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Abstract 17 

Study region: Mbakaou and Bamendjing basins (Sanaga River sub-basins). 18 

Study focus: In this study, the availability of water resources was assessed over the period 19 
2002-2019, based on the SWAT (Soil and Water Assessment Tool) hydrological model and 20 
certain meteorological and spatial reference data available for the region (Merra2, Landsat, 21 
etc.). Forecasts of its evolution were then made with the same tool (SWAT) over two futures 22 
periods (near 2024-2035 and medium: 2036-205) based on data from four (04) regional 23 
climate models (RCMs) (CCCma, HIRHAM5, RCA4 and REMO) and future land use and 24 
land cover (LULC) data simulated using the CA-Markov procedure. To separate the impact of 25 
climate variability (CV) and land use and use and land cover changes (LULCCs) on future 26 
water resources, two evolution scenarios (experiments) were established: (1 ) the impact of 27 
the CV, by associating future climate data with LULC from the historical period; (2) the impact 28 
of LULCCs, by combining future LULC maps with climate data from the historical period. 29 

New hydrological insights for the region: The performances of the SWAT model are 30 
satisfactory in calibration and validation on the two basins with R2, NSE and KGE greater 31 
than 0.68. Two models (CCCma and REMO) predict a decline in water resources in these 32 
basins, and two others (HIRHAM5 and RCA4) the opposite. The REMO model seems the 33 
most reliable. It predicts a drop in precipitation and runoff (SURQ) in the two basins that do 34 
not respectively exceed –19% and –31%. CV is the only forcing whose impact will be visible 35 
in the dynamics of future water resources, given the insignificant changes expected in the 36 
evolution of LULC patterns. The results of this study could contribute to improving the 37 
management of water resources in the studied basins and the region. 38 

Keywords: Central Africa, Sanaga River basin, SWAT, regional climate models, climate 39 
variability, land use and land cover changes 40 



1. Introduction 41 

The efficient management of water resources is an arduous task that relies on a good 42 
knowledge of the quantity available, good understanding of processes underway and reliable 43 
hydroclimatic forecasts (Lambin et al., 2003; Ebodé, 2023). However, the sub-Sahara African 44 
countries, in general, and those of Central Africa, in particular, do not have precise 45 
information concerning the availability of this resource, including in basins of particular 46 
interest (those hosting dams, for example), and for good reason, the lack of observed data. 47 
The active network in this part of the continent now only includes 35 stations for the 48 
Democratic Republic of Congo (i.e. 1 station for 67,000 km²), 22 stations for Cameroon and 49 
less than 20 stations for Gabon, Congo and the Central African Republic as a whole ( Bigot 50 
et al., 2016). This lack of data prevents any attempt that could help to understand the issue 51 
of water resource availability and its future development, in particular the modelling that is 52 
widespread elsewhere, and which, despite its limitations, represents one of the best 53 
alternatives to quantify the availability of this resource and predict its evolution for better 54 
management (Dosdogru et al., 2020). 55 

Hydrological modelling can be viewed in several ways in the literature, although several 56 
approaches may be combined in a single study (Dibaba et al., 2020). Some authors focus on 57 
understanding watersheds and quantifying available water resources (Yin et al., 2017). Using 58 
the SWAT model, Faramarzi et al. (2009) quantified the availability of water resources in Iran. 59 
The results obtained in calibration and validation are satisfactory. The averages of the main 60 
Water Balance Components (WBCs) were quantified by sub-basins. According to them, 61 
irrigated agriculture has a high impact on these WBCs. The resulting vulnerability of water 62 
resource availability has implications for the country's food security. 63 

Other authors seek to understand the factors influencing the availability and variability of this 64 
resource (Ebodé et al., 2022). In a study conducted in the Zhangweinan Basin, Ziyang Zhao 65 
et al. (2020) demonstrated that the human factor (urbanization) has the greatest influence on 66 
the variability of water resources. They showed that the decrease in runoff caused by this 67 
factor is four times greater than that caused by the natural factor. Zhang et al. (2020) have 68 
shown in the context of the Ganjiang basin (China) that it is climate change that has the 69 
greatest influence on the variability of water resources. This forcing is correlated positively 70 
with runoff and discharge. In the same vein, Elaji and Ji (2020) demonstrated in their study 71 
on the Kansas basin that urbanization did not influence the observed and simulated flow 72 
during the two years studied (2003 and 2017). 73 

There is also another category of authors who seek to predict the availability of water 74 
resources (Chang and Jung, 2010; Ruelland et al., 2012; Mendez and Calvo-Valverde, 75 
2016). Yira et al. (2017) attempted to predict the variability of flows from the outputs of 76 
Regional Climate Models (RCMs). Their results revealed that future simulated flows have 77 
many uncertainties. For them, these results are difficult to exploit insofar as some outputs 78 
predict an increase and some others a decrease. Thus, adaptation strategies to future 79 
hydroclimatic changes should take into account these two hypotheses. Awotwi et al. (2021) 80 
highlighted in their study on the Pra basin in Ghana an increase in flows for the middle of the 81 
21st century and a decrease for the end. These trends concern the RCP4.5 emission 82 
scenario. For the RCP8.5 scenario, they projected an increase throughout the century. 83 
Zhang et al. (2019) projected for the Manning Basin (Australia) a decrease in precipitation 84 
and runoff over the period 2021-2060, and an increase over the period 2061-2100. According 85 
to them, evapotranspiration is expected to experience a slight increase and the reverse is 86 
expected for soil water capacity. 87 



Modelling work aiming at predicting the availability of water resources is partly based on 88 
RCMs (Regional Climate Models) data (Reshmidevi et al., 2018). Although it is one among 89 
the main means available to the scientific community so far for such investigations, it should 90 
be emphasized that the reliability of these data is problematic (Chen et al., 2012). Facing this 91 
situation, some authors suggest combining several RCMs to reduce uncertainties (Knutti et 92 
al., 2010; Zhang and Huang, 2013). It is this approach that is adopted in this study. However, 93 
we will try to go further by proposing, after a statistical analysis over the historical period, the 94 
model whose forecasts seem the most reliable. 95 

Predictive hydrological modelling can be done using a global or distributed/semi-distributed 96 
approach. In the global approach, the watershed is considered as a single entity. GR2J 97 
(Rural Engineering model with two daily Parameters) and GR4J (Rural Engineering model 98 
with four daily Parameters) are some of the reference models generally used in this approach 99 
(Bodian et al., 2012). The parameters mainly taken into account in the latter are precipitation, 100 
evapotranspiration and, to a lesser extent, soil water capacity. On the other hand, in the 101 
distributed/semi-distributed approach, the watershed is considered as a more complex entity. 102 
Flow modelling here requires a subdivision into homogeneous elementary surfaces (Taleb et 103 
al., 2019). A wide range of input data (meteorological and spatial) is required. In terms of 104 
performance, the distributed/semi-distributed approach has a slight advantage in complex 105 
basins as their physical heterogeneity is considered (Tegegne et al., 2017). This explains our 106 
decision to use this approach to study a forest-savanna transition zone where the global 107 
approach could not produce satisfactory results (Sighomnou, 2004). Several 108 
distributed/semi-distributed hydrological models have been developed to simulate the 109 
hydrological processes of watersheds and predict flows (Beven and Kirkby, 1979; Abbott et 110 
al., 1986; Arnauld et al., 1998). Because several models only allow an approximate 111 
characterization of the physical environment of the watershed using data and parameters in a 112 
point-grid network (Wang et al., 2012), SWAT appears as the most suitable in the wide range 113 
of existing models, reason why it has been choosen in this study. 114 

