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Abstract—Neuromorphic computing and spiking neural net-
works (SNNs) are gaining traction across various artificial
intelligence (AI) tasks thanks to their potential for efficient energy
usage and faster computation speed. This comparative advantage
comes from mimicking the structure, function, and efficiency of
the biological brain, which arguably is the most brilliant and
green computing machine. As SNNs are eventually deployed
on a hardware processor, the reliability of the application in
light of hardware-level faults becomes a concern, especially for
safety- and mission-critical applications. In this work, we propose
SpikeFI, a fault injection framework for SNNs that can be
used for automating the reliability analysis and test generation.
SpikeFI is built upon the SLAYER PyTorch framework with
fault injection experiments accelerated on a single or multiple
GPUs. It has a comprehensive integrated neuron and synapse
fault model library, in accordance to the literature in the domain,
which is extendable by the user if needed. It supports: single
and multiple faults; permanent and transient faults; specified,
random layer-wise, and random network-wise fault locations;
and pre-, during, and post-training fault injection. It also offers
several optimization speedups and built-in functions for results
visualization. SpikeFI is open-source and available for download
via GitHub at https://github.com/SpikeFI.

Index Terms—Neuromorphic Computing, Spiking Neural Net-
works, Reliability, Fault Simulation, Testing, Fault Tolerance.

I. INTRODUCTION

Neuromorphic computing is an emerging computing
paradigm that has its roots in mimicking the spike-based
operation of neurons in the biological brain. A neuromorphic
processor essentially maps a Spiking Neural Network (SNN).
SNNs can offer orders of magnitude more energy efficiency
and inference speed compared to the more conventional Ar-
tificial Neural Networks (ANNs) [1], [2]. For this reason,
SNNs open exciting new possibilities for realizing the next-
generation Artificial Intelligence (AI) systems and for pow-
ering intelligent and autonomous edge devices with local AI
processing. A major leap forward in the recent years is the
development of several large-scale neuromorphic processors,
e.g., SpiNNaker [3], TrueNorth [4], Loihi [5], BrainScaleS [6],
and Neurogrid [7], supported also with software frameworks.

In this work, we address the dependability aspects of
neuromorphic processors in view of the rare yet inevitable
hardware-level faults. Hardware-level faults include bit-flips
caused by cosmic ray particle strikes (a.k.a. soft errors) and
defects and process parameter variations that are induced
during manufacturing or occur in the field due to silicon
aging mechanisms. SNNs show a large degree of inherent
fault tolerance thanks to the analogy to the biological brain
that has remarkable fault tolerance capabilities. Thus, most

faults end up being benign: they are masked, i.e., their effect
is not propagated to the output, or they can be tolerated, i.e.,
the output changes but the cognitive decision is still correct.
However, there exist critical faults that will cause a wrong
output disrupting the application.

More specifically, we propose a generic Fault Injection
(FI) tool, named SpikeFI, for automating fault analysis of
SNNs. Starting with an SNN model, the user is able to
inject faults on different locations in the SNN architecture
and assess their impact on the success of training and the
accuracy of inference. The tool supports any SNN model,
i.e., fully-connected. convolutional, or recurrent. It embeds
a comprehensive fault model library that can be customized
by the user. It supports single or multiple faults, transient or
permanent faults, as well as statistical fault injection layer-wise
and network-wise. Fault injection can be performed before,
during or after training. SpikeFI also offers several simulation
speedup options, such as early stop and late start, and has
built-in various types of results visualisation functions.

SpikeFI has several use cases:

1) Understand the vulnerability of the SNN application to
faults.

2) Assess how architectural choices (i.e., depth, layer size,
feature map size, weight quantization, network compres-
sion, etc.) and the different per-layer hyper-parameters (i.e.,
neuron threshold, leakage, and refractory period) affect the
resilience to faults so as to make early design decisions
with reliability in mind.

3) Guide test generation algorithms aiming at generating test
inputs for sensitizing and detecting critical faults [8]–[11].
Compact test sets can be used for post-manufacturing
testing or can be replayed in idle times or periodically for
in-field on-line testing.

4) Evaluate training algorithms in terms of their fault tolerance
capabilities and develop fault-aware training algorithms
[12]. For example, faults can be inserted during training,
transiently across the epochs, to increase the robustness of
the network to faults once deployed. Once the training is
over the faults are ejected.

5) Assess the criticality of faults towards developing cost-
effective hardware-level fault tolerance techniques [13]–
[20].

SpikeFI performs fault analysis at the application level
in software. Fault injection can be performed instead at the
hardware description level, i.e., RTL, gate-level or transistor-
level, but this requires the availability of the hardware im-
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plementation and the more detailed the hardware description
is, the lengthier the simulation time is. Already at RTL the
simulation becomes intractable for sizeable SNN models given
that the fault space explodes and that the impact of each
fault is evaluated by performing inference on the complete
testing set. Fault injection can also be performed on the
actual hardware [21], but at this stage it may be too late
to make any architectural changes for implementing fault
tolerance techniques. To this end, SpikeFI adopts the flexibility
and speed of software-level fault injection while supporting
hardware-aware fault models by mapping them to software
operators and accelerating faulty SNN instances on a GPU.

SpikeFI is publicly available and downloadable at
https://github.com/SpikeFI. It is open-source and extendable,
allowing researchers to implement their own fault models and
results analysis.

There exist several works that have employed custom-made
FI frameworks for SNNs (for example, see [8], [10], [12], [18],
[19], [22]), but none of these FI frameworks was made publicly
available and open-source. Very recently, the SpikingJet fault
injector for SNNs was made publicly available [23]. SpikingJet
is built on top of the SnnTorch framework [24], whereas
SpikeFI is built on top of the Spike Layer Error Reassignment
in Time (SLAYER) framework [25]. Compared to Spiking-
Jet, SpikeFI provides several simulation speedup options, it
supports in addition transient faults and fault injection before
training, and it offers results visualization.

Software-level FI frameworks have also been developed
for ANNs [26]–[30]. Recent efforts aim at improving the
one-to-one mapping between hardware and software fault
injection [31], [32], reproducing more complex fault models,
i.e., extracted from radiation tests [33], or speeding up the
analysis by reducing the fault injection space [34], [35] or
the fault simulation time [36], [37]. Another possibility is
to use generic FI tools [38], [39] to emulate fault effects
in the hardware platform, i.e., GPU, running the application.
Such FI frameworks are crucial towards the testability and
dependability of AI hardware accelerators [40]–[44].

The rest of the article is structured as follows. In Section II,
we provide background information on SNNs. In Section III,
we discuss fault modelling for SNNs used by SpikeFI. The
SpikeFI framework is presented in Section IV. The results are
presented in Section V. Section VI concludes this article.

