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The maximum number of homogeneous
weights of linear codes over chain rings ∗

Minjia Shi, TingTing Tong†, Thomas Honold‡, & Patrick Solé§

Abstract

The problem of determining the largest possible number of distinct
Hamming weights in several classes of codes over finite fields was stud-
ied recently in several papers (Shi et al. 2019, Shi et al 2020, Chen et
al. 2022). A further problem is to find the minimum length of codes
meeting those bounds with equality.

These two questions are extended here to linear codes over chain
rings for the homogeneous weight. An explicit upper bound is given
for codes of given type and arbitrary length as a function of the residue
field size. This bound is then shown to be tight by an argument based
on Hjemslev geometries. The second question is studied for chain rings
with residue field of order two.
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From the viewpoint of combinatorial coding theory the following problem
makes sense as an extremal parametric question:

How many distinct Hamming weights at most can a linear code of given
length and dimension have?

One of the most important topics in coding theory is to characterize the
weight distribution of a class of codes, but it is often difficult to describe
this. In 1973, Delsarte [8] introduced four fundamental parameters of an
linear code C: the minimum weight d, the weight spectrum cardinality s, the
minimum weight d

′
of the dual code, and the weight spectrum cardinality s

′
of

the dual code. And he also pointed out the combinatorial significance of these
four fundamental parameters and showed that they have close connection
with orthogonal arrays and combinatorial designs. In partticular, he showed
that s is intimately related to other parameters of the given C. Therefore, the
weight spectrum cardinality of linear codes began to be extensively studied.
The minimum number of weights has been investigated for a long time; in

particular one-weight codes have been characterized by Bonisoli [3] for finite
fields and by Wood for ZN [25]. In contrast, linear codes of given dimension
with the maximum number of weights have only started to be studied in [23].
Such codes are called MWS (Maximum Weight Spectrum) codes.

MWS codes over Fq were characterized geometrically in [1], and it was

shown that k-dimensional MWS codes have qk−1
q−1 distinct nonzero weights.1

The problem of determining the smallest length of an MWS code over Fq
of given dimension is still open in most cases. In [23, Theorem 1] it was shown
that binary linear [2k−1, k] with nonzero weights 1, 2, . . . , 2k−1 exist, settling
this problem for q = 2.2 M. Kiermaier has determined computationally that
the minimum lengths of [n, 3] MWS codes over F3 and F4 are 22 and 43,
respectively.3 Other studies on MWS codes are [2, 7].

The problem has been extended to codes with prescribed automorphisms:
cyclic codes [21], quasicyclic codes [22].

In this paper we extend the problem in two directions: We replace the
finite field by a finite (commutative) chain ring, and the Hamming weight by

1Since nonzero multiples of a codeword have the same weight, this is clearly the maxi-
mum number possible.

2The codewords of weights 1, 2, 22, . . . , 2k−1 in such a code must have disjoint supports,
as is easily seen, proving also the uniqueness of these codes.

3M. Kiermaier, personal communication
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the homogeneous weight.
Codes over chain rings have received a lot of attention in the last twenty

years. Chain rings are special cases of quasi Frobenius rings, thus enjoying a
MacWilliams formula [24]. Linear codes over these rings afford a canonical
generator matrix as in the field case [19]. They form a bridge with Hjelmslev
geometries, the chain ring analogue of Galois geometries over finite fields.
See [12, 18, 19] for a general introduction and [16, 13] for special applications
in the case of chain rings of order 4.

The homogeneous weight was introduced in [5] for the ring Zm, and for
general finite rings in [9, 15]. It can be defined canonically, up to a mul-
tiplicative factor, from the lattice of ideals of the ring. It generalizes the
Hamming metric over finite fields and the Lee metric over Z4, but differ-
s from both in a general chain ring. It enjoys an organic connection with
character sums defined from the additive group of the ring, which makes its
manipulation easier than that of an arbitrary metric [19, Chap. 3 and 4]. A
study of two-weight codes over chain rings is [20].

The material is arranged as follows. The next section collects basic def-
initions and notions needed for the other sections. Section 3 contains the
main results of the paper. Section 4 discusses lower bounds for the lengths
of MWS codes over chain rings. Section 5 concludes the article.

2 Preliminaries

2.1 Chain rings

Let R denote a (commutative4) chain ring with residue class field Fq, length
(nilpotency index) m, and maximal ideal M [19]. Thus R/M ∼= Fq, and
M = (θ) is principal ideal with generator θ. The ideals of R then form a
chain with respect to set inclusion:

{0} = Mm (Mm−1 ( · · · (M (M0 = R.

As a simple example, the reader can think of R = Zpm , q = θ = p. Define
the Teichmüller set T as a set of q elements of R such that T ≡ Fq (mod M).

4Most of our results can be generalized to the non-commutative setting. However,
in order to keep the presentation as non-technical as possible, we restrict ourselves to
commutative chain rings.
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Let T ∗ = T \ {0}. The θ-adic expansion of an arbitrary element x ∈ R is
x = a1 + a2θ + · · ·+ amθ

m−1, with a1, . . . , am unique elements in T .
A code C of length n is a nonempty subset of Rn. A linear code C of

length n over R is an R-submodule of Rn. Any linear code C of length n over
R is permutation-equivalent to a code with the following generator matrix :

G =


Ik1 A11 A12 A13 . . . A1,m−1 A1,m

0 θIk2 θA22 θA23 . . . θA2,m−1 θA2,m

0 0 θ2Ik3 θ2A33 . . . θ2A3,m−1 θ2A3,m
...

...
...

...
. . .

...
...

0 0 0 0 · · · θm−1Ikm θm−1Am,m

 ,

where Iki is the ki×ki identity matrix and Ai,j are matrices over R for all i, j ∈
{1, 2, . . . ,m}. A linear code C with a generator matrix in this form has qK

elements, where K = logq |C| =
∑m−1

i=0 (m− i)ki+1 is the composition length
of the R-module C. We call the m-tuple k = (k1, k2, . . . , km) of integers
ki ≥ 0 the type of C.

