
HAL Id: hal-04825963
https://hal.science/hal-04825963v1

Submitted on 8 Dec 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Modest Models and Tools for Real Stochastic Timed
Systems

Carlos E Budde, Pedro D’argenio, Juan Andrés A Fraire, Arnd Hartmanns,
Zhen Zhang

To cite this version:
Carlos E Budde, Pedro D’argenio, Juan Andrés A Fraire, Arnd Hartmanns, Zhen Zhang. Modest
Models and Tools for Real Stochastic Timed Systems. Principles of Verification: Cycling the Proba-
bilistic Landscape, 15261, Springer Nature Switzerland, pp.115-142, 2024, Lecture Notes in Computer
Science, �10.1007/978-3-031-75775-4_6�. �hal-04825963�

https://hal.science/hal-04825963v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Modest Models and Tools
for Real Stochastic Timed Systems⋆

Carlos E. Budde1 , Pedro R. D’Argenio2,3 , Juan A. Fraire4,3 ,
Arnd Hartmanns5 (�) , and Zhen Zhang6

1 University of Trento, Trento, Italy
2 Universidad Nacional de Córdoba, Córdoba, Argentina

3 CONICET, Córdoba, Argentina
4 Inria, INSA Lyon, Université de Lyon, Lyon, France
5 University of Twente, Enschede, The Netherlands

6 Utah State University, Logan, Utah, USA

� a.hartmanns@utwente.nl

Abstract. We depend on the safe, reliable, and timely operation of
cyber-physical systems ranging from smart grids to avionics compo-
nents. Many of them involve time-dependent behaviours and are subject
to randomness. Modelling languages and verification tools thus need to
support these quantitative aspects. This paper gives an introduction to
quantitative verification using the Modest modelling language and the
Modest Toolset. It highlights three recent case studies with increas-
ing demands on model expressiveness and tool capabilities: A case of
power supply noise in a network-on-chip modelled as a Markov chain;
a case of message routing in satellite constellations that needs Markov
decision processes with distributed information; and a case of optimising
an attack on Bitcoin via Markov automata model checking. For each, we
explain the particular conceptual and technical challenges in modelling
and verification, and point out open problems for future work.

1 Introduction

Cyber-physical systems consist of discrete (usually digital, often implemented in
software) controllers interacting with a continuous physical environment. Con-
trol is often networked, sometimes wirelessly. Many cyber-physical systems are
safety- or performance-critical, or economically vital. We thus need to ensure
that they operate as desired, which includes dependability requirements such as
reliability assurances, availability levels, or response time guarantees. Reliability

⋆ This work was supported by Agencia I+D+i grant PICT 2022-09-00580 (CoS-

MoSS), the European Union’s Horizon 2020 research and innovation programme
under MSCA grant agreements 101008233 (MISSION) and 101067199 (ProSVED),
the Interreg North Sea project STORM SAFE, the NextGenerationEU project
D53D23008400006 (SMARTITUDE) under the MUR PRIN 2022, NWO VIDI grant
VI.Vidi.223.110 (TruSTy), and SeCyT-UNC grant 33620230100384CB (MECANO).

http://orcid.org/0000-0001-8807-1548
http://orcid.org/0000-0002-8528-9215
http://orcid.org/0000-0001-9816-6989
http://orcid.org/0000-0003-3268-8674
http://orcid.org/0000-0002-8269-9489

2

and availability are stochastic timed properties: the probability of avoiding un-
safe behaviour within a certain time horizon, and the expected fraction of time
that the system is ready to provide service, respectively. The critical systems
themselves are also typically subject to randomisation, for example due to ran-
dom message loss in wireless communication or due to employing randomised
algorithms, and they are timed systems dealing with e.g. transmission delays
and timeouts or faults occurring unpredictably over time. Thus, to assure their
dependability by way of modelling and verification (ideally at design-time), we
need stochastic timed formalisms and modelling languages supported by tools
able to check stochastic timed properties.

This paper showcases the Modest approach to modelling and verification
of stochastic timed systems. Modest, introduced by Bohnenkamp, D’Argenio,
Hermanns, and Katoen in 2006 [10], was designed as a modelling language that
provides process algebra-inspired modelling in a programming language-like syn-
tax for the highly expressive model of stochastic timed automata (STA) [10],
now extended to stochastic hybrid automata (SHA) [46]. Originally supported
by the MoTor tool [11], today the Modest Toolset [49]—in continuous de-
velopment since 2008 and publicly available at modestchecker.net—provides a
comprehensive collection of tools supporting the modelling, transformation, and
verification of Modest models. It notably includes the mcsta model checker [50]
and the modes simulator [15]. It is part of an ecosystem of quantitative verifica-
tion tools that support the interchange of models written in various modelling
languages via the JSON-based Jani format [16] such as ePMC [47], Momba [61],
or Storm [57]. In Sect. 2, we describeModest, Jani, and theModest Toolset.

Modest and the Modest Toolset have been applied to a multitude of
case studies ranging from wireless ad-hoc routing protocols [59] over electricity
grid stabilisation mechanisms [52] to the security evaluation of cyber-physical
systems [66]. The formal modelling and analysis of any case study requires careful
consideration of the modelling requirements—e.g. which kinds of quantities are
relevant for the questions that the stakeholders want answered and consequently
which type of underlying mathematical formalism is the most appropriate—in
connection to the capabilities of the available tools. Finding the right level of
abstraction is crucial as analysis techniques for more expressive types of models
such as stochastic hybrid automata [36] are practically limited to much smaller
model sizes compared to those for simpler models like Markov chains or decision
processes [17]. Similarly, analysis techniques that provide stronger results, such
as hard guarantees that the answer is within a user-specified ϵ-interval around
the true optimal value, tend to be less scalable than those delivering weaker
results, such as statistical guarantees or eventual convergence to the optimum
only. Probabilistic model checking (PMC) [6,7], for example, is severely limited
by the state space explosion problem that statistical model checking (SMC) [1]
avoids entirely with its constant memory usage, at the cost of being restricted
to estimation problems and delivering statistical guarantees only.

In sects. 3 to 5 of this paper, we review three different case studies that
Modest and the Modest Toolset have been applied to recently. We point

https://www.modestchecker.net/

3

DTMC

MDP

PTA

CTMC

CTMDP

MA

STA

SHA

LTS

TA

HA

PHA
+continuous
probability

+contin.
dynamics

+ real
time

nondeter-
ministic
choices

discrete
probabilities

exponential
residence
times

Key:

SHA stochastic hybrid automata
PHA probabilistic hybrid automata [75]
STA stochastic timed automata
HA hybrid automata [2]
PTA probabilistic timed automata [65]
MA Markov automata
TA timed automata [3]
MDP Markov decision processes
CTMDP continuous-time MDPs
LTS labelled transition systems
DTMC discrete-time Markov chains
CTMC continuous-time Markov chains

Fig. 1. The family tree of automata-based quantitative formalisms

out how the specific requirements of the case study determined the choice of
model type and analysis techniques, showcasing the versatility of the Modest
Toolset as well as providing guidance to the modelling and verification prac-
titioner by way of example. Our first case study (in Sect. 3) evaluates aspects of
power supply noise in a two-by-two network-on-chip system by way of a discrete-
time Markov chain (DTMC) model and a PMC analysis with mcsta; the second
one (in Sect. 4) is about finding optimal routes through sparse constellations of
nanosatellites using an abstract Markov decision process (MDP) [9,58] model
analysed with an SMC-based approach that employs strategy sampling under
distributed information as implemented in the modes tool; and finally (in Sect. 5)
we optimise an attack on the Bitcoin cryptocurrency system via a Markov au-
tomata (MA) [33] model that permits mcsta to synthesise the strategy that
minimises the expected time to success or maximises the probability of success
within a certain time bound, which we turn into a human-readable decision tree
representation via a new connection from mcsta to the dtControl tool [5].

This extended version. This paper is an extended version of a long presentation
abstract [48] for author A. Hartmanns’ invited talk at the MARS workshop
at ETAPS 2022. Compared to the presentation abstract, we have expanded
our introduction to Modest and Jani in Sect. 2 along concrete examples; we
added more details to the presentations of the three case studies, in particular
examples and insights on interesting modelling aspects for all three case studies,
new research results on using Q-learning for the satellite routing case study, and
results of a newly-implemented connection from mcsta to dtControl to obtain an
explainable representation of the optimal attack strategy for the Bitcoin case.
Throughout, we added summaries of remaining challenges and open problems.

2 Modest Languages and Tools

A well-defined semantics in terms of a mathematically well-understood object
is a cornerstone of formal models. For quantitative models, we use automata-

4

based formalisms—that represent the evolution of a system from state to state
via (randomised) transitions—building on labelled transition systems (LTS, or
Kripke structures) and discrete- and continuous-time Markov chains (DTMC
and CTMC, respectively) [8]. By combining these basic mathematical formalisms
in various ways, and extending them with features such as real-time clocks or
continuous variables evolving according to differential equations, we obtain fur-
ther formalisms as depicted in Fig. 1. Since writing real-life models as, say, large
Markov chains would be cumbersome, we specify them using a higher-level mod-
elling language that offers at least discrete variables with standard arithmetic
and Boolean operators plus a notion of parallel composition for the natural spec-
ification of distributed and component- or actor-based systems.

The Modest Language. One such language is Modest, originally the modelling
and description language for stochastic timed systems [10]. Its formal semantics
was first defined in terms of STA [10] and later extended to SHA [46]. Modest is
a textual modelling language; its syntax is designed to be similar to widely used
programming languages like C or Java to lower the barrier of entry for domain
experts. At the same time, it is a process algebra in spirit, based on standard
operators such as sequential and parallel composition, allowing the definition
of and recursive calls to processes, and emphasising compositionality. In fact,
Modest consists of two largely orthogonal languages: one to define behaviour,
which is the one based on process-algebraic ideas, and one to manipulate data
such as the values of discrete variables. The latter provides arrays, recursive
datatypes (e.g. allowing the definition of a linked list type via pairs of a head
containing a data item and a linked list option tail), and mutually recursive
functions. These features allow for concise and natural models of complex real-
life systems. The properties of interest to be analysed by tools, such as queries
for the maximum probability of reaching a certain goal state or requirements
for the expected long-run average reward to remain below a given threshold, are
specified within Modest models as temporal logic formulas.

Modest is equipped with a two-step semantics: The symbolic semantics
maps the textual Modest model to a network of SHA with discrete variables,
where the top-level parallel composition and the values of variables are not made
explicit, i.e. the composition and any operations involving variables remain as
symbolic expressions. Then, the concrete semantics defines the meaning of par-
allel composition and variables as well as of the continuous (hybrid or timed) be-
haviour of the SHA, resulting in a nondeterministic labelled Markov process [30]
in the most general case. As many simpler formalisms are special cases of SHA,
Modest models syntactically conforming to the restrictions of any of these sub-
models have a semantics that also maps to that sub-model.

