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Abstract

A number of bridges have collapsed around the world over the past years, with detrimental
consequences on safety and traffic. To a large extend, such failures can be prevented by regular
bridge inspections and maintenance, tasks that fall in the general category of structural health
monitoring (SHM). Those procedures are time and labor consuming, which partly accounts
for their neglect. Computer vision and artificial intelligence (AI) methods have the potential
to ease this burden, by fully or partially automating bridge monitoring. A critical step in this
automation is the identification of a bridge’s structural components. In this work, we propose
an extensible synthetic dataset for structural component semantic segmentation of portal frame
bridges (PFBridge). We first create a 3 dimensional (3D) generic mesh representing the bridge
geometry, while respecting a set of rules. The definition of new, or the extension of the existing
rules can adjust the dataset to specific needs. We then add textures and other realistic elements
to the model, and create an automatically annotated synthetic dataset. The synthetic dataset
is used in order to train a deep semantic segmentation model to identify bridge components
on bridge images. The amount of available real images is not sufficient to entirely train such
a model, but is used to refined the model trained on the synthetic data. We evaluate the
contribution of the dataset to semantic segmentation by training several segmentation models
on almost 2000 synthetic images and then finetuning with 88 real images. The results show an
increase of 28% on the F1-score when the synthetic dataset is used. To demonstrate a potential
use case, the model is integrated in a 3D point cloud capturing system, producing an annotated
point cloud where each point is associated with a semantic category (structural component).
Such point cloud can then be used in order to facilitate the generation of a bridge’s digital twin.

Keywords: Structural Health Monitoring, Bridge Monitoring, Portal Frame Bridge, Deep Learning,
Synthetic Dataset, Semantic Segmentation

1 Introduction

Recent advances in computer vision (CV) and
image analysis have shown remarkable perfor-
mances for numerous applications in different
fields. With the emergence of large neural net-
works, or deep learning (DL), tasks that were

long considered time-consuming and tedious
are now automated. This is also the case for
structural health monitoring (SHM), a multi-
disciplinary approach that aims, through obser-
vation and analysis over time, to evaluate the
integrity of infrastructures such as bridges and
buildings [1–3]. The automation of SHM tasks
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has recently gained attention [4], and the past
years several attempts have been made to lever-
age the benefits of CV in order to lessen
the inconveniences of fully manual infrastruc-
ture inspections. Such inconveniences are not
to be taken lightly, since often these evalua-
tions demand long journeys, they are subject
to the weather, and may come with significant
safety risks. Automatic identification and local-
ization of structural components or damage has
therefore the potential to mitigate the afore-
mentioned risks and difficulties. However, the
need of expert annotations remains a limiting
factor, as the former constitute a prerequisite
for powerful machine learning (ML) models to
perform well.

In this work we focus on the task of bridge
inspection. Structures such as bridges are heav-
ily subject to wear, as they are exposed to
environmental elements, and receive a lot of
stress and tension while used. It goes with-
out saying that insufficiently maintained bridges
can be a cause for serious and possibly fatal road
accidents. For this reason, regular inspections
are necessary in order to assess and follow up
on their condition, and decide if maintenance is
needed, and how urgently. Typically, a bridge
inspection should be carried out annually, and
a more detailed technical inspection takes place
every three years. Traditionally, bridge inspec-
tions are performed by qualified engineers, who
visually assess deficiencies located on the dif-
ferent bridge structural elements. The identi-
fication, localization, and classification of such
deficiencies play a role in the final evaluation
of the bridge’s condition. This is a challeng-
ing task [5], that depends on the bridge type.
In this work we target portal frame bridges.
Those are concrete monolithic structures, in
the sense that their decks and abutments form
one block, a property that makes them very
solid and robust [6]. They constitute a large
number of medium to small bridges found in
urban and rural settings. A schematic of a por-
tal frame bridge, along with its main structural
components can be seen in Fig. 1.

1.1 Semantic segmentation as part
of automated bridge inspection

The identification of a bridge’s structural ele-
ments can serve various SHM tasks. The com-
ponents can be presented to the user during
inspection as a visual aid, or they can be used to
label a 3D point cloud, that would then be used

deck

abutment

wing wall

haunch

edge beam

Fig. 1: Portal frame bridge schematic with struc-
tural components.

to create a numerical geometrical representa-
tion of the bridge structure, called digital twin.
A digital twin can then be used for building
information modelling (BIM). In more details,
a digital twin serves to digitally conserve the
information of subsequent bridge inspections,
and can also be used as additional visual aid
during inspection, if coupled with augmented
reality (AR) [7, 8]. The masks produced from
semantic segmentation of structural compo-
nents can also serve as a prior in a hierarchical
damage identification method, as the identifica-
tion of damage needs to be combined with the
structural component the damage appears on,
in order to effectively rate the bridge’s condi-
tion according to most rating methods [9, 10].
Certain damage types only appear in specific
components (e.g. a water trace is not considered
damage if seen on the wing walls, since it can
be a result of rain, but is noted as damage if it
appears on the inside of the bridge). The sever-
ity of some pathologies is a combination of the
pathology characterization and its localization,
e.g. a longitudinal or transversal crack is severe
if observed on the deck, while a horizontal or
vertical crack is severe if observed on the abut-
ment. Finally, a detected pathology can appear
on a non-bridge part (e.g. on the road), and thus
be irrelevant to the bridge inspection.

Semantic segmentation can either be done
on bridge images, or on bridge point clouds. In
this work, we focus on semantic segmentation
performed on images, for three main reasons.

1. Point clouds are high dimensional data,
whose annotation is very cumbersome. Even
when using synthetic data, a large amount of
samples is needed to train powerful artificial
intelligence (AI) algorithms.

