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Abstract

Let p be a prime number and ¢ = p™ for some positive integer m. In this
paper, we find the possible Hermitian hull dimensions of A-constacyclic codes
over Re = Fg2 + uF 2 + uquz + -+ ue_llﬁ‘qz, u® = 1 where Fg2 is the
finite field of g2 elements, el(g+ 1) and A = Mo + n2az + -+ + Nere
for oy € F;z of order r; such that , | ¢ + 1 (for each 1 < I < e). Further,
we obtain some conditions for these codes to be Hermitian LCD. Also, under
certain conditions, we establish a strong result that converts every constacyclic
code to a Hermitian LCD code (Corollaries 3.2 and 3.3). Moreover, we study the
structure of generator polynomials for Hermitian dual-containing constacyclic
codes and obtain parameters of quantum codes using the Hermitian construction.
The approach that we used to derive Hermitian dual-containing conditions via
the hull has not been used earlier. As an application, we obtain several optimal
and near-to-optimal LCD codes, constacyclic codes having small hull dimensions,
and quantum codes.

Keywords: Hull of linear codes, Hull dimension, LCD codes, Gray map, Quantum
codes



1 Introduction

The hull of a linear code is defined as the intersection of the code with its dual. It
was introduced and employed by Assmus and Key [2] to Euclidean dual for the clas-
sification of finite projective planes. The hulls of linear codes play a significant role in
obtaining the complexity of some algorithms for determining the automorphism group
and examining the permutation equivalence of linear codes (see [23, 37, 38]). It is worth
noting that most of these algorithms work for small hull dimensions. Therefore, the
linear codes with small hull dimensions are of great importance for the implementation
of these algorithms, which have been studied in [9, 24]. In 1997, Sendrier [36] obtained
the number of different linear codes over I, having the given hull dimension. In 2003,
Skersys [40] studied the average hull dimension of cyclic codes over finite fields and
established that the hull of most cyclic codes of given length n is large for almost all
n. For some other related works on hulls, refer [18-21, 34, 35]. In 2018, Guenda et al.
[12] constructed maximal entanglement EAQECCs by establishing a relation between
the number of maximally entangled states and the hull (Euclidean and Hermitian) of
linear codes. Recently, Mankean and Jitman constructed optimal binary and ternary
linear codes with hull dimension one in [28] and quaternary linear codes of dimension
2 having the Hermitian hull dimension one in [29]. They also obtained some bounds
on the minimum weight of these codes.

LCD codes are linear codes having a hull dimension zero. These codes were intro-
duced and implemented by Massey [30] in 1992 to obtain an optimum linear coding
solution for a two-user binary adder channel (2-BAC). In 1994, a necessary and suf-
ficient condition for cyclic codes over a finite field to be LCD was derived by Yang
and Massey [48]. Later, some bounds for these codes were derived, and these codes
were studied over finite chain rings in [27, 31, 39]. Recently, LCD codes were shown
to have applications in cryptography for protection against SCA and FIA [8]. Sub-
sequently, many articles were written about these codes over finite fields and various
rings [10, 15-17, 25, 26, 33, 43-46]. Apart from these, LCD codes were also shown to
have applications in a multi-secret sharing scheme (see [1, 32]). On the contrary, there
is a class of linear codes that contain their dual. This class of codes plays a crucial
role in constructing quantum error-correcting codes (QECC) to be used in quantum
computation. In 1995, Shor [42] discovered QECCs. Later, some constructions were
provided to obtain QECCs from classical error-correcting codes. Among these, one
of the famous construction is CSS construction [6]. By using this construction, many
good QECCs were obtained [4, 7, 13, 14, 16, 41].

Motivated by the above-mentioned works, we first obtain the Hermitian hull dimen-
sion of A-constacyclic codes (with the help of their generator polynomial) over the
ring Re = Fp2 + uFp + u?Fp2 + -+ + u"'Fpe, u® = 1 such that e|(¢ + 1) and
A =nmag + npag + -+ neae for ap € IFZZ of order r; such that r; | ¢ + 1 (for each
1 <1 < e). We also present a Gray map in terms of a matrix to obtain codes over
finite field from the codes over the ring R.. Further, we obtain some conditions for
these codes to satisfy complementary duality and dual containing property. We estab-
lish a strong result that converts every constacyclic code to a Hermitian LCD code
(Corollaries 3.2 and 3.3). Moreover, we study the structure of generator polynomi-
als for Hermitian dual-containing constacyclic codes. As an application of these, we



obtain several LCD and quantum codes over a finite field through a Gray map. We
use the notation [[n, k,d]], to represent a QECC over F, of length n, dimension ¢*
and minimum distance d. For ease of understanding, we first present results for e = 2
with their proofs and later present their analogues for e > 2.

This paper is organized as follows: Section 2 contains some basic definitions, a Gray
map in terms of a matrix with certain properties, and some related results essential
for further study. In Section 3, we study the Hermitian hull dimension of constacyclic
codes over R, and obtain conditions for these codes to be LCD. Section 4 presents
certain conditions under which a constacyclic code over R, has dual containing prop-
erty and is employed to obtain quantum codes by using the Hermitian construction. In
Section 5, we present some examples of LCD codes, quantum codes, and constacyclic
codes with small hull dimensions. Section 6 concludes the work.

2 Preliminary

Let ¢ = p™ for an odd prime p and a positive integer m. Following [32], we choose
v € Fgp2 such that 2y = 1 (mod p) and consider the ring Ry = Fg2 + ulF,2 where
u? = 1. Then, by the Chinese Remainder Theorem, we have Ry =2 €1F 2 @ €2l
where e; = (1 + u),ea = y(1 — u) and every element r € Ry can be uniquely
written as 7 = €7y + erp for some 11,75 € Fgpe. It is worth noting that r is a
unit in Ry, i.e., » € R} if and only if r; and ry are non-zero. Consider another ring
Re = Fpe +uFpe2 + u?Fpe + -+ u"'Fpe, u® = 1 such that e|(¢ + 1) (¢ can also
be even depending upon e). Then, following [41], we have R. = @;_, 7;F,2, where
ni = (u® —1)/(u— pi=t) for 1 <i < e and p is a primitive e-th root of unity. Now,
every element v € R, can be uniquely expressed as t = Y ;_, 1;1;, where each r; € Fge.
Further, v € R, is a unit element if and only if each 7; is a unit in F.