Alternatively, we can associate with C the integer partition

λ =
(
m, . . . ,m︸ ︷︷ ︸

k1

,m− 1, . . . ,m− 1︸ ︷︷ ︸
k2

, . . . , 1, . . . , 1︸ ︷︷ ︸
km

)
of K, whose parts are the composition lengths of the cyclic R-modules ap-
pearing in a representation of C as a direct sum of cyclic R modules. This
partition also determines C up to module isomorphism and is called the shape
of C; cf. [12]. The conjugate partition of λ (with reflected Ferrers diagram) is
µ = (k1 + · · ·+ km, k1 + · · ·+ km−1, . . . , k1 + k2, k1). It is called the conjugate
shape of C in [12], and is sometimes easier to work with than type or shape.

These concepts apply to arbitrary finitely-generated modules over R, gen-
eralizing the well-known fact that isomorphism classes of finite abelian p-
groups of exponent m, via direct-sum decomposition into cyclic groups, are
parametrized by integer paritions with parts ≤ m; see, e.g., [17, Chapter I-
I.1]. In fact, since every module over R can be embedded into a free module
[12, Theorem 2.6], all isomorphism classes of finitely-generated modules over
R are represented by linear codes.

For our purposes it is best to define the homogeneous weight on R as
follows:

whom(x) =


q if x ∈ (θm−1) \ {0},
q − 1 if x ∈ R \ (θm−1),

0 if x = 0.

(1)
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This definition uses the smallest normalization factor for which all weights are
integers. For any vector x = (x1, . . . , xn) ∈ Rn, we define its homogeneous
weight as whom(x) =

∑n
i=1whom(xi). We denote by wHam(x) the Hamming

weight of x, which also satisfies wHam(x) =
∑n

i=1wHam(xi).
The effective length n(C) of a linear code is the number of positions

where at least one codeword has a nonzero entry. It is well-known (see, e.g.,
[6, Lemma 3]) that the total homogeneous weight and the effective length of
a linear code C over R are related by∑

x∈C

whom(x) = Γ |C| n(C),

where Γ = |R|−1
∑

x∈R whom(x). For the chosen normalization Γ = q − 1.
For integers n ≥ 1 and k1, k2, . . . , km ≥ 0, a linear code over R of type

k = (k1, . . . , km) is denoted as “linear [n,k] code” or, if the ring R matters,
as “linear [n,k]R code”. Considering the ring R (and thus in particular q,m)
as fixed, we denote the maximum number of nonzero homogeneous weights
a linear [n,k] code over R can have by L(n,k). Similarly, L(k) denotes the
maximum number of nonzero homogeneous weights in a linear code over R
of type k but arbitrary length. Since k determines |C|, the numbers L(k)
are finite, and trivially we have L(n,k) ≤ L(k) for all n, k.

Proposition 1 There is an integer N0 such that for all n ≥ N0 we have

L(n,k) = L(k),

and the smallest such integer satisfies N0 ≥
⌈
L(k)
q

⌉
Proof. By definition of L(k), there is a linear code C0 of some length N0

with L(k) nonzero homogeneous weights. If n > N0, adding n − N0 zero
columns to the generator matrix of C0 leads to

L(n,k) ≥ L(k) = L(N0,k),

and from the trivial bound L(n,k) ≤ L(k) we then have L(n,k) = L(k).
This proves the first assertion.

Since homogeneous weights in R are integers ≤ q, we have

L(n,k) ≤ nq.
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Letting N0 be such that L(N0,k) = L(k), we have

L(k) = L(N0,k) ≤ N0q.

The second assertion follows. �
The (coordinate) projective Hjelmslev geometry PHG(k − 1, R) can be

defined as the poset of all free submodules of a free R-module of rank k, e.g.,
Rk. Free cyclic submodules of Rk are called points of PHG(k − 1, R), free
submodules of Rk of rank 2 lines of PHG(k−1, R), etc., and free submodules
of Rk of rank k − 1 hyperplanes of PHG(k − 1, R). Hyperplanes are given
by one linear equation a1x1 + · · · + akxk = 0 where R(a1, . . . , ak) is a point
of PHG(k − 1, R), and the so-defined correspondence between points and
hyperplanes is 1-1. For more information on projective Hjelmslev geometry
see, e.g., [14].

In [12] it is shown that there is a 1-1 correspondence between monomial
equivalence classes of so-called fat5 linear codes over a finite chain ring R and
equivalence classes of multisets of points in the geometries PHG(k − 1, R).6

A linear code C and its associated multiset KC have the same shape in the
sense that the R-module type of C and that of the span 〈suppKC〉R, which
is also called hull of KC , are parametrized by the same integer partition λ.
The integer k can be chosen as the module rank of C. The homogeneous
weight distribution of C can be obtained from geometric information about
KC (essentially the intersection patterns of KC with the various hyperplanes
of PHG(k − 1, R).

The correspondence between fat linear codes and multisets of points can
be extended to all linear codes, provided we include in PHG(k − 1, R) al-
so non-free cyclic submodules R(a1, . . . , ak) 6= 0 of Rk (degenerate points),
and the corresponding solution sets of a1x1 + · · · + akxk = 0 (degener-
ate hyperplanes). We will denote PHG(k − 1, R) extended in this way by
PHG(k − 1, R).

One of our main results depends on a combinatorial property of linear
forms on Qn. Recall that linear map l : V → K from a vector space to its
underlying field of scalars (considered a s vector space over itself) is called
a linear form on V . Any linear form l on Qn has a unique representation
l(x) = a1x1 + · · ·+ anxn with aj ∈ Q.

5A linear code is said to be fat (or regular) if for every coordinate position there exists
a codeword with a ’1’ in that position.

6If R is non-commutative, one must associate left linear codes C ≤ RR
n with multisets

of points in the “right” projective Hjelmslev geometry derived from Rk
R.
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Lemma 1 Suppose l1, . . . , lN are finitely many nonzero linear forms on Qn.
Then there exists x = (x1, . . . , xn) ∈ Qn with xj > 0 for 1 ≤ j ≤ n and such
that li(x) 6= 0 for 1 ≤ i ≤ N .