II. BACKGROUND INFORMATION ON SNNS

A. Principle of operation

Neural network models are classified into three generations.
The first generation was based on McCulloch-Pitts neurons,
also referred to as perceptrons, which give a digital output. The
second generation of models applied an activation function to
the output of the neurons, such as a rectified linear unit (ReLU)
or sigmoid, and, in this way, they supported analog computa-
tion and learning algorithms based on gradient-descend, such
as backpropagation. SNNs are the third generation [45], dis-
tinguishing themselves from their predecessors by their ability
to mimic more realistically the biological brain. However,
they constitute simplified models of their complex biological

counterparts maintaining some of their aspects, since they
are primarily used for computational purposes, rather than
simulating the human brain.

Inspired from biological neural systems, SNNs encode
the information in the timing of single action potentials, or
spikes, and incorporate the time between successive spikes
as a source of computation and communication among their
spiking neurons. Spikes correspond to events generated when-
ever a change occurs providing a continuous time processing
with very detailed time resolution reaching the micro- or
nanosecond scale.

From a hardware perspective, SNNs form the basis of neuro-
morphic computing. Spiking neurons operate asynchronously
to each other, as they are only utilized when an incoming
spike stimulates them via their pre-synaptic connections. This
makes SNNs event-based computation systems, which offers
low latency and energy consumption compared to level-based
ANNs. However, there are still challenges facing SNNs, such
as the complexity of training.

Another characteristic of SNNs is the input type, which
needs to be in a spiking form as well, i.e., the network
is fed with a continuous-time event flow instead of static
frames. A natural way to achieve this is with a neuromorphic
camera, also known as Dynamic Vision Sensor (DVS). A DVS
resembles the retina of the human eye and is composed of
pixel-neurons that react to changes in brightness. When a
sufficient change has occurred to the brightness of a pixel-
neuron, it generates a positive or negative event, depending
on the polarity of the change.

B. Spiking neuron models

There exist several spiking neuron models, ranging from
biologically detailed ones, such as the Hodgkin-Huxley, to
simplified ones that are more computational efficient for large
networks and hardware implementation while still incorpo-
rating the main neuronal dynamics, such as the Integrate &
Fire (I&F) [46]. As SpikeFI is built on top of SLAYER [25],
and given that SLAYER employs the Spike Response Model
(SRM) which is a generalization of the I&F model, herein we
discuss in detail the SRM.

In the SRM, the state of the neuron at any given time is
described by its membrane potential u. At its resting state,
the membrane potential is set to a low value urest. The
neuron integrates the incoming spikes from the synapses at its
input and the membrane potential is increased or decreased
according to the spike polarity. Once the potential reaches
a certain threshold θ, the neuron fires a spike, which is
propagated to the next layer of neurons via the synapses
connected to its output, and the neuron is reset to its resting
state again. At the same time, the neuron is regulated to not fire
again for a while. The minimum time in-between successive
spikes is called refractory period.

To mathematically express the above functionality, the SRM
considers that the action of a neuron at any given time is a
response to both the incoming activity and the neuron’s own
output. For this purpose, two response functions are used,
namely, the synaptic kernel ϵ and the refractory kernel η. The
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synaptic kernel ϵ describes the effect of an incoming spike
train on the membrane potential and distributes the effect
of the most recent incoming spikes on future output spike
values, hence introducing temporal dependency. The refractory
kernel η incorporates the effect of the neuron’s own spike train
onto its membrane potential. Two functions used to represent
kernels ϵ and η are:

ϵ(s) =
s

τs
· e1−

s
τs ·H(s) (1)

η(s′) = −2θ · s′

τref
· e1−

s′
τref ·H(s′), (2)

where H(·) is the unit step function, τs is the membrane time
constant, τref is the refractory time constant, s is the time
passed since the last pre-synaptic spike at the input of the
neuron, and s′ is the time passed since the last post-synaptic
spike at the output of the neuron.

The input and output spike trains of the neuron are denoted
by Si(t) and So(t), respectively:

Si(t) =
∑
f

δ(t− tfi )

So(t) =
∑
f

δ(t− tfo ),
(3)

where δ is the Kronecker delta function to denote a spike and
tfi and tfo represent the f -th firing time at the i-th neuron input
and neuron output, respectively.

The membrane potential is expressed as:

u(t) =
∑
i

ωi(ϵ ∗ Si)(t) + (η ∗ So)(t) + urest, (4)

where ωi is the weight of the synapse driving the i-th neuron
input and ∗ is the convolution product.

Assuming that the neuron has fired F spikes so far, a new
spike δ(t − tF+1

o ) is fired at time tF+1
o when the neuron’s

membrane potential reaches the threshold θ and is appended
to the output spike train as follows:

So(t) =

F∑
f=1

δ(t− tfo ) + δ(t− tF+1
o )

tF+1
o = min {t : u(t) = θ, t > tFo }.

(5)

Once this happens, the neuron’s membrane potential is reset
to its resting state:

u(tF+1
o ) = urest. (6)

Fig. 1 shows a simulation of a neuron following the SRM.
The neuron is receiving input from many neurons. The pre-
synaptic spike trains from 20 out of these neurons are shown in
Fig. 1a. Fig. 1b shows the evolution of the neuron’s membrane
potential and its output spike train.
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Fig. 1: SRM simulation.

C. Training schemes

Training large SNN models remains a challenge [1], [2],
[47]. The classic backpropagation algorithm used in ANNs
cannot be applied directly to work with spiking events due
to their non-differentiable nature. Several learning schemes
have been developed to overcome this challenge, including
the biologically inspired Spike-Timing-Dependent Plasticity
(STDP), training an ANN and converting it to a SNN, evo-
lutional algorithms, and spike-based backpropagation. Spike-
based backpropagation is currently one of the most practical
and accurate techniques for training SNNs. SLAYER [25]
trains a SNN with a variation of backpropagation using the
probability of a spiking neuron to change state, i.e., fire a
spike or move back to its resting state. The fact that SNNs
can have the same topologies as ANNs, e.g., fully-connected,
convolutional, recurrent, etc., allows for embedding SLAYER
in already mature Machine Learning (ML) frameworks with
some adjustments to add support for the spiking functionality.
To this end, there is a PyTorch version of SLAYER that can
be used for both the training and the inference of any SNN



4

TABLE I: Behavioral-level representations of built-in fault models.

Fault type Fault model Fault effect

N
eu

ro
n

fa
ul

ts H
ar

d
Dead neuron Ŝo(t) = 0

Saturated neuron Ŝo(t) =
∑∞

n=0 δ(t− n)

Stuck-at-x neuron Ŝo(t) = x ·
∑∞

n=0 δ(t− n)

Pa
ra

m
et

ri
c Integration fault τ̂s = ρ · τs

Refractory fault τ̂ref = ρ · τref

Threshold fault θ̂ = ρ · θ

Sy
na

ps
e

fa
ul

ts H
ar

d Dead synapse ω̂i = 0

Saturated synapse ω̂i >> ωi or ω̂i << ωi

Pa
ra

m
et

ri
c Perturbed synapse ω̂i = ρ · ωi

Bit-flipped synapse ω̂i = Q−1(Q(ωi)⊕ 2b)

model. SpikeFI is built upon SLAYER and PyTorch, inheriting
their features and extending their capabilities to support FI
experiments.

