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Abstract

We present a locomotion mechanism that uses the stick-slip transition of a soft passive structure

with an internal mechanical resonance. The structure is harmonically driven by a global vertical

shaking and, because of its resonance dephasing and the threshold response of stick-slip transition,

it can either move forward or backward. We establish a relation for the motion acceleration

threshold that we experimentally validate. We identify a non-trivial regime close to the resonance

with a velocity inversion for a constant excitation frequency and an increasing driving amplitude.

We finally show that we can achieve a controlled multi-modal motion by combining multiple internal

resonances.

The drift of an object placed on a vibrated table is a strategy that was used with a large

variety of granular particles with head-tail properties in the bouncing regime. This is the case

for bolt-like particles [1], rods with shifted center of mass [2], asymmetric chains [3], dimers

with asymmetric internal dynamics [4] and asymmetric plant spikes [5]. Self-propulsion

using asymmetric elements also exists with other power sources such as the Leidenfrost

levitation and motion of uneven solids [6, 7], the horizontal motion of asymmetric objects

in vertical diffusion gradients [8] or Janus-like particles [9, 10]. Rectified motion even exists

with particles without head-tail asymmetry such as even dimers [11], trimers [12], or chiral

dimers [13]. Rectified motion under vertical vibration also applies to the rotation of particles

with chiral structure [14–17]. Other examples of simple self-propelled elements are polar

disks [18], bolt-like particles [19], walking [20–22] and spinning [23] robots, or asymmetric

grains [24]. The vibration mechanism can also be embedded inside the granular particles as

it is for the so-called bristle-bots[25–27]. In the context of this work, we can also mention

some interesting drifting mechanisms with vibrated fluids such as shaken droplets with non-

vertical excitation[28, 29], droplets on tilted supports[30, 31] and walking droplets[32, 33].

The above mechanisms for granular systems use elements in a bouncing regime, that

mostly have a single mode of locomotion, either linear motion or/and steady rotation, and

their structure is approximately rigid or, if not, no mechanical resonances are involved.

In this work, we identify a new locomotion mechanism that combines stick-slip transition

and mechanical resonance of a soft structure to obtain a controllable motile object with

individually addressable forward and backward locomotion states.

Figure 1A represents the essential ingredients for our locomotion mechanism with a struc-
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FIG. 1. A) Schematics of the locomotion principle. The horizontal black line represents a rigid

table sets in vertical oscillatory motion by a shaker at an acceleration amplitude a and frequency

ω/2π. The soft structure is in frictional contact with the table and it is composed of a rigid base

and a tilted soft plate. N is the normal contact force and T is the tangential contact force. δ is the

amplitude of the cantilever first mode. B) Acceleration threshold for steady horizontal motion as a

function of the forcing frequency. The solid line is the model in equation (4) with ω0/2π = 14.44 Hz,

Q = 17.5, g = 9.8 m.s−2, α = 64◦, M = 0.08 and cf = 0.25. Blue: positive velocity, red negative

velocity. The resonance response of the soft plate first mode is represented in the background. C)

Velocity as a function of the shaker acceleration a. Each set of connected points is for a constant

driving frequency. For frequencies from 10 Hz up to 14.5 Hz, the structure moves forward (positive

velocities) and for higher frequencies, it moves backward (negative velocities). The inserted plot is

the result from the model presented in figure 2.

ture composed of a rigid base represented by a rectangular block and a tilted flexible plate.

The whole structure is placed on a vertically-oscillating rigid table harmonically driven by a

shaker at a frequency ω/2π and an acceleration amplitude a. The structure is in solid con-

tact with the table and it can either stick or slide horizontally if the ratio of the tangential

forces T to the normal forces N exceed the static friction coefficient.

Figure 1B represents the threshold acceleration ac to set the structure in horizontal

motion as a function of the frequency. The acceleration threshold is complementary to

a resonance-like curve with an acceleration threshold decreasing as the driving frequency
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approaches the first mode resonance for the structure, which in this example is 14.44 Hz.