In other words, finitely many nonzero linear forms on Qn have a simultaneous
nonzero which is positive. We do not claim that this result is new—certainly
it is well-known that finitely many nonzero linear forms on a vector space
over an infinite field have a simultaneous nonzero, which amounts to the
impossibility of covering the space by finitely many hyperplanes. The addi-
tional requirement “simultaneous positive nonzero” is an easy extension of
this.
Proof. The proof is by induction on n, the case n = 1 being trivial. Now
suppose n ≥ 2, and let li(x) = ai1x1 + · · · + ainxn. The linear forms li that
do not involve xn (i.e., ain = 0) can by viewed as linear forms on Qn−1 and,
by induction, have a simultaneous positive nonzero (x1, . . . , xn−1) ∈ Qn−1.
It remains to determine xn ∈ Q, xn > 0, in such a way that ain 6= 0 implies
ai1x1 + · · · + ainxn 6= 0, i.e., xn 6= − 1

ain
(ai1x1 + · · ·+ ai,n−1xn−1). Since this

excludes only finitely many rational numbers and there is an infinite supply
of positive rational numbers, this is always possible. �
Lemma 1 of course also implies the existence of a simultaneous positive in-
tegral nonzero.

3 Main results

If codewords x, y ∈ C generate the same cyclic submodule of C, we have
y = ux for some unit u ∈ R× and hence whom(y) = whom(x). Thus the
number of distinct nonzero homogeneous weights of C cannot exceed the
number of nonzero cyclic submodules of C. In the following theorem we make
this bound precise by computing the number nonzero cyclic submodules of C
as a function of q and the conjugate shape of C. The corresponding formula
in terms of the type of C is more complicated to state and omitted. In the
examples below it will be included.

Theorem 1 Let C be a linear code over R of type k and conjugate shape µ.
The number of distinct nonzero homogeneous weights of C, and hence also
the number L(k), is bounded from above by

m∑
i=1

qµ1+···+µi−1−(i−1) · q
µi − 1

q − 1
. (2)
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Proof. Nonzero cyclic submodules of C have order qi, 1 ≤ i ≤ m, and
|Rx| = qi if and only if x is of period θi (cf. [12]), i.e., θix = 0, θi−1x 6= 0.
Hence, if we let

C[θi] = {x ∈ C; θix = 0} for 1 ≤ i ≤ m,

the set of codewords of exact period θi is C[θi] \ C[θi−1], and the number of
cyclic submodules of C of order qi is Ni := |C[θi] \ C[θi−1]| divided by the
number qi − qi−1 of generators of a fixed such module.

Since |C[θi]| = qµ1+···+µi (cf. [12]), we have

Ni = qµ1+···+µi − qµ1+···+µi−1 = qµ1+···+µi−1 (qµi − 1) ,

Ni

qi − qi−1
=

Ni

qi−1(q − 1)
= qµ1+···+µi−1−(i−1) · q

µi − 1

q − 1
.

Summing over i ∈ {1, . . . ,m} we obtain that the number of nonzero cyclic
submodules of C is given by (2). The theorem then follows from the remarks
preceding it.

�

Remark 1 The number of nonzero cyclic submodules of C can also be ex-
pressed as

m∑
i=1

qµ1+···+µi−1−(i−1)
(
1 + q + · · ·+ qµi−1

)
=

m∑
i=1

µ1+···+µi−i∑
s=µ1+···+µi−1−(i−1)

qs

=

(
µ1+···+µm−m∑

j=0

qj

)
+ qµ1−1 + qµ1+µ2−2 + · · ·+ qµ1+···+µm−1−(m−1)

=
qµ1+···+µm−(m−1) − 1

q − 1
+ qµ1−1 + qµ1+µ2−2 + · · ·+ qµ1+···+µm−1−(m−1).

Example 1 The generator matrix of a linear code C over Zp2 (the case
q = p, m = 2) has the following form:

G =

(
Ik1 A11 A12

0 pIk2 pA22

)
.
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Here (k1, k2) is the type of C, which is related to the conjugate shape (µ1, µ2)
by µ1 = k1 + k2, µ2 = k1. Theorem 1 and Remark 1 give

L(k1, k2) ≤
pµ1+µ2−1 − 1

p− 1
+ pµ1−1

=
p2k1+k2−1 − 1

p− 1
+ pk1+k2−1.

Example 2 The generator matrix of a linear code C over Zp3 (q = p, m = 3)
has the following form:

G =

 Ik1 A11 A12 A13

0 pIk2 pA22 pA23

0 0 p2Ik3 p2A33

 .

Here the type (k1, k2, k3) and the conjugate shape (µ1, µ2, µ3) are related by
µ1 = k1 + k2 + k3, µ2 = k1 + k2, µ1 = k1, and so

L(k1, k2, k3) ≤
pµ1+µ2+µ3−2 − 1

p− 1
+ pµ1−1 + pµ1+µ2−2

=
p3k1+2k2+k1−2 − 1

p− 1
+ pk1+k2+k3−1 + p2k1+2k2+k3−2.

Definition 1 A linear [n,k] code C over R is called a Maximum Weight
Spectrum (MWS) code, if C has the maximum number L(k) of (nonzero)
homogeneous weights among all linear codes over R with the same module
type k as C.

Remark 2 Let A(C) = (A1, . . . , Anqm−1) be the (nonzero) weight distribu-
tion of C, where Ai = |{c ∈ C|wh(c) = i}|. Clearly we have that C is MWS
if and only if the Hamming weight of A(C) is L(k). If an [n,k] MWS code
exists then L(n,k) = L(k), of course.

Our next goal is to prove that the inequality in Theorem 1 is tight, i.e.,
codewords of MWS codes have different homogeneous weight if they generate
different cyclic submodules. First we provide some examples showing the
existence of MWS codes over Z4 meeting the bound in Theorem 1.