2. Inference time for a point cloud is signifi-
cantly larger than that of an image, due to
the higher dimensionality of the input data
and the model complexity. Part of our goal
being to produce an annotated point cloud
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“on the go” during bridge inspection, using
only a mobile device, inferring on the point
cloud was both time and resource prohibit-
ing. Inferring on images (or video frames)
and using this model to automatically anno-
tate the point cloud overcomes this obstacle.

3. As mentioned above, a model that segments
images can be more versatile to be integrated
in other parts of SHM, not involving point
clouds.

The motivation for the generation of a syn-
thetic dataset stems from the fact that anno-
tating a sufficient amount of real images is
cumbersome and time consuming for domain
experts. The annotation needs to be repeated
for a significant amount of new real images if
another bridge type or other structural cate-
gories are to be integrated in an automated
system, while with a parametrizable automat-
ically annotated synthetic dataset, a limited
number of changes in parameters can produce a
whole new dataset. Additionally the 3D model
that is used to generate those synthetic images
can also find use in other steps of SHM, such as
the generation of the digital twin of a bridge.

1.2 Related Works

Significant attempts have been made in order to
use CV to assist bridge inspections, with vari-
ous levels of specialized equipment needed ([11,
12]). A number of studies focus on the
semantic segmentation of bridge components
applied directly on point clouds ([13–16]). These
approaches rely on the very tedious task of point
cloud labeling, or on synthetic data, and per-
form the point cloud segmentation after the
point cloud has been captured. In [13], for exam-
ple the authors tackle semantic segmentation of
bridge components directly on a 3D point cloud.
With the use of specialized equipment, they cap-
ture point clouds of a number of bridges, which
they manually annotate before training a graph
neural network (GNN) for semantic segmenta-
tion. In [16] the authors also study the use of
synthetic data for bridge monitoring, but from a
different perspective than our work. They man-
ually construct 3D models of 27 generic bridges,
that they then use to capture annotated syn-
thetic point clouds. They use a combination
of synthetic and real bridge point clouds of
highway bridges, captured through a terrestrial
mobile LiDAR1. They train a model to anno-
tate point clouds after they are captured. Such

1https://www.ibm.com/topics/lidar

annotated point clouds are then used to create a
parametric model of the bridge. Our work differs
from this study, as it explores a different type
of bridges, and a different modality of synthetic
data (images instead of point clouds). While,
as we show, an image segmentation model can
be used to annotate point clouds, this is not its
only possible use, nor it is the main contribu-
tion of our work. Finally, we automatically and
randomly generate a vast number of 3D models,
as opposed to the 27 manually crafted models
of [16].

In this work we are mostly interested in
inferring the semantic information of bridge
components from images. To that end, [17] pro-
vides a review of studies for monitoring civil
engineering structures using visual information
provided from unmanned aerial vehicle (UAV)s.
This kind of information is interesting since
it can apply to structures that are hard to
approach, however it is relatively costly, and it
provides a very different point of view of the
structures, compared to the ‘inspector’ views we
tackle in this work. The authors of [18] explore
the use of transfer learning for structural com-
ponent segmentation. They work on broader
civil infrastructure categories, not specifically
bridges, and the pretraining is done on a gen-
eral image dataset and not a task specific one.
[19] focuses on the hyperparameter selection for
object detection networks in disaster inspection
scenarios. As far as bridges are concerned, they
only detect bridge columns. In [20] the authors
use CV and DL to classify the bridge type
and segment bridge components, using images
taken from a UAV. For training, they use photos
sampled from the internet.

Since the most powerful CV methods
strongly depend on large and detailed datasets,
research interest is directed in their construc-
tion ([21–24]). An extensive study of such
datasets is beyond the scope of this work,
so in this section we will present some of
those datasets, that are either synthetic or
related to bridges, or both. SYNTHIA ([24])
is a remarkable synthetic dataset consisting of
more than 200,000 synthetic urban scene images
of a virtual city, and was created to serve
the development of autonomous driving appli-
cations. Another synthetic dataset, this time
of images of construction sites, is presented
in [25]. The authors use a popular video game
from which they extract interesting snapshots.
COCO-bridge ([22]) is a thorough attempt to
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create an annotated dataset of several struc-
tural details of bridges (e.g. cover plate ter-
mination, bearing), that can be useful during
inspections. Bounding boxes are provided for
each detail of interest. Often bridge inspections
might include videos of the bridge, which moti-
vates the authors of [26] to create a synthetic
video simulation dataset of bridges, and train
a recurrent neural network (RNN) that lever-
ages information of previous frames in order to
segment the elements of a given frame. In [27]
a dataset of bridge images selected from google
street view and imagenet ([28]) are manually
annotated by the authors. A hierarchical scheme
with 2 steps, where a broader ‘structure segmen-
tation network’ precedes a bridge component
segmentation network is then trained to iden-
tify broad bridge component categories. Closely
related to our work, Narazaki et al. [23] intro-
duce the Tokaido dataset, a synthetic dataset
of Japanese high-speed railway viaducts, which
they use to train a semantic segmentation con-
volutional neural network (CNN). While they
define a small number of parameters (less than
10) that are relevant for viaducts, we define a
scheme with around a hundred parameters that
are sampled in order to create a great variability
of portal frame bridges, by individually creat-
ing building blocks of each semantic category.
Such approach, though more complicated, can
prove more flexible and extensible, and allow for
greater variability in the produced structures.

1.3 Contributions

We propose a pipeline that allows the gener-
ation of a synthetic dataset for portal frame
bridge component semantic segmentation. We
first define a number of dimensions and con-
straints that define a parametric model, allow-
ing us to generate an annotated geometric
3D model of a portal frame bridge. Such
parametrization can serve a double purpose. On
the one hand, by randomly sampling in the
acceptable range of parameters, we can pro-
duce infinite instances of valid 3D meshes, which
we then enhance with texture and environmen-
tal information to create synthetic images with
their corresponding ground truth masks. An
overview of this procedure is depicted in Fig. 2.
On the other hand, this parametrization can
offer itself as a base for the construction of a
digital twin to be used in BIM related tasks. In
this work we mostly tackle the first part, and
show some promising preliminary results on the

second one, that should be the focus of a future
work.