The Sanaga watershed is the largest entirely included in Cameroonian territory. It is also the 115 
one with the most significant quantity of water resources, which could explain why it is 116 
currently full of four (04) reservoir dams (Mbakaou, Bamendjing, Mape and Lom Pangar) and 117 
that others are under construction (Nachtigal dam). This could also explain the drinking water 118 
supply to the Yaounde city (political capital of Cameroon) from this basin. Climate change 119 
and poor management of available water resources are often the reasons justifying the 120 
frequent power cuts observed in the regions supplied by the hydroelectricity produced from 121 
this basin. The management of this water resource could be based on the modelling of the 122 
entire basin. However, given the complexity of such an operation on the scale of such a large 123 
(130,055 km2) and complex basin (between two different ecological zones: forest in the 124 
South and savannah in the North), it would be good to do so step by step. Proceeding step 125 
by step will allow us to know what are the reliable alternative data on which we could rely for 126 
such work in such a poorly measured context. This will also provide an idea of how the sub-127 
basins of each ecological zone over which the basin extends operate. All this information will 128 
ultimately make it possible to create a reliable model for this basin. It should also be noted 129 
that some attempts to model the entire basin have been made, but they failed due to models 130 
used (GR2M: Rural engineering model with four monthly parameters) and the scarcity of 131 
meteorological data (Sighomnou, 2004). This stage of work can be done in several ways, but 132 
we have chosen to begin it with the regulated sub-basins modelling, from the oldest to the 133 
most recent, because they already have an interest, and the results of this study could be 134 
used for their management. The Mbakaou and Bamendjing sub-basins meet these criteria, 135 
so this stage of work will begin with them. 136 



Even though they each house a reservoir dam, the Mbakaou and Bamendjing basins have 137 
never been the subject of modelling work with the data, approaches and tools mentioned 138 
above. Yet such studies could produce information to improve the management of this 139 
resource and the production of hydroelectricity. In the few number of relevant existing 140 
studies, the impact of climate change and land use and land cover on runoff has never been 141 
separated using a hydrological model. Also, forecasts of future water resource availability 142 
have never been made. Finally, even considering the region as a whole, no study devoted to 143 
hydrological forecasts has ever identified the most reliable climate model. Most studies often 144 
consider the average of all models as the most reliable forecast. 145 

This paper has as objectives to (1) evaluate the capacity of the SWAT model to simulate 146 
flows in a watershed with a complex physical environment but very little gauges (2) use the 147 
model to simulate future flows (near 2024-2050 and average: 2036-2050) in the basin under 148 
different climate change scenarios (RCP4.5 and RCP8.5) (3) identify the most reliable 149 
climate forecast model in the basin and (4) separate the respective impact of the land use 150 
and land cover changes (LULCCs) and the climate variability (CV) on the evolution of future 151 
water resources. The biggest challenge to hydrological modelling with the SWAT model in 152 
the absence of sufficient flow and meteorological gauging stations in basins is to find 153 
datasets that can allow to achieve good results like those obtained in this work. The ability of 154 
the SWAT to simulate flows in this poorly gauged basin will be of great importance for 155 
socioeconomic development considering the number of construction projects (dams and 156 
bridges) ongoing in the basin.   157 

 158 

2. Materials and methods 159 
 160 

2.1. Study area 161 

The study focuses on two sub-watersheds of the Sanaga (Figure 1). These are the Mbakaou 162 
(19,757 km2) and Bamendjing (2,222 km2) basins. The first extends between longitudes 163 
11°9’E-14°4’E and latitudes 6°2’N-7°4’N The second extends between longitudes 10°2’E-164 
10°8’E and latitudes 5°65’N-6°1’N. Their discharge is regulated by reservoir dams built in 165 
1969 (Mbakaou) and 1974 (Bamendjing). In addition to electricity production, water is mainly 166 
used in this basin for domestic uses and irrigation. The prevailing climate is tropical humid, 167 
with annual rainfall ranging between 1400mm and 1600mm, which falls mainly during a 168 
single rainy season from March to November. The annual average temperatures of these 169 
basins vary between 22°C and 27°C. The relief encountered in these basins is rugged, with 170 
minimum and maximum altitudes around 1000 m and 2000 m (Figures 3D and 4D). 171 
Vegetation type is dominated by savannah (Figures 3B and 4B). 172 

 173 

2.2. Data and methods 174 
 175 

2.2.1. Data sources 176 
 177 

2.2.1.1. Spatial data  178 

The spatial data required for this study are of three types; Digital Elevation Model (DEM), 179 
land use map and soil map (Figures 3 and 4).  180 

The DEM data used in this study has a spatial resolution of 30 m (Table 1). It was obtained 181 
from the United States Geological Survey website (https://earthexplorer.usgs.gov/). DEM was 182 



used for delineating watersheds boundaries, for slope classification and for generating the 183 
hydrological response units (HRU). In total, 29 and 31 hydrological response units (HRUs) 184 
were respectively delineated in the Mbakaou and Bamendjing basins (Figures 3 and 4). 185 

The FAO world digital soil map downloaded from the site: https://storage.googleapis.com/fao-186 
maps-catalog-data/uuid/446ed430-8383-11db-b9b2-000d939bc5d8/resources/DSMW.zip 187 
was used as soil data in this study. The soil classification is based on the FAO classification 188 
system and was customized as required by the SWAT model (Figures 3 and 4). 189 

 Apart from topographic and soil information, the simulation of flows from the SWAT model 190 
requires other information (LULC). Three Landsat satellite images were used to produce 191 
historical and predictive LULC maps (Table 1). These are the Landsat 5 image of 1984, 192 
Landsat 7 image of 2010, and Landsat 8 of 2015. The map produced from the image of 2010 193 
was used in the model to simulate the flows during the historical period (2002-2019). The 194 
latter presents five (05) main land use and land cover modes (buildings and roads: UBRN; 195 
agricultural areas: AGRL; forests: FRSE; bodies of water: WATR and bare soils/savannahs: 196 
PAST). The maps produced from images of 1984 and 2010 were used to predict future LULC 197 
for 2030 and 2040. The one produced from the image of 2015 helped to verify the reliability 198 
of simulated land use maps from the method and tool retained.         199 

 200 

2.2.1.2. Hydrometeorological data  201 

The meteorological variables needed for runoff modelling with SWAT at daily time step are: 202 
maximum and minimum temperatures (°C), precipitation (mm/day), relative humidity (%), 203 
average wind speed (m/s) and solar radiation (in W/m2). Rainfall data were recovered from 204 
global precipitation climatology project (GPCP). For other parameters, modern-era 205 
retrospective analysis for research and applications, version 2 (MERRA-2) data were 206 
retained. These data were collected in ASCII format at existing and virtual stations (Figures 207 
3F and 4F). The virtual stations were created for collecting data in all corners of the basins, 208 
considering that the model chosen divides the basin into sub-basins and that the 209 
meteorological data considered for a sub-basin are those of the stations closer. GPCP and 210 
MERRA-2 represent the most recent data close to observations. They, therefore, constitute a 211 
good alternative for modelling flows in ungauged regions. 212 

The flow series used in this study come from the Southern Interconnected Network 213 
Cameroon database. These are naturalized flows developed jointly by Electricity of 214 
Cameroon, Electricity of France and The Energy of Cameroon (ENEO). These data were 215 
collected on a daily time step. 216 

 217 

2.2.2. Assessment of the impact of CV and LULCC patterns on water resources 218 
 219 

2.2.2.1. Design of numerical simulation 220 

Since the study includes a historical period or baseline (BL) (2002-2019) and two future 221 
periods, P1 (2024-2035) and P2 (2036-2050), to find out whether forcings (CV and LULCC) 222 
have an impact on the evolution of WBCs in the basins studied, we considered the following 223 
climate and LULC evolution scenarios: 224 

(1) The combined impact of the two forcings on WBCs 225 



In this case, the LULC maps of 2010, 2030 and 2040 were respectively used to simulate the 226 
flows of the historical period (BL), P1 and P2. The mean values of the WBCs of P1 and P2 227 
were compared to those of BL according to the equation: 228 

                –                                                                                          (Equation 1) 229 

Where         is the change between the WBC value of the corresponding period (   = P1 230 

or P2) and that of the BL;         is the WBC value of the corresponding period, and        231 
is the WBC value of the BL. 232 

(2) The unique impact of CV on WBCs 233 

To assess the impact of CV only, LULC is considered to have experienced no change during 234 
P1 and P2. It therefore remained identical to those of the BL. The equation used for this 235 
calculation is: 236 