Example 3 We consider the 2-dimensional simplex code over Z4 with the
following generator matrix:

G =

(
1 0 1 1 1 2
0 1 1 2 3 1

)
,
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which is associated to the projective Hjelmslev line PHG(1,Z4). The code is
free of rank 2 and has 9 nonzero cyclic submodules.7 In the following we list
generators for these as rows of a matrix M ∈ Z9×6

4 and the corresponding
Lee weights (the homogeneous weight is equal to the Lee weight over Z4) in
another matrix W ∈ Q9×6 “weight matrix”:

M =



1 0 1 1 1 2
2 0 2 2 2 0
0 1 1 2 3 1
0 2 2 0 2 2
1 1 2 3 0 3
2 2 0 2 0 2
1 3 0 3 2 1
1 2 3 1 3 0
2 1 3 0 1 1


, W =



1 0 1 1 1 2
2 0 2 2 2 0
0 1 1 2 1 1
0 2 2 0 2 2
1 1 2 1 0 1
2 2 0 2 0 2
1 1 0 1 2 1
1 2 1 1 1 0
2 1 1 0 1 1


.

Now let us choose 6 positive multiplicities m1, ...,m6 for the 6 columns of G
such that the multiplicity vector m = (m1, ...,m6) satisfies the following:

The column vector WmT has distinct entries; equivalently, the linear
forms on Q6 determined by the rows of W attain distinct values on m. This
is possible, since these 9 linear forms are distinct (i.e., the rows of W are
distinct), and hence their mutual differences are nonzero and must have a
simultaneous positive integral nonzero by Lemma 1. Now let G be the matrix
with Column j of G repeated mj times (in the same order). The matrix G
generates a linear code C over Z4, whose corresponding matrix M arises from
M in the same way, and the column vector WmT contains the Lee weights
of the rows of M, i.e., the nonzero Lee weights of C.

Thus we have a non-constructive proof (i.e., without specifying the mul-
tiplicities explicitly) that a Z4-linear code which is free of rank 2 and has the
maximum number of 9 distinct Lee weights exists. The proof can easily be
made constructive by finding a suitable multiplicity vector m. For example,
we can take m = (1, 3, 32, 33, 34, 35), because the rows of W can be viewed as
base-3 representations of certain integers. With this choice C has length 364
and 9 distinct Lee weights. However, there exists a free rank-2 code with 9
distinct weights and much smaller length, viz. 8. For this use only the first
3 columns of G, which represent non-neighbor points in PHG(1,Z4). The

7These correspond to the 6 points of PHG(1,Z4) and the 3 neighbor classes (“degen-
erate” points).
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corresponding matrix pair is

M =



1 0 1
2 0 2
0 1 1
0 2 2
1 1 2
2 2 0
1 3 0
1 2 3
2 1 3


, W =



1 0 1
2 0 2
0 1 1
0 2 2
1 1 2
2 2 0
1 1 0
1 2 1
2 1 1


,

and choosing m = (1, 3, 4) produces a code with weights 5, 10, 7, 14, 12, 8, 4, 11, 9.

Example 4 A good example for a non-free code over Z4 is the code as-
sociated with a neighbor class of points in the projective Hjelmslev plane
PHG(2,Z4), which has generator matrix

G =

1 1 1 1
0 2 0 2
0 0 2 2

 .

This code has type (k1, k2) = (1, 2) and 11 nonzero cyclic submodules, of
which 4 are free, with representatives

1 1 1 1
1 3 1 3
1 1 3 3
1 3 3 1

 .

Since all have 4 unit entries, they give rise to 4 indentical rows in the corre-
sponding weight matrix W, and hence there is no way to select multiplicities
to obtain a code of the desired form. The corresponding 4 rows will always
have the same Lee weight. However, if we augment the generator matrix by
columns corresponding to the 7 degenerate points, i.e., 1 1 1 1 2 0 0 0 2 2 2

0 2 0 2 0 2 0 2 0 2 2
0 0 2 2 0 0 2 2 2 0 2

 ,
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the problem goes away: The corresponding part of M becomes
1 1 1 1 2 0 0 0 2 2 2
1 3 1 3 2 2 0 2 2 0 0
1 1 3 3 2 0 2 2 0 2 0
1 3 3 1 2 2 2 0 0 0 2

 ,

and gives rise to 4 distinct rows in W. In fact the new weight matrix W has
11 distinct rows, and the argument goes through.

Further, let us look at an example which is associated with the projective
Hjelmslev plane PHG(2,Z4). It can be shown that the 3-dimensional simplex
code over Z4, which is free of rank 3, has length 28 and 35 nonzero cyclic
submodules, gives rise to a weight matrix W ∈ Q35×28, whose rows are
distinct and hence can be used to construct a free rank-3 code with 35 nonzero
weights. The following example uses a “starter code” of much smaller length.

Example 5 Consider the linear code over Z4 with generator matrix

G =

1 0 0 1 0 1 1
0 1 0 1 1 0 1
0 0 1 0 1 1 1

 .

The code has length 7, is free of rank 3, and hence has 35 nonzero cyclic sub-
modules as well. The 7 columns of G represent a quadrangle in PHG(2,Z4)
together with its 3 diagonal points. The rows of M and W (cf. the previous
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examples) are

M =



0 0 1 0 1 1 1
0 0 2 0 2 2 2
0 1 0 1 1 0 1
0 1 1 1 2 1 2
0 1 2 1 3 2 3
0 1 3 1 0 3 0
0 2 0 2 2 0 2
0 2 2 2 0 2 0
0 2 1 2 3 1 3
1 0 0 1 0 1 1
1 0 1 1 1 2 2
1 0 2 1 2 3 3
1 0 3 1 3 0 0
1 1 0 2 1 1 2
1 1 1 2 2 2 3
1 1 2 2 3 3 0
1 1 3 2 0 0 1
1 2 0 3 2 1 3
1 2 1 3 3 2 0
1 2 2 3 0 3 1
1 2 3 3 1 0 2
1 3 0 0 3 1 0
1 3 1 0 0 2 1
1 3 2 0 1 3 2
1 3 3 0 2 0 3
2 0 0 2 0 2 2
2 0 1 2 1 3 3
2 0 2 2 2 0 0
2 1 0 3 1 2 3
2 1 1 3 2 3 0
2 1 2 3 3 0 1
2 1 3 3 0 1 2
2 2 0 0 2 2 0
2 2 1 0 3 3 1
2 2 2 0 0 0 2