For any polynomial p(x) = ag + a1 + - - - + as2® € Fp2lz] with ag, as # 0, the monic
conjugate-reciprocal polynomial is defined as pf(z) = ag? Z?:o alz*~%. Note that
(pHf(z) = p(x). If pf(z) = p(z), then p(x) is said to be a self-conjugate-reciprocal
polynomial, otherwise p(x),pf(x) are said to be a conjugate-reciprocal polynomial
pair. For a matrix M = [m;;], we denote its transpose matrix by M T which is defined
as M7 = [m;;]. The conjugate transpose of a matrix M is denoted by M* and defined
as M* = [m(z']j]T = [mgz]

2.1 Linear codes over [

A linear code C of length n and dimension k over a finite field Fy2 is defined as a
k-dimensional subspace of th and the elements of C' are called codewords. Recall
that a code C' is said to be an a—constacyclic code over F2 for some o € ]FZQ, if for
every ¢ = (cg,C1,...,¢n—1) € C, we also have 74(c) = (acp—1,co,...,Cn—2) in C. The
Hermitian dual C1+# of a linear code C over the finite field Fg2 is defined as

n—1
cte = {z GIE‘ZE Hx, o)y = incg =0,VceC}
i=0



where = (10, 21,...,7,_1) and ¢ = (co,C1,...,¢n_1). If C N Ot = {0}, then we
say that C' is a Hermitian LCD code. The code C' is said to be a Hermitian dual-
containing code (resp. self-dual code with respect to the Hermitian inner product) if
C+# C C (resp. C = C+#). Any a—constacyclic code C of length n over Fg2 can also
F o[z

=
co+cix+ -+ cp_12™ L In particular, an a—constacyclic code C can be considered
as a principal ideal generated by a monic polynomial g(z) such that g(x) | 2™ —« and
this monic polynomial g(x) is called the generator polynomial of C. If we take a in I 2
of order r such that r | ¢+1, then the Hermitian dual of an a-constacyclic code is again
an a-constacyclic code and so is its Hermitian hull Hully (C) = CNC+# (see [47]). In

be considered as an ideal of

on identifying (¢, ¢1, - . . , ¢p—1) with the polynomial

that case, the generator polynomial of C+# is (7”;(;)0‘) and the generator polynomial

n T
of Hully (C) (using [34, Theorem 1)) is lem (g(:z:)7 (ﬁ) ) Thus, the code C is a

g(z)
distance d(z,y) between two vectors © = (zg, z1,...,Zn—1) and y = (Yo, Y1, -+, Yn—1)
in ng is defined as

n T
Hermitian LCD code if and only if lem (g(x), (‘” _0‘) ) = 2" — a. The Hamming

d(z,y) = [{i: i # yi}.

The minimum (Hamming) distance d(C) of a linear code C' is defined as
d(C) = min{d(z,y) : x,y € C,x # y}.

We represent a linear code over the finite field Fj» having length n, dimension k, and
the minimum (Hamming) distance d by [n, k,d],z.

2.2 Linear codes over R,

A linear code C of length n over R, is an R.-submodule of the module R]. The
code C is said to be a A—constacyclic code over R, for some A € R}, if for
every ¢ = (co,¢1,..-,¢n—1) € C, we have 7)(c) = (Acp—1,¢0,...,Cn—2) in C. If
A = 1, then a A—constacyclic code is said to be a cyclic code, and if A\ = —1,
then we call it as a negacyclic code. We define the Hermitian inner product of

_ _ . n _ n—1_- q _ *
T = (anxla"wxn—l)ay - (y07yla"'7yn—l) mn Re as <xay>H - Zi:o Y, = 1Y,
where y* = (yd,y{,...,y2_,)T. Using this inner product, the Hermitian dual C+# of
C'is defined as

Ctt ={zx € R”: (x,c)g =0, for all c € C}.

Let C be a linear code of length n over Ry. We define
Cy={z¢€ FZQ cdye FZQ such that €1z + eay € C};

Cy={ye Fio: 32 € Fj» such that ;2 + €2y € C}.
Then C4,C> are linear codes of length n over F,2. Moreover, C' = €;C @ €2Cy =
{e1a1 + €2a9 : a1 € Cp,az € Cy} and CH1 = ele‘H &) egCQJ‘H. Also, it can easily be



checked that C'NCH# = €, (C) NCF™) @ e2(Cy N Cy-). The following result gives a
criterion for checking a linear code over Ry to be constacyclic.

Theorem 1. Let C = ¢1C; ® e5Cs be a linear code of length n over Rs. Then it is
a A—constacyclic code over Ro for A = e1a1 + eaaa € RS if and only if C1,Cs are
a1 —constacyclic and ax—constacyclic codes over Fyz, respectively.

Proof. Let C' be a A—constacyclic code over Ro and (ag,a1,...,an—1) € Ci,
(bo,b1,...,bn—1) € Co be arbitrary elements. Then ¢ = (¢g,c1,...,¢p-1) € C
where ¢; = €1a; + exb; for 0 < ¢ < n — 1. Since C is a A—constacyclic code,
2 (¢) = (Aen—1,¢0,- -, cn—2) in C. Now,
() =((e101 + €202)(€1an-1 + €20 1), €100 + €2bo, . . ., €1an_2 + €2b,,_2)

=(€e10qan_1 + €202y, _1, €100 + €2bo, . .., €102 + €2b,_2)

261(a1an_1, ag, . .. ,an_g) + 62(0(2()”_1, bo, ..., bn_g) eC.
Therefore, we have (aia,_1,a0,--.,a,—2) € C1 and (agb,_1,b0,...,bn_2) € Co.

Hence, we conclude that C,C> are a;, as— constacyclic codes over F 2, respectively.

Conversely, let C7,Cy be a; and as—constacyclic codes, respectively. If ¢ € C,
then there exist a = (ag, as,...,an—1) € Cq and b = (bg,b1,...,bn—1) € Co such that
¢ = e€1a+ exb. As C1,Cy are ay and as—constacyclic codes, we have 74, (a) € C; and
Tan () € Co. Therefore,

Ta(c) =e1(a1an_1,0a0,...,an—2) + €2(a2bp_1,bo, ..., bp_2)
=€17Ta, (@) + €274, (b) € C.

Hence, C' is a A—constacyclic code of length n over Rs. O

Similar to linear codes over Ry, we can also decompose linear codes over R, (see
[41]). Hence, a linear code C' of length n over R, can be written as

C=mCi®nCy® - ®&n.C.

where C; = {r; € IE‘ZQ e N ]P‘gz,l < j # 1 < e such that 22:1 nerr € C} for
1 < i < e. Further, C+# = nlc’f‘HEB- - ®n.CHH and CNCHH =y (Cy ﬂClJ‘H)EB- P
ne(CeNCEH). Also, C' is a A—constacyclic code over R, for A = Y7, ma; € R if and
only if C; are a;—constacyclic codes over g2, for 1 < ¢ < e. Further, the generator

polynomial of a constacyclic code of length n over R. can be obtained by the next
theorem.