Example 1. Listing 1 shows a Modest PTA model of a simple communication
scenario: A Sender process transmits some file consisting of N data chunks over
an unreliable Channel that loses a message with probability 0.5. One instance
of the Sender and Channel processes each run in parallel, communicating by
handshaking on the shared send and ack actions.

5

const int N;
action send, ack;
transient int sent;
bool done;

property ETimeDone = Xmin(T, done);
property PInTwiceN = Pmax(<>[S(sent) <= N * 2] done);

process Channel() {
clock c;

send palt {
:0.5: {= c = 0 =}; when(c >= 2) invariant(c <= 4) ack // transmission success, acknowledge
:0.5: {==} // the message is lost
}; Channel()

}

process Sender(int(0..N) i) {
clock c;

do {
:: when(i > 0) send {= c = 0, sent = 1 =}; alt {

:: ack {= i-- =} // transmission succeeded
:: when(c >= 5) invariant(c <= 5) tau // timeout, retry chunk
}

:: when(i == 0) invariant(c <= 0) {= done = true =} // done: all chunks transmitted
}

}

par { :: Channel() :: Sender(N) }

Listing 1. Modest PTA model of a communication scenario

After receiving a message to send, the Channel’s probabilistic message loss
is implemented via Modest’s palt construct. We assume that the Channel’s
precise transmission delay is unknown, but guaranteed to be between 2 and 4
time units because we, for example, know the message processing times and
the minimum and maximum cable length or distance between wireless nodes.
The timer clock c is used to implement this nondeterministic delay: the ack

in Channel is guarded with the condition c >= 2 and forced to execute once c

reaches value 4 by the invariant condition, expressing a standard TA pattern
in Modest. The semicolon ; is Modest’s sequential composition operator.

Nondeterministic choices between multiple behaviours are specified with the
alt construct. It is used in the Sender after handing a chunk to the Channel: we
either receive an acknowledgment, or determine that the message was lost after
a timeout of exactly 5 time units. In this model, we know that, for each attempt
to send, exactly one of the two possibilities will occur; in general, multiple of
the choices of an alt can be available: a nondeterministic choice. Assignments
are given in atomically-executed assignment blocks like {= c = 0, sent = 1 =}.
Here, sent is a transient variable that is not part of the model’s concrete states,
but only takes values during the execution of assignment blocks.

Transient variables can also be observed by properties. In this model, we
specify that we would like to know the minimum expected time until all chunks
have been transmitted in property ETimeDone, and the maximum probability of
transmitting all chunks in at most 2 ·N attempts in property PInTwiceN. The for-
mer is an expected accumulated reachability reward property; the latter queries
for a reward-bounded reachability probability. The way rewards are accumulated

6

{ "jani-version": 1,
"type": "pta",
"actions": [{ "name": "send" }, { "name": "ack" } ,
"constants": [{ "name": "N", "type": "int" }],
"variables": [{ "name": "sent", "type": "int", "transient": true, "initial-value": 0 },

{ "name": "done", "type": "bool", "initial-value": false }],
"properties": [. . .],
"automata": [
{ "name": "Channel",

"locations": [{ "name": "loc_1" },
{ "name": "loc_6",

"time-progress": { "exp": { "op": "≤", "left": "c", "right": 4 } } }],
. . .
"edges": [{ "location": "loc_1", "action": "send",

"destinations": [
{ "location": "loc_6",

"probability": { "exp": { "op": "/", "left": 1, "right": 2 } },
"assignments": [{ "ref": "c", "value": 0 }] },

. . .] },
. . .]

}, . . .],
"system": { "elements": [{ "automaton": "Channel" }, { "automaton": "Sender" }],

"syncs": [{ "synchronise": ["send", "send"], "result": "send" },
{ "synchronise": ["ack", "ack"], "result": "ack" }] }

}

Listing 2. Jani translation of the Modest communication PTA model (excerpt)

is specified within the properties, with T being a shortcut for T(1)—accumulate
a reward of 1 per time unit—and S(exp) specifying that a reward of exp is
accumulated every time the system transitions from one state to another.

PTA are a good fit for modelling communication protocols and networking sce-
narios: their real-time features capture transmission delays and timeouts, while
probabilistic choices stem from the environment (such as random message loss)
and the use of randomised algorithms (like exponential backoff schemes). Conse-
quently, the AODV routing protocol was modelled inModest’s PTA subset [59].

The JANI model interchange format. While Modest is a convenient modelling
language for end-users, implementing a Modest parser and its symbolic se-
mantics is a significant effort. The same problem affects many other modelling
languages, e.g. Prism’s [63], too. To ease tool development and facilitate the
exchange of models between different tools, in 2016, the developers of several
quantitative verification tools defined the JSON-based Jani [16] format. It is not
designed to be human-writable, but rather serve as a model interchange format
that is generated by tools from other modelling languages, such as Modest.
Today, Jani is supported by the Modest Toolset (see below), ePMC [47],
Storm [57], Momba [61], and several other tools. All models in the quantitative
verification benchmark set (QVBS) [54] are available in both their original for-
mats as well as in Jani. The QVBS served as the foundation for the QComp
2019 [45] and QComp 2020 [17] tool competitions.

7

network of
SHA

with variables

Modest

Jani

mcsta

modes

modysh

prohver

moconv

mopy

mosta

property
results

Modest
Jani

Python

Dot

probabilistic
model checking

statistical
model checking

probabilistic
planning

hybrid reachability
via mod. PHAVer

model
transformations

first-state-next-state
interface code

symbolic semantics
visualisation

Fig. 2. Schematic overview of the Modest Toolset

Example 2. In Listing 2, we show an excerpt of the Jani translation of the
Modest communication PTA model of Example 1. It is clear that Jani is not
suited for human reading and quick understanding, but it is editable and in-
spectable. The Jani model starts with the same declarations of global items—
actions, constants, global variables (discrete and continuous), and properties—as
the Modest model. Then, every element of the top-level parallel composition in
Modest is represented as one automaton in Jani. These automata correspond to
Modest’s symbolic semantics, in which Modest’s textual control flow is turned
into a control flow graph representation; its nodes appear as locations in Jani.
We show some details of the Channel process’ automaton: invariant(c <= 4)

appears as location loc 6’s time-progress condition; every occurrence of an
action in the Modest model generates an edge in the automaton, of which
we show the send-labelled one. All expressions are represented as syntax trees
in Jani, which removes much of the complications of writing a parser. The
Modest model’s top-level par determines the Jani system element: the paral-
lel composition of one instance each of the Channel and Sender automata. While
handshaking on shared actions is implicit in Modest, Jani uses synchronisation
vectors (inspired by CADP’s exp.open tool [38]) in the syncs array to explicitly
describe which actions from each parallel component synchronise.

The Modest Toolset. To support the creation of Modest models, and to com-
pute the values of properties or check requirements specified as part of models,
the Modest Toolset [49] provides a collection of visualisation, model transfor-
mation, model checking, and simulation tools. The Modest Toolset has been
in development since 2008; it is written in C#, and is available as precompiled
binaries for common Linux distributions, macOS, and Windows running on x86-
64 and ARM-64 platforms at modestchecker.net. An overview of the Modest
Toolset’s components is shown in Fig. 2.

As input languages, the Modest Toolset supports Modest and Jani; its
moconv tool can convert between the two and apply various transformations,

http://www.modestchecker.net/

8

such as converting a suitable PTA model into its digital clocks [64] MDP. The
mosta tool visualises a model’s symbolic semantics, helping in learning Modest
and in debugging models. The mopy tool converts a model into Python code
implementing a first-state-next-state interface [11] that can be used to quickly
prototype explicit-state verification algorithms.

The mcsta [50] tool implements PMC in an explicit-state fashion with a
unique disk-based approach to mitigate the state space explosion problem. It
includes efficient model reductions such as the essential states abstraction [28],
and provides state-of-the-art algorithms for model checking MA [20]. A variant
of mcsta implements a symblicit approach that can tackle very large models of
certain structures by way of binary decision diagram (BDD)-based exploration
followed by incremental explicit state elimination [44].

The statistical model checker modes [15] complements mcsta’s capabilities for
cases where model checking cannot be applied, such as when facing state space
explosion or models with non-Markovian probability distributions like STA. SMC
is, in essence, Monte Carlo simulation applied to formal models and properties.
A constant-memory technique, it however incurs a runtime explosion when faced
with rare events (as a prohibitively large number of samples would be needed to
obtain an error that is smaller than the low probability of the rare event itself),
and does not directly support nondeterministic models such as MDP. The modes
tool addresses these shortcomings by providing rare event simulation [74] via a
highly automated implementation of importance splitting [13], and by offering
lightweight strategy sampling [67] for MDP, PTA [26,55], and (with limitations)
stochastic-time models like MA and STA [27].

Finally, modysh [60] provides variants of the probabilistic planning algorithm
LRTDP [12] for MDP, and prohver [46] implements an abstraction-based ap-
proach to safety verification of SHA that internally employs a modified version
of the PHAVer [37] HA model checker for the hybrid reachability analysis.

0 2 4 6 8 10 12
0

0.2

0.4

0.6
CDF(ETimeDone)

Fig. 3. CDF over N

Example 3. The Jani model of Example 2 was obtained
by moconv from Example 1, which we model-check via

modest mcsta pta.modest -E "N=6"

to run mcsta with model parameter N set to 6 and
using the value iteration algorithm. As a result, mc-
sta reports values (that are usually but not always [41]
very close to the true value) of 41.99997556955714 for
ETimeDone and 0.61279296875 for PInTwiceN. To obtain
results with guaranteed error of at most ±ϵ instead, we can use one of mc-
sta’s sound value iteration algorithms: interval iteration [42], sound value itera-
tion [71], or optimistic value iteration [53]. By adding command-line parameter
--alg IntervalIteration, we get ETimeDone = 42.00059918910847± ϵ and
PInTwiceN = 0.61279296875± ϵ with mcsta’s default ϵ = 10−3. For ETimeDone,
mcsta in fact computes the entire cumulative distribution function (CDF) as
plotted in Fig. 3, i.e. the reward-bounded probability for all bounds from 0 up
to the specified 12 = 2 · N, via its sequential interval iteration algorithm [43].

If we run modes on this model with default settings, we get an error message:

9

pta.modest: error: Encountered temporal nondeterminism for ack.