The sign of the velocity depends on the driving frequency relatively to the structure internal

resonance: for frequencies below the resonance frequency (i.e. between 10 Hz and 14.5Hz),

the structure moves forward while above resonance (i.e. between 15 Hz and 20 Hz), the

structure moves backward. The threshold acceleration around the resonance is well below

the gravity acceleration g, which indicates that the structure is in horizontal sliding motion

without any jumps.

Figure 1C represents the structure velocity as a function of the shaker acceleration. Each

connected set of data points are for a fixed frequency. For most of the frequencies, the velocity

is linear with the acceleration and consistently with figure 1B, the velocity is positive below

the resonance and negative above the resonance. For the data points at f = 14.5 Hz close

to the resonance, the threshold acceleration is the lowest at 4 m.s−2 but surprisingly the

velocity is non-monotonous with the acceleration.

To explain the net motion of the structure under vibrations and notably the peculiar

non-monotonous regime close to resonance, we have to consider the coupling between solid

friction and the linear resonance of the structure’s first mode. The acceleration threshold

for the directed motion is related to the threshold condition for sliding in the solid friction

regime:
|T |
|N |

= cf (1)

in which T is the tangential force, N the normal force and cf the static solid friction coeffi-

cient (T and N are represented in figure 1A). Without vibration, there is no tangential force

T = 0 and the normal force is the total weight of the structure of mass m, N = mg. With

the vibration, the net forces N and T have a modulation at the frequency of the shaker with

N = mg −ma cosωt+m1δ̈ cosα (2)

T = −m1δ̈ sinα (3)

in which m is the total mass, m1 is the effective mass of the cantilever first mode, a is the

acceleration amplitude of the shaker and α is the angle between the flapping plate and the

horizontal. In equation 2, the term −a cosωt is the modulation of the vertical acceleration in

the frame of the vibrating support. δ̈ is the acceleration of the first mode of the soft plate and

it modulates the net forces N and T via the projection with angle α. The amplitude δ of the

first mode is given by the linear mechanical response δ̈+(ω0/Q)δ̇+ω0
2δ = a cosωt cosα with
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ω0/2π the resonant frequency of the mode and Q the quality factor. If the sliding condition

in equation 1 is reached during the time evolution of N and T , the disk slides forward

or backward, depending on the sign of T when the threshold is reached. By combining

equations (1), (2) and (3), we find two threshold accelerations for the horizontal motion

a∗± =
g
√
A2 +B2

A+ Ω±
−2

[
(ω0

2 − ω2)A+
(

ω0ω
Q

)
B
] (4)

with A = 1+(ω0
2−ω2)/Ω±

2 andB = ω0ω/(QΩ±
2) in which Ω± are two characteristic angular

frequencies defined by Ω±
−2 = ω2M cosα (cosα± sinα/cf ) /((ω0

2 − ω2)2 + (ω0ω/Q)2) with

M = m1/m the mass ratio of the resonant mass to the total mass of the structure. The

details for the derivation of a∗± is found in the supplemental material. The positive solution

is for T = cfN (positive velocity) and the negative solution is for T = −cfN (negative

velocity). In figure 1B, the blue solid line is the solution a∗+ and the red solid line is the

solution a∗+ without free parameters (the resonant frequency and the quality factor were

independently measured by small amplitude linear response and the friction coefficient was

measured by a sliding angle method).

For a driving acceleration larger than the one of the two threshold accelerations a∗+

or a∗−, the disk has a net displacement during a cycle that we numerically compute by a

double time integration of the horizontal net forces using friction laws. The overall sliding

distance during an oscillation cycle defines the mean velocity via the period of oscillation

2π/ω. Figure 2 represents the velocity obtained from this numerical method as a function of

the frequency and acceleration of the shaker with a resonant frequency ω0/2π = 14.44 Hz,

Q = 17.5, g = 9.8 m.s−2, α = 64◦, M = 0.08 and cf = 0.25 which corresponds to the

experimental values for the structure used in figure 1.