, W =



0 0 1 0 1 1 1
0 0 2 0 2 2 2
0 1 0 1 1 0 1
0 1 1 1 2 1 2
0 1 2 1 1 2 1
0 1 1 1 0 1 0
0 2 0 2 2 0 2
0 2 2 2 0 2 0
0 2 1 2 1 1 1
1 0 0 1 0 1 1
1 0 1 1 1 2 2
1 0 2 1 2 1 1
1 0 1 1 1 0 0
1 1 0 2 1 1 2
1 1 1 2 2 2 1
1 1 2 2 1 1 0
1 1 1 2 0 0 1
1 2 0 1 2 1 1
1 2 1 1 1 2 0
1 2 2 1 0 1 1
1 2 1 1 1 0 2
1 1 0 0 1 1 0
1 1 1 0 0 2 1
1 1 2 0 1 1 2
1 1 1 0 2 0 1
2 0 0 2 0 2 2
2 0 1 2 1 1 1
2 0 2 2 2 0 0
2 1 0 1 1 2 1
2 1 1 1 2 1 0
2 1 2 1 1 0 1
2 1 1 1 0 1 2
2 2 0 0 2 2 0
2 2 1 0 1 1 1
2 2 2 0 0 0 2



.

Since the rows of W are distinct vectors in Q7, it is possible to choose 7
multiplicities m1, ...,m7 ≥ 1 for the 7 columns of G such that the multiplicity
vector m = (m1, ...,m7) gives rise to a column vector WmT with distinct
entries. For example, we can take m = (1, 2, 22, 23, 24, 25, 26), as found by
a computer search. The code of length 127 over Z4 generated by the corre-
sponding matrix G then has 35 distinct Lee weights.8

The geometric property of the point set K in PHG(2,Z4) represented by
the columns of G responsible for 35 distinct rows in W is the following: The
7 points in K are pair-wise non-neighbors, and the 28 lines of PHG(2,Z4)
have distinct K-types; see [12, Section 5].

The above example does not consider the length of MWS codes, the
following example with type (2, 1) will discuss the shortest length problem.
We will determine the appropriate multiplicity vector so that the length of
MWS codes is minimal.

8It should be noted that the MWS property depends on the exact order in which
the multiplicities are assigned to the columns of G. For example, using m =
(1, 23, 25, 2, 22, 24, 26) instead produces a code with only 32 distinct Lee weights.
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Example 6 A good example with type (2, 1) over Z4 is the code associated
with a neighbor class of points in the projective Hjelmslev plane PHG(2,Z4),
which has generator matrix

G =

1 0 1 0
0 1 1 0
0 0 0 2

 .

This code has 19 nonzero cyclic submodules. Through the program algorithm
search, we take the multiplicity vector m = (m1, ...,m4) = (1, 3, 4, 8) (multi-
plicity vectors are not unique)to get a new generator matrix

G1 =

1 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0
0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 2 2 2 2 2 2 2 2

 .

The linear code generated by G1 has 19 different Lee weights: 4, 5, 7, 8, 9, 10, 11,
12, 14, 16, 20, 21, 23, 24, 25, 26, 27, 28, 30. In addition, the minimum value of
m1 +m2 +m3 +m4 searched by the program algorithm with G as the starting
set is 16.

Remark 3 The search algorithm for Example 6 is as follows: First, a matrix
G = [v1, . . . , vn] is selected as a starting set, and the multiplicity of each
column vi is set to mi, 1 ≤ i ≤ n. Second, we choose an appropriate positive
integer N0, where N0 must be large enough to ensure that the new matrix
constructed is the generator matrix of MWS codes. Then the we calculate
the number of nonzero cyclic submodules of G as N . And S is denoted as
the number of nonzero cyclic submodules of the linear code generated by new
generator matrix. So we can formulate the following linear programming
problem:

Minimize m1 +m2 + · · ·+mn

subject to

S = N

m1 +m2 + · · ·+mn ≤ N0

mi ≥ 1 for 1 ≤ i ≤ n

Let M be the optimal solution to the above linear programming problem.
Then we get the shortest length of the corresponding MWS codes.

After working out the above examples the general picture became clear,
and we were able to prove our main theorem:
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Theorem 2 Let R be a chain ring with residue field Fq and nilpotency index
m. For all nonegative integer m-tuples k = (k1, k2, . . . , km) we have

L(k) =
m∑
i=1

qµ1+···+µi−1−(i−1) · q
µi − 1

q − 1
,

where µ = (µ1, . . . , µm) is defined by µi = k1 + · · ·+ km−i+1 for 1 ≤ i ≤ m.

Proof. The rank of an R-module of type k is k = k1 + · · · + km = µ1.
We choose a submodule U of Rk of type k (hence conjugate shape µ), and
include representatives of all nonzero cyclic submodules of U in the generator
matrix G as columns. Then the linear code C generated by G, and likewise
any other obtained from G by repeating each column a positive number of
times, will have type k as well; see, e.g., [11, Corollary 1].9 If the rows of the
associated weight matrix W (obtained in the same way as in our examples)
are distinct, applying Lemma 1 to the mutual differences of the rational
linear forms represented by the rows of W shows the existence of a code of
the given type with the indicated number of distinct nonzero weights.

Thus it remains to show that the rows of W are distinct, and for this in
turn it suffices to show that no two rows of W have their zeros in the same
positions or, equivalently, codewords of C with the same positions of zeros
are unit multiples of each other.

Codewords of C are of the form xG, x ∈ Rk, and a column u of G
corresponds to a zero of xG iff u is in the kernel of the linear form Rk → R,
y 7→ x · y = x1y1 + · · ·+ xkyk. Hence we are reduced to showing that linear
forms w1, w2 on U with the same kernel K 6= U must be unit multiples of
each other. But in this case w1, w2 must have the same image, because by
the Homomorphism Theorem the size of the image is the same and R has
only 1 submodule of a given size. If the common image is (θi), there exists
u in U such that w1(u) = θi, and then clearly U = K + Ru. On the other
hand, w2(u) = rθi for some unit r ∈ R×, and it follows easily that w2 = r w1.
�

The proof of Theorem 2 is based on Lemma 1 and hence non-constructive,
but it is easy to turn it into a construction using the interpretation of the
rows of W as base-b representations of certain integers. To this end we can

9In [11, Corollary 1] it is proved that the row and column module (“space”) of any
matrix over R have the same type, provided R is commutative. In the non-commutative
case this remains true for the pair “left row/right colum module”.
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set b = q + 1, which is larger than all entries of W. Choosing the multiplicy
vector m = (1, b, b2, . . . ) will then result in a code meeting the bound of
Theorem 2.