                     –                                                                                    (Equation 2) 237 

Where          is the change between the WBC value of the corresponding period (   = P1 238 

ou P2) and that of the BL;              is the WBC value of the corresponding period, and 239 

       is the WBC value of the BL. 240 

(3) The unique impact of LULCC 241 

To assess the impact of LULCC only, we considered that meteorological data of P1 and P2 242 
are identical to those of the BL. The only forcing that changed here is LULC. The equation 243 
used for this calculation is: 244 

                  –                                                                                        (Equation 3) 245 

Where         is the change between the WBC value of the corresponding period (   = P1 246 

ou P2) and that of the BL;             is the WBC value of the corresponding period, and 247 

       is the WBC value of the BL. 248 

 249 

2.2.2.2. Impact score of LULCC and CV on WBCs 250 

To know which is the forcing whose impact is predominant in the WBCs, the impact scores of 251 
LULCC and CV were calculated according to the method of Bennour et al. (2023). 252 

                                                                                                      (Equation 4) 253 

                                                                                                        (Equation 5) 254 

Where           and          are the respective scores of the impact of CV and LULCC 255 

on WBCs.     ,         and        were calculated by equations 1, 2 and 3. High scores 256 
indicate a dominant impact. 257 

 258 

2.2.3. Modeling changes in land use and land cover patterns 259 

Future LULC was predicted using the CA-Markov procedure. This procedure is also 260 
described as “cellular automata” (CA) (Halmy et al., 2015). Markovian chains analyze two 261 
images of LULC at different years and produce two transition matrices (probability and 262 
affected area in pixels for persistence and transition), and a set of conditional probability 263 
images. They make it possible to calculate a future state from a well-known present state, 264 



based on the observation of past evolutions and their probability. This makes this method 265 
one of the best for modelling both temporal and spatial dimensions of LULC (Halmy et al., 266 
2015; Yang et al., 2019). 267 

The Kappa coefficients calculated by the following equation allowed us to evaluate the 268 
performance of the CA-Markov model in predicting LULC:  269 

      
     

    
                                                                                                    (Equation 6) 270 

Where    is the proportion of correctly simulated cells;    is the expected proportion 271 

correction by chance between the observed and simulated map. When the Kappa coefficient 272 
≤ 0.5, this indicates poor proximity between the two compared maps (simulated and 273 
observed). When 0.5 ≤ Kappa ≤ 0.75, the proximity between the two cards is acceptable. If 274 
0.75 ≤ Kappa ≤ 1, the proximity between the two maps is good. A Kappa coefficient = 1 275 
indicates that the two maps are identical. The Kappa coefficient obtained for the comparison 276 
between the observed and simulated maps for the year 2015 in this study is 0.89, which 277 
gives credibility to the simulated maps for the years 2030 and 2040. 278 

 279 

2.2.4. Climate change scenarios 280 

In this study, four (04) RCMs (HIRHAM5, REMO, RCA4 and CCCma) from the CORDEX 281 
project, proven to be effective in simulating precipitation and temperature in Africa (Gadissa 282 
et al., 2018; Dibaba et al., 2019), were retained. For each of the RCMs, data from the 283 
RCP4.5 and RCP8.5 scenarios were collected. The first and second scenarios are 284 
respectively representative of moderate and high greenhouse gas emissions. The other 285 
meteorological variables (solar radiation, relative humidity and wind speed) considered for 286 
the historical period have been taken over for the two future periods without making any 287 
changes, given that their modifications have no significant impact on the modelling result 288 
(Gadissa et al., 2018). 289 

 290 

2.2.5. Bias correction 291 

Despite their reliability and the degree of confidence that can be granted to them, the RCMs 292 
data sometimes present considerable biases. It is necessary to correct them before the study 293 
of the impact of climate change. Climate Model Data for Hydrological Modeling (CMhyd) 294 
software (Rathjens et al., 2020) obtained from: https://swat.tamu.edu/software/ was used to 295 
correct for precipitation and temperature biases. A comprehensive review of bias correction 296 
techniques based on this tool was provided by some authors (Teutschbein and Seibert, 297 
2012; Zhang et al., 2018). According to them, all the correction techniques improved the 298 
simulations of precipitation and temperature. However, they noted differences among the 299 
correction methods. Based on the proximity between the corrected and the observed 300 
datasets, distribution mapping (DM) was considered as the best correction method both for 301 
temperature and precipitation. According to the authors, distribution mapping uses a transfer 302 
function to adjust the cumulative distribution of the corrected data to that of the observed 303 
data, which makes the results significantly better. Based on these results, we retained 304 
distribution mapping for the precipitation and temperature corrections of the RCMs data in 305 
this study. 306 

 307 

2.2.6. Model description 308 



SWAT is a physically based semi-distributed hydrological model, designed and developed by 309 
researchers at the USDA (United States Department of Agriculture) (Arnold et al., 1998). Its 310 
physical aspect allows us to reproduce the processes that really take place in the 311 
environment, using a different set of equations (Neitsch et al., 2005; Arnold et al., 2012). The 312 
SWAT model is continuous over time and is designed to run simulations over long periods 313 
(Payraudeau, 2002). This model analyzes the watershed as a whole by subdividing it into 314 
sub-watersheds containing homogeneous portions called hydrological response units 315 
(HRUs). Each HRU is characterized by a unique land use, soil type and topography. SWAT 316 
provides the different water balance components at the HRU scale over the simulation period 317 
(Neitsch et al., 2005). 318 

 319 

2.2.7. Model evaluation criteria 320 

The validity of the SWAT model was checked by comparing the simulated (    ) and 321 

observed (    ) flows through subjective and quantitative criteria. Initially, a good match 322 

between the observed and simulated flow hydrographs will attest to good calibration. In the 323 
second step, we used four (04) of the most widely used criteria for the validation of 324 
hydrological models: Coefficient of determination (R2), Nash-Sutcliffe Efficiency (NSE), Kling-325 
Gupta Efficiency (KGE) and the Percent bias (PBIAS) (Akoko et al. 2020). According to 326 
Moriasi et al. (2007), R2, NSE and KGE ≥ 0.5 are acceptable. 327 

   
    

          –               –        

         –               –        
                                                                            (Equation 7)                                                               328 

        
            

 

            
 
                                                                                        (Equation 8) 329 

                                                                                             (Equation 9) 330 

         
     
                 

     
       

                                                                                    (Equation 10) 331 

Where      is the observed flow for time step  ;      is the simulated flow for time step  ; 332 

      is the average of the observed flows;       is the average of the simulated flows;   is the 333 
number of observations;   is the Pearson correlation coefficient between observed and 334 

simulated flows;   is the standard deviation of simulated flows and   is the ratio of the mean 335 

simulated flows. 336 

 337 

3. Results and discussion 338 
 339 

3.1. SWAT Model Performance 340 

To identify the parameters having a significant influence on the model outputs, a sensitivity 341 
analysis was carried out based on the average monthly flows observed. Nine (09) 342 
parameters appeared to be the most sensitive for the calibration (Table 2). These parameters 343 
are essentially related to infiltration, hydraulic conductivity, evaporation, etc. 344 

Regarding the results of the SWAT model, they are overall satisfactory. A good agreement is 345 
observed between observed and simulated flows for the two basins (Figures 5 and 6). In 346 
calibration and validation, this good performance is materialized by R2, NSE and KGE greater 347 
than 0.68. Bias ± 10% also attests to this good performance (Figure 5). 348 



Looking at the spatial distribution of water balance elements (SURQ, GW_RCH, PET and 349 
WYLD), flows and SED, we generally realize that in both basins, GW_RCH, flows, WYLD 350 
and SED are greater in the middle zone. Conversely, SURFQ is low in this part of the basins 351 
(Figure 7). This seems to be related to the configuration of the relief, which seems lower and 352 
less rugged in the middle zone of the said basins (Figures 3D and 4D). As for 353 
evapotranspiration, it seems to be greater to the East of the basins (Figure 7), probably due 354 
to the higher temperatures in this part. 355 