Theorem 2. Let C' be a A—constacyclic code of length n over R., where A =
> mia; € RE. Then there exists a unique monic polynomial g(z) € Re[x] such that
C = (g(x)) for g(x) = 37;_, mgi(x) where g;(z)]z" — a; for 1 <i<e.

Now, we define a Gray map ¢ : Ry — F¢3' by

V(1,715 Tn—1) = [(510, 520, - - - 8e0) M, (811, 8215 - -+, Se1) M, . .., (S1(n—1)s S2(n—1)>
ey Se(n—l))M]



where r; = 2221 NSk for 0 < i <n—1and M is a square matrix of order e satisfying
MM* = v, where I, is the identity matrix of order e¢ and v € F;z. Then v is a
bijective linear map, and the following results hold.

Lemma 3. Let C be a linear code of length n over R, and C+# be the dual code of
C. Then (C+1) = (C)*H.

Proof. Let ¢ = (cg,c1,...,¢n-1) € C and x = (20, 21,...,Tn_1) € C+# where ¢; =
Sp—y ki and T = > p_y NSk for 0 < i < n —1. Then

n—1 n—1 n—1
<C, ZL’>H =m (Z Tlis({i> —+ M2 <Z T2isgi> —+ 4 Ne <Z reisgi> = 0,
i=0 i=0 i=0
which implies that Z?;Ol rrisg; =0 for 1 < k < e. Now,

Y(c) = ((r10,7205 - s 7e0) M, (111,721, -5 Te1) My o (T1(=1), T2(n=1)» - - - Te(n—1)) M),
1[)(1') = ((8107 5205+ 860)M7 (8111 821,y 861)M7 ey (sl(n—l)a 32(n—1)7 ey Se(n—l))M)

and

n—1

(W), (@) = POW@)" =D (112, e MM (s, 83, s2)"

=0

n—1
=v Z(ru, Ty v Tei) (855, 8800 szi)T
=0

n—1 e
— q
=v)_ D> ruisis
=0 k=1
e n—1
— q
=v)_ D rhisis
k=1 1=0
= 07

which implies that (C1#) C (C)+#. Moreover, [(CH#)| = |[¢p(C)LH| as 1 is a
bijective map. Thus, ¢(C+#) = (C)1#. O

Lemma 4. Let C be a self-orthogonal code with respect to the Hermitian inner product
over R of length n. Then ¢(C) is a self-orthogonal code with respect to the Hermitian
inner product over Fp2 of length en.

Proof. Since C' is a self-orthogonal code with respect to the Hermitian inner product,
i.e.,, C C C*H#, we have ¢(C) C o(C+#). Using Lemma 3, we have

P(C) S p(C)*H.

Thus, 1(C) is a self-orthogonal code with respect to the Hermitian inner product over
F. O
q



Lemma 5. Let C be a linear code over R, of length n. Then C is a self-dual code
with respect to the Hermitian inner product if and only if ¥(C) is a self-dual code with
respect to the Hermitian inner product.

Proof. Let C be a self-dual code with respect to the Hermitian inner product, i.e.,
C = Ct#. Then, by Lemma 3, we have

P(C) = p(CH1) = p(C)H

Therefore, 1(C) is a self-dual code with respect to the Hermitian inner product over
Fe.

Conversely, let ¥(C) be a self-dual code with respect to the Hermitian inner product
over F 2. Then ¢(C) = 1(C)*# = ¢(C+#) by Lemma 3. As ¢ is bijective, we have C' =
C*# and hence C is a self-dual code with respect to the Hermitian inner product. [0

Theorem 6. Let C' be a linear code over R, of length n. Then C' is a Hermitian LCD
code if and only if 1(C) is a Hermitian LCD code over .

Proof. Tt can be proved by following the steps of Theorem 6.2 in [32]. O

The Hamming weight wg(c) of an element ¢ = (¢o,c1,...,¢n-1) € Fie is the
number of non-zero components in it. The Gray weight wg of an element v € R,
is defined as wg(r) = wy(y(r)), the Gray distance between two codewords ¢y, ¢ is
defined as dg(c1, c2) = wa(c1 — ¢2) while the Gray distance of a code C' is defined as

de(C) = min{dg(c1,c2) | c1,c2 € C,eq # o}

3 Hermitian Hull of Constacyclic codes over R,

In this section, we find possible hull dimensions of constacyclic codes over R.. In this
regard, we first present the factorization of ™ — « over a finite field Fg, for some non-
zero element « in F 2 of order 7 such that 7 | ¢4 1 which makes the Hermitian dual of
an a-constacyclic code also an a-constacyclic code (see [47]). Further, we obtain the
necessary and sufficient conditions for these codes to be Hermitian LCD. In the rest
of the paper, we consider a and «; in Fgp of order v and 7, respectively, such that
r|g+1and rjg+1foreach 1 <l <e.

Let a € F;z be an element of order r such that r | g+ 1 and n = p”n’ be a positive
integer such that v > 0,p {n’ where p = char(IF,2). For a positive integer j, we define
a map 7 by

. . Qk . .
(G q?) = 0 if j| (¢*® + q) for some non-negative integer k,
1 otherwise.

Also, we define two sets

nr
—T

/
Q:{jeN:j|n’r,7r(j’q2)20and gcd(j ):1}



and
4 . . / .92 n/'r'
O ={jeN:j|n'rn(j,q¢*) =1 and ged 7,7“ =1}

where N is the set of positive integers. Then, following [35], the factorization of 2™ — «
into monic irreducible polynomials over F2 is

v(5) B(3)
"t —a= H H gij(l')pv H H fz’j(af)pvf;j@)pv
JeEQ i=1 jeq’ =1
where ()
—_ %)
T Serd, ()
N oG
)= g erd (@)

for Euler’s totient function ¢, ord; (¢%) denotes the order of ¢® in the multiplicative
group ij, for some positive integer j # 1, coprime to ¢ and consider ord;(¢?) = 1.
In the above factorization, each polynomial g;; is a self conjugate-reciprocal of degree
ord;(¢?) for j € Q and fi;, fiTj are conjugate-reciprocal polynomial pairs with each
polynomial of degree ord;(q?) for j € €', i.e., the number of self-conjugate-reciprocal
polynomials are s = p* >, 7(j) and the number of conjugate-reciprocal polynomial

pairs are t = p” > .o B(j). That is,

n= Z ord; (¢*)y(j)p" + Z 20rd; (¢*)B(j)p"-

JEQ jeq

Now, we obtain some bounds which will be used for finding the hull dimension of
constacyclic codes over Rs.

Lemma 7. For any positive integer v and 0 < a,b,c < p¥, we have the following:

2
2. 0 < 2p¥ —max{b,p" — ¢} — max{c,p’ — b} < p".