The contributions of this work are the fol-
lowing:

1. Proposal of a pipeline that, respecting a set
of constraints, generates specific or random
instances of 3D bridge models. The dimen-
sions, constraints, and component interac-
tion can be adapted to fit specific needs
and other bridge types, making our pro-
posed pipeline not only reproducible but also
extensible.

2. Use of aforementioned 3D meshes to gen-
erate an automatically annotated synthetic
dataset for semantic segmentation of the
bridge structural components. This dataset
is specific to not only the bridge type but
also to the fact that it contains images simu-
lating an inspection carried out by a human.
This implies that the synthetic images are
mostly close-ups of the structure, and not
overall views, and therefore harder to seg-
ment. To the best of our knowledge, such a
dataset does not currently exist for portal
frame bridges.

3. A benchmark on the performance gain
achieved by using this large synthetic dataset
and a very limited number of real annotated
images.

4. Some first preliminary experimentation on
integrating an image-based semantic seg-
mentation model in a mobile application in
order to obtained a labeled 3D point cloud.

The synthetic dataset as well as the code to
reproduce or adapt it, are publicly available.

The remaining of this paper is organized
as follows: The assumptions and procedure for
the 3D model generation and the annotated
image dataset are described in Sec. 2 and Sec. 3
respectively. We detail our experimental setup
in Sec. 4 and present results in Sec. 5. We
then present some preliminary experiments and
results on 3D point clouds in Sec. 6. We give
some final remarks and future directions in
Sec. 7.

2 3D model generation

From a set of rules and conditions, we auto-
matically produce 3D annotated meshes in
two widely used and versatile formats, namely
Wavefront .obj [29] and Blender [30]. We assume
that a bridge consists of hexahedral build-
ing blocks, with varied dimensions, translations
and rotations. The relative positioning of these
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Fig. 2: Overview of synthetic dataset generation.
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Fig. 3: Parameters defining a building block. 3a:
D1 and D2 values for each dimension. 3b: Tilt rep-
resentation.

blocks with respect to one another instantiates
a portal frame bridge. In this work we do not
deal with curved elements, we assume all blocks
have straight edges. While this is not always the
case, it holds for more than 90% of portal frame
bridges, as indicated by domain experts.

2.1 Building block description

Each building block belongs to a single seman-
tic category, and its geometry is defined by 15
parameters. We define the vector

di ={D1i, D2i, Ti},
∀i ∈ {width, length, height}, (1)

where D1 and D2 correspond to opposing
dimensions of a surface, and T denotes the tilt
of D2 with respect to D1. A visual representa-
tion of these parameters is shown in Fig. 3. We
also define the vector r = {rx, ry, rz}, as the
block’s rotation with respect to each axis, and
the vector t = {tx, ty, tz} as the translation of
the block’s center with respect to the bridge’s
center. We therefore have the entire building
block description,

b = {dwidth,dlength,dheight, r, t}. (2)

2.2 Building block constraints

In order to combine various building blocks to
form a bridge, several constraints are relevant.
Some dimensions or rotations depend on one

Actual
element

Parent
element

Fig. 4: Constraint examples. Top: Positional
constraints. Bottom: Dimensions and angle con-
straints. Highlighted red and yellow values should
be equal.

another, for example the length of the bridge
deck should be the same as the length of the
abutment. Same goes for their rotation. We also
deal with positional constraints, meaning indi-
cations on the relative placement of the building
blocks, that are crucial for the components to fit
together. With the assistance of civil engineer
experts we defined a number of constraints as
first order multivariate equations of the form:

f0(b0, ...,bN−1) = 0

...

fM−1(b0, ...,bN−1) = 0, (3)

where N is the number of building blocks com-
posing the bridge, and M is the number of con-
straints. Fig. 4 provides a visual representation
of such constraints.

The dimensions of a bridge are bound by a
number of factors, that depend on the materials’
functionality, the laws of statics etc.([6]). We
incorporate those bounds as a number of first
order inequality constraints of the form:

g0(b0, ...,bN−1) > 0

...

gK−1(b0, ...,bN−1) > 0, (4)
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where N is the number of building blocks com-
posing the bridge, and K is the number of
constraints. Such constraints can be either abso-
lute (e.g. a wall must be wider than 30 cm)
or relative (e.g. a wing wall’s height must be
smaller or equal to the height of the abutment
it is connected to). The constraint equations
are inferred from [6] or indicated by domain
experts. We give below the equality and inequal-
ity constraints for the deck, and refer the reader
to the available code and its documentation for
the rest of the building blocks.

2 ≤ D1width ≤ 10

2 ≤ D2width ≤ 10

2 ≤ D1length ≤ 20

2 ≤ D2length ≤ 20

−0.5 ·D1width ≤ Tlength ≤ 0.5 ·D1width

0.3 ≤ D1height ≤ 0.5

0.3 ≤ D2height ≤ 0.5

D1height = 0.045 ·D1width

D2height = 0.045 ·D2width

−2.5 ≤ rx ≤ 2.5

−5 ≤ ry ≤ 5

2.3 Randomized geometric model
generation

3D models of bridges are randomly generated,
while respecting the imposed constraints. All 15
parameters of vector b (Eq. (2)) for each build-
ing block are either sampled from acceptable
ranges or directly calculated using the equal-
ity constraints (Eq. (3)). The constraints are
implemented as parameter files in the model
generation pipeline. Table 1 summarizes the
overall acceptable dimensions for our setup
(portal frame bridges with a single deck), and
points out the corresponding building block
dimensions that those reflect.