The SWAT model has already been successfully calibrated in Central Africa. Ebodé (2023) 356 
successfully calibrated and validated this model in the case of the Nyong basin at the 357 
Mbalmayo gauging station. This was done for two different periods, considering LULC (1981-358 
1986 and 2009-2014). For the first and the second period, R2 and NSE respectively greater 359 
than 0.80 and 0.64 were obtained in calibration and validation. 360 

 361 

3.2. Future hydroclimatic variability 362 
 363 

3.2.1. Future evolution of the climate according to the RCMs 364 

To assess future climate change, the average precipitation and temperature of each model 365 
(CCCma, HIRHAM 5, RCA4, REMO and ENS), each emission scenario (RCP 4.5 and RCP 366 
8.5) and each period (2024-2035 and 2036-2050) were compared to those of the historical 367 
period (2002-2019). 368 

 369 

3.2.1.1. Predicted rainfall 370 

Compared to the historical period, two models (CCCma and REMO) predict in the near future 371 
(2024-2035) a decrease in precipitation and two (HIRHAM5 and RCA4) others predict the 372 
opposite, whatever the basin (Mbakaou or Bamendjing) and the emission scenario 373 
considered (RCP8.5 or RCP4.5) (Tables 3 and 4; Figure 8). The intensity of the decline 374 
predicted by the CCCma model is greater for the Mbakaou basin. This model forecasts 375 
declines of –35.4% and –25.6, respectively for the RCP8.5 and RCP4.5 scenarios. In the 376 
case of Bamendjing, it is rather the REMO model that predicts the largest decline. For these 377 
same scenarios, the reductions envisaged are respectively –17.2% and –16.2% (Table 3). 378 
The HIRHAM5 model forecasts a greater increase in precipitation than the RCA4 model over 379 
the two basins. The increases predicted by the HIRHAM5 model for the first and second 380 
scenarios in the Mbakaou basin are 74.2% and 85.2%, respectively (Table 3). For these 381 
scenarios, the increases envisaged in the Bamendjing basin are 29.2% and 31.8% (Table 3). 382 
Overall, an increase in precipitation is expected in both basins. In the Mbakaou basin, the 383 
projected increases for the RCP8.5 and RCP4.5 scenarios are 17.1% and 22.2%. For the 384 
same scenarios, the increases in rainfall forecast in the Bamendjing basin are lower, 7.5% 385 
and 8.6% respectively (Table 3). 386 

During the second future period (2036-2050), we note the same trends as in the first period 387 
(Table 3 and 4; Figure 9). However, we note a slight amplification of the increases and 388 
decreases identified in the various cases, with the exception for the HIRHAM5 model, for 389 
which the intensity of the decrease is attenuated in both basins (Table 3). The decreases and 390 
increases noted during the first and second periods mainly concern the months of the rainy 391 
season (March-November) (Figures 8 and 9). 392 

These results present points of convergence and divergence with studies carried out in Africa 393 
using the same models. In the Finchaa basin in Ethiopia, Dibaba et al. (2020) highlighted a 394 



decrease in precipitation over the future period from the RCA4 model. This study, however, 395 
predicts the opposite evolution of rainfall from the outputs of the same model. This study 396 
highlights a decrease in precipitation from the CCCma model over the future period. Ebodé 397 
(2023) obtained an identical result in his study conducted in a neighbouring basin of the 398 
Sanaga (Nyong). 399 

 400 

 401 

3.2.1.2. Predicted temperatures 402 

Referring to the historical period, all models (CCCma, HIRHAM5, RCA4 and REMO) predict 403 
an increase in maximum and minimum temperatures during the two future periods (2024-404 
2035 and 2036-2050) (Tables 3 and 4; Figures 8 and 9). The HIRHAM5 model predicts the 405 
largest increases. For maximum temperatures, the projected increases for the RCP8.5 and 406 
RCP4.5 scenarios are 2.2°C and 1.9°C, respectively in the Mbakaou basin during the first 407 
period. In the Bamendjing basin, the increases predicted for the same period and scenarios 408 
are 3.7°C and 3.5°C (Table 3). For minimum temperatures, the increases predicted by the 409 
HIRHAM5 model in the Mbakaou basin for the RCP8.5 and RCP4.5 scenarios are 8.9°C and 410 
8.1°C during the second period (Table 3). In the Bamendjing basin, the projected increases 411 
for the same period and scenarios are similar (9.8°C and 9.6°C) (Table 3). All models predict 412 
a gradual increase in maximum and minimum temperature over the pentads (period of five 413 
years) with maximum values during the last two pentads (2041-2045 and 2046-2050) (Table 414 
4). 415 

As is the case in this work, several other studies on similar themes have already shown a 416 
gradual rise in maximum and minimum temperatures over time (Kingston and Taylor, 2010; 417 
Basheer et al., 2015; Koffi et al., 2023). 418 

 419 

3.2.1.3. Predicted flows 420 

Forecasts from climate models (rainfall and temperature) were integrated into the SWAT 421 
model to simulate future flows in both watersheds. The runoff trends during the two periods 422 
(2024-2035 and 2036-2040) are identical to those of the precipitation outputs used in the 423 
model, which suggests a strong annual rainfall-runoff relationship in the investigated basins. 424 
Thus, a change in precipitation consistent with the predictions of the CCCma and REMO 425 
models will cause a decrease in runoff, while a change in precipitation consistent with the 426 
predictions of the RCA4 and HIRHAM 5 models will cause an increase (Table 3). During the 427 
first future period (2024-2035), the declines in runoff simulated from the precipitation of the 428 
CCCma model are the most significant in the Mbakaou basin. They are –38.7% and –18.2% 429 
for the RCP8.5 and RCP4.5 scenarios. In the Bamendjing basin, it is the decreases in runoff 430 
simulated from the precipitation of the REMO model that are the most significant –26.1% and 431 
–23.1% for the RCP8.5 and RCP4.5 scenarios respectively (Table 3). The increases in flows 432 
simulated from the precipitation of the HIRHAM5 model are greater in the two basins. In the 433 
case of Mbakaou, they are 228.7% and 255.5% for the RCP8.5 and RCP4.5 scenarios. For 434 
these same scenarios, they are 54% and 61% in the case of Bamendjing. 435 

During the second future period (2036-2050), trends identical to those of the first period are 436 
noted in the evolution of flows (Table 3 and 4; Figure 9). It should nevertheless be noted a 437 
slight amplification of increases and decreases in the different cases, except for the 438 
HIRHAM5 model, for which the intensity of the decrease noted is lessening in the two basins 439 



(Table 3). The trends (decreases and increases) noted during the first and second periods 440 
mainly concern the months of the rainy season (March-November) (Figures 8 and 9). 441 

To get an idea of the future evolution of water resources, several authors have integrated 442 
climate model forecasts into hydrological models (Notter et al., 2013; Wagena et al., 2016; 443 
Danvi et al., 2018; Duku et al., 2018). As is the case in this study, some of these works 444 
predict an evolution of flows identical to that of precipitation (Beyene et al., 2010; Basheer et 445 
al., 2015; Dibaba et al., 2020). 446 

 447 

 448 

3.3. Future evolution of LULC 449 

Five land cover classes having a direct link to runoff have been identified in the studied 450 
basins (Built and road, savannah and bare soil, crop, water and forest) (Figure 10). The land 451 
cover forecasts for the years 2030 and 2040 were made based on the evolution recorded 452 
between 1984 and 2010. The 2010 map serves as a reference. It is the one against which 453 
future changes are assessed. 454 

Relatively small changes overall are projected for future periods (Figure 10). Between 2010-455 
2030, a slight increase in buildings, bare soils and crops is expected in the two basins. In the 456 
case of Mbakaou, the growth rates recorded are 0.9%, 0.005% and 0.5%, respectively. In 457 
that of Bamendjing, the evolution rates recorded are 1.8%, 0.1% and 1.1% (Table 5). Over 458 
this interval, it is conversely expected in these basins a slight decrease in forest and water 459 
bodies. The respective rates of change recorded in the Mbakaou basin are –0.7% and –460 
0.4%. In the Bamendjing basin, these rates are respectively –0.3% and –3.3% (Table 5). 461 
Between 2010-2040, the projected changes are almost identical to those of the period 2010-462 
2030 (Tables 5). 463 

