Similarly, it is possible to partially order the set Π(Υ) by
refinement such that, for instance, P is considered finer than
Q (denoted by P ⪯ Q) if and only if, for every region
p ∈ P , exists a unique q ∈ Q in which p ⊆ q. Thus, Q
is said to be coarser than P and we write such information
by Q ⪰ P . In this work, we say that P is a downscale of
Q and, thus, Q is an upscale of P . One can see that P ⪯ Q
implies that P ⊵ Q, but the converse is not true. As one may
note, the task of (hard) segmentation highly correlates with
the aforementioned concepts of partition and order relations.
For instance, a partition X ∈ Π(Υ) is then referred as a
segmentation of Υ. Also, for a given series of segmentations
M = {S1, . . . , Sk} — which we usually term as a multiscale
or multilevel segmentation — we may order them by their size
(i.e., by ⟨M,⊵⟩) such that Si ⊵ Si+1 for some i ∈ [1, k − 1]
and Si ∈ Π(Υ). On the other hand, if it is possible to order
M by refinement, thus, by ⟨M,⪯⟩, then we say that it is a
hierarchical segmentation. In both cases, after ordering, we
often refer to a segmentation Si ∈ M as a layer or level, and
Si−1 and Si+1 as the previous and next layer in M.

III. HIERARCHINESS

In this section, we will introduce the concepts of nucleus
and cover, which are crucial for identifying the specific case,
amongst eight different ones (illustrated by Fig. 2), of a region
in a partition Si+1 = Y being built by the regions of Si = X ,
given a multiscale segmentation M = {S1, . . . , Sk} and 1 ≤

i < k ∈ N. Furthermore, with such definitions, we present
three different measures for evaluating and analyzing whether
M is close to being a hierarchy.

A. Nucleus and Cover

One can perceive the nucleus of a coarser region as the
group of those blocks at the finer scale totally included in
the former (i.e., nested). In contrast, its cover, can be seen
as the set of regions in the preceding scale necessary for
building the coarser block. In this sense, building is the
partial or total selection of elements in each region in the
cover so that the result is equivalent. Mathematically speaking,
we define the nucleus and cover of a region as follows.
Given a multiscale segmentation M and two subsequent layers
X = {X1, . . . , Xr} and Y = {Y1, . . . , Yc} in M, we define
the nucleus η(X,Yj) and the cover η̂(X,Yj) of a region
Yj ∈ Y with respect to X as η(X,Yj) = {Xi ∈ X : Xi ⊆ Yj}
and η̂(X,Yj) = {Xi ∈ X : Xi ≬ Yj}, respectively, for
1 ≤ i ≤ r = |X| and 1 ≤ j ≤ c = |Y |, in which Xi ≬ Yj

indicates that X and Y overlap (i.e., Xi∩Yj ̸= ∅). When this
is not the case, we say that Xi and Yj are disjoint. As one
may note, ∪η(X,Yj) ⊆ Yj ⊆ ∪η̂(X,Yj) and, consequently,
| ∪ η(X,Yj)| ≤ |Yj | ≤ | ∪ η̂(X,Yj)|. Finally, both definitions
are also applicable to any region Xi ∈ X with respect to Y .

B. Region Cases

From Figure 2, we are able to identify eight possible cases,
listed and defined below:

• Full Deflation: η̂(X,Yj) = {Xi}, η(X,Yj) = ∅ and
η(Y,Xi) = {Yj};

• Deflation and Split: η̂(X,Yj) = {Xi}, η(X,Yj) = ∅ and
∪η(Y,Xi) ̸= Xi;

• Full Split: η̂(X,Yj) = {Xi}, η(X,Yj) = ∅ and
∪η(Y,Xi) = Xi;

• Stability: η̂(X,Yj) = η(X,Yj) = {Xi};
• Instability: |η̂(X,Yj)| > 1 and η(X,Yj) = ∅;
• Full Inflation: |η̂(X,Yj)| > 1 and |η(X,Yj)| = 1;
• Merge and Inflation: |η̂(X,Yj)| > 1, |η(X,Yj)| > 1 and

∪η(X,Yj) ̸= Yj ; and



(a) (b) (c)

Fig. 3. Three distinct partitions of a 8× 8 square universe Υ for illustrating
the eight possible cases when evaluating two partitions.

• Full Merge: |η(X,Yj)| > 1 and ∪η(X,Yj) = Yj ;
We can exemplify each one of the aforementioned cases

from the partitions depicted in Figure 3. For instance, while
verifying whether B is an upscale of A, we can see that
B1 is built through full inflation, since η(A,B1) = {A1}.
For B2 and B3, one may notice that they are constructed by
instability given that both present empty nuclei and more than
one element in their cover. In contrast, B7 is equivalent to
A6 (i.e., stable). Also, B4 is constructed through full deflation
because it has an empty nucleus, η̂(A,B4) = {A4} and that
B4 ∈ η(B,A4). Like B4, B9 and B10 are built through full
deflation. Both B5 and B6 are resultant from deflation and
split. Finally, we can see that B8 is built from merging and
inflation. For illustrating the case of a full merge, one can
refer to A1, A2, A3, A4 for building C1, and the converse
exemplifies the case of a full split. Thus, when X ⪯ Y , the
sole case possible is the full merge of regions and, clearly, it
is analogous for X ⪰ Y and full split (e.g., A and C).