III. FAULT MODELING

SpikeFI is a fault injector at the application level. Hardware-
level faults are translated to behavioral-level faults which,
thereafter, are reproduced mathematically into the SRM de-
scribed in Section II-B. We consider that the processing
elements of the SNN, i.e., neurons and synapses, are discrete
entities that can fail independently. A bottom-up approach
can be followed to extract the spiking neuron and synapse
faulty behaviors starting from transistor-level simulations [48].
SpikeFI conforms to the established practice and adopts all
widespread and conventional fault models in the literature that
are derived from various digital, analog, and mixed analog-
digital SNN hardware implementations. These fault models
are built-in within SpikeFI and are delivered as a library.
The library is fully modifiable and extendable, i.e., developers
are free to create their own fault models depending on the
hardware implementation and fault occurrence probabilities.

Modeling faults at behavioral-level allows evaluating their
impact without the need of knowing the details of their source
or mechanism, avoiding in this way costly low-level simula-
tions, i.e., at the transistor, gate, microarchitectural level, etc.,
performed at the network scale. Additionally, behavioral-level
fault modeling provides the flexibility to model any possible
hardware-level fault, as long as a mathematical formula de-
scribing it can be derived. Another advantage is that the results
are not tied to a specific hardware accelerator design, thus the
drawn conclusions tend to be more generic.

Next, we describe the built-in fault models, which are
summarized in Table I, by separating them into neuron and
synapse fault models. Fault models can be further divided into
hard and parametric fault models, depending on whether the
processing element presents an outright failure or deviation.

A. Neuron faults

1) Hard faults:

a) Dead neuron: A fault that halts the neuron’s spiking
activity and makes it unresponsive to any input. To model a
dead neuron, its output spike train is set to zero, i.e., Ŝo(t) = 0.

b) Saturated neuron: A fault that causes a neuron to
be firing non-stop, even in the absence of input activity. A
saturated neuron can be considered as the complementary
extreme case of a dead neuron, where the output spike train
is never zero, i.e., Ŝo(t) =

∑∞
n=0 δ(t− n).

c) Stuck-at-x neuron: A fault that causes the neuron’s
output to be stuck-at a value x, i.e., Ŝo(t) = x·

∑∞
n=0 δ(t− n),

where x ∈ R. A stuck-at neuron can be viewed as the generic
hard neuron fault, with the extreme dead and saturated neuron
faults being derived by setting x = 0 and x = 1, respectively.

2) Parametric faults:
a) Integration fault: A fault that causes the membrane

time constant τs of the synaptic kernel ϵ in Eq. (1) to be
perturbed to a new value τ̂s = ρ · τs, ρ ∈ R, affecting the
neuron’s easiness to fire spikes. Depending on whether τ̂s > τs
or τ̂s < τs, the kernel function ϵ allows for an easier or harder
integration, respectively, or, conceptually speaking, makes the
neuron more or less sensitive towards incoming spikes at its
input.

b) Refractory fault: A fault that causes the refractory
time constant τref of the refractory kernel η in Eq. (2) to be
perturbed to a new value τ̂ref = ρ · τref , ρ ∈ R, affecting
the neuron’s refractoriness, i.e., the minimum time that needs
to elapse before the neuron is capable of firing again. If
τ̂ref > τref , then the refractory kernel η converges slower to
zero, meaning that the refractoriness of the neuron becomes
stronger. On the other hand, if τ̂ref < τref , then the neuron’s
state is less tightly associated to its own output activity and,
thereby, it demonstrates a weak refractoriness.

c) Threshold fault: A fault that causes the threshold of
the neuron θ to be perturbed to a new value θ̂ = ρ · θ, ρ ∈
R. As it can be inferred from Eq. (5), a faulty threshold θ̂
affects the output spike train either in a contributory or in
a suppressive way, depending on whether θ̂ < θ or θ̂ > θ,
respectively. Similarly to an integration fault, a lower threshold
leads to a neuron that fires easier if excited by the same stimuli,
as the membrane potential reaches the threshold faster. This
fault has a second effect since the threshold is also used in
the refractory kernel η. Therefore, from Eq. (2), an increase
in the threshold’s value, implies a higher refractory period,
thus taking the neuron longer to recover after firing, while a
decrease has the reverse effect.

B. Synapse faults

1) Hard Faults:
a) Dead synapse: A fault that holds the synaptic weight

to zero, i.e., ω̂i = 0, disabling the synapse and “cutting” the
connection between the pre- and post-synaptic neurons.

b) Saturated synapse: A fault that saturates the synaptic
weight to an extreme positive ω̂i >> ωi or extreme negative
ω̂i << ωi value. Some representative positive and negative
saturation values could be respectively the highest and lowest
values of the weight distribution resulting from training.

2) Parametric Faults:
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a) Perturbed synapse: A fault that perturbs the synaptic
weight to a new value ω̂i = ρ · ωi, ρ ∈ R.

b) Bit-flipped synapse: From a hardware perspective,
representing synaptic weights as digital words and storing
them in on-die memories is common practice. This fault flips
one or more bits of a N -bit representation of the synaptic
weight. For example, for a N -bit integer representation, to
model this type of fault, the real value of the synaptic weight
is quantized with a precision of N bits, the selected bits
are flipped, and then the weight is converted back to a real
number. At the end, the faulty value of the synaptic weight is
given by ω̂i = Q−1(Q(ωi)⊕ 2b), where Q is the quantization
function, Q−1 is the inverse quantization function, ⊕ is the
logic XOR operator, and b represents the position(s) of the
flipped bit(s), where b = 0 corresponds to the Least Significant
Bit (LSB). This fault model can assume a Bit Error Rate (BER)
probability for the memory storing the synaptic weights of the
network in a binary data type.