Projected Land Cover Changes in the basins studied are very low overall. This could be 464 
related to the fact that these basins are almost entirely covered with savannah. The area of 465 
forest in these basins is very small. However, it is the LULC type that is most subject to 466 
anthropogenic pressure in the region (Ebodé et al., 2020; Ebodé et al., 2022). In the event of 467 
absence, as is the case in the basins studied, land use remains practically static. Moreover, it 468 
is foreseeable that such slight changes will have a very limited impact on future flows. 469 

 470 

3.4. Impact of CV and LULCC on WBCs 471 

Table 6 presents the changes in the different components of the hydrological balance 472 
(SURQ, GW_RCH, PET and WYLD) according to the possible evolution scenarios (LULCC & 473 
CV, CV, LULCC). We note that whatever the model (CCCma, HIRHAM5, RCA4 and REMO) 474 
and the emission scenario (RCP4.5 and RCP8.5) considered, the variables describing the 475 
water balance change significantly for the LULCC & CV scenarios and CV. The trend 476 
observed for potential evapotranspiration (PET) is similar to that of temperatures (increase). 477 
The trends of the other three variables are generally consistent with those of precipitation 478 
(decrease for the CCCma and REMO models, and increase for the HIRHAM5 and RCA4 479 
models) (Table 6). We also note that for all the models, the change observed in the different 480 
variables of the hydrological balance is low for the LULCC evolution scenario, 1% in all cases 481 
(Table 6). 482 



Similarly, by looking at Table 7, which presents the scores for the future impact of climate 483 
variability and changes in land occupation and land use patterns on the four (04) variables of 484 
the hydrological balance retained, we see that the Scores for the impact of CV are higher 485 
than those for LULCC. Regardless of the model, future period (2024-2035 or 2036-2050) and 486 
emission scenario (RCP4.5 or RCP8.5) taken into account, the scores for the impact of 487 
climate variability on different water balance variables are equal to 1. However, the score of 488 
the impact of changes in land occupation and land use are all less than 0.09 (Table 7). All 489 
this suggests that climate variability will be the dominant forcing of future flows in the 490 
investigated basins. 491 

Several authors around the world are already interested in separating the impact of CV and 492 
LULCC on water resources (Bennour et al., 2023). As is the case in this work, others have 493 
highlighted in East Africa the preponderant impact of climate variability on the evolution of 494 
water resources (Dibaba et al., 2020). 495 

 496 

3.5. Forecast reliability 497 

To find out which RCM is the most reliable, the corrected historical data from the various 498 
models for the period 2001-2005 (historical) have been integrated into the SWAT 499 
hydrological model, to simulate the flows over this interval, knowing that the observed flows 500 
are available over this period. A comparison was then made between observed flows and 501 
simulated flows from historical RCM data, the idea being that the most reliable RCM 502 
forecasts are those of the RCM for which the data from the historical period allow us to better 503 
simulate the observed flows. 504 

Figure 11 shows that the curve of average monthly flows observed is closer to that of the 505 
flows simulated from the data of the REMO model and the average of all the models. This is 506 
confirmed by a study of the statistical relationship between the compared datasets (Figure 507 
12). The observed and simulated flows from the REMO model data show the best statistical 508 
relationship in the case of the Mbakaou basin, with a respective R2 and NSE of 0.86 and 509 
0.85. With a respective R2 and NSE of 0.83 and 0.8, the relationship between observed and 510 
simulated flows based on the average of the models ranks second. For the Bamendjing 511 
basin, these same datasets display the best statistical relationships with an R2 and NSE 512 
greater than 0.75 (Figure 12). 513 

Individually, the REMO model is the one for which historical data appears to be closest to 514 
observed data. The trend and deviations it predicts for precipitation and runoff also appear to 515 
be the most consistent, based on historical trends highlighted from observed data. The 516 
quality of a forecast is also assessed by taking into account the consistency it shows with 517 
historical trends. The REMO model predicts a drop in precipitation that does not reach -19% 518 
regardless of the basin, the period and the scenario considered. This trend seems consistent 519 
insofar as the region is experiencing a drop in rainfall that started in the 1970s (Mahé et al., 520 
1990; Sighomnou, 2004; Ebodé, 2022). So far, no study has contradicted this trend or 521 
demonstrated a sudden reversal of the latter in recent decades. It therefore seems more 522 
logical to think that this decline will continue as shown by the REMO model, rather than to 523 
believe in a sudden reversal from the year 2024 as predicted by the HIRHAM5 and RCA4 524 
models. 525 

   526 

4. Conclusion 527 



This study aimed to assess the availability of the current water resource and its future 528 
evolution in two regulated sub-basins of the Sanaga River. It appears that in these basins, 529 
the GW_RCH, flows, WYLD and SED are more important in the middle zone. Conversely, 530 
runoff is low in this part of the basins. Evapotranspiration, for its part, seems to be greater to 531 
the east of the basins. Two models (REMO and CCCma) predict a decrease in precipitation, 532 
components of the hydrological balance and runoff. Two others (HIRHAM5 and RCA4) 533 
provide the opposite (increase). The REMO model is the one for which the forecasts seem to 534 
be the most reliable. A statistical study carried out over the historical period (2001-2005) 535 
demonstrated that the flows simulated from the data of this model are closer to the observed 536 
flows. This statistical relationship materializes in the case of Mbakaou by an R2 and NSE 537 
greater than 0.8. In the case of Bamendjing, the calculated R2 and NSE are above 0.75. 538 
Concerning LULC, it is expected that their future changes will be very low, given that the 539 
investigated basins have almost no forest left (land cover pattern which undergoes the most 540 
human pressure in the region). These small changes will have no impact on flows. CV is the 541 
only forcing whose impact will be perceptible in future flows. The impact scores of these 542 
forcings on the WBCs prove this sufficiently. The impact scores of CV are equal to 1. 543 
However, those of LULC are all less than 0.09.    544 

 545 
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Figure 1. Location of the Sanaga basin and studied subbasins (Mbakaou and Bamendjing). 
Source: Ebodé (2022) 
 

 

 

Figure 2. Study workflow. CLM: climate; L: land use and P: period. 



 

Figure 3. Spatial data of Mbakaou basin (subbasin boundaries (A), altitudes (D), slopes (C), 

soils (E) and land use modes (B)) and spatial distribution of stations (existing and virtual) (F) 

used on the SWAT for different simulations. 

 



 

Figure 4. Spatial data of Bamendjing basin (subbasin boundaries (A), altitudes (D), slopes 

(C), soils (E) and land use modes (B)) and spatial distribution of stations (virtual) (F) used on 

the SWAT for different simulations. 



 

Figure 5. Calibration (2002-2011) and validation (2012-2019) of average monthly flows. 

 



 

Figure 6. Observed and simulated monthly flow-duration curves for calibration and validation.  

 



 

Figure 7. Spatial distribution of water balance components (SURQ, PET, GW_RCH and 

WYLD), flows and sediments load. 

 



 

Figure 8. Projected changes (compared to baseline period) in monthly/seasonal mean 

rainfall, maximum temperatures, minimum temperatures and flows for the first period (2024-

2035) under the RCP4.5 and RCP8.5 scenarios. 



 

Figure 9. Projected changes (compared to baseline period) in monthly/seasonal mean 

rainfall, maximum temperatures, minimum temperatures and flows for the second period 

(2036-2050) under the RCP4.5 and RCP8.5 scenarios. 



 

 

Figure 10. Land use map of 2010, and predictive land use maps of 2030 and 2040. 

 



 

Figure 11. Comparison between observed and simulated flows (from meteorological model 

data) during the historical period (2002-2005) at monthly time scale.  