By randomly sampling dimensions from the
acceptable ranges and applying the defined con-
straints, we obtain a randomized 3D instance of
a portal frame bridge. The number of param-
eters for a bridge with 4 wing walls is 165,
of which 96 are sampled from a continuous
range and not directly calculated. The number
of acceptable bridge instances is therefore sig-
nificant, and a large variability can be assured.

3 Dataset

The 3D model contains all the geometric infor-
mation of the bridge structure, but in order to
produce realistic and varied synthetic images a
few more elements are needed.

3.1 Synthetic dataset generation

We use Blender [30] to automatically create
and complete the 3D model and produce auto-
matically annotated images. We do so via the
following steps (see Fig. 2):

Surroundings completion:

We create a plane hooked on the abutments’
corners to represent the road, and we add an
uneven terrain as a collection of planar faces
around the bridge. We define those planar tri-
angular faces by using the vertex coordinates of
the building blocks, so that the terrain is created
naturally around the bridge.

Textures:

Following, we randomly sample from a num-
ber of appropriate textures, recovered from Poly
Haven,2 and assign a texture to each 3D mesh.
The complete set of textures is manually cho-
sen to represent real world conditions. Since
portal frame bridges are made of concrete, tex-
tures of concrete of different roughness and
colorations are chosen. As for the surrounding
terrain, earthy textures (e.g. grass, gravel) are
selected.

Environmental conditions:

We use the Dynamic Sky addon of Blender to
randomly set lighting conditions, such as sky
color, cloud density and sunlight color. We also
use the Blender built-in functionality to add fog.

Camera placement:

We have thus created a realistic instantiation of
a bridge from a geometric 3D model. Next, to
produce the synthetic images, we place a camera
object in the scene. We sample a number of cam-
era positions that simulate a human inspector
in terms of height and orientation. The range of
camera positions is chosen in accordance to the
inspection procedure, meaning there are sev-
eral views from underneath the bridge, and not
only overall views. The inspector is assumed
to always stand on the road. Those constraints
are assured by defining acceptable coordinate

2https://polyhaven.com/
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Table 1: Portal frame bridge dimension ranges. In italics, the building block dimensions that the overall
bridge dimensions correspond to. Columns min and max correspond to available ranges. Column fixed
corresponds to a specific value that is assigned to a dimension.The value of zero to the rotation around
the z axis (rz) is a convention for mathematical simplicity, since any rotation around the z axis would just
rotate the entire bridge without changing its geometric representation.

min max fixed

width [m]
(deck width)

2 10 -

length [m]
(deck length, abutment length)

2 20 -

height [m]
(abutment height)

0.5× widthdeck 0.7× widthdeck -

rx [degrees] -2.5 2.5 -
ry [degrees] -5 5 -
rz [degrees] - - 0

ranges, either absolute (e.g. between 1.4m and
2m for the height) or relative (e.g. between the
leftmost and rightmost road coordinates for the
width). The constraints are implemented auto-
matically for each bridge, and adapt to the
bridge structure and dimensions. The camera
positions are then randomly sampled for each
separate bridge.

Post processing:

Despite the care taken to generate reasonable
images, the camera coordinates can give irrele-
vant images. To counter this, we deploy an auto-
matic post processing step, where all images
that contain less than a user defined percentage
of bridge elements are discarded. Fig. 5 shows
some examples of such images.

Annotations:

Each structural component is represented by a
different object (mesh) in the 3D model, and
each object is assigned a semantic class id. The
image annotations are automatically generated
in the form of binary masks for each category
with Blender [30] during rendering. The inter-
ested reader is referred to the available code for
the implementation details of the binary mask
generation.

Examples of retained images and their
ground truths are shown in Fig. 10.

3.2 Dataset details and statistics

We automatically generate 500 3D models of
portal frame bridges, and sample 100 locations
per bridge. We choose an image resolution of

Fig. 5: Examples of discarded images after post
processing (the threshold of the image surface that
should be covered by the bridge is set to 10%).

640×480 pixels, and set the image coverage
threshold (percentage of image that should be
covered by bridge elements) to 10%. We also
dispose a limited set of real images, annotated
by experts. The final number of images per set,
and their corresponding label distribution are
summarized in Table 2.

4 Experiments

4.1 Semantic segmentation with
finetuning

We first trained a semantic segmentation model
with the synthetic images. After obtaining the
best possible performance on the synthetic
dataset, we switched to the limited available
real images and further refined the network’s
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Table 2: Images and label distribution per
dataset.

Synthetic
(PFBridge)

Real

# of images 3364 146

Background(%) 37.7 56.9
Deck (%) 19.9 15.5
Abutment (%) 20.4 12.4
Wing wall (%) 10.4 7.9
Haunch (%) 9.8 5
Edge beam (%) 1.7 2.3

parameters. The overall training and finetuning
pipeline is presented in Fig. 6.

To test the role of the synthetic dataset
in effectively training a semantic segmentation
model, we trained such models with and without
synthetic data. To examine the results’ consis-
tency, we performed experiments with different
network architectures and initializations.

4.2 Network and training details

We use a Unet [31] architecture for our exper-
iments. Unet is a widely used fully convolu-
tional neural network, that relies on an encoder
branch that extracts useful features of an image,
followed by a decoder branch that utilizes fea-
tures of different encoder levels to generate
segmentation masks (see Fig. 7). We used a
MobileNetV2 [32] backbone as the encoder.
MobileNetV2 uses depthwise separable convolu-
tions, factorizing a full convolutional operation
into a pair of a depthwise and a pointwise con-
volution, to reduce computational complexity.
The power of this architecture lies in the use
of inverted residual modules with linear bot-
tlenecks. Such a module is a block that takes
a low dimensional representation, expands it,
and reprojects it to a low dimensional space
after having performed a depthwise filtering
operation. The linear bottleneck layers prevent
information loss caused by non-linearities.