This is because SMC only solves an estimation problem: it samples a large
number of model executions (called simulation runs) to return the averages of
the executions’ property values as estimates for the expected value or probabil-
ity. Yet this model poses an optimisation problem: find the resolutions of the
nondeterministic choices that deliver the minimum expected reward or maxi-
mum probability. The error message points to the nondeterminstic choice that
caused modes to abort: the undetermined transmission delay ∈ [2, 4] time units.
If we fix all transmission delays to 2 time units by calling modes with pa-
rameter -S ASAP, we get ETimeDone = 42.00375880801009 with a 95% con-
fidence interval of [41.99375880998429, 42.01375880603589], and PInTwiceN =
0.6092194570135746 with the (a priori) statistical guarantee that obtaining a
result within ± 0.01 of the true value of PInTwiceN has probability 0.95.

3 Power Supply Noise in a Network-On-Chip System

As the complexity of distributed many-core systems advances, the network-on-
chip (NoC) architecture has become the de-facto standard for on-chip commu-
nication. A NoC is typically composed of topologically homogeneous routers
operating synchronously in a decentralized manner using a predefined routing
protocol. Power supply noise (PSN) can significantly influence the performance
of the transistor devices in a NoC. PSN is created by the simultaneous switching
of logic devices, which causes a drop in the effective power supply voltage. PSN is
composed of two major components: resistive noise (related to the current drawn
and the resistance of the circuit) and inductive noise (which is proportional to
the rate of change of current through the inductance of the power grid).

Fig. 4. Architecture of the 2× 2 NoC [73]

To study PSN in NoC architec-
tures, we first focused on a single cen-
tral NoC router [68] and later ex-
panded to a 2 × 2 NoC consisting of
four symmetric routers as shown in
Fig. 4. We focus on the latter in this
section. Each router has three buffers
responsible for storing incoming net-
work data packets, called flits, and
each buffer can store up to four flits. One of the buffers takes flits generated
locally at the router (e.g. at a CPU attached via this router) while the other two
buffer flits received from the adjacent routers (which may be destined for this
router, e.g. for its attached CPU).

Our goal is to compute the probability for behavioural patterns that are likely
to result in resistive resp. inductive noise to occur at least n times within t clock
cycles, starting from an initial state where all buffers are empty. We consider two
different flit generation patterns: one where each router receives a flit into its
local buffer (e.g. from the one core it is connected to) every other cycle, and one
where flits are generated in bursts. We assume the destination of a flit to be one

10

// Datatype for unbounded lists of integers to represent queues of flits with destinations
datatype intlist = { int(0..NOCSIZE * NOCSIZE - 1) hd, intlist option tl };

// Datatype for a channel connecting two routers
datatype channel = { int(-1..4) direction, // direction of buffer (N/S/W/E)

bool serviced, int(0..2) priority, // for round−robin protocol
intlist option buff }; // queue of flits to transmit

// Datatype for a router, containing incoming channels and some router−specific variables
datatype router = { channel[] channelArray, int(0..3) unserviced, . . . };

// The whole NoC consists of 4 router instances with initially empty channels
router[] noc = [router { unserviced: 0 }, router { unserviced: 0 },

router { unserviced: 0 }, router { unserviced: 0 }];

Listing 3. User-defined datatypes in the concrete Modest 2× 2 NoC model

of the other router’s local outputs, with the actual router selected uniformly at
random for each flit. The routers use X-Y routing, where a flit is first routed in
the horizontal direction, and a round-robin-style protocol to handle contention.

A case for DTMC model checking. With all decisions fixed to be either
deterministic (flit generation times and routing choices) or random (flit destina-
tions), and the whole NoC running on a discrete clock, this system can naturally
be modelled as a DTMC. DTMC are well-suited for SMC due to the absence
of nondeterminism, but there are arguments to use PMC with mcsta instead:
First, a PMC analysis can deliver guaranteed ϵ-precise results (as in Exam-
ple 3), whereas SMC only provides weaker statistical guarantees. Second, as we
will see below, some of the probabilities we want to compute especially for small
numbers of clock cycles t are very low, thus we would need to engage modes’ rare
event simulation engine whose automation features do not match well with the
structure of the NoC model. Finally, and most importantly, we would actually
like to obtain the full CDF for resistive and inductive noise events over increas-
ing values of t. The sequential iteration approach implemented in mcsta that we
already saw in Example 3 would be able to compute this CDF very efficiently,
with hard guarantees on the results. The main challenge for model checking with
mcsta is then to deal with the state space explosion problem.

A sequence of abstractions. We started by creating a detailed Modest
model of the 2× 2 NoC, exploiting the availability of user-defined datatypes in
Modest to represent the state of the network’s routers and buffers in full detail.
To the best of our knowledge, Modest and Uppaal’s TA modelling interface are
the only language for quantitative verification that support the definition of com-
plex datatypes, with mcsta or modes and Uppaal or Uppaal SMC [18,32] being the
only probabilistic/timed or statistical model checkers, respectively, supporting
models with such datatypes. We show the declarations of the datatypes for the
concrete 2×2 NoC model in Listing 3. A router mainly consists of its incoming
channels, which in turn contain a buffer of flits plus the information needed for
the router’s round-robin algorithm to determine which channel to serve next in

11

case of contention. A flit is simply an integer representing its destination; the
buffers are this simple functional-style lists of integers of type intlist. The last
line of Listing 3 defines the variable representing the state of the full 2× 2 NoC
as an array of four individual router datatype instances.

mcsta runs out of memory during state space exploration on the concrete
model. Thus we cannot apply sequential iteration algorithm; however, by making
the clock cycle counter a state variable (and thus effectively “unfolding” the state
space over the counter’s values), we were able to perform model checking for up
to t = 4 clock cycles. This is because initially, few flits are present throughout
the system, and thus the number of combinations of buffer occupancies with
different flits remains small over the first few clock cycles. Nevertheless, t = 4 is
much too low to be useful: with bursty flit generation, we have 3 flit-generating
cycles every 10 clock cycles, so we do not even cover one burst cycle.

We then manually applied a series of abstractions to achieve tractability. We
first applied predicate abstraction, transforming the model to replace all com-
plex datatype instances by predicate variables that capture the model’s critical
decision points. For example, the two predicate variables

bool r0L1; // for noc[0].channel[local].direction == east
bool r0L2; // for noc[0].channel[local].direction == south

capture the two possible forwarding directions of the front flit in the local channel
buffer of router 0. This only delayed running out of memory to t = 7.

The next step is a novel probabilistic choice abstraction: A flit’s destination
is uniformly randomly selected when it is put into the local buffer of a router,
but the destination information is not checked until the flit enters the router, to
decide the forwarding direction. Thus the random choice of the destination can
be delayed until the flit is taken from the buffer. In abstract terms, probabilistic
choice abstraction delays the resolution of a probabilistic choice until its eval-
uation point, then removes relevant state variables by replacing them with an
explicit probability distribution. We implement this abstraction by modifying
the Modest code accordingly, i.e. manually and on the syntax level.

0 5 10 15

Clock Cycles

0

5

10

15

20

25

S
ta

te
 S

p
a
ce

 (
m

il
li

o
n

s)

Concrete Model

Predicate Abstraction

Probabilistic Choice Abstraction

Boolean Queue Abstraction

0 5 10 15

Clock Cycles

0

0.5

1

1.5

2

2.5

S
ta

te
 S

p
a
ce

 (
m

il
li

o
n

s)

Fig. 5. State count [73]

Finally, as a result of the previous abstraction
steps, we can eliminate some buffer priority orders,
then observe that the X-Y routing scheme now makes
it unnecessary to keep track of each flit’s destination,
and so replace the buffer queues by bounded integer
variables counting the number of waiting flits only.

In Fig. 5, we show the impact of these abstrac-
tions on the number of states (in millions) explored in
the unfolded model for increasing clock cycle bound t
(blue circles: concrete model, red triangles: after
predicate abstraction, purple diamonds: probabilis-
tic choice abstraction, green squares: final).

12

Fig. 6. Inductive noise events [73]

PMC results. The final model was still too
large to fully explore in non-unfolded form
(i.e. treating clock cycles as rewards, like
variable sent in Example 1) under the every-
other-cycle flit generation pattern. By un-
folding the clock cycle counter into the state
space as described above, PMC became pos-
sible for up to 30 clock cycles. With bursty
flit generation, however, we could build the
non-unfolded state space and thus apply the
sequential iteration technique to compute
the entire CDF as shown in Fig. 6. The dif-
ference between the two patterns is that,
with every-other-cycle generation, the buffers slowly fill up with flits to vari-
ous destinations; the full state space that includes all combinations of buffer
occupancies with different flits is too large to handle today. With bursty flit gen-
eration, however, all buffers periodically return to an empty state; the period is
small enough for the entire state space to fit into memory, i.e. buffers do not fill
up far enough for the number of combinations of buffer states to grow too large.

SMC and BDDs. We also applied SMC, which however was limited in the case
of every-other-cycle generation by noise events being relatively rare, and in the
case of bursty generation by not being able to compete in terms of runtime with
the sequential iteration technique. Similarly, our attempts to use Storm’s BDD-
based state space exploration did not provide scalability improvements, possibly
due to the model not being as structured as we think it is, or simply due to a
bad variable ordering in the model. For further details on this first case study,
we refer the reader to the original FMICS 2021 paper [73].

Open problems. The probabilistic choice abstraction was manually applied
to the NoC model on the Modest code level; we would like to generalise and
automate it. This case study also highlights the need to further improve the
scalability of PMC; we need to investigate why the standard approach to handle
large models—using BDDs—failed here and what alternatives could be.

Data availability. TheModestmodels described above from [73] are available at

github.com/formal-verification-research/Modest-Probabilistic-Models-for-NoC.

4 Routing in Satellite Constellations

Satellite networks in low-Earth orbit are increasingly used to collect and dis-
tribute information across the globe, including access to the Internet. Real-time
applications like Internet access require very large constellations (such as the
SpaceX’s Starlink constellation); even when using low-cost satellites based on

https://github.com/formal-verification-research/Modest-Probabilistic-Models-for-NoC

13

off-the-shelf components that are not space-qualified, such constellations are ex-
tremely expensive. A different and more sustainable approach is to relax the real-
time constraint and leverage the store-carry-and-forward principle where nodes
store received messages for later forwarding to other nodes in the network, once
a communication window appears. The result is a delay-tolerant network (DTN).