 

 

 

 

 

 

 



 

Figure 12. Relationship between observed and simulated flows (from meteorological model 

data) during the historical period (2002-2005) at monthly time scale. 

 



Table 1. Data used in the study and their characteristics 

Data 
Data 
availability 

Spatial 
resolution Sources 

Purpose of the data use 

Shuttle Radar  
Topography                          
Mission (SRTM) 

- 

 30 m www.earthexplorer.usgs.gov  

Delineating watersheds, slope 
classification and generating the 
hydrological response units 
(HRU) 

FAO Digital Soil Map  
of the World (DSMW),            
version 3.6 

- 

 1 km 

https://storage.googleapis.com/fao-
maps-catalog-data/uuid/446ed430-
8383-11db-b9b2-
000d939bc5d8/resources/DSMW.zip 

Extraction of soil data  

Landsat 5 satellite image 
 

1984-2013 
 

30 m 
 

 

Landsat 7  satellite image 1999-2022 30 m www.earthexplorer.usgs.gov/  
Creation of land use and land 
cover maps 

Landsat 8 satellite image 2013- 30 m 
 

 

Precipitation GPCP (Global 
Precipitation Climatology 
Project), version 3.1 2000-2019 0.5° https://giovanni.gsfc.nasa.gov/ 

Model forcing for flow simulation 

Merra2 data (minimum 
temperature, maximum 
temperature, wind speed, 
relative humidity and solar 
radiation)  1981-2022 0.5° https://power.larc.nasa.gov/ 

Model forcing for flow simulation 

Regional Climate model 
(RCM) data from CORDEX 
project (Rainfall, minimum 
temperature and maximum 
temperature). 1950-2100 50 km 

https://esgf-
data.dkrz.de/search/esgf-dkrz/ 

Model forcing for flow simulation 

 

Table 2. Sensitivity analysis and calibrated parameters 

Parameters Description t-Stat P-Value 
Sensitivity 

rank 
Parameter 
value range Fitted value 

  
 

Mba Bam Mba Bam Mba Bam Min Max Mba Bam 

9:V__CH_K2.rte       

Effective hydraulic 
conductivity in the main 
channel (mm hr

–1
) -0.007 0 0.995 1 1 6 5 130 101.6 0.82 

1:R__CN2.mgt         
SCS runoff curve number 
for moisture condition II 0.010 0.002 0.993 0.999 2 3 -0.2 0.2 0.1 0.23 

4:V__GWQMN.gw        

Threshold depth of water in 
the shallow aquifer required 
for return flow to occur 
(mm)  -0.015 -0.002 0.991 0.999 3 1 0 2 0.8 0.11 

7:R__SOL_AWC(..).sol 
Available water capacity of 
the soil layer (mm H2O/mm) 0.024 -0.007 0.985 0.996 4 4 -0.2 0.4 -0.1 -0.06 

2:V__ALPHA_BF.gw     
Base flow alpha factor 
(days) 0.050 0.007 0.968 0.995 5 9 0 1 0.9 430.91 

5:R__EPCO.bsn        
Plant uptake compensation 
factor -0.064 0.007 0.959 0.995 6 2 0 1 0.2 101.59 

6:V__ESCO.hru        
Soil evaporation 
compensation factor 0.118 0.010 0.925 0.993 7 8 0.8 1 0.8 0.73 

3:V__GW_DELAY.gw     Groundwater delay (days)  0.155 -0.012 0.902 0.992 8 5 30 450 430.9 0.83 

8:R__SOL_K(..).sol  
Saturated hydraulic 
conductivity (mm hr

–1
) 0.195 -0.017 0.877 0.989 9 7 -0.8 0.8 0.7 0.86 

 

Table 5. Statistics for land use map of 2010 and simulated land use maps (2030 and 2040) 

Land-use modes Mbakaou   Bamendjing 

  
2010 2030 2040 

Change 
2010-2030 

Change 
2010-2040 2010 2030 2040 

Change 
2010-2030 

Change 
2010-2040 

Built and road 111 112 113.5 0.9 2.3 
 

27.5 28 29 1.8 5.5 

Bare soil, savannah and 
young fallow 18855 18856 18858 0.005 0.02 

 
1813 1814 1814.5 0.1 0.1 

Crop 406 408 409 0.5 0.7 
 

46 46.5 47 1.1 2.2 

http://www.earthexplorer.usgs.gov/
http://www.earthexplorer.usgs.gov/
https://giovanni.gsfc.nasa.gov/


Water body 142 141 141 -0.7 -0.7 
 

200 199 199 -0.3 -0.3 
Forest and old fallow 790 787 782.5 -0.4 -0.9 

 
120 117.5 115.5 -1.7 -3.3 



 

Table 3. Projected changes (%) in rainfall, maximum temperatures, minimum temperatures and flows for the 

different periods, models and scenarios compared to baseline period  

Models and 
scenarios First period (2024-2035)   Second period (2036-2050) 

 
Rainfall TMPMAX TMPMIN Flows 

 
Rainfall TMPMAX TMPMIN Flows 

                                                                                         Mbakaou 

REMO_RCP8.5 -14.2 1.9 0.9 -6.1 

 

-19.0 2.3 1.5 -18.0 

REMO_RCP4.5 -14.5 1.7 0.7 -8.9 

 

-17.5 2.1 1.1 -15.1 

RCA4_RCP8.5 25.7 2.1 1.0 88.3 

 

37.1 2.7 1.6 113.5 

RCA4_RCP4.5 29.7 2.0 0.9 100.5 

 

29.6 2.4 1.1 96.9 

HIRHAM5_RCP8.5 74.2 2.2 8.4 228.7 

 

70.2 3.0 8.9 219.9 

HIRHAM5_RCP4.5 85.2 1.9 8.1 255.5 

 

83.4 2.8 8.1 254.1 

CCCma_RCP8.5 -35.4 2.2 1.0 -38.7 

 

-41.0 2.9 1.6 -38.7 

CCCma_RCP4.5 -25.6 2.0 0.8 -18.2 

 

-39.0 2.4 1.3 -45.9 

ENS_RCP8.5 17.1 2.1 2.8 57.1 

 

16.3 2.7 3.4 53.2 

ENS_RCP4.5 22.2 1.9 2.6 70.6 

 

17.5 2.4 3.1 58.8 

                                                                                          Bamendjing 

REMO_RCP8.5 -17.2 0.9 0.7 -26.1 
 

-14.9 1.1 1.2 -20.8 

REMO_RCP4.5 -16.8 0.8 0.4 -23.1 
 

-20.2 1.0 0.9 -30.6 

RCA4_RCP8.5 10.9 1.1 1.0 39.8 
 

20.9 1.6 1.6 59.3 

RCA4_RCP4.5 14.4 1.0 0.5 48.1 
 

14.3 1.3 0.7 47.5 

HIRHAM5_RCP8.5 29.2 3.7 9.4 54.0 
 

26.8 4.3 9.8 49.2 

HIRHAM5_RCP4.5 31.8 3.5 9.2 61.1 
 

27.8 3.5 9.6 51.0 

CCCma_RCP8.5 -8.3 1.3 0.5 -21.0 
 

-12.4 1.8 0.9 -28.8 

CCCma_RCP4.5 -10.8 1.1 0.4 -12.8 
 

-13.2 1.4 0.6 -15.1 

ENS_RCP8.5 7.5 1.7 2.9 6.7 
 

9.0 2.2 3.4 10.2 

ENS_RCP4.5 8.6 1.6 2.6 11.8   6.1 2.0 3.0 6.2 



Table 4. Projected changes (%) in rainfall, maximum temperatures, minimum temperatures and flows for the different pentads, models and 

scenarios compared to baseline period 

Basins   Mbakaou   Bamendjing 

Models 
 

CCCma HIRHAM5 RCA4 REMO ENS 
 

CCCma HIRHAM5 RCA4 REMO ENS 

Scenario   RCP4.5 RCP8.5 RCP4.5 RCP8.5 RCP4.5 RCP8.5 RCP4.5 RCP8.5 RCP4.5 RCP8.5   RCP4.5 RCP8.5 RCP4.5 RCP8.5 RCP4.5 RCP8.5 RCP4.5 RCP8.5 RCP4.5 RCP8.5 