We trained for 100 epochs, that were empir-
ically enough to guarantee convergence, with
a categorical cross entropy loss, and we used
the Adam optimizer [33]. The encoders were
initialized with weights trained to perform clas-
sification on the Imagenet dataset [28]. The
datasets were split to a 60%-20%-20% training,
validation, and test set respectively. For the syn-
thetic dataset, the split was made on a bridge
level (all images of the same bridge belong to
the same set) to avoid bias in the results. The

Table 3: Number of images per set.

Synthetic
(PFBridge)

Real

Training set 1911 88
Validation set 699 29
Test set 662 30

final number of images per set and dataset are
presented in Table 3. The model weights that
obtain the lowest loss in the validation set are
retained and evaluated on the test set.

The focus of this work is not to design or
optimize the CNN, but rather to design and
prove the importance of the synthetic dataset.
We did not delve into the formulation of an
architecture tuned for our task, nor in the search
for the optimal network. We chose architec-
tures that are widely recognized as powerful and
robust, in order to emphasize on the role of the
dataset during training. We were also limited by
the fact that the developed model should be fast
enough to be integrated in a mobile application.
There was thus a trade-off between the perfor-
mance and the inference speed to be taken into
account into the model architecture selection.

4.3 Evaluation setup

To demonstrate the synthetic dataset relevance:

• We train and test a model exclusively on
synthetic data.

• We use the model trained exclusively on syn-
thetic data to infer on real data. This way we
get an idea of the domain gap between real
and synthetic datasets.

• We finetune the model trained on the syn-
thetic data with real data, and we then test
on real data.

• We train and test a model exclusively on real
data. This way we see whether the synthetic
dataset improves the network’s performance.

5 Results

We now report results on the dataset generation
and comment on its usefulness for training an
effective semantic segmentation model.

5.1 Quantitative results

Table 4 presents the F1-score of the CNN
model, per training and testing configuration
(see Sec. 4.3 for configurations). We report
the F1-score per structural category, and for
the entirety of the dataset. The F1-score is
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Fig. 6: Overview of semantic segmentation model training. A model is first trained on a vast number
of synthetic images (weights in red box). Once optimized on them, the model is further refined by being
trained on a limited number of more complex, manually annotated, real images (weights in blue box).
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Fig. 7: Overview of encoder-decoder architecture. An image is first passed through an encoder branch,
where a latent space representation is produced. The representation is then feeded to the decoder branch,
which produces segmentation masks of size same as the original image.

chosen for being a metric appropriate for unbal-
anced datasets where the distribution of labels
is not close to uniform, as is our case. Table 5
presents the mean intersection over union (IoU)
for the different evaluation setups. Formally, the
F1-score is defined as the harmonic mean of
precision and recall, and is given by the formula

F1 =
1

N

N∑
i=1

2 · TPi

2 · TPi + FPi + FNi
, (5)

where TP, FP, FN are the true positive, false
positive, and false negative predicted values
respectively, and N is the number of classes. The
mean IoU is calculated as:

IoU =
1

N

N∑
i=1

TPi

TPi + FPi + FNi
. (6)

Fig. 8 and Fig. 9 show the confusion matrices
for the different experimental setups, normal-
ized over the true labels and the predictions
respectively.

The results expose the undeniable added
value of the synthetic dataset. The nature of the
data causes some classes to be easily confused
with their neighboring elements depending on
the image point of view. For example the haunch
is really fused between the deck and the abut-
ment, and an image containing only two of
the three is not straightforward to segment.
Same goes for the wing wall and the abut-
ment, an image containing a close up of their
joint might, on its own, be inconclusive regard-
ing which one is which. The confusion matrices
confirm that several misclassifications are actu-
ally reflections of such inherent properties. Also,
some classes have very different appearances
when observed from a short distance (as in the
synthetic dataset) and when observed from a
larger distance (as in most examples the real
dataset), namely the abutment and mostly the
haunch. Even for those, the real dataset alone
is extremely inefficient on its own, which is
proven by the fact that the best results in
those edge cases are achieved by the models
pretrained solely on synthetic data. More, and
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Table 4: F1-score on test sets, per class and on the entire dataset, for the different evaluation setups
described in Sec. 4.3. A MobileNetV2 network pretrained on Imagenet is used as the encoder backbone.
TrS-TeS: Trained and tested on synthetic data. TrS-TeR: Trained on synthetic data, tested on real data.
TrR-TeR: Trained and tested on real data. TrSR-TeR: Trained on synthetic data, finetuned with real
data, and tested on real data.

Background Deck Abutment Wing wall Haunch Edge beam Total (macro)

TrS-TeS 0.99 0.97 0.97 0.91 0.95 0.93 0.95

TrS-TeR 0.84 0.50 0.30 0.25 0.13 0.4 0.34
TrR-TeR 0.82 0.46 0.30 0.45 0.02 0.2 0.39
TrSR-TeR 0.92 0.85 0.61 0.58 0.49 0.59 0.67
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Fig. 8: Confusion matrices for Unet with Imagenet pretrained MobileNetV2 backbone. Normalized over
true labels (rows). Top left: Training and testing on synthetic data (TrS-TeS). Top right: Training on
synthetic data, testing on real data (TrS-TeR). Bottom left: Training and testing on real data (TrR-
TeR).Bottom right: Training on synthetic data, finetuning with real data, testing on real data (TrSR-
TeR).

more relevant real images, along with richer
representations in the synthetic dataset could

address some of those limitations. We comment
on the results with more detail in Sec. 5.3.
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Fig. 9: Confusion matrices for Unet with Imagenet pretrained MobileNetV2 backbone. Normalized over
predictions (columns). Top left: Training and testing on synthetic data (TrS-TeS). Top right: Training
on synthetic data, testing on real data (TrS-TeR). Bottom left: Training and testing on real data (TrR-
TeR).Bottom right: Training on synthetic data, finetuning with real data, testing on real data (TrSR-
TeR).