C. Permanent and transient fault effect

Depending on the nature of a fault and the factors that
led to its occurrence, its effect may be either permanent or
transient. SNNs have a global internal clock that defines the
discrete times when neurons can be firing. If a fault is transient,
its effect is active for a limited period or number of clock
cycles. For the rest of the FI experiment time, the components
affected by the transient fault are restored to their nominal state
and, therefore, the original behavior is expected. For example,
denoting the transient fault duration by [t1, t2], the behavioral
description of a transient neuron saturation fault is:

Ŝo(t) =

{
δ(0) : t ∈ [t1, t2]
So(t) : otherwise (7)

and the behavioral description of a perturbed synapse fault is
given by:

ω̂i(t) =

{
ρ · ωi : t ∈ [t1, t2]

ωi : otherwise . (8)

IV. THE SpikeFI FRAMEWORK

A. Overview and supported features

SpikeFI is a native PyTorch framework [49] built upon
the SLAYER framework [25], extending the capabilities of
SLAYER to add support for setting and automatically exe-
cuting FI and reliability analysis experiments. SLAYER is a
notable training framework for SNNs that is contributing to the
growing interest in SNNs. It is developed to enable efficient
spike-based backpropagation learning for deep SNNs. It has
been incorporated into Lava, Intel’s open-source software
framework for developing SNNs. SpikeFI employs the same
principles and programming concepts and paradigms as its un-
derlying frameworks PyTorch and SLAYER preserving com-
patibility. Any arbitrary SNN model implemented in SLAYER
can be the subject of FI and reliability analysis, without
needing to make any modifications to the model. Researchers
and developers already familiar with SLAYER can therefore
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Fig. 2: The organization of an FI campaign.

jump directly into using SpikeFI. SpikeFI is offered as open-
source software and is available for download and to contribute
via the GitHub platform: github.com/SpikeFI/.

SpikeFI supports the following features and scenarios:
1) Flexible fault modeling scheme: SpikeFI has an integrated

comprehensive library of predefined fault models to select
from, as described in Section III. Faults can be injected
into any processing element, i.e., neuron or synapse, and
at different levels, i.e., isolated processing element, layer-
wise, and network-wise. SpikeFI being open-source allows
the user to design and integrate custom fault models.

2) Pre-/during/post-training FI injection: SpikeFI allows in-
jecting faults before, during, or after the training phase
prior to inference. The motivation is different across these
scenarios. In pre-training fault injection, the goals can be to
perform fault-aware training, re-train the network after the
occurrence of a critical fault, and, in general, to study the
network’s capability to learn around faults. During training
fault injection aims at studying the effect of faults occurring
while training is progressing. This is useful when training
deep SNNs as it can take significant time during which the
hardware can suffer a fault. Post-training fault injection
aims at studying the effect of faults on the inference
accuracy. The analysis here aims at studying the inherent
reliability and deriving critical fault types and locations.
This information can subsequently be used for developing
cost-effective test and fault tolerance strategies.

3) Multi-round FI campaign: A FI campaign may be com-
posed of multiple experiments that are conducted sequen-
tially independent of each other.

4) Single/multiple/cumulative FI injection: Each of the fault
rounds may contain a single fault, multiple faults or accu-
mulated faults. In the latter scenario, in each FI experiment
the set of faults is increased to observe the accumulative
effect of the new faults added.

5) Permanent/transient fault analysis: A fault can be designed
to be permanent or transient of varying duration, as de-
scribed in Section III-C.

6) Optimization options: SpikeFI, being built on top of Py-
Torch, utilizes GPU acceleration. It also offers various op-
timization options to speedup fault injection experiments,
such as proper for-loop ordering, late start, early stop, and
batch-wise inference, which will be described in detail in
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Section IV-D.
7) Results visualization: SpikeFI optionally saves spike trains

for off-line analysis, but it also offers several built-in results
visualization functions based on the inference accuracy
drop metric, as it will be discussed in Section IV-E3 and
will be demonstrated in Section V-C.

B. Structuring of a FI experiment

Fig. 2 summarizes the hierarchical organization of program-
ming elements that shape a FI campaign in SpikeFI.

1) Fault Round: A group of faults to be injected altogether
into the network. A fault round can contain a single or multiple
faults. The collective effect of all faults belonging to the
same round is evaluated simultaneously in a single inference.
SpikeFI also offers the possibility to perform cumulative fault
analysis, i.e., define multiple fault rounds where each fault
round contains the faults of the previous fault round plus some
additional faults. Once a fault round has been evaluated, the
faults are withdrawn from the network before continuing to
the next fault round.

2) Fault: The actual fault to be injected into a network,
composed of a fault model, one or more fault sites, and a
fault duration.

3) Fault model: The fault model is in turn composed of a
fault target and a fault function.

a) Fault target: The fault target can be: (i) the neuron
output; (ii) the SRM parameters, i.e., neuron’s membrane time
constant, threshold, and refractory time constant; and (iii) the
weight of a synapse, as described in Sections III-A and III-B.

b) Fault function: The fault function is the mathematical
formula that describes how the fault is to affect the operation
of the targeted processing element, as described in Sections
III-A and III-B.

4) Fault Site: The fault site is the location of the fault
within the network. The fault can be isolated affecting a
specific processing element or it can be applied to multiple
processing elements simultaneously. The user has also the
option to create random fault sites per layer or across the
network following some statistical fault distribution. The site
of a fault is composed of the layer and coordinates of the
processing element within the layer. In the case of a neuron,
the site is the quadruplet (l, c, x, y), where l is the layer name
or number, c is the feature map number within the layer, and
(x, y) are the coordinates of the neuron within the feature map.
In the case of a synapse, the site is defined by the quadruplets
of the two neurons connected by the synapse.

5) Fault Duration: The fault duration provides information
on when the fault is activated and for how long it remains
active, as described in Section III-C. By default, a permanent
fault means that is active for the whole duration of the input
sample, whereas the duration of a transient fault is only a
portion of the duration of the input sample.

C. FI implementation into SLAYER

To inject a fault, SpikeFI modifies the PyTorch computation
flow in SLAYER. For every fault model, there is a suitable
modification to be applied, as illustrated in Fig. 3. To apply
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Fig. 3: FI implementation into SLAYER.

the modification, SpikeFI makes use of PyTorch pre-hook and
hook functions, i.e., a function called right before and right
after the evaluation of a module, respectively.

Let us first consider neuron hard faults in layer l. The fault
function of the fault model returns the output of the faulty
neurons and updates the output of layer l for these neurons
while the rest of the neurons retain their fault-free output.
Then, the output of layer l is propagated to the input of the
subsequent layer l + 1 of the network. This is implemented
with a neuron pre-hook function attached to the input of layer
l + 1, as illustrated in Fig. 3.

Regarding neuron parametric faults, in SLAYER the SRM
parameters are set globally for a layer and are shared among
its neurons, thus it is not possible to modify the parameters
only for a subset of neurons. For this reason, SpikeFI uses
a hook and a pre-hook function. The first one, called neuron
parametric hook, receives the same input as the faulty layer
l, creates a “dummy” copy of the layer with altered SRM
parameter for all neurons according to the fault model, repeats
the parts of the calculation on this “dummy” copy that concern
the affected SRM parameters, and feeds the result to the next
neuron pre-hook function attached to the input of layer l+ 1.
The neuron pre-hook function selects only the faulty neuron(s)
and replaces their output spike train with the spike train of the
corresponding neuron(s) in the dummy layer.