Figure 2 also represents the time evolution of the normal force N and tangential force

T/cf , with cf the static friction coefficient, in the static region S (f = 13 Hz, a = 5 m.s−2),

the positive region P (f = 13 Hz and a = 8.5 m.s−2), the negative region N (f = 16.5 Hz

and a = 8.5 m.s−2) and the transition region PN (f = 14.6 Hz and a = 7 m.s−2). The

time evolution of N and T is given in equations (2) and (3). In the S region, T/cf remains

smaller than N which means that the structure is in stiction (no horizontal motion). In the

positive region P , T/cf is larger than N during a portion of the cycle which means that the

sliding condition (1) is reached for positive T and the structure slips in the positive direction
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FIG. 2. Model for the velocity as a function of frequency and acceleration with 4 regimes (static

S, positive P, negative N and positive-negative PN ). The 2 solid lines separating the 4 regimes

are the solutions a∗± in equation (4). For each of the 4 regimes, we represent the tangential (T )

and normal (N) forces as a function of time (equations (2) and (3)). The tangential forces are

represented with the factor 1/cf with cf the static friction coefficient so that the intersection

between T/cf and N corresponds to the sliding threshold condition in equation (1). In region P

and N , the sliding threshold is reached for positive and negative T respectively. In the PN region,

the sliding threshold is reached for positive and negative values during a cycle and the frontier

f∗(a) between positive and negative net motion is non-vertical.

during each cycle. In the negative region N , the phase shift between T and N is such that

the sliding threshold is reached for −T/cf > N .

In the region PN , the sliding threshold is reached for positive and negative values and we

identify a nonlinear frontier f ∗(a) for the velocity cancellation. On this frontier, the structure

slips positively and negatively during the cycle but the overall horizontal drift is zero. This

frontier results from a nonlinear process: for a frequency such as f = 14.5 Hz, the horizontal

velocity is positive if the acceleration amplitude is a = 6 m.s−2 or negative if the acceleration

amplitude is a = 9 m.s−2. This is a surprising result because the mechanical resonance is

in the linear regime which means that the phase shift between N and T is independent of

the amplitude a. To explain the net velocity sign change close to the resonance, we need

to consider the threshold response of the stick-slip transition and how it affects the sliding

dynamics of the structure. Close to the resonance, a negative slipping event is immediately
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followed by a positive slipping event. However, the cumulative sliding distance during one

cycle is not a simple combination of the two isolated slipping phases because the initial

state of the structure is not the same between the two phases: for the first negative slipping

event, the structure is initially in stiction while for the second positive slipping event, the

structure has acquired a negative velocity and is initially sliding. We show in more details in

the supplemental material how this interaction between the two forcing phases depends on

the driving amplitude and can modify the sign of the cumulative horizontal distance close

to the resonance, even if the driving frequency is fixed.

The control of the horizontal velocity sign is closely related to the fact that the net forces

N and T in equations (2) and (3) oscillate with a different phase. The origin of this phase

shift comes from the structure that can be decomposed in a non-resonant mass m − m1,

that moves in phase with the oscillating table, and a resonant mass m1, that oscillates with

a phase shift because of the harmonic response. In figure 3, we measure the influence of

the mass ratio M = m1/m on the motion threshold. To vary M , we add items on the

structure base which result in an increase of its non-resonant mass without modifying the

resonant mass. We find that the threshold for motion is lowered with increasing mass ratio.

For a mass ratio of 6.6%, the acceleration is typically half the gravity acceleration at the

resonance with a quality factor independently measured at Q = 17.5. This is consistent with

the relation Qm1 ∼ m that compares the amplitude of the resonant mass oscillation to the

amplitude of the non-resonant mass oscillation.