N1:

N2:

N3:

N4:

T1 T2 T3 T4 T5Slot:

p1 = 0.9

p2 = 0.9

p3 = 0.5

p4 = 0.5

p5 = 0.1

Fig. 7. Uncertain contact plan [23]

In satellite constellations, the orbits are
known with sufficient precision to calculate
upcoming contacts, i.e. communication win-
dows, over the next few days, giving rise
to a contact plan. However, message trans-
missions may fail for various reasons such
as unreliable (low-cost) components, contact
mispredictions, or interference during the
wireless communication. If statistical data is
available or the error margins of calculations
are known, we can assign a success probabil-
ity to each contact, giving rise to an uncertain contact plan. Fig. 7 shows an
abstract representation of such a plan. This artificial example comprises four
satellites (or ground stations) N1 to N4 with contacts over time slots T1 to
T5. The numbers annotating contacts are the transmission success probabilities.
Given a message’s source and destination, and a limit n on the number of message
copies present in the network to avoid exhausting the satellites’ limited resources,
we would like to compute the routing strategy that maximises the probability
of message delivery within the time window covered by the contact plan.

A case for MDP with distributed information. Due to the combination of
randomness (in transmission failures) with nondeterministic decisions to be opti-
mised (which contacts to use to send how many copies) in a discrete-time setting
(a sequence of contacts), MDP are the perfect match among the formalisms of
Fig. 1 to model this problem. The goal is to find an optimal (routing) strategy
in the MDP. This looks like the perfect job for PMC, which, by computing the
maximum message delivery probability, would implicitly also compute the cor-
responding optimal strategy. By running mcsta with the --write-scheduler

parameter, it would create a text file mapping every state of the MDP to the
strategy’s choice among that state’s enabled actions.

However, PMC works with complete, global information. Consider the con-
tact plan of Fig. 7 with n = 2 copies to send: N1 will send one copy to N2 in
slot T1, and if successful, N2 will forward it in slot T2. In slot T3, the best course
of action computed by PMC for satellite N1 is to send its remaining copy to N3

if and only if N3 did not receive the first copy. Thus the model checker, and
the strategy it computes, “sees” the state of all satellites. Yet satellites do not
have global information about the state of all other satellites in the constellation,
making the optimal strategies found by PMC potentially unimplementable.

In fact, what we need are distributed strategies [39]. Unfortunately, the model
checking problem under distributed strategies is undecidable, and even with sim-

14

plifications such as restricting to memoryless strategies, it remains practically
intractable [40]. Recently, L-RUCoP, an approximative model checking-based
approach specifically tailored to the uncertain DTNs case, has become avail-
able [72], which, however, remains limited by state space explosion as n increases.

Using SMC to find distributed strategies. We instead adapted two meth-
ods for finding (near-)optimal strategies with SMC to the distributed-informa-
tion setting [24]: lightweight strategy sampling (LSS) [67], and the reinforcement
learning [76] technique of Q-learning [77]. We implemented both in modes.

LSS. The key idea of LSS is to represent each strategy with a fixed-size (e.g.
32-bit) integer, i.e. in constant memory. LSS with the smart sampling heuris-
tics [29] then randomly samples m strategies (i.e. integers), performs k simula-
tion runs computing the average message delivery probability for each, discards
the ⌈m

2 ⌉ worst-performing strategies, simulates the remaining strategies with 2k
runs each, and so on until only one “optimal” strategy remains. For this one, the
message delivery probability is subsequently estimated in a standard SMC anal-
ysis. The result is a best-effort underapproximation of the maximum probability
achievable with the unknown optimal strategy. During simulation for strategy i,
when the simulator needs to choose between k > 1 actions in state s, it concate-
nates the bitstring representations of s and i, applies a hash function H mapping
this value to a fixed-size integer j, and selects the ((j mod k) + 1)-th action:

a := ((H(σ.s) mod |{ actions from s }|) + 1) -th element of { actions from s }
To perform the same analysis w.r.t. distributed strategies, all we need to change
is the input toH: instead of the bitstring for s, we use that for a projection of s to
the variables observable by the currently active component (here: satellite). We
also introduce a condition of good-for-distribution models that, when satisfied,
ensures that no two components may have a decision at the same time instant,
making a global arbiter to break such ties unnecessary [23].

Q-learning stores a Q-table that maps state-action pairs to values indicating the
action’s “quality”, approximating the goal probability or expected reward via
the action. The table is updated during simulation runs called episodes as

Q(s, a) := (1− α) ·Q(s, a) + α · (r + γ ·maxaction a′ from s′Q(s′, a′))

for each visited state s, where γ is the discount factor that we set to 1, and
α is the learning rate hyperparameter that determines the impact of the new
information gained during the episode over the previous information in the Q-
table. Typically, α is high in the first episodes and then gradually decreases.
As the number of episodes goes towards infinity, the Q-table entries approach
the optimal values, with the corresponding strategy for state s being to choose
argmaxaction a from sQ(s, a). After learning,modes performs an independent SMC
analysis under this strategy to estimate the message delivery probability.

Q-learning is popular in machine learning and artificial intelligence appli-
cations today, where a neural network stores the Q-table approximately. We
work with an explicit Q-table stored in memory. The worst-case memory usage

15

modes
SMC with

LSS or
Q-learning

scheduler

delivery
probability

Modest
model

STK

Contact
Plan

Designer

space, ground,
and user
segment

parameters

ION
contact

plan
format

cp2modest
converter

+

Fig. 8. Satellite routing scheduling toolchain for uncertain DTNs [23]

of Q-learning is thus in O(|S| · |A|) for state set S and actions A, which is in
stark contrast to the otherwise constant memory usage of SMC. The hope is
that, in practice, many states either have no choices or there is a small “core”
of states [62] reached during learning that suffices to obtain a good strategy.

We adapt Q-learning to distributed strategies by using the concurrent learn-
ing approach [70]: each agent (in our case: DTN node) learns on its own, keeping
and updating its own Q-table and only observing that part of the current state
that contains the agent’s local information. While straightforward to implement,
concurrent learning no longer guarantees convergence and optimality [22]. Its
main advantage is that, instead of storing Q-table entries for states from the
product state space of all agents, each node’s learner only sees the local com-
ponent state space, so the number of Q-values stored in concurrent Q-learning
grows only linearly instead of exponentially with the number of components.

A Modest toolchain for uncertain DTNs. We developed the toolchain
outlined in Fig. 8 to convert concrete contact plans (with exact contact timings,
obtained from a commercial physics-based modeling environment) into an ab-
stract Modest MDP model. The generated models follow a simple pattern and
are good-for-distribution by construction.

In Listing 4, we show an excerpt from the Modest model for the example
contact plan of Fig. 7. Whenever a node has a contact, the process that models
that node contains an alt for the three possibilities of sending 1 or 2 copies if
available, or listening for incoming data (which may not arrive because either the
other node also chose to listen or the data was randomly lost). The model shown
is for unreliable communication; we can also generate a reliably communicating
variant that uses acknowledgments. Note that the snd... and rcv... actions do not
synchronise: they exist only to make the model more readable, and to identify
the choices that the strategy found by LSS or Q-learning makes. Information is
exchanged between the NodeN processes by value passing through transient vari-
ables. Listing 4 shows a first model: [24] then implemented many optimisations
to that pattern by graph analysis of the contact plan in the cp2modest converter,
to make modes execute faster and to remove spurious choices in alts [24, Sec-
tion 3.2.2]. The latter reduces the space of strategies that LSS samples from,
making it more likely to sample good strategies; it also reduces the size of the
Q-tables in Q-learning.

16

transient int(0..4) dest1, dest2, dest3, dest4; // destX: target of copies sent by node X
transient int(0..2) data1, data2, data3, data4; // dataX: #copies just sent by node X

action sync; // to synchronise time slots
action snd1to2_1, snd1to2_2, rcv1to2, . . .; // only for labelling, no synchronisation

. . .

process Node2(int(0..2) copies)
{

alt { // slot 0: contact with 1
:: when(copies >= 1) snd2to1_1;

sync palt { :0.9: {= data2 = 1, dest2 = 1, copies -= 1 =} :0.1: {= copies -= 1 =} }
:: when(copies >= 2) snd2to1_2;

sync palt { :0.9: {= data2 = 2, dest2 = 1, copies -= 2 =} :0.1: {= copies -= 2 =} }
:: rcv1to2;

sync {= 1: copies += dest1 == 2 ? data1 : 0 =}
};
alt { // slot 1: contact with 3
:: when(copies >= 1) snd2to3_1;

sync palt { :0.9: {= data2 = 1, dest2 = 3, copies -= 1 =} :0.1: {= copies -= 1 =} }
:: when(copies >= 2) snd2to3_2;

sync palt { :0.9: {= data2 = 2, dest2 = 3, copies -= 2 =} :0.1: {= copies -= 2 =} }
:: rcv3to2;

sync {= 1: copies += dest3 == 2 ? data3 : 0 =}
};
sync; // slot 3: no contact
sync; // slot 4: no contact
sync // slot 5: no contact

}

. . .

par { :: Node1(2) :: Node2(0) :: Node3(0) :: Node4(0) }

Listing 4. Excerpt of the Modest model for the contact plan of Fig. 7

Fig. 9. Walker DTN [24]

SMC results. We imple-
mented LSS and Q-learning
for distributed strategies as
described above in modes,
and applied this implemen-
tation in particular to a
realistic LEO Walker con-
stellation of 16 satellites as
shown in Fig. 9. In Fig. 10,
we show two examples of
the results we obtained for
this example in [24], com-
paring LSS and Q-learning
(QL) with global and with distributed (local, prefix “L-”) information. We show
the message delivery probability (SDP) as we vary the message loss probability
of all contacts. As a baseline, we used the standard CGR routing algorithm [4,35]
that does not take probabilities or multiple message copies into account, and also
compared with the model checking-based (L-)RUCoP approach that is imple-
mented in a separate tool using its own input format. In the plots, “Src-Dst”
indicates the node numbers of the message source and destination, “Duration”

17

Fig. 10.Message delivery probabilities of best strategies found for the Walker DTN [24]

is the real-time length of the contact plan, “#SS” is the number of strategies
sampled in LSS, and “#Ep” is the number of episodes in Q-learning.

We found that L-RUCoP is notably superior to L-LSS for failure probabilities
between 0.4 and 0.8. Interestingly, the gap is reduced if we raise the number of
schedulers to 10000 in LSS, indicating we are right on the boundary of what can
effectively be solved via LSS. Nevertheless, the uninformed sampling strategy of
LSS may not be fully adequate for realistic DTN topologies. Q-learning appears
to perform better. We also observed that LSS and L-LSS are typically close,
but we frequently attain a better probability with distributed strategies. This
is likely because of the smaller space of strategies to sample from (see above).
We also measured memory usage and runtime, showing that RUCoP’s better
results come at the expense of significantly higher memory usage and runtime.
It needed up to ≈ 20 minutes to terminate, while LSS and Q-learning typically
delivered a result in less than a minute. While RUCoP needed as much as 600MB
of memory, LSS consistently used about 100MB, while Q-learning used slightly
more as expected. On some of the other examples we considered in [24], L-RUCoP
ran out of memory while L-LSS still delivered results quickly.