Regarding the synaptic weights, SpikeFI uses a synapse pre-
hook function to alter the synaptic weight value according
to the fault model prior to the forward pass through the
faulty layer. At the end of the faulty layer evaluation, there
is a synapse restore hook function that restores the original
synaptic weight, so that there is no interference between
successive fault rounds.

D. Optimizations

1) Ordering of nested for loops: All fault rounds are evalu-
ated by performing inference for the same set of input samples,
which could correspond to the complete testing dataset or part
of it. Essentially, a FI campaign is a nested loop iterating over
all fault rounds and over the set of input samples. The ordering
of the two for loops has in fact an effect on the FI campaign
runtime. SpikeFI places the input samples in the outer for loop
and the fault rounds in the inner for loop since this results
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in faster runtime, as it will be demonstrated quantitatively in
Section V-B. The underlying reason is that the alternative for-
loops ordering would require transferring the dataset to the
GPU for the computation multiple times, equal to the number
of fault rounds, which would add a significant time overhead.
Instead, with the selected for-loop ordering, a batch transferred
to the GPU is reused for all fault rounds, thus circumventing
this time overhead.

2) Late Start: As typically there are multiple fault rounds in
a FI campaign, there is significant repetition of forward passes
through initial fault-free layers of the network. For example,
consider two fault rounds with a single fault each, located at
layers i and j > i, respectively. The forward pass is repeated
twice up to layer i−1 which is redundant. To save simulation
time, for every fault round, SpikeFI uses the late start option
that skips layer computations up to the leftmost faulty layer,
denoted by lleft.

For this purpose, in a preparatory phase prior to the FI
experiment, SpikeFI performs a nominal inference for the
complete testing dataset and records the deterministic golden
output of all layers. More formally, for each layer l, SpikeFI
computes the matrix Al of its output spike trains with dimen-
sions N l × d, where N l is the number of flattened neurons
in layer l and d is the number of timestamps within the
inference window. The SNN has a global clock with period
T . The timestamps are denoted by tj = j ∗ T , j = 1, · · · d.
Al(i, j) = 1 if neuron i in layer l fires at timestamp tj ,
otherwise Al(i, j) = 0. The layer matrices Al are combined
to generate the network matrix A = [A1, · · · , AL], where L
is the number of layers.

During the FI experiment, for every fault round, SpikeFI
first orders the faults based on the layer wherein they occur
in ascending order. If the first faults appear at layer lleft, then
SpikeFI uses the golden output of layer lleft−1 and continues
the simulation from this point onward.

Note that if the fault round contains only hard neuron faults,
then the simulation can continue from layer lleft + 1. This is
because of the implementation in PyTorch which injects the
fault with a neuron pre-hook function attached to the input of
the layer following the faulty layer. This means that late start
can offer speeds-up even when the leftmost faulty layer is the
first layer.

3) Early Stop: As mentioned in the introduction, many
faults end up being benign. If in a fault round the output
of the rightmost faulty layer, denoted by lright, is unaffected
matching the golden response, then it is pointless to continue
the simulation as it will be like simulating a nominal fault-
free network. SpikeFI uses the early stop option to skip this
redundant computation. More specifically, early stop uses the
golden layer output matrices Al as in late start. Assuming a
fault round with the last faults occurring in layer l, the early
stop option computes the same matrix denoted by Al

f , where
the subscript f indicates a fault round, subtracts it from the
golden matrix Al to produce the matrix Bl = Al − Al

f , and
computes the summation of all elements of Bl denoted with
the elementwise 1-norm ∥Bl∥1. If ∥Bl∥1 = 0 it means that all
faults in this fault round are benign and the simulation stops at

layer l. If ∥Bl∥1 > 0 it means that with respect to the golden
output there is a spike count or spikes timing difference.

SpikeFI also offers the possibility of considering a tolerance
ϵ for the early stopping criterion. In this case, the simulation
stops if ∥Bl∥1 ≤ ϵ. This tolerance should be used with care
as it is likely that a fault induces a small spike count or spikes
timing difference within the tolerance, yet this small difference
is sufficient to cause the network’s output spike trains to
change to the point where the top-1 prediction changes. In
this case, we stop early the simulation of a fault round that
contains critical faults, mislabelling this fault round as benign.

E. Complete FI experiment flow

A FI experiment is divided into three stages, namely the
preparation, execution, and results extraction and visualization
stages.

1) Preparation stage: First, the validity of all faults in all
fault rounds is checked. If a fault is invalid, for example the
fault site is nonexistent, then the fault is dropped from the
experiment. Then, random faults are assigned a random site.
After these two steps, the faults within each fault round are
ordered according to the layer they belong to in ascending
order so as to identify the leftmost lleft and rightmost lright
layers in the fault round. The verified fault rounds together
with their sorted list of faults is communicated back to the
user to acknowledge the FI experiment setup. Lastly, for each
batch and before the FI starts, SpikeFI performs an inference
on the nominal network so as to record the golden outputs of
all layers and form the matrices Al used in the late start and
early stop optimizations.

2) Execution stage: Fig. 4 shows the SpikeFI complete FI
experiment flow including all optimizations. The dataset is
transferred to the GPU in batches and for each batch the same
FI experiment is performed in parallel for every input sample
in the batch. The FI experiment is composed of a number of
fault rounds simulated sequentially. For a given fault round,
the simulation starts from the leftmost faulty layer lleft using
the golden output of the previous layer, or from layer lleft+1
if lleft comprises only hard neuron faults. Inference continues
up to the rightmost faulty layer lright. In the case of a fault
round with a single fault, lleft and lright coincide. At this
point, if the early stop criterion is met then the simulation
stops and we proceed to the next fault round. Otherwise, the
simulation continues up to the last layer. Before the next fault
round starts, the results are saved and the network is initialized
back to its original fault-free state.

3) Results extraction and visualization stage: Based on the
spike encoding method employed by the SNN, i.e., rate coding,
temporal coding, etc., for each fault round, SpikeFI uses the
output spike information in the matrices AL and AL

f to report
the accuracy of the faulty network. For example, let us assume
rate encoding, which is the most widely used spike encoding
method, and a classification cognitive task. In this case, the
output layer comprises one neuron per class and the winning
class, i.e., the top-1 prediction, is that whose neuron fires the
largest number of spikes within the inference time window.
These spike counts are computed using the matrices AL and
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Fig. 4: Flowchart of a FI campaign in SpikeFI.

AL
f to assess if the faulty network changes the top-1 prediction

of an input sample which contributes to accuracy loss. The user
can define a misprediction tolerance value. If the accuracy drop
is larger than this tolerance value, then this signifies a critical
fault round. In this way, fault rounds are labeled as critical
or benign. Optionally, the matrices Al and Al

f , or their last
parts AL and AL

f , can be saved for offline analysis by the
user. Finally, SpikeFI reports the runtime to complete the FI
campaign.