1. 0 < p¥ —max{a,p’ —a} < Li ,
Proof. For Statement 1, we know that

P;—‘ < max{a,p” —a} <p°.

Therefore, we have
0 < p” — max{a,p’ —a} < V;J )

For Statement 2, we have the following two cases:
Case (i): If max{b,p” — ¢} = b, then max{c,p’ — b} = c and p¥ < b+c < 2p".
Therefore, p* < max{b,p’ — ¢} + max{e,p* — b} = b+ ¢ < 2p” and hence 0 <



2p¥ — max{b, p’ — ¢} — max{c,p’ — b} < p°.

Case (ii): If max{b,p" — ¢} = p” — ¢, then max{c,p”’ —b} = p’ —band 0 < b+c < p*.
Therefore, p* < max{b,p" — ¢} + max{c,p’ — b} = 2p” — b — ¢ < 2p” and hence
0 < 2p¥ — max{b,p* — ¢} — max{c,p" — b} < p". O

Using this lemma, we now find the hull dimension of constacyclic codes over Rs.
Theorem 8. Let C' = €,C1 & e2Cy be a A—constacyclic code over Ry, for some a-
constacyclic codes Cy = (g1(x)), Co = (g2(x)) over Fyp2, where A = e;a + e for
a €Fr; and gi(), g2(x) are given below:

v(5) B(5)
H ng] )i H H fzj ”f;rj (),
JEQ i=1 jeq i=1

v()
H ng] W H H fu U”f )wij-
JEQ i=1 jGQ i=1

Then, the dimension of Hully (C) is of the form

> ordi(q*)a; + Y ord;(¢*)b

Jjef jeqQ’

where 0 < a; < 2v(j) {%J and 0 < b; <28(j)p"

Proof. Let C be a A—constacyclic code over Ry where A = e;a + ea. Then,

Hullg(C) = eHullg (C1) ® eaHully (Cs)

= (1 lem <91($)7 (x;(;)(ly) s€2 lem (92(33)7 <x;2(_$)a)T>>.

dim(Hullg(C)) = dim(Hully (Cy)) + dim(Hullg (Cs))

Now,

()
= n-— Z ord,(¢%) Z max{a;;,p’ — a;;}—
J€Q i=1
B(5)
Z ord; ( Z (max{b;;,p" — c;;} + max{c;j, p’ — bi;})+
JjeqQ’ =1
n— Zord Zmax{u”,p — Ui} —
JEQ



=
Sl

(

(]

(max{v;, p” — w;;} + max{w;;,p" —vi;})

D ord;(q?) ]

jeq’ i=1

7()

=> ord;(¢*) > (p" — max{ay;,p’ — ay})+

JEQ i=1

B(5)
Z ord;(q?) Y (2p¥ — max{b;;,p" — ¢;j} — max{c;,p” — bij})+
jeq’ =1

7()
> ord;(q?) > (p" — max{u;,p” — uij})+
jen i=1

B(5)

2 v v v

Z ord;(q”) 2(219 — max{vj, p" — wi; } — max{w;;, p*” — vi;})
jeQ! i=1

v()

= ord;(q®) Y (2p" — max{a;, p” — ai;} — max{u;,p” — ui;})+

JEQ i=1

B(5)
Z ord,(¢%) 2(419“ —max{b;j,p" — ¢;j} — max{c;j,p" — bi;}—
jeq! i=1

max{v;;,p” — wi;} — max{wij, p" — vi;}).

Using Lemma 7, we have

v
0 < 2p” —max{ai;,p* — a;j} — max{u;;,p"’ — ug;}) < 2 V;J

and
0 < 4p'—max{b;;, p’—c;j }—max{c;;, p’ —b;; }—max{v;;, p* —w;; }—max{w;;, p’—v;; } < 2p".

Taking a; = Zz(jl) (2p" —max{a;;, p¥ — ai; } —max{u;j, p’ —u;;}) and b; = Zfz(jl) (4p¥ —

max{b;;, p¥ —c¢;; } —max{c;j, p¥ —bi; } —max{v;;, p* —w;; } —max{w;;,p" —v;;}), we get

dim(Hully (C)) = ZOI’dj(QQ)aj + Z ord;(g?)b;,

jen je’

where 0 < a; < 2v(j) {%J and 0 < b; < 28(4)p". O

10



Corollary 9. If ged(n,p) = 1, then the dimension of the Hermitian hull of
constacyclic code given in the above theorem is

> ordi(g*)b

jeq’
where 0 < b; < 25(j).
Proof. If ged(n,p) = 1, then p” = 1. Therefore, 0 < a; < 27v(j) {%J = 2v(4) L%J =0
and hence the result follows. O

Now, we recall basic theory to provide the hull dimension of A—constacyclic code
over R, where A is a unit in R.. Let a; € F*, be elements of order r; such that r; | ¢+1
for 1 <1 < e, respectively. For 1 <[ < e, we define the following sets:

!
O ={j|n'r:7(j,¢*) =0 and ged (”j”,m) —1}
and

/
Q; ={Jjl n'ry 17T(j7q )=1and ged (j 7"l> =1}.

Then the factorization of " — a; into monic irreducible polynomials over IFy2 is of the
form

() Bi(5) )
"= ] TT @) T TT ¢S @) (5 @),
JEQ; i=1 ]EQ i=1
where o)
N J
’Vl(]) i d)(rl)ordj(qz)v
Aid) == o)

2¢(r1)ord;(q?)’

@) is a self conjugate-reciprocal polynomial of degree ord,(¢?)

for 1 <1 < e where each g,

ij
and fi(;), ( fi(Jl‘))Jr are conjugate-reciprocal polynomial pairs with each polynomial of
degree ord;(¢?). The following theorem is the general case of Theorem 8 and can be
proved using similar arguments.

Theorem 10. Let C' = 1Cy ®12Co @ - - - ®nCe be a A—constacyclic code over R for
some ag-constacyclic codes Cy = (gi(x)) over Fp2 where A = niaq + npaa + -+ - + nere
for ay € Fy, and gi(z) are given below:

()
ofh ® ! RO
=1l 11w HH ) (F) @) 1<l < e
JEQ =1 jesq, =1

11



Then the dimension of Hully (C') is of the form

e

Z Z ordj(qz)ag-l) + Z ordj(qQ)b;l)

=1 \je, jeq

where 0 < agl) <) {%J, 0< b;l) < Bi(g)p?, for1 <l <e.

To obtain a necessary and sufficient condition for a constacyclic code over Ry to
be Hermitian LCD, we define a set Sy2 = {j > 1: j | (¢** + ¢) for some non-negative
integer k}. The following theorem gives a condition under which there is only one
possibility for the hull dimension of a constacyclic code over Rg, which leave us with
the trivial choice of Hermitian hull, i.e., the code is Hermitian LCD.
Theorem 11. Let ged(n,p) = 1 and Dp2(n) denotes the set of hull dimensions of
a—constacyclic codes of length n over Ry where o € IFZQ s an element of multiplicative
order r. Then Dg2(n) = {0} if and only if nr € Sp.