Open problems. Both the concrete problem of finding optimal routes for un-
certain contact plans as well as the underlying challenge to find practical solu-
tions for distributed-information model checking remain mostly open. LSS and
Q-learning are attractive as generic and easy-to-implement approaches that can
deliver useful results, but in complex examples, the strategies they find may be
far from optimal, and they provide no information about how far these strategies
are from the optimum. We would in particular like to investigate modifications
to LSS that incorporate more structural information about the current strategy
(in contrast to its current opaque integer identifier implementation), and using
deep Q-learning methods with neural networks.

18

Data availability. The models and tools needed to replicate the DTN evaluation
described in this section are archived at DOI 10.5281/zenodo.11214677 [25].

5 Optimally Attacking Bitcoin

The Bitcoin [69] cryptocurrency records its transactions in a blockchain to which
blocks are added via the proof-of-work principle: participants need to solve a
computationally intensive problem to be able to generate or mine a valid block.
Generally, the first new valid block mined gets appended to the chain, and a
certain number of Bitcoins is awarded to the participant that found the block as
a reward. However, as a distributed system spanning the globe via the Internet,
Bitcoin has to deal with asynchrony: If multiple participants find new blocks
at roughly the same time, there are different alternative forks of the Bitcoin
blockchain, and a consensus must be reached on which is the valid one. In Bitcoin,
the longest available chain is considered the valid one.

Bitcoin as a CTMC. The problem miners have to solve is finding a number
that, together with their new block’s content, hashes to a value that is smaller
than the network’s current difficulty target value [69, Section 4]. This is done
by trying many randomly selected numbers. A try is successful with probability
p; then the time until a new block is mined follows a geometric distribution
(assuming a constant time t per try, for computing the hash of number and
block together). The geometric distribution for ever smaller p and t converges to
an exponential distribution, and in practice p and t for Bitcoin are very small.

Thus the mining of blocks can abstractly be modelled by a CTMC in which
the transition from a chain with n blocks to one with n + 1 blocks occurs with
a certain rate. As the total computational power applied to mining blocks by
all miners worldwide (the hash rate) changes, the Bitcoin network periodically
adjusts the hardness of the problem via the difficulty target value such that
the average time to find a new block (the confirmation time) is 10 minutes. In
practice the actual confirmation time varies; it was about 12 minutes in 2017 [34].
Thus we use a rate of 1

12 for the n-to-n+1-blocks transition in the CTMC.

Attacking trust in Bitcoin. If a large amount of the hash rate (some fraction
M ∈ [0, 1]R) is controlled by a malicious party, they could attack the Bitcoin
network by secretly working on their own fork until it becomes longer than the
“public” one, and then broadcasting the secret fork. These attacks (to Bitcoin
but also blockchain in general) are known as block withholding attacks and come
in several variants. For example, in the double-spending variant a Bitcoin can
be spent twice: once on the public fork in block bi, and once on the secret fork
that branches off from publicly known block bj that is before bi in the chain.
This behaviour can be integrated into an abstract CTMC model of Bitcoin to
e.g. compute the expected time until the attack succeeds (i.e. the secret fork
becomes longer than the public one by a certain margin) for various values of

https://doi.org/10.5281/zenodo.11214677

19

M . We built such a model in Modest and studied similar properties using mcsta
and modes in [51].

A more interesting and somewhat easier block withholding attack attempts
to undermine the public trust in Bitcoin by just obtaining a longer secret fork
from any block and then publishing that fork. If done repeatedly, regular users
could no longer rely on the persistence of transactions that initially appeared to
have become a part of the valid Bitcoin blockchain. In this attack, every time the
public fork is extended, the malicious entity may decide between (a) continuing
to work on its current secret fork and (b) restarting its secret fork from the new
public block. This is because it is no longer necessary to purge a specific block
bi from the public chain as in the double-spending attack.

A case for Markov automata. Due to the presence of the above nondeterministic
choice between (a) and (b) to be optimised, this attack can thus no longer be
represented in a CTMC model. Our automata formalisms family tree of Fig. 1
contains two direct combinations of CTMCs with the ability to represent nonde-
terministic choices: CTMDPs and MAs. The latter are a very orthogonal combi-
nation of CTMCs and MDPs: They provide two types of transitions—Markovian
transitions that execute independently but after a random delay that follows an
exponential distribution whose rate is given as part of the transition, and prob-
abilistic transitions that take place immediately, but can synchronise with other
probabilistic transitions in parallel composition and lead to a discrete probability
distribution over the successor state. This partitioning of the transitions enables
parallel composition with action synchronisation without the need to prescribe
an ad-hoc operation for combining rates as would be necessary for CTMC or
CTMDP. For this reason, MA are preferable for practical modelling, and are
supported by Modest while CTMDPs are not.

Uppaal and Modest models. The attack on trust in Bitcoin was first formally
analysed by Fehnker and Chaudhary [34] using SMC with Uppaal SMC. As a
consequence of using SMC, they had to run a separate analysis for every possible
strategy determining the conditions for when to continue and when to restart,
and their results came with a statistical error. Today, Uppaal Stratego [31] may
alleviate the former problem.

We instead modelled the same scenario in the MA subset of Modest, in
order to let mcsta find the best strategy directly via PMC and thus without any
statistics or the need to run multiple separate analyses. This model is shown in
Listing 5. The HonestPool process represents the regular Bitcoin miners, who
have 100 · (1 − M)% of the global hash rate at their disposal and therefore
mine a new block every 12

1−M minutes. They announce every new block via the
sln action. The malicious entity’s behaviour is defined by the TrustAttacker

process. They mine new blocks every 12
M minutes, and also listen for messages

about new blocks from the regular miners. Whenever those find a new block,
the TrustAttacker is faced with a nondeterministic choice: (a) cnt: continue
their secret fork, or (b) rst: start over from the block just found by the regular

20

const real M; // fraction of hash rate controlled by malicious pool
const int CD; // confirmation depth required by victim
const int DB = CD; // attacker gives up when this far behind

action sln; // signal that honest pool mined a new block
action rst; // signal that attacker restarts from public fork
action cnt; // signal that attacker continues

int(0..CD+1) m_len; // length of the secret fork
int(-DB..CD+1) m_diff = 0; // length of secret fork minus honest fork

property T_MWinMin = Xmin(T, m_len >= CD && m_diff > 0); // min. exp. time to malicious win
property P_MWinMax = Pmax(<>[T<=2880] (m_len >= CD && m_diff > 0)); // max. prob in 2 days

process HonestPool()
{

rate(1/12 * (1 - M)) tau; // every 12 / (1 − M) minutes on average:
sln; // honest pool mines a new block
HonestPool()

}

process TrustAttacker()
{

do {
:: rate((1/12) * M) // every 12 / M minutes on average:

{= m_len = min(CD, m_len + 1), // malicious pool mines a new block
m_diff++ =}

:: sln {= m_diff-- =}; // extension of public fork results in
alt { // strategy choice for malicious fork:
:: rst {= m_len = 0, m_diff = 0 =} // restart (always possible) or
:: when(m_diff > -DB) cnt // continue (if not too far behind)
}

}
}

par { :: HonestPool() :: TrustAttacker() }

Listing 5. Modest model for optimising the trust attack on Bitcoin [51]

miners. The attacker keeps track of the length of their secret fork since branching
off in variable m_len and of its length difference compared to the public chain in
m_diff. The attacker will make its secret fork public once it is (i) longer than
the public chain and (ii) at least CD blocks long; this latter confirmation depth
ensures that the new chain is unlikely to be overtaken by other miners.

Model checking results and strategies. We set M to 0.2—a hash rate that
was at several points in the past achieved by some mining pools—and CD to 6,
a commonly used value. Our Modest model specifies two properties of inter-
est: T_MWinMin asks for the minimum expected time until the attacker “wins” by
publicising their longer chain, while P_MWinMax asks for the time-bounded proba-
bility that the attacker manages to win within two days (i.e. 2880 minutes).mcsta
takes under a second to model-check them with sound algorithms, finding that
T_MWinMin = 3736.5920429883377± ϵ and P_MWinMax = 0.5351007861781778± ϵ
with the default ϵ = 10−3. That is, the shortest possible expected time for the
attack to succeed is 2.6 days, while there is a more than 50/50 chance to succeed
within just 2 days. It is thus doubtful whether we should trust Bitcoin if any
single actor amasses 20% or more of the global hashrate.

21

m_diff <= -2.5

rst

True

m_len <= 1.5

False

m_len <= 0.5

True

cnt

False

rst

True

m_diff <= -1.5

False

rst

True

cnt

False

Fig. 11. Decision tree

Now, the above values are best-case values
for the attacker, if they play the optimal strat-
egy in terms of resetting and continuing their
fork. We can let mcsta output this strategy for
T_MWinMin [51], which results in a file containing
33 state-action decision pairs like

+ State: (. . . , m len = 5, m diff = 4)

Choice: cnt

that exhaustively describe the strategy. While 33
textual pairs may still be humanly-interpretable,
viz. to understand whether there is some structure
or idea to the strategy, this kind of representation
is not useful in the general case where models may
have millions of states. We thus implemented [14]
a connection from mcsta to the dtControl tool [5]
that can learn a decision tree from this kind of rep-
resentation. The resulting tree for this strategy is
shown in Fig. 11, and is arguably an explainable
and more compact way to present this strategy.

Open problems. Model checking MA is easy for untimed properties and un-
bounded expected rewards by running PMC on the embedded MDP. For timed
properties, optimal strategies need to know about the remaining time, so ded-
icated algorithms are needed. For time-bounded reachability, two decent ones
with complementary performance exist [19,21]. While these could be improved
further—e.g. by developing one algorithm that performs at least as well as ei-
ther of them on all models—other interesting properties currently lack scalable
model checking algorithms: for example, the only available algorithm for time-
bounded expected rewards is based on discretisation [56], which drastically ex-
acerbates the state space explosion problem. On the SMC side, LSS does not
work for continuous-time strategies out of the box [27], and new clever solutions
are needed to make it work beyond simply considering untimed strategies only.

Data availability. The bitcoin-attack.modest model presented in this section
is part of the QVBS [54], available online at qcomp.org/benchmarks.