SpikeFI comes with several built-in results visualization
functions that work for any fault model, as it will be shown in
Section V. For example, misprediction rates can be plotted for
isolated and random faults in the form of bar plots and heat
maps and for parametric faults as a function of the parameter
deviation. Results can also be presented bit-wise and layer-
wise so as to perform comparisons.

F. Open source code and example

A detailed documentation is provided in the GitHub plat-
form for the easy integration and usage of the SpikeFI frame-
work. The structure of the SpikeFI framework is organized
in the form of a Python package to be imported and use its
functions immediately. There are four main modules within
the Python package, namely, the core, fault, models, and
visual modules, each containing relative classes and functions
to implement the framework’s functionalities. An additional
demo module is included with the implementations of the
two SNN architectures of Section V-A and example scripts
to showcase the usage of SpikeFI in various scenarios.

Algorithm 1 presents a pseudo-code example resembling
Python syntax of two FI campaigns. First, the campaign
object cmpn is created and initialized with the network model
net, a vector with the dimensions of the input data samples
shape in, and the spiking-related information object slayer,
which is provided by SLAYER and is initialized by the user.
More specifically, slayer contains information about the SRM
parameters of the spiking neurons, the duration of the input
data samples, the global clock period, the target number of
spikes for the winning class neuron, etc. Next, the faults fx,

Algorithm 1: Example of a FI campaign in SpikeFI.
Data: net, shape in, slayer, test set
cmpn← Campaign(net, shape in, slayer)
fx ← Fault(DeadNeuron(), FaultSite(SF2))
fy ← Fault(SatuSynapse(10), FaultSite(SF1))
fz ← Fault(ParamNeuron(theta, 0.5), 4)
cmpn.inject(fx)
cmpn.then inject(fy, fz)
cmpn.run(test set)
cmpn.export()
cmpn.save()
bar(cmpn)
cmpn.eject()
cmpn.inject complete(BitflippedSynapse(7), SF2)
cmpn.run(test set)
heat(cmpn)

fy , fz are defined corresponding respectively to a dead neuron,
a positively saturated synapse with value 10, and a parametric
neuron fault that decreases parameter θ to 50% of its nominal
value. Single faults fx and fy are assigned a random fault
site in layers SF2 and SF1, respectively. Multiple fault
fz is initialized with 4 random fault sites anywhere in the
network. Fault fx is injected to the network as the first
single-fault fault round using the cmpn.inject function. Then,
faults fy and fz are included in a second five-fault fault
round using the cmpn.then inject function. The function
cmpn.inject always adds the faults to the current fault round,
while cmpn.then inject adds a new fault round. The next
line calls the cmpn.run function that takes as argument a
reference to the complete testing set test set and performs
the preparation and execution stages of the FI campaign, as
described in Sections IV-E1 and IV-E2. By default, cmpn.run
makes use of all available optimization options described in
Section IV-D, but the user can opt to use late start or early
stop. Once the FI campaign is over, the details of the FI
experiment, i.e., fault rounds, and the results, i.e., matrix AL

f ,
classification accuracy for each fault round, etc., are extracted
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Fig. 5: N-MNIST SNN.

as a FI campaign data object using the function cmpn.export
and stored using the cmpn.save function. Depending on the
preferred results visualization, the user can choose among a set
of plotting functions, as it will be demonstrated in Section V-C.
The FI campaign data object is fed to the plotting functions
to visualize the results. In this example, the results are plotted
using the bar function. This FI campaign terminates by calling
the cmpn.eject function, which removes all fault rounds and
re-initializes the network to perform a new FI campaign if
desired, allowing for unlimited reuse of the campaign object
cmpn. A second FI campaign is then executed using the
function cmpn.inject complete, which completes the inject
functions family. cmpn.inject complete creates as many
fault rounds with single faults as the number of processing
elements in the specified layer. In this example, we perform
a bit-flip in the MSB of an 8-bit integer representation for all
synapses in layer SF2. This second FI campaign is executed
with the cmpn.run function and the results are visualized in
a form of a heat map by calling the heat function.

V. RESULTS

A. Case Studies

SpikeFI is demonstrated on two convolutional SNNs trained
to classify the N-MNIST [50] and IBM’s DVS128 Gesture [51]
datasets. These SNNs are modelled and trained in SLAYER,
and are included in the demo package of the SpikeFI frame-
work in GitHub. They use rate coding, i.e., the winning class is
selected after the neuron at the output layer which is triggered
the most producing the highest number of spikes.

The N-MNIST dataset is a neuromorphic, i.e., spiking,
version of the MNIST dataset, which comprises images of
handwritten arithmetic digits in gray-scale format [50]. It
consists of 70000 sample images that are generated from the
saccadic motion of a DVS in front of the original images in
the MNIST dataset. The samples in the N-MNIST dataset have
a duration of 300 ms. The dataset is split into a training set
of 60000 samples and a testing set of 10000 samples. The
SNN architecture, shown in Fig. 5, is a spiking version of
the LeNet-5 architecture [52]. It consists of 3 convolutional
layers with 2 2x2 sum-pooling layers in between them and
2 fully-connected layers at the end for the final decision of
the network. The classification accuracy on the testing set is
97.8%.

The IBM’s DVS128 Gesture dataset consists of 29 individ-
uals performing 11 hand and arm gestures in front of a DVS,
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Fig. 7: Speedup and runtime when using fault rounds in the inner for
loop.

such as hand waving and air guitar, under 3 different lighting
conditions [51]. In total, the dataset comprises 1342 samples of
duration 6 s, which is trimmed to 1.5 s to speedup simulation.
The designed SNN, shown in Fig. 6, is an adaptation of the
network proposed in [51]. It starts with a 4x4 sum-pooling
layer to reduce the big size of the input samples. Next, there
are 2 convolutional layers followed by a 2x2 sum-pooling layer
each. The architecture is concluded with 2 fully-connected
layers. The network performs with an 86.4% accuracy on
the testing set, which is acceptable considering the shortened
samples of the dataset and the shallower architecture compared
to the architecture in [51].

B. Optimization speedups

Herein, we use the N-MNIST SNN as a benchmark for
quantifying the speedup improvements when using the differ-
ent optimizations.

For a fair comparison, all the FI experiments below were
executed one at a time on the same system configuration
composed of an Intel Xeon® W-2133 CPU and a NVIDIA
Quadro® RTX 4000 GPU, with the system being reserved for
the experiment.