Proof. Note that n = n', as ged(n,p) = 1. If nr € Sp2, then there exists & > 0
such that nr | (¢?* + ¢). In this case, j | (¢** + ¢) for each divisor of nr and we get
O = ¢. Now, using Corollary 9, we get a; = 0 for all j € €. It concludes that the
only possibility for hull dimension is 0, and hence the result follows.

Conversely, assume that nr ¢ S,2. Then 7(nr,¢%) =1, i.e., nr € Q" and 0 < B(nr).
Therefore, there exists 0 < by, < B(nr), which makes the hull dimension non-zero. [

From the above theorem, we can conclude the following result:
Corollary 12. Let ged(n,p) =1 and a € ]F;2 be an element of multiplicative order r.
Then every a—constacyclic code of length n over Rs is a Hermitian LCD code if and
only if nr € Spe.

Similarly, we can obtain the following results corresponding to Theorem 11 and
Corollary 12, respectively.
Theorem 13. Let ged(n,p) = 1 and D,2(n) denotes the set of hull dimensions of
a—constacyclic codes of length n over R, where o € ]F:} is an element of multiplicative
order r. Then Dy (n) = {0} if and only if nr € Sp.
Corollary 14. Let ged(n,p) =1 and o € F*, be an element of multiplicative order r.
Then every a—constacyclic code of length n over R. is a Hermitian LCD code if and
only if nr € Spe.

4 Quantum Codes

In this section, we obtain quantum error-correcting codes (QECC) by using the Her-
mitian construction for which we require Hermitian dual-containing codes. We use
the notation [[n, k,d]],; to represent a QECC over F, which has already been men-
tioned in the Introduction. The following theorem gives a criterion for obtaining codes
containing their Hermitian dual.

Theorem 15. Let C' = ¢1C1 @ e2Cy be a A—constacyclic code over Ry for some
constacyclic codes Cy = (g1(x)), Ca = (g2(x)) over Fp2 where X\ = eja1 + €22 for

12



a1, € Fo and g1(x), g2(x) are given below:

71(5) B1(J)
o) = I1 TI @@ 11 1] ¢ (£ @),
JEQL i=1 jeq) i=1
v2(35)
=11 I @ 11 H D" (S @) .
JEQ i=1 jGQ/ =1

Then C+1 C C if and only if 0 < Ay, Uiy < {%J and 0 < by + ¢i5, 055 +wi; < pUl.

Proof. Note that C+u C Cif and only if Cf‘H C Cq and C’;‘H C (5, or equivalently,
Hully (Cy) = C* and Hullg(Cy) = Cy ™. That is,

lem <91(37)7 (x;z;l)T> - (m;zﬂ;;l)T
lem <g2(x), (W>T> B (W)T.

This implies that a;; < p¥ — a5, w5 < p¥ — ugj, by < p¥ — ¢y and vy < p¥ — wyy,

ie., 0 < 2a;5,2u;; < p” and 0 < by + ¢4, v55 +wy; < p¥. Hence, we get the required
result. O

and

Analogues to this result, we can find the dual containing property for the general
case, which is given by the following result.
Theorem 16. Let C = n1C1®nCo @+ - -®n.C, be a A—constacyclic code over R, for
some ay-constacyclic codes Cp = (gi(x)) over Fpz, where A = niaq + oo + -+ + nece
for ag € Fy. and gi(x) are given below:

(d)

= IT IT 6@ 11 H D (D) @) 1 < i <e.

JjEQ i=1 jEQ i=1

Then C+# C C if and only if 0 < az(-? < [%J and 0 < bz(-?nch-) <pY, foralll <l <e.
Lemma 17. [22, Hermitian construction/ Let C' be a linear code over F, with
the parameters [n,k,d); such that Ct# C C. Then there exists a quantum code of
parameters [[n, 2k —n,> d]],.

Theorem 18. Let C be a linear code over Ry such that C+5 C C and the parameters
of Y(C) be [2n,k,d),. Then there exists a quantum code of parameters [[2n, 2k — 2n, >

dl]¢-
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Proof. Let C be a linear code over R such that C+# C C. Then

(C)H =(CH) CY(C).

That is, ¢(C) is a linear code over F,» containing its Hermitian dual with the
parameters [2n,k,d|,. By Lemma 17, there exists a quantum code of parameters
([2n, 2k — 2n, > d]],. O

Similarly, the following result can be derived.
Theorem 19. Let C be a linear code over R, such that C+5 C C and the parameters
of Y(C') be [en, k,d|,. Then there exists a quantum code of parameters [[en, 2k — en, >

dl]¢-

5 Examples

In this section, we obtain examples of LCD codes, quantum codes, and constacyclic

codes with small hull dimensions over a finite field using constacyclic codes over R..
To obtain the Gray images of constacyclic codes over R., we consider the Gray

1 1} for e = 2. For e = 3, we

1 -1

consider the matrices M9 for obtaining the Gray images of constacyclic codes over

F,2 + uF 2 + u?F 2 under ¢ where

map ¥ defined in Section 2 and the matrix M = [

321 742
MO =343 , M) =974
432 424

Further, we consider t to be a primitive element of a finite field in the examples. For
an [n, k, d]4 linear code, we have the Singleton bound d < n—k+1. A linear code is an
MDS code if d = n—k+1 and near to MDS if d = n— k. In the case of quantum codes
with the parameters [[n, k, d]],, we have the quantum Singleton bound k +2d < n + 2
[6]. The quantum codes that satisfy the equality, i.e., k + 2d = n + 2, are said to be
MDS codes and the codes for which k + 2d = n are said to be near to MDS codes.
Now, we obtain some examples of codes where the parameters are calculated using
the Magma Computational software [5].