Rainfall (%) 

2024-2025 
 

-29.7 -12.4 48.3 73.4 24.5 14.7 -11.5 -14.8 11.4 19.8 
 

-4.5 -7.9 45.5 30.8 9.8 1.1 -15.2 -18.3 12.9 5.1 
2026-2030 

 
-24.6 -43.9 84.5 73 29.1 27.7 -11.9 -12.1 22.8 15.7 

 
-9.2 -8 27 27.4 13.8 12.6 -16.5 -13.8 7.7 8.5 

2031-2035 
 

-25 -36.1 100.7 75.7 32.3 28.2 -18.3 -16 25.9 17.5 
 

-14.8 -8.7 31.2 30.5 16.7 13.1 -17.7 -20.3 7.8 7.4 
2036-2040 

 
-44.2 -41.9 77.6 64.9 38.6 28.5 -21.3 -23.4 16.1 11.4 

 
-3.5 -13.9 26.8 28.2 22.3 13.4 -20.1 -12 10.5 7.7 

2041-2045 
 

-29.4 -37.9 94.8 81.5 22.8 38.8 -17.2 -15.3 21.1 21.3 
 

-17.3 -11.7 28.4 26 8.3 22.4 -19.4 -15.6 3.8 9.2 
2046-2050   -43.2 -43.2 77.9 64 27.3 43.9 -14 -18.2 15.4 16.1   -18.7 -11.5 28.2 26.3 12.3 26.9 -21 -17 4.1 10.1 

TMPMAX (°C) 

2024-2025 
 

2.0 1.8 1.5 1.8 2.4 1.8 1.9 1.9 1.9 1.8 

 

1.0 1.1 3.3 3.4 1.0 0.9 0.8 0.8 1.5 1.6 

2026-2030 
 

2.0 2.0 1.7 2.0 1.9 2.3 1.6 1.9 1.8 2.1 
 

1.0 1.1 3.5 3.6 1.0 1.2 0.7 0.9 1.5 1.7 
2031-2035 

 
2.1 2.6 2.1 2.5 1.9 2.1 1.9 1.9 2.0 2.3 

 
1.3 1.6 3.7 4.0 1.1 1.1 0.9 0.9 1.7 1.9 

2036-2040 
 

2.4 2.6 2.5 2.2 2.1 2.5 1.8 2.0 2.2 2.3 
 

1.4 1.5 3.9 3.8 1.0 1.7 0.9 1.0 1.8 2.0 
2041-2045 

 
2.2 2.9 3.1 3.0 2.6 2.8 2.1 2.3 2.5 2.7 

 
1.5 1.9 4.3 4.3 1.4 1.7 1.0 1.2 2.0 2.3 

2046-2050   2.4 3.1 3.0 3.7 2.6 2.7 2.3 2.4 2.5 2.9   1.4 2.0 4.1 4.8 1.4 1.6 1.1 1.2 2.0 2.4 

TMPMIN (°C) 

2024-2025 
 

0.7 0.8 7.9 8.2 1.0 0.8 1.0 0.6 2.6 2.6 
 

-1.8 -1.7 7.0 7.2 -1.4 -1.5 -1.4 -1.6 0.6 0.6 

2026-2030 
 

0.9 0.9 7.9 8.2 0.8 1.0 0.6 1.0 2.5 2.8 

 

0.6 0.4 9.1 9.2 0.5 1.0 0.4 0.8 2.6 2.9 

2031-2035 
 

0.9 1.2 8.3 8.6 0.9 1.1 0.7 1.1 2.7 3.0 
 

0.3 0.6 9.3 9.5 0.4 1.0 0.4 0.8 2.6 3.0 
2036-2040 

 
1.3 1.2 8.6 8.4 1.0 1.7 0.9 1.3 2.9 3.1 

 
0.6 0.7 9.4 9.4 0.6 1.5 0.8 1.0 2.9 3.1 

2041-2045 
 

1.2 1.6 9.0 8.9 1.3 1.6 1.4 1.5 3.2 3.4 
 

0.6 0.9 9.7 9.8 0.9 1.6 1.0 1.2 3.0 3.4 
2046-2050   1.3 1.8 8.9 9.4 1.2 1.6 1.1 1.6 3.1 3.6   0.7 1.1 9.6 10.1 0.7 1.7 0.89 1.3 3.0 3.5 

Flows (%) 

2024-2025 
 

-27.6 9.6 158 218.9 87.9 62.5 -8.5 -5.8 37.3 66.3 
 

-2.4 -20 82.2 63.4 40.1 24.2 -20.5 -23.3 16.3 5 

2026-2030 
 

-18.9 -55.2 250.5 223.1 96.3 91.3 -7.3 -4.7 69.7 51.2 
 

-13.5 -21.1 53 45.5 46.3 41.6 -23.8 -19.6 8.8 6.7 

2031-2035 
 

-13.7 -41.5 299.6 238.3 109.8 95.5 -10.6 -7.6 84.9 59.4 
 

-16.2 -21.4 60.7 58.7 53 44.1 -23.4 -33.8 13 7.3 
2036-2040 

 
-57.2 -48.8 244.4 212.5 121.2 99.7 -18.6 -22.6 59.3 47.3 

 
2.4 -29.7 50.1 50.5 62.8 45.3 -28.9 -13.8 15.6 7.2 

2041-2045 
 

-24.4 -50.9 280 242.5 73.7 112.4 -22.8 -15.6 62.5 59.7 
 

-19.9 -27.1 53.9 50.9 37.2 64.1 -29.6 -22.6 2.5 13.2 

2046-2050   -56.1 -55.3 238 204.7 95.6 128.4 -3.8 -15.8 54.5 52.7   -27.9 -29.6 48.9 46.2 42.4 68.7 -33.3 -26.1 0.5 10.3 

 

 

  

 



Table 6. Projected changes (%) in water balance components for the different experiments, 