1) Ordering of nested for loops: First, we show that placing
the fault rounds in the inner for loop as opposed to the
outer for loop speeds up the analysis. For this purpose, we
perform successive FI campaigns with a batch size of 1 and
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with increasing number of fault rounds, and we measure the
speedup as well as the total runtime. Each fault round is
composed of a single random dead neuron fault, and the faults
in the successive fault rounds are accumulated, i.e., one fault
round contains all faults of the previous fault round plus a new
random one. For this experiment, the early stop and late start
optimizations are disabled. The result is shown in Fig. 7. As
it can be seen, the speedup increases exponentially with the
number of fault rounds, with the speedup slowing down after
10 fault rounds and converging to around 27%. The runtime
increases linearly with the number of fault rounds (note that
the scale of the x axis is not linear). The convergence occurs
when the runtime starts dominating, overshadowing the benefit
from the reduced data transfers to the GPU. Based on this
result and as discussed in Section IV-D1, SpikeFI places the
fault rounds in the inner for loop.

2) Late start and early stop: To demonstrate the speedups
offered by late start and early stop, we use a FI experiment
with a batch size of 1 and 30 fault rounds, with each fault
round containing a single random dead neuron fault. As
marked in Fig. 7, such an experiment takes up approximately
33 min. The FI experiment is repeated layer-wise for all 5
layers by concentrating all 30 faults in one layer. For the
last layer that has only 10 neurons, we triplicate each fault
round. The FI experiment is also performed network-wise by
distributing the fault rounds equally across the 5 layers, i.e.,
placing 6 faults per layer.

Fig. 8 shows the speedup for these layer-wise and network-
wise FI experiments when using late start and early stop
optimizations as stand-alone and combined. For the early stop
we use ϵ = 0. As expected, we observe that the speedup
offered by late start improves as the leftmost faulty layer
moves to the right. In contrast, early stop is more effective
as the rightmost faulty layer moves to the left. As the fault
model is dead neuron faults, late start can offer speedup even
for faults in the first layer (see Section IV-D2).

Another observation is that late start offers significantly
greater speedups compared to early stop. For the late start
the speedup ranges from 26% to 86% moving from layer 1 to
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Fig. 9: Speedup and critical fault escape rate when using early stop
with tolerance ϵ > 0.

layer 5, while for early stop the speedup is less spectacular.
It ranges from 16% to 3% moving from layer 1 to layer 3,
while it vanishes for layers 4 and 5. For the network-wise FI
experiment, late start offers a speedup of 66%, whereas the
speedup for early stop is a modest 6%. Combining both the
speedup reaches 70%. The reason behind late start being more
effective than early stop is that early stop is activated only
when a fault round is benign and also requires the evaluation
of ∥Bl∥1 whose time can counterbalance the average speedup
benefit. In contrast, late start is applied to any type of fault
round and is activated instantaneously. Early stop can offer
a significant speedup for the initial layers when a large
percentage of faults are benign.

Fig. 9 depicts the effect of using ϵ > 0 in early stop. For this
experiment, the FI campaign is performed on the first layer,
containing as many fault rounds as the number of neurons in
this layer, each with a single dead neuron fault. We observe
that as ϵ increases, the percentage of critical faults misclassi-
fied as benign increases. For this FI experiment, improving
further the speedup is not possible without misclassifying
critical faults. For ϵ = 1, the speedup is around 15% while
the misclassification moves away from zero. Therefore, early
stop with tolerance ϵ > 0 should be used with caution, as it
could lead to masking the effect of critical faults.

3) Batched inference: Finally, Fig. 10 shows the speedup
and average runtime per fault round as a function of batch
size. The FI experiment is composed of 30 fault rounds of
a single random dead neuron fault, distributed equally across
the 5 layers. The late start and early stop options are turned
on, using ϵ = 0 for the early stop. The baseline speedup for
batch size 1 is 70%, as shown in the last column of Fig. 8,
where the exact same FI experiment is performed. As it can
be seen from Fig. 10, the speedup increases by a maximum
of approximately 15% for batch size 11, converging to around
85% for larger batch sizes, while the average runtime per fault
round reaches a minimum of 6.1 s at this point. The reason
behind this initial speedup improvement is that, on one hand,
PyTorch is optimized to calculate more efficiently the output
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Fig. 11: Resiliency analysis for dead and saturated neuron faults.

for many input samples simultaneously and, on the other hand,
by increasing the batch size we reduce the data transfer time to
and from the GPU. However, at some specific batch size, the
bottleneck of the GPU communication is reached, saturating
the speedup improvement.

C. Demonstrations

1) Neuron hard faults: In the first experiment, we inject
single hard neuron faults considering all neurons. We ran two
separate FI campaigns for dead and saturated neuron faults.

Fig. 11 shows a possible visualization of the results using
comparative bar plots. The x-axis shows the different layers of

the network and for each layer there are two bars, one for the
dead and one for the saturated neuron faults. Note that pooling
layers were excluded from the analysis since their functionality
is to aggregate regions of spikes of their previous layers and
do not contain any spiking neurons. A bar is separated into
chunks of different colors, each corresponding to a specific
classification accuracy according to the color shading shown
at the bottom of Fig. 11. The height of the chunk projected on
the y-axis shows the percentage of neurons in this layer which
when exhibit this type of fault the classification accuracy drops
to the value indicated by the color of the chunk.

A first observation from Fig. 11 is that saturated faults have
a far stronger impact on the classification accuracy compared
to dead faults. At the output layer, a saturated neuron always
wins the race, thus samples from all classes except the one
corresponding to the winning neuron are always misclassified.
In the case of a dead neuron, an input with class label
corresponding to this neuron is always mislassified, while
samples from other classes are not affected. Taking the N-
MINST SNN as an example, a saturated neuron at the output
layer causes the accuracy to plummet to a value of 10% on
average, while a dead neuron reduces the accuracy by 10%
on average. The fact that saturated faults are more lethal than
dead faults is also evident in the SF1 layer of the two networks.
The IBM DVS128 Gesture SNN is impacted also in the SC1
layer, while the N-MNIST SNN is insensitive to faults in the
first two layers and in the third layer only a 2% of neurons
are critical.

2) Neuron parametric faults: The effect of neuron paramet-
ric faults on the classification accuracy is shown in Fig. 12.
For a given layer, we vary the τs, τref , and θ parameters in the
SRM for one neuron at a time. The main curve represents in
the y-axis the average classification accuracy observed across
all neurons of the layer as a function of the parameter deviation
in the x-axis expressed in % of the nominal value, i.e., 100%
corresponds to zero deviation. The colored region surrounding
the curve demonstrates the minimum and maximum classifi-
cation accuracy. Neuron parametric faults were found to have
a noticeable impact only for the output layer, thus in Fig. 12
we show only the results for the output and last hidden layer.