4 Minimum Length of MWS codes

From Section 3 we know the number of distinct weights of MWS codes of
any given module type. In this section we will discuss the possible lengths
of MWS codes in more detail.

Considering again R as fixed, let us denote the minimum length of a linear
[n,k] MWS code over R by n(k). By Proposition 1, a trivial lower bound in
terms of the residue field size q of R is given by

n(k) ≥
⌈
L(k)

q

⌉
. (3)

A corresponding upper bound may be inferred from the remark at the end
of Section 3:

n(k) ≤
L(k)−1∑
i=0

(q + 1)i =
(q + 1)L(k) − 1

q
, (4)

since the number of columns of the weight matrix W used in the proof of
Theorem 2 is precisely L(k).

In the following we will sharpen these bounds in the case q = m = 2. For
simplicity we assume R = Z4 in the discussion, although it mostly applies
to the other chain ring of order 4, the ring F2[X]/(X2) of dual numbers over
F2, as well.

For q = m = 2 we have L(k) = 2µ1+µ2−1 − 1 + 2µ1−1, and the bound (3)
takes the form n(k) ≥ 2µ1+µ2−2 + 2µ1−2.

Theorem 3 n(k) ≥ 2µ1+µ2−2 + 2µ1−1 − 1.

Proof. If C has conjugate shape µ = (µ1, µ2), the even-weight subcode
C0 of C is either equal to C or, since it contains C[2], of conjugate shape
(µ1, µ2− 1). Thus the number of nonzero cyclic submodules of C0 is at least
2µ1+µ2−2− 1 + 2µ1−1. If C is MWS, C0 has at least 2µ1+µ2−2− 1 + 2µ1−1 even
weights, which is only possible if n ≥ 2µ1+µ2−2 − 1 + 2µ1−1. �
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Lemma 2 Suppose C is a linear MWS code over Z4. Then the nonzero
codewords of the radical code 2C are minimal codewords of the torsion code
C[2].

Proof. Since Z4 has nilpotency index 2, we have 2C ⊆ C[2]. Suppose
c ∈ C, d ∈ C[2] are such that 2c 6= 0 and supp(d) ⊆ supp(2c). Since c has
entries ±1 in the positions of supp(d), c and c + d have the same Lee weight
and, since C is MWS, must be scalar multiples of each other. Thus either
c + d = c, d = 0, or c + d = 3c, d = 2c, proving the assertion. �

Theorem 4 For R = Z4 and k1 = 1 we have

n(1, k − 1) = 2k − 1.

Moreover, the
[
2k − 1, (1, k − 1)

]
MWS code is unique up to equivalence.

Proof. Suppose C is a Z4-linear code of length n and type (1, k−1). Then
the torsion code C[2] has dimension k over F2 and corresponds to a binary
linear MWS code, which must have length at least 2k − 1. Thus n ≥ 2k − 1.
Conversely, it easy to verify that the Z4-linear code of length 2k−1 generated
by 

1
2 2

2 2 2 2
. . .


has type (1, k − 1), nonzero even Lee weights 2i, 1 ≤ i ≤ 2k − 1, and odd
Lee weights 4i + 1, 0 ≤ i ≤ 2k−1 − 1. Since L(1, k − 1) = 2k − 1 + 2k−1, cf.
Example 1, this code is MWS.

It remains to prove uniqueness of C. Since C[2] as a binary linear [2k−1, k]
MWS code is uniquely determined,10 we may assume that C is generated by
a matrix of the form

G =


1 a1 a2 b1 b2 b3 b4 . . .

2 2
2 2 2 2

. . .


10The associated multiset of points in PG(k− 1,F2) must be a vector space basis of Fk

2

with point multiplicities 1, 2, 22, . . . , 2k−1.
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with 2a1 = 2a2, 2b1 = 2b2 = 2b3 = 2b4, etc.
Let c1, . . . , ck be the rows of G, in order. Lemma 2 implies that all but

the first entry of c1 are in 2Z4. Indeed, if a1, a2 were units in Z4, supp(2c1)
would strictly contain the support of the 2nd row of G, contradicting the
lemma; similarly, if b1, b2, b3, b4 were units, supp(2c1) would strictly contain
the support of the 3nd row of G, again contradicting the lemma; etc.

Then, since the subcode generated by c2, . . . , ck has all weights divisible
by 4, the odd-weight subcode C1 of C must either have (i) all weights ≡ 1
(mod 4) or (ii) all weights ≡ 3 (mod 4). Since C has exactly 2k−1 odd
weights and 3 + (2k−1 − 1)4 = 2k+1 − 1 exceeds twice the length of C (the
maximum possible weight), Case (ii) cannot occur. This leaves odd weights
1, 5, . . . , 2k+1 − 3 as only possibility. Thus we may assume wLee(c1) = 1, i.e.,
c1 = (1, 0, 0, . . . ), and the uniqueness proof is complete. �

Further we are able to settle the case k1 = 2, k2 = 0 corresponding to the
projective Hjelmslev line PHG(1,Z4) completely:

Theorem 5 For R = Z4 we have n(2, 0) = 8. Moreover, the
[
8, (2, 0)

]
MWS

code is unique up to equivalence.