periods, models and scenarios compared to baseline period 

Periods Models PET SURQ GW_RCH WYLD 

  
LULCC&CV CV LULCC LULCC&CV CV LULCC LULCC&CV CV LULCC LULCC&CV CV LULCC 

Mbakaou 

P1 CCCma_RCP4.5 11.3 11.3 1 4.9 4.9 1 -22.1 -22.1 1 -18.4 -18.4 1 

 
CCCma_RCP8.5 12.4 12.4 1 -0.2 -0.2 1 -26.3 -26.3 1 -28 -28 1 

 
HIRHAM5_RCP4.5 31.5 31.5 1 64 64 1 43.1 43.1 1 109.6 109.6 1 

 
HIRHAM5_RCP8.5 33.5 33.5 1 55.9 55.9 1 38.9 38.9 1 97.1 97.1 1 

 
RCA4_RCP4.5 11.6 11.6 1 12.6 12.6 1 23 23 1 37 37 1 

 
RCA4_RCP8.5 12.3 12.3 1 11 11 1 19.1 19.1 1 31.3 31.3 1 

 
REMO_RCP4.5 9.9 9.9 1 -2.9 -2.9 1 -10.5 -10.5 1 -14 -14 1 

 
REMO_RCP8.5 11.5 11.5 1 -3.1 -3.1 1 -9.1 -9.1 1 -12.7 -12.7 1 

 
ENS_RCP4.5 15.8 15.8 1 1.6 1.6 1 20.3 20.3 1 23.1 23.1 1 

 
ENS_RCP8.5 17.1 17.1 1 -0.8 -0.8 1 16.6 16.6 1 16.8 16.8 1 

P2 CCCma_RCP4.5 13.9 13.9 1 -2.1 -2.1 1 -27.7 -27.7 1 -31.3 -31.3 1 

 
CCCma_RCP8.5 16.6 16.6 1 -4 -4 1 -28.4 -28.4 1 -34 -34 1 

 
HIRHAM5_RCP4.5 38.2 38.2 1 64.3 64.3 1 42.1 42.1 1 109 109 1 

 
HIRHAM5_RCP8.5 38.5 38.5 1 55.9 55.9 1 34.9 34.9 1 93 93 1 

 
RCA4_RCP4.5 14.4 14.4 1 12.1 12.1 1 21.9 21.9 1 35.3 35.3 1 

 
RCA4_RCP8.5 16.4 16.4 1 17.2 17.2 1 24.4 24.4 1 43 43 1 

 
REMO_RCP4.5 13.3 13.3 1 -3.5 -3.5 1 -12.6 -12.6 1 -16.9 -16.9 1 

 
REMO_RCP8.5 14.5 14.5 1 -4.3 -4.3 1 -13.2 -13.2 1 -18.3 -18.3 1 

 
ENS_RCP4.5 19.4 19.4 1 -0.4 -0.4 1 16.9 16.9 1 17.6 17.6 1 

  ENS_RCP8.5 21 21 1 -1.5 -1.5 1 15.5 15.5 1 15 15 1 

Bamendjing 

P1 CCCma_RCP4.5 6.7 6.7 1 14.4 14.4 1 -18.2 -18.2 1 -10.4 -10.4 1 

 
CCCma_RCP8.5 7.2 7.2 1 -5.7 -5.7 1 -7.6 -7.6 1 -15.9 -15.9 1 

 
HIRHAM5_RCP4.5 30.9 30.9 1 15.6 15.6 1 16 16 1 39 39 1 

 
HIRHAM5_RCP8.5 31.9 31.9 1 14.1 14.1 1 13.5 13.5 1 34.2 34.2 1 

 
RCA4_RCP4.5 6.7 6.7 1 12.6 12.6 1 12.9 12.9 1 30.2 30.2 1 

 
RCA4_RCP8.5 7.8 7.8 1 11.3 11.3 1 9.8 9.8 1 24.7 24.7 1 

 
REMO_RCP4.5 6 6 1 -3 -3 1 -10.3 -10.3 1 -17.2 -17.2 1 

 
REMO_RCP8.5 6.9 6.9 1 -2.5 -2.5 1 -12.3 -12.3 1 -19.3 -19.3 1 

 
ENS_RCP4.5 12.3 12.3 1 -4.8 -4.8 1 7.6 7.6 1 6.1 6.1 1 

 
ENS_RCP8.5 13.2 13.2 1 -6.9 -6.9 1 6.5 6.5 1 2.6 2.6 1 

P2 CCCma_RCP4.5 3 3 1 15.4 15.4 1 -20 -20 1 -12.1 -12.1 1 

 
CCCma_RCP8.5 4.5 4.5 1 -7.7 -7.7 1 -9.8 -9.8 1 -21.1 -21.1 1 

 
HIRHAM5_RCP4.5 27.7 27.7 1 14.8 14.8 1 11.5 11.5 1 32.1 32.1 1 

 
HIRHAM5_RCP8.5 28.5 28.5 1 12.9 12.9 1 12 12 1 30.9 30.9 1 

 
RCA4_RCP4.5 3 3 1 12.5 12.5 1 12.6 12.6 1 29.7 29.7 1 

 
RCA4_RCP8.5 5.4 5.4 1 17.7 17.7 1 14.5 14.5 1 37.6 37.6 1 

 
REMO_RCP4.5 2.9 2.9 1 -3.4 -3.4 1 -13.7 -13.7 1 -22.3 -22.3 1 

 
REMO_RCP8.5 3.6 3.6 1 -2.1 -2.1 1 -9.9 -9.9 1 -15.7 -15.7 1 

 
ENS_RCP4.5 8.9 8.9 1 -4.9 -4.9 1 4.9 4.9 1 2.3 2.3 1 

  ENS_RCP8.5 10.2 10.2 1 -6 -6 1 7.6 7.6 1 4.9 4.9 1 



Table 7. Impact score of LULCC and CV on water balance components for the different 

periods, models and scenarios 

Periods Models PET SURQ GW_RCH WYLD 

  

Score 
LULCC 

Score 
CV 

Score 
LULCC 

Score 
CV 

Score 
LULCC 

Score 
CV 

Score 
LULCC 

Score 
CV 

Mbakaou 

P1 CCCma_RCP4.5 1 0.08 1 0.08 1 0.08 1 0.08 

 
CCCma_RCP8.5 1 0.08 1 0.08 1 0.08 1 0.08 

 
HIRHAM5_RCP4.5 1 0.03 1 0.03 1 0.03 1 0.03 

 
HIRHAM5_RCP8.5 1 0.03 1 0.03 1 0.03 1 0.03 

 
RCA4_RCP4.5 1 0.08 1 0.08 1 0.08 1 0.08 

 
RCA4_RCP8.5 1 0.08 1 0.08 1 0.08 1 0.08 

 
REMO_RCP4.5 1 0.1 1 0.1 1 0.1 1 0.1 

 
REMO_RCP8.5 1 0.08 1 0.08 1 0.08 1 0.08 

 
ENS_RCP4.5 1 0.06 1 0.06 1 0.06 1 0.06 

  ENS_RCP8.5 1 0.05 1 0.05 1 0.05 1 0.05 

P2 CCCma_RCP4.5 1 0.07 1 0.07 1 0.07 1 0.07 

 
CCCma_RCP8.5 1 0.06 1 0.06 1 0.06 1 0.06 

 
HIRHAM5_RCP4.5 1 0.02 1 0.02 1 0.02 1 0.02 

 
HIRHAM5_RCP8.5 1 0.07 1 0.07 1 0.07 1 0.07 

 
RCA4_RCP4.5 1 0.07 1 0.07 1 0.07 1 0.07 

 
RCA4_RCP8.5 1 0.06 1 0.06 1 0.06 1 0.06 

 
REMO_RCP4.5 1 0.07 1 0.07 1 0.07 1 0.07 

 
REMO_RCP8.5 1 0.07 1 0.07 1 0.07 1 0.07 

 
ENS_RCP4.5 1 0.05 1 0.05 1 0.05 1 0.05 

 
ENS_RCP8.5 1 0.04 1 0.04 1 0.04 1 0.04 

 Bamendjing 

P1 CCCma_RCP4.5 1 0.14 1 0.14 1 0.14 1 0.14 

 
CCCma_RCP8.5 1 0.13 1 0.13 1 0.13 1 0.13 

 
HIRHAM5_RCP4.5 1 0.03 1 0.03 1 0.03 1 0.03 

 
HIRHAM5_RCP8.5 1 0.03 1 0.03 1 0.03 1 0.03 

 
RCA4_RCP4.5 1 0.14 1 0.14 1 0.14 1 0.14 

 
RCA4_RCP8.5 1 0.13 1 0.13 1 0.13 1 0.13 

 
REMO_RCP4.5 1 0.16 1 0.16 1 0.16 1 0.16 

 
REMO_RCP8.5 1 0.14 1 0.14 1 0.14 1 0.14 

 
ENS_RCP4.5 1 0.08 1 0.08 1 0.08 1 0.08 

  ENS_RCP8.5 1 0.07 1 0.07 1 0.07 1 0.07 

P2 CCCma_RCP4.5 1 0.33 1 0.33 1 0.33 1 0.33 

 
CCCma_RCP8.5 1 0.22 1 0.22 1 0.22 1 0.22 

 
HIRHAM5_RCP4.5 1 0.03 1 0.03 1 0.03 1 0.03 

 
HIRHAM5_RCP8.5 1 0.03 1 0.03 1 0.03 1 0.03 

 
RCA4_RCP4.5 1 0.33 1 0.33 1 0.33 1 0.33 

 
RCA4_RCP8.5 1 0.18 1 0.18 1 0.18 1 0.18 

 
REMO_RCP4.5 1 0.34 1 0.34 1 0.34 1 0.34 

 
REMO_RCP8.5 1 0.27 1 0.27 1 0.27 1 0.27 

 
ENS_RCP4.5 1 0.11 1 0.11 1 0.11 1 0.11 

  ENS_RCP8.5 1 0.09 1 0.09 1 0.09 1 0.09 

 