C. Hierarchiness Measures

Based on the previous measures, we can define three distinct
measures for evaluating two subsequent partitions X,Y in a
multiscale segmentation M. First, we recur to a r × c matrix
M(X,Y ) = [M(X,Y )ij ] in which r = |X|, c = |Y |, and
each element is defined by M(X,Y )ij = |Xi ∩ Yj |, given
Xi ∈ X and Yj ∈ Y . Also, we may normalize each element
by |Υ| thus resulting in the matrix MΥ(X,Y ) whose elements
are MΥ(X,Y )ij = |Xi ∩ Yj |/|Υ|. Similarly, the elements of
the matrix MY (X,Y ) are defined as MY (X,Y )ij = |Xi ∩
Yj |/|Yj |, and it is analogous for MX(X,Y ).

Given two regions Xi ∈ X and Yj ∈ Y , we may quantify
the property of X ∈ η(X,Yj) through the nestedness measure
NE(Xi, Yj) ∈ {0, 1} defined by NE(Xi, Yj) = 1(Xi ⊆ Yj)
or, equivalently, by NE(Xi, Yj) = 1(MX(X,Y )ij = 1),
in which 1 is an indicator function that outputs “0” or “1”
if the input boolean expression is false or true, respectively.
The inflation ratio IR(Xi, Yj) ∈ {0, 1} evaluates whether
any inflation has through IR(Xi, Yj) = 1(Xi ∈ η̂(X,Yj) \
η(X,Yj)), which can be computed by IR(Xi, Yj) = 1(0 <
MX(X,Y )ij < 1 ∧ 0 < MY (X,Y )ij < 1)), consider-
ing ∧ the logical operator AND. In contrast and inspired
from [15], the the refinement error RE(Xi, Yj) ∈ [0, 1] can
be defined by RE(Xi, Yj) = min {|Xi ∩ Yj |, |Xi \ Yj |} /|Xi|
and quantify the lowest “effort” to make Xi ⊆ Yj . We
can compute it, deriving from the latter equation, through
RE(Xi, Yj) = min {MX(X,Y )ij , 1−MX(X,Y )ij)} but

imposing a harsher penalization by calculating it as
RE(Xi, Yj) = min {1, (1−MX(X,Y )ij)/MX(X,Y )ij}.

For two segmentations X,Y ∈ M of a given image
containing |Υ| pixels, the effort to compute M(X,Y ) and
any presented measure is O(|Υ|2) and O(|X||Y |), respec-
tively. Also, one can compute each measure for Yj with
respect to all partitions in X . For instance, NE(X,Yj) =∑r

i=1 NE(Xi, Yj)MY (X,Y )ij , resulting in a normalized
measure (with respect to Yj). Similarly, it is possible to
evaluate the NE(X,Y ) between both partitions X and Y
through NE(X,Y ) =

∑r
i=1

∑c
j=1 NE(Xi, Yj)MΥ(X,Y )ij .

As one may note, the aforementioned possibilities are also
valid for IR, and RE.

When evaluating X,Y ∈ M, if X ⪯ Y , it is clear to see
that NE(X,Y ) = 1, and IR(X,Y ) = RE(X,Y ) = 0. Con-
versely, if X ⪰ Y , we have that NE(X,Y ) = IR(X,Y ) =
RE = 0. From Figure 3 and using B8 as an example
of merge and inflation, we have that NE(A,B8) = 0.5,
IR(A,B8) = 0.5, and RE(A,B8) = 0.5, indicating that 50%
of B8 was built from inflation and 50% from merging. The
refinement error indicates that 50% of B8 present multiple
region overlap. In contrast, for C1, which is built solely
from full merge, NE(A,C1) = 1, IR(A,C1) = 0, and
RE(A,C1) = 0.