Example 1. Consider « =1, n =12 and q = p = 5, then the order of aisT =1, n' =
12, and p¥ = 1. Further, ord;(¢*) = 1Vj € QUE, where 2 ={1,2,3,6},Q = {4,12}.
Also, v(1) = 1,7(2) = 1,~7(3) = 2,7(6) = 2, 8(4) = 1 and B(12) = 2. Therefore, x'2—1
can be factored over Fz2 = F5[t] into v(1) + v(2) + v(3) + v(6) = 6 drreducible self-
congugate reciprocal polynomials and 5(4) + B(12) = 3 irreducible conjugate reciprocal
polynomial pairs. The factorization of x'2 — 1 into irreducible polynomials over Fg» =

F5 [t] 18

22 — 1 =(z+ 1) (z + tY(x + %) (@ +4)(x + ') (@ + 20 [(x + *) (x + t")][(z + 2)
(@ + 3)[(@ + 1) (= +17%)]
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where x + 1, o +t*, x+ 18 x+4, v +t'5 x4+ 20 are self-conjugate reciprocal
polynomials and {x+t%, x+t1*}, {z+2, v+3}, {a+t1°, x+t22} are conjugate reciprocal
polynomial pairs. Consider gi(x) = 2® + 2% + 32 + 8 = (z + 1) (z + t19)(z + t*2) and
g2(x) = x+1t%. Then cyclic codes Cy = {g1(z)) and Cy = (g2(z)) have hull dimensions
0 and 1, respectively. Further, C = €1C1 @ €3C4 is a cyclic code over Fsz2 + uFs2 and
the code ¥(C) over Fs2 is a near to MDS code having parameters [24,20, 4]52 and hull
dimension 1.

Take gi(x) = gi(x) and gh(z) = x + 8. Then cyclic codes C} = {(gi(x)) and
CY% = (g4(x)) are Hermitian LCD codes and C' = e1C| @ eaCY is a Hermitian LCD code
over Fs2 + ulF52. Therefore, the code ¥(C") over Fy2 is Hermitian LCD of parameters
24,20, 4]52.
Example 2. Consider a =12, n = 14 and ¢ = p = 13, then the order of o is r = 2,
n' =14, and p* = 1. Further, ord;(¢*) =1Vj € QUQ/, where Q = ¢, = {4,28}.
Also, B(4) = 1 and B(28) = 6. Therefore, z'* — 12 can be factored over Fizz =
Fi3[t] into B(4) + B(28) = 7 irreducible conjugate reciprocal polynomial pairs. The
factorization of x** — 12 into irreducible polynomials over Fis2 = Fy3[t] is

att =12 =[(z + %) (@ + t)][(x + %) (z + ¢')][(z + %) (z + D) [(z + 8) (z + 5)]
(@ + ™) (@ + £ 3)][(@ + ) (@ + 7] [(& + ™) (@ + 1),

where {x + 1%, x + 99} {z + '8, 2+ 192} {o + 30 2z + 14} {z +8, z + 5}, {z +
54, 2+ 1138} {z+1%, 2+t {o+178, 2 +1192}) are conjugate reciprocal polynomial
pairs. Take g1(z) = 2%+t x + 1 = (v + t'8)(z + t15°) and go(x) = 2 +15. In g1(2)
and go(x), we have at most one factor from each conjugate reciprocal polynomial pair,
i.e., the dual containing property (b;; + c;; < p* =1 forall j € Q' and 1 < i <
B(j)) given in Theorem 15 is satisfied. Therefore, the 12— constacyclic codes C; =
(91(x)) and Co = (ga(z)) contain their Hermitian dual and C = €C; @ e2Cy is a
(12€71 + 12€9)— constacyclic code over Fy32 + ulF132 containing its Hermitian dual code.
Therefore, the code (C) over Fiz2 contains its dual and has parameters [28,25,4]32.
Hence, by using the Hermitian construction, we get a quantum code with parameters
[[28,22, > 4]]15 over F13, which is an MDS code.

Example 3. Consider « =4, n =6 and ¢ = p = 5, then the order of o is r = 2,
n' =6, and p* = 1. Further, ord;(q?) = 1Vj € QU, where Q = ¢, = {4,12}.
Also, B(4) =1 and B(12) = 2. Therefore, 2° — 4 can be factored over Fs2 = F5[t] into
B(4) + 8(12) = 3 irreducible conjugate reciprocal polynomial pairs. The factorization
of 2% — 4 into irreducible polynomials over Fs: = Fs[t] is

2 =4 =[(z + ) (@ +t")][(x + 2)(x + 3)][(z + ) (z + %),

where {x + 2, =+t {x + 2, = + 3}, {z + t1°, x + t?2} are conjugate reciprocal
polynomial pairs. Take g1(z) = 2®>+tz+18 = (x+12)(x+2), g2(x) = 2+t% and g3(z) =
x + t19. It can be seen that the polynomials g1(x), go(z), and gs(z) satisfy the dual
containing conditions given in Theorem 16 is satisfied. Therefore, the 4— constacyclic
codes C1 = (g1(x)), C2 = (ga(x)) and Cs5 = (g2(x)) contain their Hermitian dual and
C =mCr®nCa®n3C3 is a (—ny —ng —n3)— constacyclic code over Fsz +uFsz +u?Fye

15



containing its Hermitian dual code where
m = (u+4)(u+t20),m = (u+tY)(u+1t*),n3 = (u+t*)(u +4).

Hence, the code (C) over Fs2 contains its Hermitian dual and has parameters
[18,14,4]52. Now, by using the Hermitian construction, we get a quantum code
[[18,10, > 4]]5 over F5, which is near to MDS code.

It is seen that a A—constacyclic code C of length n over R, can be decomposed into
a direct sum of constacyclic codes over a finite field where each of these constituent
codes is of length n. In the tables, we obtain several LCD codes, quantum codes, and
A—constacyclic codes with hull dimension 1 or 2 over finite fields where ¢ denotes a
primitive element of the field. The first column of all the tables represents the length
of the constituent codes, the second column represents the value of A, the third column
represents the generator polynomials of the constituent codes, and the fourth column
represents the parameters of (C). The fifth column in Table 2 represents the hull
dimension of the code ¥ (C) while in Table 3, it represents the parameters of quantum
codes obtained from v (C) using the Hermitian construction. We compare our obtained
quantum codes with existing codes available in different published papers and find
that our codes (listed in the fifth column) are either best-known (for a few cases) or
superior by means of parameters. Almost all the codes that we present in the tables
are near to MDS, whereas the MDS codes have been marked with x.