6 Conclusion

Different case studies have different needs in terms of conceptual modelling
power, modelling language features, and analysis tool capabilities. The Modest
language and the Modest Toolset provide the means to easily model and
analyse systems containing various quantitative aspects ranging from discrete
probabilistic choices to stochastic hybrid behaviour. We highlighted three ex-
amples that were modelled in Modest and analysed using different tools from
the Modest Toolset: First, in the case of power supply noise in a NoC,

https://qcomp.org/benchmarks/#bitcoin-attack

22

the simple formalism of DTMC was sufficient. For the detailed concrete model,
however, the Modest language feature of declaring and using one’s own com-
plex data types was very helpful. PMC via mcsta was the analysis method of
choice, however significant effort was needed to abstract the model until it be-
came tractable for PMC due to the state space explosion problem. Second, for
routing in satellite constellations, nondeterministic choices needed to be
modelled, and optimised over by the analysis tool. Here, MDP fit the prob-
lem very well with their ability to model decision-making under uncertainty.
We auto-generated Modest models from contact plans computed by domain-
specific software. Due to the need to find implementable routing strategies in
the distributed-information setting of satellite constellations, we could not use
PMC; instead, we adapted the LSS and Q-learning approaches to allow SMC to
handle both distributed information and nondeterminism. Finally, to optimally
attack Bitcoin, we showed that MA fit the problem well due to the combination
of the stochastic time-to-next-block with the nondeterministic choices between
continuing and restarting the secret fork. Using PMC with mcsta again, we were
able to compute an optimal strategy with little computational effort and present
it in a compact and explainable manner as a decision tree generated via a new
connection to dtControl.

References

1. Agha, G., Palmskog, K.: A survey of statistical model checking. ACMTrans. Model.
Comput. Simul. 28(1), 6:1–6:39 (2018). https://doi.org/10.1145/3158668

2. Alur, R., Courcoubetis, C., Henzinger, T.A., Ho, P.H.: Hybrid automata: An al-
gorithmic approach to the specification and verification of hybrid systems. In:
Grossman, R.L., Nerode, A., Ravn, A.P., Rischel, H. (eds.) Hybrid Systems.
Lecture Notes in Computer Science, vol. 736, pp. 209–229. Springer (1992).
https://doi.org/10.1007/3-540-57318-6 30

3. Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126(2),
183–235 (1994). https://doi.org/10.1016/0304-3975(94)90010-8

4. Araniti, G., Bezirgiannidis, N., Birrane, E., Bisio, I., Burleigh, S., Caini, C., Feld-
mann, M., Marchese, M., Segui, J., Suzuki, K.: Contact graph routing in DTN
space networks: overview, enhancements and performance. IEEE Comms. Maga-
zine 53(3), 38–46 (2015). https://doi.org/10.1109/MCOM.2015.7060480

5. Ashok, P., Jackermeier, M., Kret́ınský, J., Weinhuber, C., Weininger, M., Yadav,
M.: dtControl 2.0: Explainable strategy representation via decision tree learning
steered by experts. In: Groote, J.F., Larsen, K.G. (eds.) 27th International Con-
ference on Tools and Algorithms for the Construction and Analysis of Systems
(TACAS). Lecture Notes in Computer Science, vol. 12652, pp. 326–345. Springer
(2021). https://doi.org/10.1007/978-3-030-72013-1 17

6. Baier, C.: Probabilistic model checking. In: Esparza, J., Grumberg, O., Sickert,
S. (eds.) Dependable Software Systems Engineering, NATO Science for Peace and
Security Series – D: Information and Communication Security, vol. 45, pp. 1–23.
IOS Press (2016). https://doi.org/10.3233/978-1-61499-627-9-1

7. Baier, C., de Alfaro, L., Forejt, V., Kwiatkowska, M.: Model checking probabilistic
systems. In: Clarke, E.M., Henzinger, T.A., Veith, H., Bloem, R. (eds.) Handbook

https://doi.org/10.1145/3158668
https://doi.org/10.1007/3-540-57318-6_30
https://doi.org/10.1016/0304-3975(94)90010-8
https://doi.org/10.1109/MCOM.2015.7060480
https://doi.org/10.1007/978-3-030-72013-1_17
https://doi.org/10.3233/978-1-61499-627-9-1

23

of Model Checking, pp. 963–999. Springer (2018). https://doi.org/10.1007/978-3-
319-10575-8 28

8. Baier, C., Katoen, J.P.: Principles of model checking. MIT Press (2008)
9. Bellman, R.: A Markovian decision process. Journal of Mathematics and Mechanics

6(5), 679–684 (1957)
10. Bohnenkamp, H.C., D’Argenio, P.R., Hermanns, H., Katoen, J.P.: MoDeST: A

compositional modeling formalism for hard and softly timed systems. IEEE Trans.
Software Eng. 32(10), 812–830 (2006). https://doi.org/10.1109/TSE.2006.104

11. Bohnenkamp, H.C., Hermanns, H., Katoen, J.P., Klaren, R.: The Modest modeling
tool and its implementation. In: Kemper, P., Sanders, W.H. (eds.) 13th Interna-
tional Conference on Computer Performance Evaluations, Modelling Techniques
and Tools (TOOLS). Lecture Notes in Computer Science, vol. 2794, pp. 116–133.
Springer (2003). https://doi.org/10.1007/978-3-540-45232-4 8

12. Bonet, B., Geffner, H.: Labeled RTDP: Improving the convergence of real-time
dynamic programming. In: Giunchiglia, E., Muscettola, N., Nau, D.S. (eds.) 13th
International Conference on Automated Planning and Scheduling (ICAPS). pp.
12–21. AAAI (2003)

13. Budde, C.E., D’Argenio, P.R., Hartmanns, A.: Automated composi-
tional importance splitting. Sci. Comput. Program. 174, 90–108 (2019).
https://doi.org/10.1016/j.scico.2019.01.006

14. Budde, C.E., D’Argenio, P.R., Hartmanns, A.: Digging for decision trees: A case
study in strategy sampling and learning. In: International Symposium on Leverag-
ing Applications of Formal Methods, Verification and Validation (ISoLA) (2024),
submitted, under review.

15. Budde, C.E., D’Argenio, P.R., Hartmanns, A., Sedwards, S.: An efficient statistical
model checker for nondeterminism and rare events. Int. J. Softw. Tools Technol.
Transf. 22(6), 759–780 (2020). https://doi.org/10.1007/s10009-020-00563-2

16. Budde, C.E., Dehnert, C., Hahn, E.M., Hartmanns, A., Junges, S., Turrini, A.:
JANI: Quantitative model and tool interaction. In: Legay, A., Margaria, T. (eds.)
23rd International Conference on Tools and Algorithms for the Construction and
Analysis of Systems (TACAS). Lecture Notes in Computer Science, vol. 10206, pp.
151–168 (2017). https://doi.org/10.1007/978-3-662-54580-5 9

17. Budde, C.E., Hartmanns, A., Klauck, M., Kret́ınský, J., Parker, D., Quatmann,
T., Turrini, A., Zhang, Z.: On correctness, precision, and performance in quanti-
tative verification (QComp 2020 competition report). In: Margaria, T., Steffen, B.
(eds.) 9th International Symposium on Leveraging Applications of Formal Meth-
ods (ISoLA). Lecture Notes in Computer Science, vol. 12479, pp. 216–241. Springer
(2020). https://doi.org/10.1007/978-3-030-83723-5 15

18. Bulychev, P.E., David, A., Larsen, K.G., Mikucionis, M., Poulsen, D.B., Legay,
A., Wang, Z.: Uppaal-SMC: Statistical model checking for priced timed automata.
In: Wiklicky, H., Massink, M. (eds.) 10th Workshop on Quantitative Aspects of
Programming Languages and Systems (QAPL). EPTCS, vol. 85, pp. 1–16 (2012).
https://doi.org/10.4204/EPTCS.85.1

19. Butkova, Y., Fox, G.: Optimal time-bounded reachability analysis for concur-
rent systems. In: Vojnar, T., Zhang, L. (eds.) 25th International Conference on
Tools and Algorithms for the Construction and Analysis of Systems (TACAS).
Lecture Notes in Computer Science, vol. 11428, pp. 191–208. Springer (2019).
https://doi.org/10.1007/978-3-030-17465-1 11

20. Butkova, Y., Hartmanns, A., Hermanns, H.: A Modest approach to Markov
automata. ACM Trans. Model. Comput. Simul. 31(3), 14:1–14:34 (2021).
https://doi.org/10.1145/3449355

https://doi.org/10.1007/978-3-319-10575-8_28
https://doi.org/10.1007/978-3-319-10575-8_28
https://doi.org/10.1109/TSE.2006.104
https://doi.org/10.1007/978-3-540-45232-4_8
https://doi.org/10.1016/j.scico.2019.01.006
https://doi.org/10.1007/s10009-020-00563-2
https://doi.org/10.1007/978-3-662-54580-5_9
https://doi.org/10.1007/978-3-030-83723-5_15
https://doi.org/10.4204/EPTCS.85.1
https://doi.org/10.1007/978-3-030-17465-1_11
https://doi.org/10.1145/3449355

24

21. Butkova, Y., Hatefi, H., Hermanns, H., Krcál, J.: Optimal continuous time
Markov decisions. In: Finkbeiner, B., Pu, G., Zhang, L. (eds.) 13th International
Symposium on Automated Technology for Verification and Analysis (ATVA).
Lecture Notes in Computer Science, vol. 9364, pp. 166–182. Springer (2015).
https://doi.org/10.1007/978-3-319-24953-7 12

22. Claus, C., Boutilier, C.: The dynamics of reinforcement learning in cooperative
multiagent systems. In: Mostow, J., Rich, C. (eds.) 15th National Conference on
Artificial Intelligence and 10th Innovative Applications of Artificial Intelligence
Conference (AAAI, IAAI). pp. 746–752. AAAI Press / The MIT Press (1998)

23. D’Argenio, P.R., Fraire, J.A., Hartmanns, A.: Sampling distributed schedulers for
resilient space communication. In: Lee, R., Jha, S., Mavridou, A. (eds.) 12th Inter-
national NASA Formal Methods Symposium (NFM). Lecture Notes in Computer
Science, vol. 12229, pp. 291–310. Springer (2020). https://doi.org/10.1007/978-3-
030-55754-6 17

24. D’Argenio, P.R., Fraire, J.A., Hartmanns, A., Raverta, F.: Comparing statisti-
cal, analytical, and learning-based routing approaches for delay-tolerant networks.
ACM Trans. Model. Comput. Simul. (2024), to appear.

25. D’Argenio, P.R., Fraire, J.A., Hartmanns, A., Raverta, F.: Comparing statistical,
analytical, and learning-based routing approaches for delay-tolerant networks (ar-
tifact). Zenodo (2024). https://doi.org/10.5281/zenodo.11214677, to appear.