IV. EXPERIMENTAL RESULTS

In this section, we provide the experimental setup and we
analyze and discuss our findings. We chose two medical image
datasets, named Liver [16] and Parasites [17], whose objects
(i.e., human liver and intestinal parasite eggs) present smooth
borders and impose a challenge in terms of delineation. Also,
the object and background stability allows a more confident
analysis, differently from natural image datasets in which both
vary significantly. Since we propose non-optimized measures,
we used all images in the dataset in the experiments. Also, in
order to properly assess our proposed measures considering
different multiscale segmentations (from different approaches),
we selected four methods: (i) Voronoi; (ii) SICLE-COMP [5];
(iii) SICLE-IRREG [5]; and (iv) SH [18]. We use Voronoi as a
representative of a method that minimizes nestedness between
segmentations. For that, we generate random seeds and parti-
tion the image by minimizing the spatial distance to a seed. In
contrast, Superpixel Hierarchy (SH) is a hierarchical approach
and, thus, provides insight into hierarchical multiscale segmen-
tation. Finally, SICLE-COMP and SICLE-IRREG are variants
of a state-of-the-art method in superpixel segmentation named
Superpixels through Iterative CLEarcutting (SICLE), which
provides a non-hierarchical multiscale segmentation on-the-
fly. The motivation relies on the resemblance of a hierarchical
segmentation output, although such a condition is not assured.
Finally, for all methods, we generated 750, 500, 250, and 100
regions in each segmentation and we analyzed, from finer
to coarser, the following pairs of partitions: (a) (750, 500);
(b) (500, 250); and (c) (250, 100). A demonstration code is
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Fig. 4. Experimental results of the proposed measures on Liver and Parasites datasets (resp. left and right columns), whose average is depicted as a diamond.

publicly avaliable*1.

A. Quantitative Analysis

Figure 4 presents the average results of each method in
Liver and Parasites datasets. It is clear to see that SH, a
hierarchical method, achieves the expected behavior for all
measures: maximum for nestedness and minimum for infla-
tion ratio and refinement error. Likewise, Voronoi, due to
its unstable partitioning strategy, undermines nesting regions
which explains its almost zero nestedness and quasi-maximum
inflation ratio. In terms of refinement error, we argue that the
Voronoi results are high due to the significant impact that
random sampling imposes on the closest points to a seed.
When considering 750 → 500, the competition for conquering
pixels is near the seed, implying that slight changes in the
seed coordinates severely affect the region, being necessary
to substantially be reshaped for being nested in some other
region in the following segmentation. However, as the number
of regions decreases, the competition is farther from the seed,
limiting such impact mostly on the region’s borders, which
demands fewer modifications.

When analyzing the results from SICLE variants, one may
note that the behavior is similar between datasets. It is inter-
esting to notice that SICLE-COMP, which aims for compact
regions, achieves higher nestedness and lower inflation ratio
than its irregular counterpart. We infer that, by imposing a

1* https://github.com/IMScience-PPGINF-PucMinas/hierarchiness.git

spatial regularity factor, regions tend to present similar shapes
and be less impacted by the removal of regions far from them.

Conversely, slight modifications in the competition may al-
ter drastically the regions’ shape when the goal is irregularity.
Consequently, although both rarely promote merging behavior,
the latter favors inflation whereas the former favors stability.
The same argument goes for the refinement error. That is,
by favoring stability, SICLE-COMP achieves lower errors
with less variation than SICLE-IRREG, whose slightly higher
results, but with higher variation, are a result of promoting
inflation.

B. Qualitative Analysis

As one may note in Figs. 5(c-a), several regions in SICLE-
COMP remained unaltered from one scale to the subsequent,
achieving NE(C500, C250) = 71%, IR(C500, C250) = 30%,
and RE(C500, C250) = 14%, when considering C500 and
C250. However, as the number of regions decreases, regions
tend to be closer to one another and, thus, removing one or
more nearby regions may destabilize the ones left out. As an
example, for C250 and C100, we have that NE(C250, C100) =
36%, IR(C250, C100) = 64%, and RE(C250, C100) = 27%.

On the other hand, seeing the finer segmentation from
SICLE-IRREG in Figure 5(f-d), even when removed regions
are far from those left out, it may affect local tie-zones which,
for a function that maximizes irregularity, can significantly
alter the regions’ shape in between partitions. Consequently,
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Fig. 5. Pseudocolored segmentations using SICLE-COMP and SICLE-IRREG, respectively, identified by Cn and In, for n ∈ {100, 250, 500} regions.

for I500 and I250, we have that NE(I500, I250) = 16%,
IR(I500, I250) = 83%, and RE(I500, I250) = 34%. In con-
trast, when considering coarser scales, the amount of tie-zones
is significantly diminished, leading to more nested regions (i.e.,
unaltered) and less inflation and locality errors, specifically, for
I250 and I100, NE(I250, I100) = 33%, IR(I250, I100) = 67%,
and RE(I250, I100) = 18%.

V. CONCLUSION AND FUTURE WORK

In this paper, we analyze the “hierarchiness” between two
partitions in a multiscale segmentation and, by defining eight
possible situations, we propose three different measures for
assisting in the estimation of how far a multiscale segmentation
resembles a hierarchy. Experimental results show that our
proposals are consistent and offer a wide and complementary
overview on each of the four algorithms considered. For
future work, we aim not only to study and propose new
measures but, also, to conceive new approaches for measuring
the segmentation series integrally, alongside strategies for
maximizing the hierarchiness of any multiscale segmentation.
The latter may allow optimization solutions of partition-related
problems, as in [19], [20].
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Guimarães, and A. X. Falcão, “Novel arc-cost functions and seed
relevance estimations for compact and accurate superpixels,” Journal
of Mathematical Imaging and Vision, vol. 65, no. 5, pp. 770–786, 2023.
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