We also present quantitative results for
other encoder backbones in Appendix A. Sim-
ilar patterns are observed, confirming that the
contribution of the synthetic dataset is robust
and not dependent on the specific architecture.

We also trained a model exclusively on our
synthetic dataset (with random weight initial-
ization). We then used both models to infer the
semantic segmentation masks of the real images.
This experiment allows us to compare the pre-
dictive power of a model pretrained on our
synthetic dataset alone, with a model pretrained
on Imagenet. To have a fairer comparison, we
trained the last layer of the model trained on
Imagenet with the real bridge images, since the
classes are not the same between the two sets.

The results are presented in Table 6 and Table 7.
Despite its limitations, the pretraining on our
synthetic dataset is by far superior to the pre-
training on real natural images unrelated to
bridges, even when the real bridge images are
used for the final layer. These results imply that
pretraining with our dataset constitutes a much
more appropriate starting point for the bridge
component semantic segmentation task.

5.2 Qualitative results

We present qualitative results for the Unet with
the pretrained MobileNetV2 backbone. Fig. 10
shows examples of synthetic images, along with
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Table 5: Mean IoU on test sets on the entire
dataset, for the different evaluation setups
described in Sec. 4.3. A MobileNetV2 network
pretrained on Imagenet is used as the encoder
backbone. TrS-TeS: Trained and tested on
synthetic data. TrS-TeR: Trained on syn-
thetic data, tested on real data. TrR-TeR:
Trained and tested on real data. TrSR-TeR:
Trained on synthetic data, finetuned with real
data, and tested on real data.

Intersection over Union (IoU)

TrS-TeS 0.91

TrS-TeR 0.25
TrR-TeR 0.27
TrSR-TeR 0.53

their ground truths and the network’s predic-
tions. Fig. 11 shows examples of real images,
along with their ground truths and the pre-
dictions of the model trained solely with real
data, as well as the predictions of the finetuned
model. One can clearly see that the finetuned
model yields much more reasonable results, and
identifies in a better and cleaner way the struc-
tural elements of the bridge, even without any
post-processing.

5.3 General comments on the
results

It should be noted, that despite the relative sim-
plicity of the structure in terms of shape, there is
a significant complexity regarding texture. That
is, all elements of a bridge are made from the
same material, making texture an inappropriate
criterion for class separation. The identification
of the components needs to rely on context,
on the relative position of the elements with
respect to one another. That, combined with
the fact that the large majority of the produced
views are close ups, meant to simulate images
taken by an inspector, make the task non trivial.

The results confirm our expectation that
training on the synthetic dataset and finetuning
on a very small real dataset is highly beneficial.
Similar improvement patterns can be observed
for the different architectures and initializa-
tions, thus strengthening our conclusions. The
real dataset size is inadequate to be used on
its own. However, such limited real images can
play a non trivial role in bridging the domain
gap between synthetic and real bridges. This
implies, that the proposed synthetic dataset
already contains a significant part of the infor-
mation that are important in the real domain,

background abutment deck wing wall haunch edge beam

Fig. 10: Qualitative results on synthetic images.
The prediction model is a Unet with an Imagenet
pretrained MobileNetV2 as backbone, trained exclu-
sively on synthetic data. Left: Image. Middle:
Ground truth masks. Right: Network predictions.

more than the information contained in real
natural images (Imagenet). Even thought the
results of the finetuned models are not as good
as those that are achieved in the synthetic
datasets, which is both common and expected in
those setups, there is a remarkable improvement
when the synthetic images are used for pretrain-
ing. We should also point out here, that while
we created the synthetic images with the task
of a close inspection in mind, several of the real
images that we possess are from a further, over-
all view of the bridge. Therefore, the observed
domain gap is not only due to the limits of the
synthetic images in terms of realism, but also
due to the slightly inappropriate real dataset.

12



Table 6: F1-score on the real bridge images, per class and on the entire dataset, for two networks, one
trained on Imagenet and one trained on our synthetic dataset (PFBridge). A MobileNetV2 network is used
as the encoder backbone.

Background Deck Abutment Wing wall Haunch Edge beam Total (macro)

Imagenet 0.49 0 0.08 0.01 0 0.03 0.06
PFBridge 0.84 0.46 0.25 0.23 0.29 0.04 0.35

background abutment deck wing wall haunch edge beam
Fig. 11: Qualitative results on real test images. The prediction model is a Unet with an Imagenet
pretrained MobileNetV2 as backbone. Column 1: Image. Column 2: Ground truth masks. Column 3:
Predictions of network trained exclusively on synthetic data (TrS-TeR). Column 4: Predictions of network
trained exclusively on real data (TrR-TeR). Column 5: Predictions of network trained on synthetic data
and finetuned with real data (TrSR-TeR).

Table 7: Mean IoU on the real bridge
images, per class and on the entire dataset,
for two networks, one trained on Imagenet
and one trained on our synthetic dataset
(PFBridge). A MobileNetV2 network is used
as the encoder backbone.

Intersection over Union (IoU)

Imagenet 0.06
PFBridge 0.25

We did not take any steps to clean or refine
the output masks of the real dataset, since our
goal was strictly to show the contribution of the
synthetic dataset. The results leave no doubt
that the synthetic data provide a valuable way
to mitigate the lack of real annotated data
for semantically segmenting bridge structural
components, and could be even more valu-
able if coupled with post processing refinement
techniques.
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6 Preliminary tests on 3D
point cloud

This work focuses on the generation of synthetic
images from synthetic geometric models, and on
the value of such images in the image seman-
tic segmentation task. This is only a step in the
overall bridge monitoring process. One of the
potential uses of the image segmentation is to
use it in order to label 3D point clouds dur-
ing inspection. In a future work, a labeled point
cloud, along with the parametrizable 3D model
described in Sec. 2, could be used to generate
the bridge’s digital twin. More precisely, the set
of points belonging to a class, along with the
constraints defined in Eq. (3) and Eq. (4) could
define a constrained optimization problem, in
order to derive the values of vector b(Eq. (2)) of
a building block. A set of parametrized building
blocks b define a complete geometric 3D model,
in other words, the digital twin of the bridge.