The N-MNIST SNN shows a high resilience even at the
output layer. The classification accuracy starts degrading when
τs, θ, and τref are reduced at 40%, 40%, and 20%, respec-
tively, while positive deviations have practically no effect as
accuracy degradation starts being noticeable only for θ when it
increases beyond 200%. In contrast, the SNN DVS128 Gesture
SNN shows vulnerability even for small τs and θ fluctuations,
while it shows a high degree of resiliency for τref .

As mentioned in Section III-A2, increasing τs, decreasing
θ, or decreasing τref makes the neuron spike more easily. At
the extreme, this direction of deviation may make the neuron
saturate, which, as we observed in Section V-C1, is far more
fatal than a dead fault. This behavior can be observed in Fig.
12. Extreme positive deviation of τs for the IBM DVS128
Gesture SNN has an effect equivalent to neuron saturation as
the accuracy drops to 9.09%, i.e., only 1 out of 11 classes is
predicted correctly. Similarly, extreme negative deviation of θ
is equivalent to neuron saturation in both networks.
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(a) N-MNIST SNN: accuracy vs. τs.
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(b) N-MNIST SNN: accuracy vs. θ.
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(c) N-MNIST SNN: accuracy vs. τref .
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(d) IBM DVS128 Gesture SNN: accuracy vs. τs.
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(e) IBM DVS128 Gesture SNN: accuracy vs. θ.
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(f) IBM DVS128 Gesture SNN: accuracy vs. τref .

Fig. 12: Resiliency analysis for neuron parametric faults.

3) Synapse faults: We consider four different synapse
faults, namely dead, negatively and positively saturated, and
bit-flipped synapses. The negative and positive saturation val-
ues were set to −10 and +10, respectively, which are extreme
considering the synaptic weight distribution after training. For
the bit-flipped synapse faults we consider that the hardware
accelerator uses an 8-bit integer data format. For each synapse
fault model, we performed an exhaustive FI campaign with
single synapse faults covering all synapses connecting the last
hidden layer to the output layer. The result is illustrated in
the form of heat maps in Figs. 13 and 14. Each square in the
heat map corresponds to a unique synaptic connection and the
square’s color represents the network’s resultant classification
accuracy when the synapse fault is introduced. The framework
outputs these heat maps such that the pre-synaptic neurons are
placed in the x-axis and the post-synaptic neurons are placed
in the y-axis. As the number of neurons can be very high, the
framework offers the possibility to re-shape the area of the
heat map for illustration purposes.

From Figs. 13a and 13b, we observe that only a few
synapses can affect the classification accuracy if they become
dead or negatively saturated, and the drop in the classification
accuracy is in most cases small. A dead synapse fault zeros
the spikes passing from the synapse, while a negative saturated
synapse fault converts the spikes to large negative spikes. In
both cases, the membrane potential of the post-synaptic neuron
reduces and at the extreme the neuron never fires behaving like
a dead neuron. In contrast, positive saturated synapse faults can
have a greater impact, as shown in Fig. 13c. This is because
they increase the spikes’ strength to the point where the post-

TABLE II: Statistics of the FI campaigns in Sections V-C1, V-C2
and V-C3.

Network Fault type Fault
rounds (#)

Total
runtime (sec)

Runtime
per fault (sec)

N
-M

N
IS

T Neuron hard 13036 163982 12.58

Neuron parametric 8460 32290 3.82

Synapse 9240 15404 1.67

IB
M

D
V

S1
28

G
es

tu
re

Neuron hard 50198 66989 1.33

Neuron parametric 47070 18066 0.34

Synapse 61952 4768 0.08

synaptic neuron fires easily, behaving at the extreme like a
saturated neuron.

From Fig. 14, we observe that the effect on the classifica-
tion accuracy increases with the bit position, with the most
significant bits (MSBs) being the most critical. We observe
also that the N-MNIST SNN is the most vulnerable to this
synapse fault type, as even the least significant bit (LSB) is
critical for many synapses.

4) Runtime: Table II summarizes the statistics of the FI
campaigns in the above Sections V-C1, V-C2 and V-C3. It
shows the total number of fault rounds, total runtime, and
average runtime per fault round per network and per fault type.
Overall, these experiments involved 189956 fault rounds and
took around 3.5 days to complete. Synapse fault simulation
presents the smallest runtime, while for neuron parametric
faults the runtime is one order of magnitude smaller than
neuron hard faults.
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(a) Dead synapse fault.

(b) Negatively saturated synapse fault.

(c) Positively saturated synapse fault.
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Fig. 13: Resiliency analysis for synapse faults in synapses connecting
the last two layers. In each sub-figure the result for the N-MNIST
SNN is shown at the top and for the IBM DVS128 Gesture SNN at
the bottom.

5) Training in the presence of faults: Herein, SpikeFI is
used to assess the ability of a SNN to learn in the presence of
faults. The FI experiment consists of several cumulative fault
rounds, where in each fault round 10 new faults are added
with respect to the previous one. The fault sites within a fault
round are randomly assigned across the network excluding the
output layer. The fault target can be any neuron or synapse, and
a fault function from those defined in the fault model library
is randomly assigned. For every fault round, the faults are
injected into the network and then training is performed. Fig.
15 shows the learning curves for the N-MNIST SNN. Each

learning curve corresponds to a separate fault round and results
in a new instance of the SNN. As it can be seen, the SNN is
capable of learning around and withstanding multiple faults.
The nominal fault-free accuracy is reached for up to 100 faults,
although the learning rate slows down as the number of faults
increases. The classification accuracy starts dropping after
100 simultaneous faults occur in the network, with the drop
increasing with the number of faults. This experiment shows
that SNN hardware accelerators used for training present a
high degree of passive tolerance to faults existing prior to
training, and that re-training when faults occur is a workable
active fault tolerance approach at the expense of bringing the
network temporarily offline.

VI. CONCLUSIONS

We described SpikeFI, an open-source GPU-accelerated FI
framework for SNNs. SpikeFI is built on top of the popular
SLAYER framework used for training SNNs. It has built-in a
library of mainstream neuron and synapse fault types modeled
onto the SRM that can be extended and customized by the user
if desired. SpikeFI enables highly flexible FI experiments for
any arbitrary SNN model. Each FI experiment is composed
of independent fault rounds, where, in turn, each fault round
can be composed of single or multiple faults of different
types. The fault duration can be permanent or transient and
the fault site can be specified or can be randomly assigned
layer-wise or network-wise. SpikeFI can be used to train a
SNN with faults to make it robust to the presence of faults,
study the effect on the training accuracy for faults manifesting
during a long training process, or study the effect on the
inference accuracy for faults occurring post-training so as to
pinpoint critical faults and develop smart and low-cost test and
fault tolerance techniques. SpikeFI features various speed-up
optimization tricks and various results visualization functions
compatible with all fault types. SpikeFI was demonstrated
on two SNNs designed for the N-MNIST and IBM DVS128
Gesture datasets, which are the two most common benchmark
datasets within the neuromorphic community.
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