26. D’Argenio, P.R., Hartmanns, A., Legay, A., Sedwards, S.: Statistical approxima-
tion of optimal schedulers for probabilistic timed automata. In: Ábrahám, E.,
Huisman, M. (eds.) 12th International Conference on Integrated Formal Meth-
ods (iFM). Lecture Notes in Computer Science, vol. 9681, pp. 99–114. Springer
(2016). https://doi.org/10.1007/978-3-319-33693-0 7

27. D’Argenio, P.R., Hartmanns, A., Sedwards, S.: Lightweight statistical model check-
ing in nondeterministic continuous time. In: Margaria, T., Steffen, B. (eds.) 8th
International Symposium on Leveraging Applications of Formal Methods, Verifica-
tion and Validation (ISoLA). Lecture Notes in Computer Science, vol. 11245, pp.
336–353. Springer (2018). https://doi.org/10.1007/978-3-030-03421-4 22

28. D’Argenio, P.R., Jeannet, B., Jensen, H.E., Larsen, K.G.: Reduction and re-
finement strategies for probabilistic analysis. In: Hermanns, H., Segala, R.
(eds.) Second Joint International Workshop on Process Algebra and Proba-
bilistic Methods, Performance Modeling and Verification (PAPM-PROBMIV).
Lecture Notes in Computer Science, vol. 2399, pp. 57–76. Springer (2002).
https://doi.org/10.1007/3-540-45605-8 5

29. D’Argenio, P.R., Legay, A., Sedwards, S., Traonouez, L.M.: Smart sampling for
lightweight verification of Markov decision processes. Int. J. Softw. Tools Technol.
Transf. 17(4), 469–484 (2015). https://doi.org/10.1007/S10009-015-0383-0

30. D’Argenio, P.R., Wolovick, N., Terraf, P.S., Celayes, P.: Nondeterministic labeled
Markov processes: Bisimulations and logical characterization. In: 6th International
Conference on Quantitative Evaluation of Systems (QEST). pp. 11–20. IEEE Com-
puter Society (2009). https://doi.org/10.1109/QEST.2009.17

31. David, A., Jensen, P.G., Larsen, K.G., Mikucionis, M., Taankvist, J.H.: Up-
paal Stratego. In: Baier, C., Tinelli, C. (eds.) 21st International Conference on
Tools and Algorithms for the Construction and Analysis of Systems (TACAS).
Lecture Notes in Computer Science, vol. 9035, pp. 206–211. Springer (2015).
https://doi.org/10.1007/978-3-662-46681-0 16

32. David, A., Larsen, K.G., Legay, A., Mikucionis, M., Wang, Z.: Time for sta-
tistical model checking of real-time systems. In: Gopalakrishnan, G., Qadeer,

https://doi.org/10.1007/978-3-319-24953-7_12
https://doi.org/10.1007/978-3-030-55754-6_17
https://doi.org/10.1007/978-3-030-55754-6_17
https://doi.org/10.5281/zenodo.11214677
https://doi.org/10.1007/978-3-319-33693-0_7
https://doi.org/10.1007/978-3-030-03421-4_22
https://doi.org/10.1007/3-540-45605-8_5
https://doi.org/10.1007/S10009-015-0383-0
https://doi.org/10.1109/QEST.2009.17
https://doi.org/10.1007/978-3-662-46681-0_16

25

S. (eds.) 23rd International Conference on Computer Aided Verification (CAV).
Lecture Notes in Computer Science, vol. 6806, pp. 349–355. Springer (2011).
https://doi.org/10.1007/978-3-642-22110-1 27

33. Eisentraut, C., Hermanns, H., Zhang, L.: On probabilistic automata in continuous
time. In: 25th Annual IEEE Symposium on Logic in Computer Science (LICS). pp.
342–351. IEEE Computer Society (2010). https://doi.org/10.1109/LICS.2010.41

34. Fehnker, A., Chaudhary, K.: Twenty percent and a few days – optimising a Bitcoin
majority attack. In: Dutle, A., Muñoz, C.A., Narkawicz, A. (eds.) 10th Interna-
tional NASA Formal Methods Symposium (NFM). Lecture Notes in Computer
Science, vol. 10811, pp. 157–163. Springer (2018). https://doi.org/10.1007/978-3-
319-77935-5 11

35. Fraire, J.A., De Jonckère, O., Burleigh, S.C.: Routing in the space Internet: A
contact graph routing tutorial. Journal of Network and Computer Applications
174, 102884 (2021). https://doi.org/10.1016/j.jnca.2020.102884

36. Fränzle, M., Hahn, E.M., Hermanns, H., Wolovick, N., Zhang, L.: Measura-
bility and safety verification for stochastic hybrid systems. In: Caccamo, M.,
Frazzoli, E., Grosu, R. (eds.) 14th ACM International Conference on Hy-
brid Systems: Computation and Control (HSCC). pp. 43–52. ACM (2011).
https://doi.org/10.1145/1967701.1967710

37. Frehse, G.: PHAVer: algorithmic verification of hybrid systems past
HyTech. Int. J. Softw. Tools Technol. Transf. 10(3), 263–279 (2008).
https://doi.org/10.1007/S10009-007-0062-X

38. Garavel, H., Lang, F., Mateescu, R., Serwe, W.: CADP 2011: a toolbox for the
construction and analysis of distributed processes. Int. J. Softw. Tools Technol.
Transf. 15(2), 89–107 (2013). https://doi.org/10.1007/S10009-012-0244-Z

39. Giro, S., D’Argenio, P.R.: Quantitative model checking revisited: Neither decid-
able nor approximable. In: Raskin, J.F., Thiagarajan, P.S. (eds.) 5th International
Conference on Formal Modeling and Analysis of Timed Systems (FORMATS).
Lecture Notes in Computer Science, vol. 4763, pp. 179–194. Springer (2007).
https://doi.org/10.1007/978-3-540-75454-1 14

40. Giro, S., D’Argenio, P.R.: On the expressive power of schedulers in distributed
probabilistic systems. Electron. Notes Theor. Comput. Sci. 253(3), 45–71 (2009).
https://doi.org/10.1016/j.entcs.2009.10.005

41. Haddad, S., Monmege, B.: Reachability in MDPs: Refining convergence of value it-
eration. In: Ouaknine, J., Potapov, I., Worrell, J. (eds.) 8th International Workshop
on Reachability Problems (RP). Lecture Notes in Computer Science, vol. 8762, pp.
125–137. Springer (2014). https://doi.org/10.1007/978-3-319-11439-2 10

42. Haddad, S., Monmege, B.: Interval iteration algorithm for
MDPs and IMDPs. Theor. Comput. Sci. 735, 111–131 (2018).
https://doi.org/10.1016/J.TCS.2016.12.003

43. Hahn, E.M., Hartmanns, A.: A comparison of time- and reward-bounded prob-
abilistic model checking techniques. In: Fränzle, M., Kapur, D., Zhan, N. (eds.)
Second International Symposium on Dependable Software Engineering: Theories,
Tools, and Applications (SETTA). Lecture Notes in Computer Science, vol. 9984,
pp. 85–100 (2016). https://doi.org/10.1007/978-3-319-47677-3 6

44. Hahn, E.M., Hartmanns, A.: Symblicit exploration and elimination for probabilis-
tic model checking. In: Hung, C.C., Hong, J., Bechini, A., Song, E. (eds.) 36th
ACM/SIGAPP Symposium on Applied Computing (SAC). pp. 1798–1806. ACM
(2021). https://doi.org/10.1145/3412841.3442052

https://doi.org/10.1007/978-3-642-22110-1_27
https://doi.org/10.1109/LICS.2010.41
https://doi.org/10.1007/978-3-319-77935-5_11
https://doi.org/10.1007/978-3-319-77935-5_11
https://doi.org/10.1016/j.jnca.2020.102884
https://doi.org/10.1145/1967701.1967710
https://doi.org/10.1007/S10009-007-0062-X
https://doi.org/10.1007/S10009-012-0244-Z
https://doi.org/10.1007/978-3-540-75454-1_14
https://doi.org/10.1016/j.entcs.2009.10.005
https://doi.org/10.1007/978-3-319-11439-2_10
https://doi.org/10.1016/J.TCS.2016.12.003
https://doi.org/10.1007/978-3-319-47677-3_6
https://doi.org/10.1145/3412841.3442052

26

45. Hahn, E.M., Hartmanns, A., Hensel, C., Klauck, M., Klein, J., Kret́ınský, J.,
Parker, D., Quatmann, T., Ruijters, E., Steinmetz, M.: The 2019 comparison of
tools for the analysis of quantitative formal models (QComp 2019 competition
report). In: Beyer, D., Huisman, M., Kordon, F., Steffen, B. (eds.) 25 Years of
TACAS: TOOLympics. Lecture Notes in Computer Science, vol. 11429, pp. 69–92.
Springer (2019). https://doi.org/10.1007/978-3-030-17502-3 5

46. Hahn, E.M., Hartmanns, A., Hermanns, H., Katoen, J.P.: A compositional mod-
elling and analysis framework for stochastic hybrid systems. Formal Methods Syst.
Des. 43(2), 191–232 (2013). https://doi.org/10.1007/s10703-012-0167-z

47. Hahn, E.M., Li, Y., Schewe, S., Turrini, A., Zhang, L.: iscasMc: A web-based
probabilistic model checker. In: Jones, C.B., Pihlajasaari, P., Sun, J. (eds.) 19th
International Symposium on Formal Methods (FM). Lecture Notes in Computer
Science, vol. 8442, pp. 312–317. Springer (2014). https://doi.org/10.1007/978-3-
319-06410-9 22

48. Hartmanns, A.: An overview of Modest models and tools for real stochastic timed
systems. In: Dubslaff, C., Luttik, B. (eds.) 5th Workshop on Models for Formal
Analysis of Real Systems (MARS@ETAPS). EPTCS, vol. 355, pp. 1–12 (2022).
https://doi.org/10.4204/EPTCS.355.1

49. Hartmanns, A., Hermanns, H.: The Modest Toolset: An integrated environment
for quantitative modelling and verification. In: Ábrahám, E., Havelund, K. (eds.)
20th International Conference on Tools and Algorithms for the Construction and
Analysis of Systems (TACAS). Lecture Notes in Computer Science, vol. 8413, pp.
593–598. Springer (2014). https://doi.org/10.1007/978-3-642-54862-8 51

50. Hartmanns, A., Hermanns, H.: Explicit model checking of very large MDP us-
ing partitioning and secondary storage. In: Finkbeiner, B., Pu, G., Zhang, L.
(eds.) 13th International Symposium on Automated Technology for Verification
and Analysis (ATVA). Lecture Notes in Computer Science, vol. 9364, pp. 131–147.
Springer (2015). https://doi.org/10.1007/978-3-319-24953-7 10