The developed model was integrated in a
mobile application that uses mobile LiDAR
to capture a 3D point cloud. Thanks to our
model, each (x, y, z) coordinate in 3D space is
associated with a semantic category. Manually
annotating a 3D point cloud can be very time
consuming, even prohibiting, since they typi-
cally consist of more than a million points. By
using a model trained on images to annotate it
we overcome this obstacle. In more detail, each
video frame during scanning is annotated by the
model. Each frame pixel is associated with a
3D coordinate, therefore each 3D coordinate is
annotated. In the case of a 3D coordinate get-
ting different annotations from different frames,
a majority filter is applied to retain one anno-
tation per point. We tested the application in
an actual portal frame bridge, using an iPad
Pro 4th generation with a 256GB memory and
embedded LiDAR. Some example frames along
with the model’s predictions that were produced
during scanning are shown in Fig. 12.

The 3D model of the above bridge, repre-
senting its digital twin, was manually created
with the parametrization described in Sec. 2,
and can be seen in Fig. 13.

6.1 Point cloud post processing

After the acquisition of the point cloud, we can
use some prior knowledge in order to refine the
predicted annotations, namely:

background abutment deck wing wall haunch edge beam

Fig. 12: Example frames of demo bridge on which
the annotated point cloud acquisition was tested,
along with the per frame semantic predictions dur-
ing scanning.

abutment deck wing wall haunch edge beam

Fig. 13: 3D model of demo bridge on which the
annotated point cloud acquisition was tested.

Majority filtering:

We know that the structural elements are con-
sistent blocks, and small blobs of points anno-
tated different than their surroundings consti-
tute noise. We therefore apply a majority filter
in order to reassign each point’s label to the
label of the majority of its neighbors in a 15cm
radius.
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Element position:

We know the relative position of some elements
on the bridge structure. In particular the deck,
haunch, and edge beams are always located on
the top part of the bridge. Any points in the
lower part of the bridge that are assigned to the
aforementioned classes are therefore discarded.

Elements as planes:

We know that the structural elements are
consisted of planar surfaces. We use the
RANSAC [34] algorithm to segment a plane
that contains the majority of the points belong-
ing to a class, and discard as outliers all points
that are not close enough to this plane. The
RANSAC algorithm is run for 1000 iterations
with 7 points randomly sampled to estimate a
plane. The tolerance distance for a point to be
considered inlier is 13cm from the estimated
plane.

6.2 Preliminary qualitative results

The annotated point cloud that was automati-
cally produced in the preliminary tests on the
bridge shown in Fig. 12 is presented in Fig. 14.

Despite the point cloud being relatively
noisy, we can clearly distinguish the differ-
ent structural elements, and we confirm that
all relevant structures are correctly represented
by groups of pixels. After the post processing
steps we get a point cloud that is even cleaner.
Despite the presence of some noise and gaps,
the remaining points along with the construc-
tion constraints of portal frame bridges can be
adequate for the digital twin construction. After
all, the goal of this experiment is not to obtain
a perfectly labeled point cloud, but one that
would be sufficient to define the bridge’s dimen-
sions. We are therefore confident that such a
point cloud can serve as a good basis in order to
infer the geometrical parameters of the bridge
and automatically produce a digital twin that
closely resembles that of Fig. 13.

7 Conclusions and future
work

We devised an automatic pipeline that, respect-
ing some predefined rules can create an infinite
number of valid 3D models of portal frame
bridges. We used these models to generate a
synthetic dataset of 3364 annotated images of
500 bridges, that we named PFBridge and
made publicly available. We use these images

to address bridge component semantic segmen-
tation, a task that is a part of automated
or semi-automated structural health monitor-
ing (SHM). Our experiments show that there is
a significant improvement to a CNN’s perfor-
mance when it is pretrained with the synthetic
dataset and then finetuned with a limited num-
ber of real images, as opposed to only training
with the real images, or pre-training with irrele-
vant natural images. Our pipeline is extensible,
customizable, and saves a lot of domain experts’
time. All the aforementioned allow us to be con-
fident that the proposed method can be used
to assist automations in bridge inspections. We
also performed some preliminary experiments
by integrating the developed model in a mobile
application, that uses it to acquire an annotated
point cloud of a given bridge. The prelimi-
nary results are promising and show potential
of using such a point cloud to automatically
or semi-automatically infer the exact parame-
ters of a 3D model corresponding to a given
bridge, thus producing its digital twin. In such
a scenario, an uncertainty criterion can also be
considered, where, for dimensions that cannot
be inferred from the point cloud with suffi-
cient accuracy, a manual measurement will be
requested from the user.

As future work, we plan to expand the geo-
metrical representation to more bridge types,
and also allow for more complex surfaces, e.g.
curved. Higher order constraints could also be
implemented, if they are relevant. In order to
narrow the domain gap, we would enrich the
synthetic environment with elements such as
cars, people, vegetation, painted walls etc. We
also plan to enrich the real dataset with a few
more images, specifically images corresponding
to our use case scenario, meaning images taken
from under the bridge or close to its edges.
The time performance and optimization of the
model for mobile applications are also some
important next steps, to achieve a more seam-
less mobile application integration, and make
for an easier use in bridge inspection. No spe-
cial care was taken in this work to handle the
class imbalance, nor pre or post-processing steps
were taken to refine the results. The specific
nature of the problem (bridge components are
solid elements, without holes etc.) could provide
insightful priors. Finally, we aim on improving
the developed image-based point cloud seman-
tic segmentation, and use the annotated point
cloud in order to create a geometric model of
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abutmentbackground deck wing wall haunch edge beam
Fig. 14: Annotated 3D point cloud of portal frame bridge. Top row: Annotated point cloud returned
from the mobile application. Middle row: Annotated point cloud after background removal and majority
filtering. Bottom row: Annotated point cloud after outlier removal (removal of points that are not close
enough to a segmented plane per building block)

the visited bridge (digital twin). The same para-
metric model that was used to generate the
synthetic dataset can be used for the digital
twin estimation, via constrained optimization
methods.
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Appendix A Quantitative results for different encoder
backbones.