Table 1 Hermitian LCD codes obtained from A—constacyclic
codes over Re.

n A 91(), g2(x) P(C)
12 €1 + €2 3+ a2 +t8x 418,z +t8 (24, 20, 4] 52

12 | e +6ex | 23 +t222 + 20+ 136, 2 +15 | [24,20,4]72

12 €1 + €2 23 + 22 + 102 + 10z + 10 | [24,20,4],;2

]
30 | €1 + 10ez 22 +4x+ 1,2+ t10 [60,57,3];;2
12 €1 + €2 23+ 82 +5x+ 12,z +1 [24,20,4]; 52
14 €1 + €2 22+ t2Tx 412 x4+ 1 [28, 25,4]*1‘32
30 | t3%e; + e 22 +tte + 120 g 41 (60,57, 3] ;52

16



Table 2 M\—constacyclic codes with hull dimension 1 or 2.

n A g1(x), g2(x) P(C) Hull dimension of ¢(C)
12 €1+ €2 a3 4+ a2 +t8x + 8,z + 2 [24, 20, 4] 52 1
12 €1 + €2 a3 a2+ttt x4+ 2 [24, 20, 4] 52 2
12 €1 + €2 3 +ta? + 122 4t o+t [24, 20, 4] 72 2
12 | e +t12e 3+ 1222 + 120 + 136 x4+ P [24,20,4]72 1
12 | €1+ 10e2 23 + 322 + 1032 + 70z + 125 | [24,20,4];,2 1
12 | 10e1 + 10e2 | 3 + 22 + 02 + 95z +1° | [24,20,4];,2 2
30 €1 + €2 22+ tdr+ttx+1 (60,57, 3];;2 1
30 €1+ €2 22+ttt e+ tt (60,57, 3];;2 2
12 €1 + €2 2+ 1le+4,2+1 (24, 20, 4], 52 1
12 €1 + €2 4+ +4,0+2 (24, 20, 4] 52 2
30 | e +t120¢, 22 +8x 44,z +t* (60,57, 3];52 2
30 | €1 + 110y 2 + 8z + 4,z + 150 (60,57, 3], 32 1
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Table 3 Quantum codes obtained from Hermitian dual containing A—constacyclic codes over Re.

n A g1(x), g2(z) P (C) [[en, k, > d]]q en + 2— Remark /
(k+2d) Comparison

16 €1 + €2 2+ttt 1, x4+t (32,28, 3] 52 (132,24, > 3]]3 4 New

16 €1 + €2 23+ t72? +tr+ 1,23 a2 + T+ 1 | [32,26,4]52 (32,20, > 4]]3 6 New

20 | 21 + 2e2 B+ +r+tat+t [40,36,3]52 | [[40,32,> 3]]3 4 Optimal [11]

26 | €1 +t%e 3 +222 + 1,z +¢t [52,48,3]52 | [[52,44,> 3]|3 4 [[52,43,> 3]]5 [11]

28 | 261 +t%e2 23 + 1022 -t + 13,22 + 13 [56, 51, 3] 52 (56,46, > 3]]3 6 Optimal [3] [11]

30 €1 + t2eo a3 +t2a? +t2e 4+ 1,22 + 3 416 (60, 55, 4] 52 [[60, 50, > 4]]3 4 New

20 | tter +e2 23 +t1lz? + 3+ 1 [40, 36, 4] 52 [[40, 32, > 4]]5 2 [[40, 30, 4]]5 [11]

26 | 4de1 +4e2 23 +t72? +tr+ 2,2+ 2 (52,48, 4] 52 (52,44, > 4]]5 2 (52,44, > 3]]5 [3] [11]

28 €1 + deo 23 +t2322 4 tx + 3,22 + PPz + 1 [56, 51, 4] 52 (56,46, > 4]]5 4 New

30 €1 + deo x? + 2z + 1,z +t2 [60, 57, 3] 52 [[60, 54, > 3]]5 2 [[60, 50, 3]]5 [14]

30 | e +t'2ey 22+ + 1,2+ ¢2 [60, 57, 3] 2 [[60, 54, > 3]]7 2 Optimal [11]

30 | e +t'2%e 3+ 1722+t + 4,2+ 12 [60, 56, 4] 72 [[60,52, > 4]]7 2 New

36 | e +t'2%e 3+ttt + 3 [72, 68, 3] 2 [[72, 64, > 3]]7 4 New

14 | 12¢1 + 12¢ 22 +t2r + 1,2+ (28,25,4],52 | [[28,22,> 4]]34 0 MDS




6 Conclusion

In this article, we have studied the Hermitian hull of constacyclic codes over R, and
obtained their dimension. We derived some results for Hermitian LCD codes and
obtained conditions for constacyclic codes to satisfy dual containing property. The
approach that we used to obtain conditions for constacyclic codes to satisfy dual
containing property is new. Further, we obtained some good LCD and quantum codes
by using a Gray map. We have also obtained some constacyclic codes with small hull
dimension.

Acknowledgement. The authors are thankful to the Department of Science and
Technology (DST) (under SERB File Number: MTR/2022/001052, vide Diary No /
Finance No SERB/F/8787/2022-2023 dated 29 December 2022) for financial support
and the Indian Institute of Technology Patna for providing research facilities.

Declarations

Data Availability Statement: The authors declare that [the/all other] data sup-
porting the findings of this study are available within the article. Any clarification
may be requested from the corresponding author, provided it is essential.

Competing interests: The authors declare that there is no conflict of interest
regarding the publication of this manuscript.

Use of Al tools declaration The authors declare that they have not used Artificial
Intelligence (AI) tools in the creation of this article.

References

[1] Alahmadi, A., Altassan, A., AlKenani, A., Calkavur, S., Shoaib, H., Solé, P.: A
Multisecret-Sharing Scheme Based on LCD Codes. Mathematics 8(2), 272-282
(2020).

[2] Assmus Jr, E. F., Key, J. D.: Affine and projective planes. Discrete Math. 83(2-3),
161-187 (1990).

[3] Aydin, N., Liu, P., Yoshino, B.: http://quantumcodes.info/Z4/, accessed on
15/5/23

[4] Ball, S.: Some constructions of quantum MDS codes. Des. Codes Cryptogr. 89,
811-821 (2021).

[5] Bosma, W., Cannon, J.: Handbook of Magma Functions. Univ. of Sydney (1995).

[6] Calderbank, A.R., Rains, E.M., Shor, P.M., Sloane, N.J.A., Quantum error-
correction via codes over GF(4). IEEE Trans. Inform. Theory 44, 1369-1387
(1998).

19



[7]

[14]

[15]

[16]

[17]

[18]

Cao, M., Cui, J.: Construction of new quantum codes via Hermitian dual-
containing matrix-product codes. Quantum Inf. Process. 19(12), 1-26 (2020).

Carlet, C., Guilley, S.: Complementary dual codes for counter-measures to side-
channel attacks. Adv. Math. Commun. 10(1), 131-150 (2016).

Carlet C., Li C.J., Mesnager S.: Linear codes with small hulls in semi-primitive
case. Des. Codes Cryptogr. 87, 3063-3075 (2019).

Carlet, C., Mesnager, S., Tang, C., Qi, Y., Pellikaan, R.: Linear codes over I, are
equivalent to LCD codes for ¢ > 3. IEEE Trans. Inform. Theory 64(4), 3010-3017
(2018).

Edel, Y.. Some good quantum twisted codes. https://www.mathi.uni-
heidelberg.de/ yves/Matritzen/QTBCH/QTBCHIndex.html

Guenda, K., Jitman, S., Gulliver, T. A.: Constructions of good entanglement-
assisted quantum error correcting codes. Des. Codes Cryptogr. 86(1), 121-136
(2018).