51. Hartmanns, A., Hermanns, H.: A Modest Markov automata tutorial. In: Krötzsch,
M., Stepanova, D. (eds.) 15th International Reasoning Web Summer School.
Lecture Notes in Computer Science, vol. 11810, pp. 250–276. Springer (2019).
https://doi.org/10.1007/978-3-030-31423-1 8

52. Hartmanns, A., Hermanns, H., Berrang, P.: A comparative analysis of de-
centralized power grid stabilization strategies. In: Rose, O., Uhrmacher, A.M.
(eds.) Winter Simulation Conference (WSC). pp. 158:1–158:13. WSC (2012).
https://doi.org/10.1109/WSC.2012.6465083

53. Hartmanns, A., Kaminski, B.L.: Optimistic value iteration. In: Lahiri, S.K., Wang,
C. (eds.) 32nd International Conference on Computer Aided Verification (CAV).
Lecture Notes in Computer Science, vol. 12225, pp. 488–511. Springer (2020).
https://doi.org/10.1007/978-3-030-53291-8 26

54. Hartmanns, A., Klauck, M., Parker, D., Quatmann, T., Ruijters, E.: The quantita-
tive verification benchmark set. In: Vojnar, T., Zhang, L. (eds.) 25th International
Conference on Tools and Algorithms for the Construction and Analysis of Systems
(TACAS). Lecture Notes in Computer Science, vol. 11427, pp. 344–350. Springer
(2019). https://doi.org/10.1007/978-3-030-17462-0 20

55. Hartmanns, A., Sedwards, S., D’Argenio, P.R.: Efficient simulation-based verifi-
cation of probabilistic timed automata. In: 2017 Winter Simulation Conference
(WSC). pp. 1419–1430. IEEE (2017). https://doi.org/10.1109/WSC.2017.8247885

56. Hatefi-Ardakani, H.: Finite horizon analysis of Markov automata. Ph.D. the-
sis, Saarland University, Germany (2017), http://scidok.sulb.uni-saarland.de/
volltexte/2017/6743/

https://doi.org/10.1007/978-3-030-17502-3_5
https://doi.org/10.1007/s10703-012-0167-z
https://doi.org/10.1007/978-3-319-06410-9_22
https://doi.org/10.1007/978-3-319-06410-9_22
https://doi.org/10.4204/EPTCS.355.1
https://doi.org/10.1007/978-3-642-54862-8_51
https://doi.org/10.1007/978-3-319-24953-7_10
https://doi.org/10.1007/978-3-030-31423-1_8
https://doi.org/10.1109/WSC.2012.6465083
https://doi.org/10.1007/978-3-030-53291-8_26
https://doi.org/10.1007/978-3-030-17462-0_20
https://doi.org/10.1109/WSC.2017.8247885
http://scidok.sulb.uni-saarland.de/volltexte/2017/6743/
http://scidok.sulb.uni-saarland.de/volltexte/2017/6743/

27

57. Hensel, C., Junges, S., Katoen, J.P., Quatmann, T., Volk, M.: The probabilistic
model checker Storm. Int. J. Softw. Tools Technol. Transf. 24(4), 589–610 (2022).
https://doi.org/10.1007/S10009-021-00633-Z

58. Howard, R.A.: Dynamic Programming and Markov Processes. MIT Press (1960)
59. Kamali, M., Katoen, J.P.: Probabilistic model checking of AODV. In: Gribaudo,

M., Jansen, D.N., Remke, A. (eds.) 17th International Conference on Quantitative
Evaluation of Systems (QEST). Lecture Notes in Computer Science, vol. 12289,
pp. 54–73. Springer (2020). https://doi.org/10.1007/978-3-030-59854-9 6

60. Klauck, M., Hermanns, H.: A Modest approach to dynamic heuristic search in prob-
abilistic model checking. In: Abate, A., Marin, A. (eds.) 18th International Confer-
ence on Quantitative Evaluation of Systems (QEST). Lecture Notes in Computer
Science, vol. 12846, pp. 15–38. Springer (2021). https://doi.org/10.1007/978-3-030-
85172-9 2

61. Köhl, M.A., Klauck, M., Hermanns, H.: Momba: JANI meets Python. In: Groote,
J.F., Larsen, K.G. (eds.) 27th International Conference on Tools and Algorithms for
the Construction and Analysis of Systems (TACAS). Lecture Notes in Computer
Science, vol. 12652, pp. 389–398. Springer (2021). https://doi.org/10.1007/978-3-
030-72013-1 23

62. Kret́ınský, J., Meggendorfer, T.: Of cores: A partial-exploration framework for
Markov decision processes. Log. Methods Comput. Sci. 16(4) (2020), https://lmcs.
episciences.org/6833

63. Kwiatkowska, M.Z., Norman, G., Parker, D.: PRISM 4.0: Verification of probabilis-
tic real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) 23rd International
Conference on Computer Aided Verification (CAV). Lecture Notes in Computer
Science, vol. 6806, pp. 585–591. Springer (2011). https://doi.org/10.1007/978-3-
642-22110-1 47

64. Kwiatkowska, M.Z., Norman, G., Parker, D., Sproston, J.: Performance analysis
of probabilistic timed automata using digital clocks. Formal Methods Syst. Des.
29(1), 33–78 (2006). https://doi.org/10.1007/s10703-006-0005-2

65. Kwiatkowska, M.Z., Norman, G., Segala, R., Sproston, J.: Automatic verification
of real-time systems with discrete probability distributions. Theor. Comput. Sci.
282(1), 101–150 (2002). https://doi.org/10.1016/S0304-3975(01)00046-9

66. Lanotte, R., Merro, M., Munteanu, A.: A Modest security analysis of cyber-physical
systems: A case study. In: Baier, C., Caires, L. (eds.) 38th IFIP WG 6.1 Interna-
tional Conference on Formal Techniques for Distributed Objects, Components,
and Systems (FORTE). Lecture Notes in Computer Science, vol. 10854, pp. 58–78.
Springer (2018). https://doi.org/10.1007/978-3-319-92612-4 4

67. Legay, A., Sedwards, S., Traonouez, L.M.: Scalable verification of Markov decision
processes. In: Canal, C., Idani, A. (eds.) 4th Workshop on Formal Methods in
the Development of Software (WS-FMDS). Lecture Notes in Computer Science,
vol. 8938, pp. 350–362. Springer (2014). https://doi.org/10.1007/978-3-319-15201-
1 23

68. Lewis, B., Hartmanns, A., Basu, P., Shridevi, R.J., Chakraborty, K., Roy, S.,
Zhang, Z.: Probabilistic verification for reliable network-on-chip system design.
In: Larsen, K.G., Willemse, T.A.C. (eds.) 24th International Conference on For-
mal Methods for Industrial Critical Systems (FMICS). Lecture Notes in Computer
Science, vol. 11687, pp. 110–126. Springer (2019). https://doi.org/10.1007/978-3-
030-27008-7 7

69. Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system (2008), https://
bitcoin.org/bitcoin.pdf

https://doi.org/10.1007/S10009-021-00633-Z
https://doi.org/10.1007/978-3-030-59854-9_6
https://doi.org/10.1007/978-3-030-85172-9_2
https://doi.org/10.1007/978-3-030-85172-9_2
https://doi.org/10.1007/978-3-030-72013-1_23
https://doi.org/10.1007/978-3-030-72013-1_23
https://lmcs.episciences.org/6833
https://lmcs.episciences.org/6833
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/s10703-006-0005-2
https://doi.org/10.1016/S0304-3975(01)00046-9
https://doi.org/10.1007/978-3-319-92612-4_4
https://doi.org/10.1007/978-3-319-15201-1_23
https://doi.org/10.1007/978-3-319-15201-1_23
https://doi.org/10.1007/978-3-030-27008-7_7
https://doi.org/10.1007/978-3-030-27008-7_7
https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf

28

70. Panait, L., Luke, S.: Cooperative multi-agent learning: The state of the art. Auton.
Agents Multi Agent Syst. 11(3), 387–434 (2005). https://doi.org/10.1007/s10458-
005-2631-2

71. Quatmann, T., Katoen, J.: Sound value iteration. In: Chockler, H., Weissenbacher,
G. (eds.) 30th International Conference on Computer Aided Verification (CAV).
Lecture Notes in Computer Science, vol. 10981, pp. 643–661. Springer (2018).
https://doi.org/10.1007/978-3-319-96145-3 37

72. Raverta, F.D., Fraire, J.A., Madoery, P.G., Demasi, R.A., Finochi-
etto, J.M., D’Argenio, P.R.: Routing in delay-tolerant networks un-
der uncertain contact plans. Ad Hoc Networks 123, 102663 (2021).
https://doi.org/10.1016/j.adhoc.2021.102663

73. Roberts, R., Lewis, B., Hartmanns, A., Basu, P., Roy, S., Chakraborty, K., Zhang,
Z.: Probabilistic verification for reliability of a two-by-two network-on-chip system.
In: Lluch-Lafuente, A., Mavridou, A. (eds.) 26th International Conference on For-
mal Methods for Industrial Critical Systems (FMICS). Lecture Notes in Computer
Science, vol. 12863, pp. 232–248. Springer (2021). https://doi.org/10.1007/978-3-
030-85248-1 16

74. Rubino, G., Tuffin, B. (eds.): Rare Event Simulation using Monte Carlo Methods.
Wiley (2009). https://doi.org/10.1002/9780470745403

75. Sproston, J.: Decidable model checking of probabilistic hybrid automata. In:
Joseph, M. (ed.) 6th International Symposium on Formal Techniques in Real-
Time and Fault-Tolerant Systems (FTRTFT). Lecture Notes in Computer Science,
vol. 1926, pp. 31–45. Springer (2000). https://doi.org/10.1007/3-540-45352-0 5

76. Sutton, R.S., Barto, A.G.: Reinforcement learning – An introduction. Adaptive
computation and machine learning, MIT Press (1998)

77. Watkins, C.J.C.H., Dayan, P.: Q-learning. Mach. Learn. 8, 279–292 (1992).
https://doi.org/10.1007/BF00992698

https://doi.org/10.1007/s10458-005-2631-2
https://doi.org/10.1007/s10458-005-2631-2
https://doi.org/10.1007/978-3-319-96145-3_37
https://doi.org/10.1016/j.adhoc.2021.102663
https://doi.org/10.1007/978-3-030-85248-1_16
https://doi.org/10.1007/978-3-030-85248-1_16
https://doi.org/10.1002/9780470745403
https://doi.org/10.1007/3-540-45352-0_5
https://doi.org/10.1007/BF00992698

	Modest Models and Tools for Real Stochastic Timed Systems