Proof. We have L(2, 0) = 6 + 3 = 9, and the Z4-linear code generated by

G =

(
1 1 1 1 0 0 0 1
0 0 0 0 1 1 1 1

)
,

whose nonzero codewords (up to scalar multiples) are listed in the 2nd column
of the following table, is an

[
8, (2, 0)

]
MWS code:

x xG wLee(xG)
1 0 1 1 1 1 0 0 0 1 5
0 1 0 0 0 0 1 1 1 1 4
1 2 1 1 1 1 2 2 2 3 11
2 1 2 2 2 2 1 1 1 3 12
1 1 1 1 1 1 1 1 1 2 9
1 3 1 1 1 1 3 3 3 0 7
2 0 2 2 2 2 0 0 0 2 10
0 2 0 0 0 0 2 2 2 2 8
2 2 2 2 2 2 2 2 2 0 14

(5)

Now suppose C is an MWS code over Z4 of type (2, 0), i.e., free of rank 2, and
minimum length n = n(2, 0). Proving uniqueness of C amounts to showing
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that the multiset K of points associated with C in the extended projective
Hjelmslev line PHG(1,Z4), which contains the six points of PHG(1,Z4) and
the three degenerate points Z4(2, 0), Z4(0, 2), Z4(2, 2), must have the follow-
ing form: There exist three mutually non-neighbor points P1, P2, P3 with
multiplicities K(P1) = 4, K(P2) = 3, K(P3) = 1, and K(P ) = 0 for the
remaining points of PHG(1,Z4).

Since n ≤ 8, C must have at least one odd weight, implying that the
even-weight subcode C0 of C has type (1, 1). Thus C has 5 even weights,
of which 3 are in C[2], and 4 odd weights. Denoting the weights in C[2] by
s1 < s2 < s3, the remaining even weights by e1 < e2, and the odd weights by
o1 < o2 < o3 < o4, we have

s1 + s2 + s3 = 4 n
(
C[2]

)
,

s1 + s2 + s3 + 2(e1 + e2) = 8 n(C0),

s1 + s2 + s3 + 2(e1 + e2 + o1 + o2 + o3 + o4) = 16 n(C);

cf. [5]. Now we claim that

1. The multiplicities K
(
[Pi]
)

of the three point neighbor classes K
(
[P1]
)
,

K
(
[P2]
)
, K
(
[P3]
)

are distinct.

2. The multiplicities K(Pi),K(P ′i ) of the two points Pi, P
′
i in each neighbor

class [Pi] are distinct.

The first assertion expresses the fact that the nonzero weights in C[2] are
distinct; the second that the weights of xG, x′G for neighbor points Z4x,
Z4x

′ of PHG(1,Z4) are distinct; cf. [12, Theorem 5.2].
This leaves the possibilities

n
(
C[2]

)
K
(
[P1]
)

K
(
[P2]
)

K
(
[P3]
)

s1 s2 s3
6 3 2 1 6 8 10
7 4 2 1 6 10 12
8 5 2 1 6 12 14
8 4 3 1 8 10 14

(6)

For this note that, since 2C = C[2], the number of ordinary points of K is
equal to n

(
C[2]

)
.11

11In general this number is equal to n(2C).
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Assuming, for the moment, that there are no degenerate points in K, the
remaining even weights e1, e2 are 4, 8 in the 1st case, 6, 8 in the 2nd case, and
6, 10 in the 3rd case. In the 4th case there are two possibilities, viz., 6, 10
for {K(P1),K(P ′1)} = {3, 1}, and 4, 12 for {K(P1),K(P ′1)} = {4, 0}. Only the
last subcase produces a code with five distinct even weights.

Hence {K(P1),K(P ′1)} = {4, 0} and, trivially, {K(P3),K(P ′3)} = {1, 0}. In
the case {K(P2),K(P ′2)} = {2, 1} the odd weights are 7, 7, 9, 9, so that this
case is also excluded. Thus necessarily {K(P2),K(P ′2)} = {3, 0} and C is
equivalent to the code in (5).

Finally it remains to exclude degenerate points in the cases with n
(
C[2]

)
<

8. Since the codewords in C0 \C[2] are neighbors, they have the same entries
in the positions corresponding to degenerate points. Codewords in C[2] have
zeros there. Thus by adding one or two degenerate points it is only possible
to increase both e1, e2 by 2 or 4, while s1, s2, s3 remain unchanged. But in
Cases 1 and 2 above at least one of e1 + 2, e2 + 2 and at least one of e1 + 4
and e2 + 4 are in {s1, s2, s3}, contradiction. �

Determining the numbers n(2, 1) and n(3, 0) and classifying the corre-
sponding minimum-length MWS codes seems to be considerably more dif-
ficult. A reasonable approach is to choose the support S of the associated
multiset of points in PHG(2,Z4) as small as possible, and try to determine
corresponding multiplicities either by adhoc methods or computer search.

From Lemma 1 and the proof of Theorem 2 that there exists a multiset
K (of possibly large cardinality) that has supp(K) = S and is associated with
an MWS code if and only if the rows of the weight matrix W (cf. Section 3)
corresponding to S are distinct. Such point sets will be called starter sets in
the sequel. Since K and suppK have the same span, which in turn has the
same module type k as any associated linear code, we can speak of “starter
sets of type k” (in place of the longer “starter sets for MWS codes of type
k”).

Example 7 Inspecting the proof of Theorem 4 we see that the points R(1, 0, 0, . . . ),
R(0, 2, 0, 0, . . . ), . . . , R(0, . . . , 0, 2) in PHG(k − 1,Z4) form a starter set S
of type (1, k − 1). It is clear that S is a minimal starter set for this type.

Example 8 Minimal starter sets of type (2, 0) consist of three points on the
projective Hjelmslev line PHG(1,Z4) that are mutually distant (i.e., non-
neighbors). For example, we can take Z4(1, 0), Z4(0, 1),, Z4(1, 1).
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Example 9 The three points Z4(1, 0, 0), Z4(0, 1, 0), Z4(1, 1, 0) of the Hjelm-
slev plane PHG(2,Z4) together with the distant degenerate point Z4(0, 0, 2)
of PHG(2,Z4) form a minimal starter set of type (2, 1).

Example 10 Minimal starter sets of type (3, 0) contain six points in PHG(2,Z4)
that are mutually non-neighbors.

It turns out that in the case k = (k, 0) starter sets are the same as so-called
strong blocking sets, which are investigated by many authors these days
because of their relation with minimal linear codes. We do not delve further
into this subject, but just provide the definition and one recent reference,
where interested readers can find more.