Grassl, M., Rotteler, M.: Quantum MDS codes over small fields, 2015 IEEE Inter-
national Symposium on Information Theory (ISIT), Hong Kong, China, 2015, pp.
1104-1108, doi: 10.1109/ISIT.2015.7282626.

Islam, H., Prakash, O., Verma, R.K.: New quantum codes from constacyclic codes
over the ring Ry ,,,. Adv. Math. Commun. 16(1), 17-35 (2022).

Islam, H., Martinez-Moro, E., Prakash, O.: Cyclic codes over a non-chain ring
R, 4 and their application to LCD codes. Discrete Math. 344(10), 112545 (2021).

Islam, H., Prakash, O.: Construction of LCD and new quantum codes from cyclic
codes over a finite non-chain ring. Cryptogr. Commun. 14(1), 59-73 (2022).

Islam, H., Prakash, O.: New Quantum and LCD Codes over Finite Fields of Even
Characteristic. Defence Sci. J. 75(05), 656-661 (2021).

Jitman, S., Sangwisut, E.: The average dimension of the Hermitian hull of cyclic
codes over finite fields of square order, AIP Proceedings of ICOMEIA 2016, 1775
(2016) Article ID 030026.

Jitman, S., Sangwisut, E.: The average dimension of the Hermitian Hull of Con-
stacyclic Codes over finite fields of square order. Adv. Math. Commun. 12(3),
451-463 (2018).

Jitman, S., Sangwisut, E.: Hulls of Cyclic Codes over the ring Fy + vFo. Thai J.
Math. 33, 135-144 (2020).

20



[26]

[27]

[28]

[29]

Jitman, S., Sangwisut, E., Udomkavanich, P.: Hulls of cyclic codes over Zj.
Discrete Math. 343(1), 111621 (2020).

Ketkar, A., Klappenecker, A., Kumar, S., Sarvepalli, P. K.: Nonbinary Stabilizer
Codes Over Finite Fields. IEEE Trans. Inform. Theory 52(11), 4892-4914 (2006).

Leon, J.S.: Computing automorphism groups of error-correcting codes. IEEE
Trans. Inform. Theory 28, 496-511 (1982).

Li, C.J., Zeng, P.: Constrctions of linear codes with one-dimensional hull. IEEE
Trans. Inform. Theory 65(3), 1668-1676 (2019).

Li, C.: Hermitian LCD codes from cyclic codes. Des. Codes Cryptogr. 86 (2018),
2261-2278.

Liu, Z., Wang, J.: Linear complementary dual codes over rings. Des. Codes
Cryptogr. 87, 3077-3086 (2019).

Liu, X., Liu, H.: LCD codes over finite chain rings. Finite Fields Appl. 34, 1-19
(2015).

Mankean, T., Jitman, S.: Optimal binary and ternary linear codes with hull
dimension one. J. Appl. Math. Comput. 64(1), 137-155 (2020).

Mankean, T., Jitman, S.: Constructions and bounds on quaternary linear codes
with Hermitian hull dimension one. Arab. J. Math. 10(1), 175-184 (2021).

Massey, J. L.: Linear codes with complementary duals. Discrete Math. 106,/107,
337-342 (1992).

Pang, B.; Zhu, S.; Kai, X.: Some new bounds on LCD codes over finite fields.
Cryptogr. Commun. 12(4), 743-755 (2020).

Prakash, O., Yadav, S., Verma, R. K.: Constacyclic and Linear Complementary
Dual codes over F, 4+ ulF,. Defence Sci. J. 70(6), 626-632 (2020).

Prakash, O., Yadav, S., Islam, H., Solé, P.: Self-dual and LCD double circulant
codes over a class of non-local rings. Comput. Appl. Math. 41(6), 1-16 (2022).

Sangwisut, E., Jitman, S., Ling, S., Udomkavanich, P.: Hulls of cyclic and
negacyclic codes over finite fields. Finite Fields Appl. 33, 232-257 (2015).

Sangwisut, E., Jitman, S., Udomkavanich, P.: Constacyclic and quasi-twisted
Hermitian self-dual codes over finite fields. Adv. Math. Commun. 11, 595-613
(2017).

Sendrier, N.: On the dimension of the hull. STAM J. Appl. Math. 10, 282-293
(1997).

21



[37]

[38]

[39]

[40]

[41]

Sendrier, N.: Finding the permutation between equivalent codes: the support
splitting algorithm. IEEE Trans. Inform. Theory 46, 1193-1203 (2000).

Sendrier, N., Skersys, G.: On the computation of the automorphism group of a
linear code, in: Proceedings of IEEE ISIT 2001, Washington, DC, pp. 13 (2001).

Sendrier, N.: Linear codes with complementary duals meet the Gilbert-Varshamov
bound. Discrete Math. 285, 345-347 (2004).

Skersys, G.: The average dimension of the hull of cyclic codes, Discrete Appl.
Math., 128(1), 275-292 (2003).

Shi, X., Huang, X., Yue, Q.: Construction of new quantum codes derived from
constacyclic codes over Fpz +ulFg2 +- - + uT*I]qu. Appl. Algebra Engrg. Comm.
Comput. 32(5), 603-620 (2021).

Shor, P.: Scheme for reducing decoherence in quantum computer memory. Phys.
Rev. A 52(4), 2493-2496 (1995).

Sok L., Shi M., Solé P.: Constructions of optimal LCD codes over large finite
fields. Finite Fields Their Appl. 50, 138-153 (2018).

Yadav, S., Prakash, O., Islam, H., Solé, P.: Self-dual and LCD double circulant
and double negacirculant codes over F, 4+ uF, 4+ vF,. J. Appl. Math. Comput.
67(1-2), 689-705 (2021).

Yadav S., Prakash, O.: A new construction of Quadratic Double Circulant LCD
codes. J. Algebra Comb. Discrete Struct. Appl. (2023) (accepted).

Yadav S., Prakash, O.: Enumeration of LCD and Self-dual Double Circulant
Codes Over F,[v]/ < v? —1 >. Proceedings of Seventh International Congress
on Information and Communication Technology, Lecture Notes in Networks and
Systems 447, 241-249 (2023)

https://doi.org/10.1007/978-981-19-1607-6_21

Yang, Y., Cai, W.: On self-dual constacyclic codes over finite fields. Des. Codes
Cryptogr. 74, 355-364 (2015).

Yang, X., Massey, J. L.: The condition for a cyclic code to have a complementary
dual. Discrete Math. 126, 391-393 (1994).

22



	Introduction
	Preliminary
	Linear codes over Fq2
	Linear codes over Re

	Hermitian Hull of Constacyclic codes over Re
	Quantum Codes
	Examples
	Conclusion
	Acknowledgement