Another aspect of the velocity sign control is the behaviour in the limit M ∼ 1. This

limit is when mostly all of the structure mass is resonant. This situation is for example the

case for bristle-bots forced by a vibrated table, below the bouncing regime. In this case,

the velocity inversion was predicted but experimental results were found inconclusive[34]

around the resonant frequency of the structure. Our model shows that, in the limit M ∼ 1,

the region PN is much wider and the frontier f ∗(a) is even more complex than in the case

presented in figure 2 for M = 0.08 (see figure 7 in supplemental material).

In figure 4 we demonstrate that it is possible to combine the resonant oscillation of 2

cantilevers to obtain a fully-controllable structure on a vibrated plate. In figure 4A, we

represent a structure composed of a rigid disk with two flexible plates (see supplemental

material for the structure details). The head plate oscillates in the direction of the head-tail

direction and produces a forward or a backward motion depending if the driving frequency
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FIG. 3. Threshold accelerations of the structure with on-board loads. The structure mass is

m0 = 8.2 g and the added loads are madd = 0, 1.7, 3.8, 7.7 and 16.6 g. The solid lines are the

solutions a∗ = min{a∗±} of the model (equation (4)) for the different values of M = m1/m with

m1 the mass of the first mode and m = m0 +madd the total mass.

is slightly before or after its resonant frequency (14.44 Hz). The second plate is placed at the

tail and it oscillates perpendicularly to the head-tail direction. This plate produces a lateral

drift force that rotates the structure either clockwise or counterclockwise depending on the

excitation frequency relatively to its resonant frequency (8.5 Hz). The trajectory in figure

4A is obtained by vibration of the table following a frequency sequence that successively

excites a combination of forward motion (14.2 Hz), right turn (7.2 Hz) and left turn (8.2 Hz)

(see movie M1). During the forward motion steps, the structure performs a random walk

with a persistence length much larger than its size. By analysing the velocity orientation

during the forward motion steps, we find that the angular drift is typically of 0.1 rad for a

travelled distance equal to the disk diameter (see supplemental material). In figure 4B, we

show an image sequence of the disk attached to a soft strip (paper strip with the other end

perpendicularly fixed to the supporting table at the bottom right corner of the image). By

a steady right turn, the structure rolls itself in the strip and ends up in a state in which 3/4

of the disk is covered by the soft strip. The last image of this sequence is the final position

reached with the net force from the tail plate balanced by the mechanical stiffness of the

soft strip (see Movie M5). In figure 4C, we show the bending a soft beam by a combination

of forward motions and left turns in order to maintain a perpendicular bending force on the

deforming beam. At the end of the sequence, the beam forms a closed loop. In the complete
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movie sequence (see movie M6), the beam is then released to its initial configuration.

FIG. 4. (A) Schematics of a soft structure with two soft plates (head plate for forward and backward

motion, tail plate for left and right turns). The trajectory is obtained by sequential excitation of

forward motion and left or right turns (see movie M1). The driving frequencies for forward (14.2

Hz), backward (15.2 Hz), left (7.2 Hz) and right turns (8.2 Hz) are indicated on the response

function plot with triangular symbols pointing respectively up, down, left and right. (B) Image

sequence with the structure attached to a paper strip and rolling itself via a steady right turn (see

movie M5). (C) Image sequence showing the bending of a soft beam to a self-contact (see movie

M6).

In the sequence of figure 5, we demonstrate how the structure can move small objects

from some location on the supporting plate towards a target area identified by a red square

(see movie M7 for the complete sequence).

In this work, we identified a locomotion mechanism that uses simple and universal physical

ingredients: solid friction and mechanical resonance. The coupling between the resonant

structure and the stick-slip dynamics of a solid body subjected to vibrations gives rise

to rectified motion in both the forward and backward directions. The use of multiple flaps

further allows to give rise to new degrees of freedom leading to moving and rotating structures

that can be controlably steered. This easily-applicable mechanism offers new possibilities
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FIG. 5. Capture and delivery of 2 small cylinders (diameter 1.2 cm) into a target area. The movie

M7 shows the full sequence.

for the investigation of active matter beyond directional motion or for the development of

soft and minimal robotic structures[35–51].
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