A set of points in a classical projective space PG(k − 1,Fq) is said to
be a strong blocking set (or cutting blocking set) if the intersection with any
hyperplane is a spanning set of the hyperplane. This property is considerably
stronger than that of an ordinary blocking set (with respect to hyperplanes),
which only requires the intersection with any hyperplane to be nonempty.
For a recent authoritative account of strong blocking sets we recommend
[10].

In the plane case k = 3 strong blocking sets are equivalent to 2-blocking
sets (point sets meeting every line of PG(2,Fq) in at least two points), and
thus the unique minimal example in the Fano plane PG(2,F2) contains 6
points; compare with Example 10 above. In PG(3,F2) minimal examples
contain 9 points on three mutually disjoint lines.

Theorem 6 A set K of (ordinary) points in the projective Hjelmslev geom-
etry PHG(k − 1,Z4) is a starter set of type (k, 0) if and only if the point
neighbor classes [P ] with K

(
[P ]
)
> 0 form a strong blocking set in the quo-

tient geometry PG(k − 1,F2).

Thus in the case R = Z4 minimal starter sets S of type (k, 0) are obtained
by selecting a set S of point neighbor classes in the quotient geometry that
forms a minimal strong blocking set and then arbitrarily one representative
point from each class in S to form the set S.

The rather technical proof of Theorem 6 is omitted.

Proposition 2 When q = 2, let C be an [n, k1, k2] MWS code. Then an
[2n+ 1, k1, k2 + 1] MWS code exists.
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Proof. Let C be a linear code over a chain ring of length 2 with the
following generator matrix

Gk1,k2 =

(
Ik1 A11 A12

0 2Ik2 2A22

)
,

where Iki is the ki × ki identity matrix and Ai,j are matrices over a chain
ring of length 2 for all i, j ∈ {1, 2}. Since C is an MWS code, we know that
C has 22k1+k2−1 + 2k1+k2−1− 1 different weights by Theorem 2. Let us call it
w1 < w2 < · · · < w22k1+k2−1+2k1+k2−1−1. The construction Gk1,k2+1 by taking
the following form

Gk1,k2+1 =


0 · · · 0

Gk1,k2

...
...

0 · · · 0
0 · · · 0 2 · · · 2

 ,

where the last row is made up of n 0’s and (n+1) 2’s. Thus the code spanned
by the rows of Gk1,k2+1 has new weights 2(n + 1) < 2(n + 1) + w1 < · · · <
2(n+1)+w22k1+k2−1+2k1+k2−1−1. The number of weights of the code generated
by Gk1,k2+1 is denoted as Nk1,k2 . Since w22k1+k2−1+2k1+k2−1−1 ≤ 2n < 2(n+ 1),
then Nk1,k2 ≥ 2L2(n, k1, k2) + 1. Hence, we have

Nk1,k2 ≥ 22k1+k2 + 2k1+k2 − 1.

By Theorem 1, we have

Nk1,k2 ≤
qk1+k2+1(qk1 − 1)

q(q − 1)
+
qk1+k2+1 − 1

q − 1

= 22k1+k2 + 2k1+k2 − 1.

Thus,
Nk1,k2 = 22k1+k2 + 2k1+k2 − 1.

Hence, the code spanned by the rows of Gk1,k2+1 is an [2n+1, k1, k2+1] MWS
code. �

Corollary 1 When q = 2, let C be an [n,k] MWS code. Then an [2n +
1,k + 1] MWS code exists.
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Proof. Let C be a linear code over R with the following generator matrix

Gk1,k2,...,km =


Ik1 A11 A12 A13 . . . A1,m−1 A1,m

0 2Ik2 2A22 2A23 . . . 2A2,m−1 2A2,m

0 0 22Ik3 22A33 . . . 22A3,m−1 22A3,m
...

...
...

...
. . .

...
...

0 0 0 0 · · · 2m−1Ikm 2m−1Am,m

 ,

where Iki is the ki × ki identity matrix and Ai,j are matrices over R for
all i, j ∈ {1, 2, . . . ,m}. Since C is an MWS code, we know that C has
L2(k1, k2, . . . , km) different weights. Let us call it w1 < w2 < · · · < wL2(k1,k2,...,km).
The construction Gk1,k2,...,km+1 by taking the following form

Gk1,k2,...,km+1 =


0 · · · 0

Gk1,k2,...,km

...
...

0 · · · 0
0 · · · 0 2m−1 · · · 2m−1


where the last row is made up of n 0’s and (n + 1) 2m−1’s. Thus the
code spanned by the rows of Gk1,k2,...,km+1 has new weights 2m−1(n + 1) <
2m−1(n + 1) + w1 < · · · < 2m−1(n + 1) + wL2(k1,k2,...,km). The number of
weights of the code generated by Gk1,k2,...,km+1 is denoted as Nk1,k2,...,km . S-
ince wL2(k1,k2,...,km) ≤ 2m−1n < 2m−1(n+ 1), then we have

Nk1,k2,...,km ≥ 2L2(k1, k2, . . . , km) + 1

= L2(k1, k2, . . . , km + 1).

By Theorem 1, we have

Nk1,k2,...,km ≤ L2(k1, k2, . . . , km + 1).

Thus,
Nk1,k2,...,km = L2(k1, k2, . . . , km + 1).

�

5 Conclusion and open questions

In this paper we have solved the problem of maximizing the number of dis-
tinct homogeneous weights that a linear code over a chain ring may have.
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We determined in a non-constructive manner the number of distinct weights
of an MWS code of any given module type over any finite chain ring. As we
have remarked, it is not difficult to turn the proof into a code construction,
but the resulting codes have extremely large lengths, and the determination
of the minimum length of a [k1, k2, . . . , km]q MWS code remains a challenging
problem. We initiated work on this problem in Section 4, obtaining an upper
bound on the length of MWS codes over chain rings with q = 2. This bound
may still be rather weak, however. Moreover, some basic questions about
the structure of MWS codes over chain rings remain unsolved. Is it possible
to characterize these codes geometrically? Do there exist such codes with
further desirable properties, such as regular and/or projective codes?
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