In order to demonstrate that the synthetic dataset’s contribution is beneficial for more than just
one networks, we performed the experiments desrcibed in Sec. 4.3 for different encoder backbones.
Similar patterns are exposed into all the experiments, confirming the contribution of the synthetic
dataset in the semantic segmentation learning.

Table A1 and Table A2 show the F1-score and IoU respectively, for a MobileNetv2 ([32]) back-
bone with random weight initialization. This experiment shows that the synthetic data alone are
capable of providing a reasonable prior. Table A3 and Table A4 show the F1-score and IoU respec-
tively, for a simple MobileNet ([35]) backbone pretrained on Imagenet. Table A5 and Table A6
show the F1-score and IoU respectively, for a ResNet50 ([36]) backbone pretrained on Imagenet.
The ResNet architecture uses skip connections to force the layers to represent residual functions
with reference to the layer input, instead of learning unreferenced functions.

Table A1: F1-score on test sets, per class and on the entire dataset, for the different evaluation setups
described in Sec. 4.3. A MobileNetv2 network with random weight initialization is used as the encoder
backbone. TrS-TeS: Trained and tested on synthetic data. TrS-TeR: Trained on synthetic data, tested on
real data. TrR-TeR: Trained and tested on real data. TrSR-TeR: Trained on synthetic data, finetuned
with real data, and tested on real data.

Background Deck Abutment Wing wall Haunch Edge beam Total (macro)

TrS-TeS 0.98 0.94 0.94 0.87 0.87 0.90 0.92

TrS-TeR 0.84 0.46 0.25 0.23 0.29 0.04 0.35
TrR-TeR 0.65 0.09 0 0 0 0 0.12
TrSR-TeR 0.88 0.75 0.43 0.52 0.18 0.30 0.51

Table A2: IoU on test sets on the entire
dataset, for the different evaluation setups
described in Sec. 4.3. A MobileNetv2 network
with random weight initialization is used as
the encoder backbone. TrS-TeS: Trained and
tested on synthetic data. TrS-TeR: Trained
on synthetic data, tested on real data. TrR-
TeR: Trained and tested on real data. TrSR-
TeR: Trained on synthetic data, finetuned
with real data, and tested on real data.

Intersection over Union (IoU)

TrS-TeS 0.84

TrS-TeR 0.25
TrR-TeR 0.09
TrSR-TeR 0.38
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Table A3: F1-score on test sets, per class and on the entire dataset, for the different evaluation setups
described in Sec. 4.3. A MobileNet network pretrained on Imagenet is used as the encoder backbone. TrS-
TeS: Trained and tested on synthetic data. TrS-TeR: Trained on synthetic data, tested on real data.
TrR-TeR: Trained and tested on real data. TrSR-TeR: Trained on synthetic data, finetuned with real
data, and tested on real data.

Background Deck Abutment Wing wall Haunch Edge beam Total (macro)

TrS-TeS 0.99 0.97 0.97 0.91 0.95 0.93 0.95

TrS-TeR 0.86 0.52 0.32 0.32 0.06 0.02 0.35
TrR-TeR 0.93 0.77 0.64 0.52 0.40 0.55 0.63
TrSR-TeR 0.92 0.83 0.64 0.57 0.60 0.41 0.66

Table A4: Mean IoU on test sets on
the entire dataset, for the different evalua-
tion setups described in Sec. 4.3. A MobileNet
network pretrained on Imagenet is used as
the encoder backbone. TrS-TeS: Trained and
tested on synthetic data. TrS-TeR: Trained
on synthetic data, tested on real data. TrR-
TeR: Trained and tested on real data. TrSR-
TeR: Trained on synthetic data, finetuned
with real data, and tested on real data.

Intersection over Union (IoU)

TrS-TeS 0.91

TrS-TeR 0.26
TrR-TeR 0.49
TrSR-TeR 0.52

Table A5: F1-score on test sets, per class and on the entire dataset, for the different evaluation setups
described in Sec. 4.3. A ResNet50 network pretrained on Imagenet is used as the encoder backbone. TrS-
TeS: Trained and tested on synthetic data. TrS-TeR: Trained on synthetic data, tested on real data.
TrR-TeR: Trained and tested on real data. TrSR-TeR: Trained on synthetic data, finetuned with real
data, and tested on real data.

Background Deck Abutment Wing wall Haunch Edge beam Total (macro)

TrS-TeS 0.98 0.95 0.94 0.86 0.92 0.89 0.93

TrS-TeR 0.87 0.45 0.38 0.19 0.2 0.04 0.36
TrR-TeR 0.69 0 0 0 0 0 0.12
TrSR-TeR 0.92 0.79 0.63 0.53 0.38 0.50 0.62

Table A6: Mean IoU on test sets on
the entire dataset, for the different evalua-
tion setups described in Sec. 4.3. A ResNet50
network pretrained on Imagenet is used as
the encoder backbone. TrS-TeS: Trained and
tested on synthetic data. TrS-TeR: Trained
on synthetic data, tested on real data. TrR-
TeR: Trained and tested on real data. TrSR-
TeR: Trained on synthetic data, finetuned
with real data, and tested on real data.

Intersection over Union (IoU)

TrS-TeS 0.86

TrS-TeR 0.25
TrR-TeR 0.09
TrSR-TeR 0.48
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